
AI in Programming Education: Automated Feedback Systems for
Personalized Learning
YULIYA ALYOSHYNA, University of Twente, The Netherlands

Feedback is an important aspect of a balanced learning program, significantly
improving student performance and engagement. In computer science edu-
cation, especially in bachelor’s programs, feedback is essential for learning
programming languages and problem-solving skills. This research explores
the integration of artificial intelligence (AI) into feedback systems for cod-
ing exercises, addressing current challenges in manual feedback, such as
timeliness, relevance, and the teacher’s workload. The research examines
the characteristics of programming exercises, the current methods and tech-
nologies used in AI-driven feedback systems, and the potential benefits
and limitations of such systems. A semi-structured literature review and
experimental analysis were conducted to evaluate the potential of automated
feedbackmechanisms. Results indicate a preference for concise programming
tasks focusing on foundational concepts, with AI-driven feedback systems
showing promise in scalability and personalization. However, limitations in
feedback quality and context understanding were identified.

Additional Key Words and Phrases: artificial intelligence, intelligent tutoring
systems, automated feedback, computer-assisted learning

1 INTRODUCTION
Providing feedback to students is an essential part of any learning
curriculum. Feedback guides students in improving their work, un-
derstanding their mistakes, supports independence in learning, and
improves student’s performance [29].

In computer science bachelor’s programs, proficiency in program-
ming languages and problem-solving is important for students to
become well-rounded computer scientists [10, 31]. They develop
the skills through assignments, tutorials, lab sessions, and projects,
with immediate feedback being critical in the early stages, especially
for coding tasks [3]. Early identification and correction of errors are
essential for students to be successful in their future work [29].
However, currently, there are challenges in providing feedback

such as student dissatisfaction due to content issues, timeliness,
and relevance of feedback comments [7]. Teachers also face increas-
ing pressure and students’ unwillingness to use feedback. Despite
efforts by institutions, feedback remains poorly understood and
implemented [7].

The modern solution to this problem is automated feedback sys-
tems. Automated feedback refers to using technology, particularly
artificial intelligence (AI) and machine learning (ML), to provide
feedback on student work without explicit human intervention. This
feedback can be delivered in different forms, such as:

• Multiple-choice question grading
• Code review
• Writing evaluation

TScIT 41, July 7, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

• Open-ended question analysis

These methods refer to identifying correct answers, highlight-
ing errors, suggesting improvements, and using natural language
processing (NLP) for content analysis.
The main objective of this research is to explore the integration

of artificial intelligence (AI) into feedback systems that focus on pro-
gramming exercises within higher-education settings. This includes
analysing the characteristics of programming exercises, analysing
current methods and technologies used to incorporate AI into feed-
back systems, and evaluating the potential benefits and limitations
of using AI in automated feedback systems for programming exer-
cises.

2 PROBLEM STATEMENT
There are challenges with automated feedback for programming
exercises [4, 11, 12]. The integration of AI into educational courses
has shown promising potential to improve traditional feedback
practices, particularly in the context of programming exercises.
However, despite the advancements in AI technologies, several
challenges persist in incorporating AI-driven feedback systems into
coursework.
Secondly, current methods and technologies used to integrate

AI into feedback systems need to be examined. Understanding the
strengths, weaknesses, and applicability of thesemethods is essential
for developing effective feedback systems.

Furthermore, evaluating automated feedback has challenges.While
most tools offer some evaluation, the quality and clarity of these
methods and results vary greatly [12]. Inconsistent evaluation meth-
ods and insufficient detail in descriptions make assessing feedback
effectiveness difficult. While AI-driven feedback systems offer the
promise of better adaptiveness, personalization, and effectiveness
in supporting student learning outcomes, some existing challenges
and limitations need to be addressed.

2.1 Research question
Thus, following from the problem statement, we can formulate our
research question as follows:

RQ How can artificial intelligence be used to provide immediate
feedback for programming exercises?

To answer this research question, I will further split it into the
following sub-questions:

SRQ1 What characteristics do programming exercises have?
SRQ2 What are the current methods and technologies used to in-

corporate artificial intelligence for providing feedback for
programming exercises?

SRQ3 What are the potential benefits and limitations of using ar-
tificial intelligence in feedback systems for programming
exercises?

1

TScIT 41, July 7, 2024, Enschede, The Netherlands Yuliya Alyoshyna

A small experiment involving feedback generation using Large
Language Models (LLMs) and student participants will be conducted
to evaluate and understand student perceptions of AI-generated
feedback. This experiment aims to determine whether students find
the feedback useful and if they are interested in the integration of
such systems into computer science bachelor’s programs.

3 SRQ1 RESULTS — CHARACTERISTICS OF
PROGRAMMING EXERCISES

The first sub-research question (SRQ1) focuses on understanding
the characteristics of programming exercises, which are important
for developing automated feedback systems. When training a ma-
chine learning model or developing rule-based logic for automated
feedback, these characteristics are the primary focus for the analysis
of a student’s solution.

3.1 Approach
To gain a better understanding of how Bachelor’s Computer Science
programming exercises are formulated, a framework was developed
to identify and categorize the most common programming task
requirements. This framework is summarized in Table 1. Using this
framework, Java exercises from the Software Systems (Module 2)
first-year course of the Bachelor of Technical Computer Science
(TCS) program were manually labelled and categorized. The results
of this analysis are discussed in Section 3.2.
Further, an experimental approach was used, applying data sci-

ence and natural language processing techniques to identify the
most common words and phrases in programming task descriptions
and their typical instruction lengths. The experiment was performed
on two different datasets:

• Module 2 TCS:
The dataset was created by selecting diverse programming
exercises from the Bachelor of Technical Computer Science
Software Systems (Module 2) course guide, covering a range
of topics such as arithmetic operations, recursion, object-
oriented programming, sorting algorithms, and basic security.
Module 2 focuses on teaching students Object Oriented Pro-
gramming (OOP) through Java exercises.

• HuggingFace dataset:
A larger dataset sahil2801/CodeAlpaca-20 of diverse program-
ming exercises available online from Hugging Face datasets.
The dataset contained programming tasks for various pro-
gramming languages, topics, and solutions.

The results of the experiment for both datasets are discussed in
Section 3.3.

3.2 Framework Classification Results
During the classification process, it was observed that the exercises
were incremental in difficulty, starting with basic tasks and gradu-
ally becoming more complex. The emphasis was on understanding
the logic of the exercises rather than just the syntax. Students were
encouraged to test their solutions to ensure correctness, although
there was often little guidance on code documentation or comments,
highlighting a potential area for feedback improvement.

Many exercises required simple input/output verification for correct-
ness, making them suitable for expert-driven feedback approaches,
which rely on predefined rules and criteria set by human experts,
such as testing for correct output via the use of test cases (Discussed
in Section 4.3).
The exercises began with fundamental concepts, such as taking
user input and printing it out, performing mathematical operations,
reading/writing from/to a file, and learning about data structures,
thus providing students with a solid foundation before introducing
Object-Oriented Programming (OOP). Subsequently, the exercises
primarily focused on OOP, along with some security and network-
ing concepts.
Diverse problem-solving strategies were sometimes possible, em-
phasizing the need for correct base logic regardless of the imple-
mentation. However, in most cases, the implementation would only
differ slightly (e.g., different variable names or using a ’while’ loop
instead of a ’for’ loop). Some exercises allowed for multiple im-
plementation variants and different solution strategies, such as in
network programming concepts, where the main objective was to
implement a specific programming pattern.
For effective instruction, exercises required clear and concise de-
scriptions, learning objectives, hints for solutions, tool suggestions,
descriptive steps or resources, test cases, and indications of expected
results. Solutions needed to address the correct problem as required
per the task description, be syntactically correct, use appropriate
tools, pass test cases, meet input/output requirements, and be in
text format.

3.3 Experimental Results
3.3.1 Module 2 TCS. Module 2 TCS exercises focus exclusively on
the Java programming language. The majority of task descriptions
are concise, typically ranging between 400 and 600 characters. There
are fewer problems with longer instructions, indicating a preference
for shorter problem statements.
Analysis of tokens and common phrases provided limited insights.
Common phrases often reflect the instructional and action-oriented
nature of the exercises, indicating the tasks students are asked to
perform. The most frequently occurring phrases were ’write’,
’program’, ’user’, ’write program’, ’run’, and ’example’. This
suggests a hands-on approach to learning programming through
practical examples and user interaction.
In contrast, common tokens reveal the key elements and concepts
central to the tasks. The most common tokens identified were ’num-
ber’, ’user’, ’method’, ’program’, and ’class’, highlighting
frequently addressed concepts in the exercises.
While the presence of instructional phrases is expected, the frequent
occurrence of certain tokens does not provide clear conclusions
about the specific concepts covered in the exercises. Overall, both
tokens and phrases suggest a focus on fundamental programming
concepts such as handling numbers, user input, and method imple-
mentation, which are essential for building a solid foundation in
programming.

3.3.2 HuggingFace Dataset. A similar experiment was conducted
using an online found dataset, revealing that the majority of ex-
ercises solutions are expected to be written in C programming

2

AI in Programming Education: Automated Feedback Systems for Personalized Learning TScIT 41, July 7, 2024, Enschede, The Netherlands

Table 1. Programming exercises classification framework

Criteria Parameters description
Task type Nature of the task such as reading, writing, debugging, refactoring
Input/output
requirements

Expected input-output format:
Simple I/O: Basic user input (e.g., numbers, strings) and console output.
File Processing: Reading/writing data from/to files.
Network Programming: Interaction with network protocols or APIs.

Number of
solutions

Possible ways to complete the task:
Single solution: One correct output per input.
Multiple Variants: Different implementations achieve the same outcome.
Different Strategies: Various problem-solving techniques.
Open-ended: Loosely defined problems, encouraging creativity.

language. This emphasizes a focus on foundational programming
concepts, as C is commonly used to teach basic programming and
system-level concepts. Python and Java follow in popularity, reflect-
ing their widespread use in both educational settings and industry.
Python’s simplicity and readability make it ideal for beginners, while
Java is extensively used for teaching object-oriented programming.
The distribution of instruction lengths indicates that most ex-

ercises feature short instructions. This suggests that the exercises
are designed to be brief, potentially allowing students to quickly
understand the problem requirements.
Common instructions include tasks such as generating random

numbers, creating loops, and evaluating expressions, highlighting
a focus on basic programming constructs and algorithmic think-
ing. Other frequent phrases, such as ’write function’, ’given
string’, and ’write code’, primarily reflect the instructional
language used to direct students to solve the exercise.

3.4 Comparison
Analysing the Module 2 TCS, HuggingFace datasets and frame-
work classification analysis revealed several similarities and in-
sights into the characteristics of programming exercises. Firstly,
both approaches showed a preference for shorter problem state-
ments. Secondly, a hands-on approach to learning programming
through practical examples and user interaction was suggested in
both approaches. Furthermore, both approaches have shown some
similarities in a focus on basic programming concepts.

Overall, the findings from both approaches emphasize the impor-
tance of concise, practical, and focused on programming fundamen-
tals exercises in developing automated feedback systems.

4 SRQ2 RESULTS — CURRENT METHODS AND
TECHNOLOGIES IN AUTOMATED FEEDBACK FOR
PROGRAMMING EXERCISES

The second sub-research question (SRQ2) investigates the current
methods and tools that incorporate artificial intelligence and other
technologies to provide automated feedback for programming exer-
cises.

4.1 Approach
A semi-structured literature review was conducted to answer the
research question. To locate papers on automated feedback, AI, and

programming exercises, search engines such as Google Scholar, Sco-
pus, IEEE Xplore, and ACMDigital Library were used. The following
search query was developed:

(TITLE-ABS-KEY ((automated AND feedback)
AND education
AND ("computer science" OR programming OR coding
OR "coding exercises")
OR "intelligent tutoring systems")
AND KEY ("machine learning" OR "intelligent systems"
OR "intelligent tutoring systems"
OR "automated feedback"
OR "adaptive learning systems")) AND PUBYEAR > 2019
AND PUBYEAR < 2025 AND (LIMIT-TO (SUBJAREA, "comp"))

This query aimed to find publications from 2020 to 2024 in computer
science, focusing on automated feedback in programming education.
The reason for selecting the 4-year range was to ensure the inclusion
of the most recent and relevant studies. Additionally, some papers
within this timeframe already include literature reviews of earlier
works, providing a helpful overview of previous research. The ini-
tial query yielded 74 papers, which were refined by reading titles
and abstracts, resulting in 35 papers for detailed analysis. These
papers were analysed for techniques and technologies in automated
feedback systems for computer science programming exercises.
Figure 1 summarizes the methods and technologies identified

in the literature review, highlighting three main approaches: data-
driven, expert-driven, and mixed. Each approach is described in
the following sections, data-driven in Section 4.2, expert-driven in
Section 4.3 and mixed approach in Section 4.4.

4.2 Data-Driven Approach
Data-driven approaches derive feedback rules from student data
using algorithms and machine learning. Machine learning models
in intelligent tutoring systems typically require large amounts of
historical data to provide feedback.
According to Deeva et al. (2021) [4], 32% of reviewed studies by

them focused solely on data-driven models. According to multiple
studies [4, 5, 8, 12, 14, 15, 17, 18, 20, 21, 24, 26], machine learning
approaches are varied and depend on the desired outcomes.
In this section, different methods are described according to

whether they are focused on extracting features, analysing data

3

TScIT 41, July 7, 2024, Enschede, The Netherlands Yuliya Alyoshyna

Fig. 1. Methods of Automating Feedback in Programming Education

or generating feedback. Natural language processing and large lan-
guage models are discussed separately as they combine all three:
extraction, analysis, and feedback generation.

4.2.1 Extracting Information. To provide feedback, relevant infor-
mation must be extracted from student submissions. Key methods
include:

• Classification: Techniques like support vector machines,
naive Bayes, random forests, nearest-neighbour algorithms,
logistic regression, and decision trees. These methods classify
new data based on labelled input and identify relevant code
patterns across students [4, 17].

• Text mining: Extracts useful information from text, such as
context and intent from code comments to provide relevant
feedback.

• Clustering: Groups similar data points to identify common
patterns and misconceptions, such as clustering programs by
functionality to understand student behaviour [19].

The extracted data can be used as features for further machine learn-
ing and analysis, including comments, intent, and programming
style.

4.2.2 Analysing. Analysis is critical for automated feedback sys-
tems, enabling the understanding, evaluation, and improvement of
student submissions. It helps identify patterns, trends and assess
code quality for later feedback generation. Key methods include:

• Neural Networks and Deep Learning: Techniques such
as convolutional neural networks (CNN), recurrent neural
networks (RNN), Long Short-Term Memory (LSTM), and en-
coder/decoder models. Dense neural networks can be used
to predict how an incorrect solution can be repaired, and
CNN can be used to evaluate assignment quality based on

underlying semantic structure [22]. Neural networks can also
be used to predict the outcome of the program [26].

• Statistical-based models: These models can be used in iden-
tifying trends and predicting student performance based on
historical data [4].

• Optimization: Algorithms like gradient descent and Monte
Carlo methods can optimize the performance and accuracy
of feedback systems [4].

• Regression: Regression models can predict a continuous
outcome variable based on one or more predictor variables.
For example, they can be used in analysing relationships
between different variables in student performance data to
predict scores [4, 17, 22, 26].

• HiddenMarkovModels: Modelling sequences of data points.
These can be used in analysing sequences of student actions
to identify common problem-solving patterns [4, 12, 19].

• SequenceMining: Identifying sequences and patternswithin
data, for example, to detect common sequences in code sub-
missions that lead to errors or successes [4].

Analysed student solution produces a basis for generated feedback
whether it is a suggestion on improving code quality, a suggestion
on how to fix a mistake or a hint for further solutions to the task.

4.2.3 Generating. The final step of automated feedback would be
the generation of feedback. Feedback generation involves methods
similar to analysis:

• Neural networks: Based on the analysis, neural networks
can generate personalized hints and suggestions. This in-
volves providing specific guidance on how to correct errors
or improve code quality [2, 12, 22].

4

AI in Programming Education: Automated Feedback Systems for Personalized Learning TScIT 41, July 7, 2024, Enschede, The Netherlands

• Association rule learning: Association rule learning could
generate feedback by discovering associations between dif-
ferent aspects of student submissions and learning outcomes.
However, typically, expert insight would be needed to develop
the association rules [4].

Typically, the generated feedback is in the form of text; however,
some feedback tools, such as the one mentioned by Messer et al.
(2024) and developed by Edmison and Edwards, combine spectrum-
based fault localization with visualization. This tool provides feed-
back on maintainability and correctness by using unit testing and
visualizing the spectrum analysis as a heatmap, where more suspi-
cious code produces a higher score [22].

4.2.4 Natural language processing (NLP) and Large Language Models
(LLMs). NLP techniques and LLMs can simultaneously extract, anal-
yse, and generate feedback, making them useful tools in automated
feedback systems.

NLP techniques have gained popularity in automated research in
computer science [24]. In automated feedback systems, NLP can en-
gage in dialogue with students for planning and program design [12].
It can assess source code [20] and code comments [16], extracting
useful information to generate feedback [33]. For instance, Kochmar
et al. (2021) used NLP to generate hints and a random forest clas-
sifier to determine their appropriateness, resulting in personalized
feedback [15].
LLMs, like OpenAI’s GPT series, understand and generate hu-

man language text. Messer et al. (2024) noted the rise of LLMs in
computer science education [24]. LLMs, such as ChatGPT, generate
context-aware and personalized feedback in human-understandable
language. They can learn from feedback loops without retraining,
which makes them very convenient. Pankiewicz and Baker (2024)
used GPT-3.5 to generate personalized hints for programming ex-
ercises [27]. Roest et al. (2024) explored using LLMs to generate
next-step hints for students [28].
While NLP and LLMs have powerful capabilities in extracting,

analysing, and generating feedback, they also have limitations, those
limitations are discussed in section 5.3.1.

4.3 Expert-Driven Approach
Expert-driven approaches rely mainly on expert knowledge to gen-
erate feedback rules. For example, Deeva et al. (2021) points out that
“expert knowledge will be potentially transformed to a set of rules
(a feedback generation model), such as ‘if a student’s answer is 5/10
instead of 1/2, the system should suggest repeating section 17 in the
textbook with an explanation about reducing equivalent fractions
to the lowest terms.’”
Typically, feedback is predefined for each issue found in a stu-

dent’s code. Themain task is to verify whether the student’s solution
meets specific criteria, using the following approaches:

4.3.1 Automated Testing (AT) and Static/Dynamic Approaches. Au-
tomated Testing (AT) uses software tools to automatically execute
predefined tests on students’ code, assessing correctness, efficiency,
and coding standards. As Keuning et al. (2018) noted, “AT is often
implemented by running a program and comparing its output to
the expected output” [12].

Integrating AT with static and dynamic approaches is common
for automating programming exercise assessments, focusing on
correctness and feedback [21, 24].

• Static Analysis: Examines source code without execution to
detect errors, maintainability issues, security vulnerabilities,
and coding standards adherence [12, 23]. It often compares
student submissions with reference solutions to identify dis-
crepancies [23]. Tools include PyLint, cpplint, CheckStyle,
FindBugs, and PMD [23].

• Dynamic Analysis: Executes code to analyse runtime be-
haviour, testing performance, memory usage, and correct
operation under various conditions [12].

Combining AT with static or dynamic analysis offers more de-
tailed feedback, as AT alone only provides test case results without
specific issue feedback [12].

4.3.2 Intelligent Tutoring Systems (ITS) with Model Tracing and
Constraint-Based Modelling. Another technique is model tracing
and constraint-basedmodelling, those techniques can identifywhere
the student is in his programming task and generate hints on the
next steps.

• Model Tracing: Tracks and analyses students’ solution’s
steps against predefined production and common erroneous
rules. It helps diagnose specific misconceptions and provides
targeted feedback [12].

• Constraint-Based Modelling (CBM): Evaluates the final
solution based on whether it meets predefined constraints,
useful in domains with multiple acceptable solution paths
[12].

4.3.3 Program Transformations (PT). Program transformations in-
volve modifying source code to improve performance, readabil-
ity, correctness, or structure without changing functionality. This
method helps students learn best practices and coding standards.
When combined with static analysis, program transformations can
align student programs with example programs [13]. Tools like Find-
Bugs use static analysis to identify potential bugs by translating
Java programs into bytecode [13].

Additionally, repair generators can apply transformation patterns
to faulty programs to create and validate potential fixes using the
provided test suite, subsequently offering solutions or suggestions
to students [36].

4.4 Mixed Approach
Mixed approaches involve both data and expert-driven approaches,
where a mixed feedback system defines its rules by integrating
expert knowledge with insights gained from analysing student data
[4].
Zhan et al. (2022) discuss a hybrid feedback generation system

that combines a formal rule-based method with a data-based multi-
label classification (MLC) technique. The system predicts user intent
and provides examples of successful solutions, demonstrating its
effectiveness in assisting users with troubleshooting and task com-
pletion [35].
An example of using both data-driven and expert-driven ap-

proaches is mentioned by Messer et al. (2024): “To grade correctness,

5

TScIT 41, July 7, 2024, Enschede, The Netherlands Yuliya Alyoshyna

Dong et al. [18] implemented two ML AATs into an online judge.
The first model was trained using historical training data to pre-
dict what causes failed test results. The second model implemented
was a knowledge-tracing model used to predict the probability of a
student passing a new problem based on previous knowledge of a
programming concept” [23].

4.5 Applicability and Use of Automated Feedback
Approaches

As mentioned, data-driven methods use previous data and machine
learning algorithms to generate feedback. This approach applies
in environments with a large amount of historical data available.
For example, it can predict student performance [18, 23] identify
common errors [17], and provide personalized recommendations
based on provided data [34]. Data-driven approaches are suitable
for scenarios where personalized feedback needs to handle a wide
range of student interactions, thus making it more generalizable
across different scenarios [1, 15]. Data-driven methods are scalable,
making them well-suited for delivering feedback to a large number
of students. [8].

Expert-driven methods rely on predefined rules and expert knowl-
edge to generate feedback. Unlike data-driven approaches, expert-
driven systems don’t require large datasets for training. This makes
them suitable for situations with limited student data or when the
focus is on specific, well-defined concepts [12]. Expert-driven ap-
proaches generally do not provide diverse feedback and are effec-
tive in tools that primarily focus on identifying mistakes made by
learners [12]. Thus, making them applicable in scenarios where con-
sistency of feedback is important and/or identification of mistakes
is a priority.
Mixed approaches use both data and expert-driven approaches,

making them suitable in scenarios where both a large amount of
data and expert knowledge is available.

5 SRQ3 RESULTS — BENEFITS AND LIMITATIONS OF AI
IN AUTOMATED FEEDBACK SYSTEMS

The third sub-research question (SRQ3) focuses on evaluating the
benefits and limitations of AI in automated feedback systems in
programming education. Understanding these aspects is crucial for
comprehending the overall effectiveness and potential drawbacks
of integrating such technologies in educational contexts.

5.1 Approach
Similarly to the approach in SRQ2, a semi-structured literature
review was conducted. Relevant studies found from SRQ2 were
analysed to identify benefits and limitations of AI in automated
feedback systems.

5.2 Benefits
Automated feedback systems provide immediate feedback on pro-
gramming assignments, which is crucial for learning. Immediate
feedback helps students correct their mistakes promptly and rein-
forces learning concepts effectively [23]. Expert-driven automated
systems ensure consistency and objectivity in grading and feedback
due to defined rules for providing feedback. Unlike human graders,

these systems do not suffer from fatigue or bias, leading to fairer
assessments [12], however, that might not always be the case with
data-driven approaches if the data supplied is already biased.

AI-driven feedback systems can handle large volumes of student
submissions efficiently, making them particularly useful in Massive
Open Online Courses (MOOCs) and large university classes where
manual grading would be impractical, thus saving resources. This
scalability helps in providing consistent feedback to all students
regardless of class size [6].

By leveraging data-driven techniques and machine learning, auto-
mated feedback systems can provide personalized feedback tailored
to individual student needs, improving learning outcomes [4]. Some
advanced automated feedback AI systems integrate motivational
andmeta-cognitive feedback, encouraging students to develop better
learning strategies and fostering a more positive learning environ-
ment [6].

5.3 Limitations
While automated feedback systems can provide quick feedback, the
quality and depth of the feedback may not match that of experienced
human instructors. AI automated feedback can sometimes be generic
or miss nuanced errors that require human judgment [22].
The development and maintenance of AI automated feedback

systems require significant technical expertise and resources due to
the rapidly evolving field of AI. Implementing these systems can be
costly and time-consuming [25].

Expert-driven automated feedback often relies heavily on prede-
fined test cases. This can lead to situations where students’ code
passes all test cases, but still contains underlying issues not captured
by the tests [23]. AI automated systems may struggle to understand
the broader context of a student’s work or the pedagogical goals
behind an assignment, especially if it’s not mentioned in the as-
signment. This limitation can result in feedback that is not fully
aligned with the learning objectives [6]. In cases where the system
misinterprets the code or the intended solution, it can provide in-
correct or misleading feedback, confusing students and hindering
their learning process [23].

5.3.1 NLP and LLMs limitations. One significant limitation is the
need for large, high-quality datasets for training, which may not
always be available in educational contexts [32]. Additionally, LLMs
can sometimes produce contextually inappropriate or incorrect feed-
back if the input data is ambiguous or if the model has not been
adequately fine-tuned [9, 30]. Furthermore, these models often re-
quire substantial computational resources, which can be a barrier
to their widespread adoption in educational settings. Lastly, while
LLMs can generate human-like text, they may lack the deep domain-
specific knowledge and pedagogical insights that expert-driven ap-
proaches provide, potentially limiting their effectiveness in certain
educational scenarios [9].

6 EXPERIMENT EVALUATING LLM-GENERATED
FEEDBACK ON PROGRAMMING EXERCISES

The primary goal of this experiment is to evaluate the usefulness and
potential of Large Language Models (LLMs) in automating feedback

6

AI in Programming Education: Automated Feedback Systems for Personalized Learning TScIT 41, July 7, 2024, Enschede, The Netherlands

for programming exercises by comparing different LLMs based on
student feedback.

6.1 Experimental design
To evaluate the usefulness and potential of LLMs in automating
feedback for programming exercises, the experiment was structured
as follows:

6.1.1 Selection of Programming Exercises. 10 different program-
ming exercises from Bachelor’s of Technical Computer Science
Software Systems (Module 2) course were selected. The exercises
covered a range of topics from basic arithmetic operations and data
structures to more advanced concepts like recursion, object-oriented
programming, sorting algorithms, and data security.

6.1.2 Selected LLMs. Four well-known and accessible LLMs were
chosen for evaluation:

• OpenAI GPT-3.5: Advanced natural language understand-
ing and generation capabilities, trained on large amount of
data. Well-suited for generating detailed and context-aware
response.

• Copilot: An AI-powered code completion tool developed by
GitHub and OpenAI, specifically trained on a vast amount of
programming-related data.

• Google Gemini: A language model developed by Google,
known for its robust performance in understanding and gen-
erating human-like text.

• Hugging Face model: CohereForAI/c4ai-command-r-plus is
a versatile model from Hugging Face’s repository, designed
to handle language tasks.

6.1.3 Procedure. The selected programming exercises were col-
lected from five first-year Computer Science students who are fa-
miliar with programming basics. The exercise instructions and their
solution were provided to the selected LLMs using the following
prompt:
Generate a short concise feedback on the solution.
Problem: [Problem description inserted here]
Solution: [Solution code inserted here]

After receiving the feedback generated by the LLMs, students were
asked to fill out an evaluation form.

6.2 Evaluation form
The evaluation form for assessing the effectiveness and usefulness
of feedback provided by LLMs for programming exercises was based
upon some principles from the Unified Theory of Acceptance and
Use of Technology (UTAUT) and the Technology Acceptance Model
(TAM).

• Performance Expectancy/Perceived Usefulness: Mea-
sured through quantitative ratings on the usefulness, clarity,
accuracy, and helpfulness of the feedback, reflecting how well
the feedback helps students understand and improve their
coding skills.

• Perceived Ease of Use: Assessed through qualitative feed-
back and quantitative clarity evaluations, capturing how easy
it is for students to understand and apply the feedback.

• Social Influence and Behavioural Intention to Use: De-
fined through additional comments on whether students be-
lieve LLM automated feedback systems should be integrated
into their coursework and their reasons for this belief.

6.3 Results
The collected evaluation forms were analysed to compare student’s
opinions on the different LLMs provided feedback. The analysis
focused on identifying which LLM provided the most effective feed-
back and understanding the reasons behind the students’ prefer-
ences.

6.3.1 OpenAI GPT-3.5. Student evaluations of GPT-3.5 feedback
revealed mixed results. While students appreciated the structured
and detailed explanations, significant issues with accuracy and rele-
vance were noted, resulting in low usefulness ratings. Clarity and
helpfulness ratings varied, with feedback often lacking in value.
Students criticized circular reasoning and irrelevant text, recom-
mending improvements in focus, conciseness, accuracy, and better
code detail checking.

6.3.2 Copilot. Copilot feedback received generally neutral to pos-
itive evaluations. Students valued its clarity, structured approach,
and focus on small mistakes, with high ratings for accuracy and
helpfulness. However, issues included occasional misunderstand-
ings and unimplemented code revisions. Students suggested more
detailed explanations and ensuring actual changes in revised code.

6.3.3 Google Gemini. Evaluations of Google Gemini feedback were
mixed. Some students appreciated the clear, structured breakdown
into categories, while others were dissatisfiedwith its usefulness and
accuracy. Positive aspects included clear categorization and concise
comments, but significant issues involved repetitive feedback and
suggestions for non-existent methods.

6.3.4 CohereForAI/c4ai-command-r-plusmodel. Evaluations of Hug-
ging Face model were mostly neutral to negative. Students liked the
focused responses, but noted problems with accuracy and structure,
leading to mixed usefulness ratings. Clarity ratings were also mixed,
with feedback often lacking informativeness and organization. Help-
fulness ratings indicated the feedback frequently failed to be helpful
and guide students in the right direction. Students suggested im-
provements in structuring feedback and providing more detailed
guidance.

6.3.5 Comparative Analysis. Copilot received the highest satisfac-
tion ranking with 4/5 students rating it as the most useful, followed
by Google Gemini with a score of 1/5. Hugging Chat was rated by all
students as the least useful. Copilot was preferred for its structured,
accurate, and clear feedback, while Google Gemini was valued by
one student for thorough explanations and mostly accurate feed-
back. Hugging Chat was rated the least useful due to its lack of
useful suggestions and general comments.
Opinions on integrating LLM-generated feedback into course-

work were mixed. Some students supported it for helping under-
stand and correct mistakes efficiently, while others preferred human
review for accuracy and relevance.

7

TScIT 41, July 7, 2024, Enschede, The Netherlands Yuliya Alyoshyna

Additional comments included the suggestion to develop edu-
cational specific AI tools with official references to avoid mislead-
ing information and plagiarism. There was also a call for human
supervision alongside AI feedback to enhance its reliability and
effectiveness.

6.4 Evaluation
The experiment showed that students valued clear, concise, and
actionable feedback, they appreciated explanations that directly
addressed their code’s problems and offered solutions. Feedback
containing irrelevant information, too general or suggesting incor-
rect solutions was considered unhelpful.

Overall, LLMs demonstrate promising capabilities in generating
relevant feedback that is useful for students, particularly when
fine-tuned on programming data, as observed in this experiment
with Copilot. There’s a need for improvement in accuracy, focus,
and providing actionable feedback. Human review is likely still
necessary to ensure quality feedback.
The speed of feedback generation through LLMs is significantly

better than manual methods, offering a distinct advantage. However,
practical limitations such as character and message constraints con-
strained the dataset selection to shorter exercises, affecting the level
of analysis. Moreover, limitations on the amount of feedback that
could be generated at a time due to message restrictions indicate the
importance of resource optimization for implementing such tools.
Finally, it is important to note that the results cannot be gen-

eralized to a larger population or for all programming exercises,
but they do provide insight into how AI is capable of generating
immediate feedback for programming exercises.

7 FUTURE WORK AND LIMITATIONS
Regarding the performed experiment, future research should aim to
collect a larger and more diverse dataset of programming exercises
to ensure findings are generalizable across different educational con-
texts. Expanding the dataset to include a wider range of program-
ming tasks, different programming languages, various contexts, and
diverse student demographics will provide more insights into the
effectiveness of LLM-generated feedback. Additionally, developing
more programming-specific language models that better understand
and address specific coding issues is crucial. This could involve in-
tegrating advanced natural language processing techniques and
domain-specific knowledge bases to improve feedback relevance.
Exploring mixed models that combine the strengths of data-driven
and expert-driven approaches could also provide more insights into
the applicability of mixed approaches models.

Currently, there is a gap in research on how generated feedback
could be personalized. With the potential of data-driven approaches,
personalization should be investigated to see how feedback sys-
tems can change responses based on individual student learning
styles, progress, previous submissions or other variables. Person-
alized feedback tools can better address the unique needs of each
student, potentially improving learning outcomes. Research should
also explore the use of student feedback and performance data to
continually refine and customize the machine learning models, mak-
ing them more adaptable and effective over time.

Ethical considerations are a significant part of AI research. Due
to time constraints, this study did not address ethics, but future re-
search should investigate methods to ensure ethical use and address
potential biases in AI-generated feedback.
This research was also limited by a relatively small number of

participants in the experiment, variability in student perceptions, a
narrow focus on immediate reactions and technical limitations of
LLMs. Addressing these limitations in future work will allow the
generalization of findings and more revealing insights about the use
of automated feedback for programming exercises.

8 CONCLUSION
This research explored the integration of artificial intelligence into
feedback systems for programming exercises in higher education.
By analysing the characteristics of programming exercises and eval-
uating the current methods and technologies used in AI-driven
feedback systems, the study highlighted both the potential benefits
and limitations of these systems.

Characteristic analysis of programming exercises showed a pref-
erence for concise problem statements with a focus on basic pro-
gramming concepts.
A short literature review showed that data-driven approaches

offer scalable feedback but face challenges with data availability,
deep domain-specific knowledge, and accuracy of feedback. Expert-
driven approaches provide consistent and reliable feedback but can
lack the depth of feedback ormiss underlying issues with the student
solution.

The evaluation of various LLMs, including OpenAI GPT-3.5, Copi-
lot, Google Gemini, andHugging Chat (CohereForAI/c4ai-command-
r-plus), revealed mixed student perceptions. While Copilot and
Google Gemini were generally well-received for their structured
and accurate feedback, Hugging Chat was criticized for its lack of
useful suggestions and the presence of general comments.
Future work should focus on expanding datasets for analysing

programming exercises characteristics, developing more specialized
language models for programming, and ensuring ethical consider-
ations of AI in feedback systems. Addressing current limitations,
such as dataset size, variability in student perceptions, and technical
constraints, will further improve the evaluation of the effectiveness
of LLM-generated feedback in programming education. Integrating
these systems into educational platforms, with a focus on personal-
ization and ethical use, might improve student learning outcomes
and engagement.

REFERENCES
[1] Muhammad Afzaal, Jalal Nouri, Aayesha Zia, Panagiotis Papapetrou, Uno Fors,

Yongchao Wu, Xiu Li, and Rebecka Weegar. 2021. Explainable AI for data-
driven feedback and intelligent action recommendations to support students
self-regulation. Frontiers in Artificial Intelligence 4 (2021), 723447.

[2] U.Z. Ahmed, N. Srivastava, R. Sindhgatta, and A. Karkare. 2020. Characterizing
the pedagogical benefits of adaptive feedback for compilation errors by novice
programmers. Proceedings - International Conference on Software Engineering
(2020), 139–150. https://doi.org/10.1145/3377814.3381703 cited By 18.

[3] Albert T Corbett and John R Anderson. 2001. Locus of feedback control in
computer-based tutoring: Impact on learning rate, achievement and attitudes.
In Proceedings of the SIGCHI conference on Human factors in computing systems.
245–252.

8

https://doi.org/10.1145/3377814.3381703

AI in Programming Education: Automated Feedback Systems for Personalized Learning TScIT 41, July 7, 2024, Enschede, The Netherlands

[4] Galina Deeva, Daria Bogdanova, Estefanía Serral, Monique Snoeck, and Jochen
De Weerdt. 2021. A review of automated feedback systems for learners: Classi-
fication framework, challenges and opportunities. Computers & Education 162
(2021), 104094.

[5] E.M. Dillon, C. Carpenter, J. Cook, T.D. Wills, and H.S. Narman. 2022. A Machine
Learning-Based Automatic Feedback System to Teach Cybersecurity Principles to
K-12 and College Students. 2022 IEEE Global Humanitarian Technology Conference,
GHTC 2022 (2022), 219–225. https://doi.org/10.1109/GHTC55712.2022.9910998
cited By 1.

[6] Hagit Gabbay and Anat Cohen. 2023. Unfolding Learners’ Response to Different
Versions of Automated Feedback in a MOOC for Programming–A Sequence
Analysis Approach. International Educational Data Mining Society (2023).

[7] Michael Henderson, Tracii Ryan, and Michael Phillips. 2019. The challenges of
feedback in higher education. Assessment & Evaluation in Higher Education (2019).

[8] M. Hooda, C. Rana, O. Dahiya, A. Rizwan, and M.S. Hossain. 2022. Artificial
Intelligence for Assessment and Feedback to Enhance Student Success in Higher
Education. Mathematical Problems in Engineering 2022 (2022). https://doi.org/10.
1155/2022/5215722 cited By 51.

[9] Andrew Katz, Umair Shakir, and Ben Chambers. 2023. The Utility of Large
Language Models and Generative AI for Education Research. arXiv preprint
arXiv:2305.18125 (2023).

[10] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code quality issues in
student programs. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. 110–115.

[11] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a systematic
review of automated feedback generation for programming exercises. In Proceed-
ings of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education. 41–46.

[12] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature
review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 1–43.

[13] H. Keuning, J. Jeuring, and B. Heeren. 2018. A systematic literature review of
automated feedback generation for programming exercises. ACM Transactions on
Computing Education 19, 1 (2018). https://doi.org/10.1145/3231711 cited By 176.

[14] E. Kochmar, D.D. Vu, R. Belfer, V. Gupta, I.V. Serban, and J. Pineau. 2020. Automated
Personalized Feedback Improves Learning Gains in An Intelligent Tutoring System.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 12164 LNAI (2020), 140–146.
https://doi.org/10.1007/978-3-030-52240-7_26 cited By 24.

[15] E. Kochmar, D.D. Vu, R. Belfer, V. Gupta, I.V. Serban, and J. Pineau. 2022. Automated
Data-Driven Generation of Personalized Pedagogical Interventions in Intelligent
Tutoring Systems. International Journal of Artificial Intelligence in Education 32, 2
(2022), 323–349. https://doi.org/10.1007/s40593-021-00267-x cited By 15.

[16] X. Liu, H. Castellanos, L. Wiese, and A.J. Magana. 2023. Exploring Machine
Learning Methods to Identify Patterns in Students’ Solutions to Programming
Assignments. Proceedings - Frontiers in Education Conference, FIE (2023). https:
//doi.org/10.1109/FIE58773.2023.10342972 cited By 0.

[17] Xiaojin Liu, Hugo Castellanos, Lucas Wiese, and Alejandra J Magana. 2023. Ex-
ploring Machine Learning Methods to Identify Patterns in Students’ Solutions to
Programming Assignments. In 2023 IEEE Frontiers in Education Conference (FIE).
IEEE, 1–6.

[18] J. McBroom, I. Koprinska, and K. Yacef. 2022. A Survey of Automated Programming
Hint Generation: The HINTS Framework. Comput. Surveys 54, 8 (2022). https:
//doi.org/10.1145/3469885 cited By 20.

[19] J. McBroom, K. Yacef, and I. Koprinska. 2020. Scalability in Online Computer
Programming Education: Automated Techniques for Feedback, Evaluation and
Equity. Proceedings of the 13th International Conference on Educational DataMining,
EDM 2020 (2020), 802–805. https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85132115839&partnerID=40&md5=efb9629d71354344887d56117529b9e7 cited
By 1.

[20] M. Messer. 2022. Grading Programming Assignments with an Automated Grading
and Feedback Assistant. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13356
LNCS (2022), 35–40. https://doi.org/10.1007/978-3-031-11647-6_6 cited By 0.

[21] M. Messer, N.C.C. Brown, M. Kölling, and M. Shi. 2023. Machine Learning-Based
Automated Grading and Feedback Tools for Programming: A Meta-Analysis.
Annual Conference on Innovation and Technology in Computer Science Education,
ITiCSE 1 (2023), 491–497. https://doi.org/10.1145/3587102.3588822 cited By 4.

[22] M. Messer, N.C.C. Brown, M. Kölling, and M. Shi. 2024. Automated Grading
and Feedback Tools for Programming Education: A Systematic Review. ACM
Transactions on Computing Education 24, 1 (2024). https://doi.org/10.1145/3636515
cited By 3.

[23] Marcus Messer, Neil CC Brown, Michael Kölling, and Miaojing Shi. 2024. Au-
tomated grading and feedback tools for programming education: A systematic
review. ACM Transactions on Computing Education 24, 1 (2024), 1–43.

[24] Marcus Messer, Neil C. C. Brown, Michael Kölling, and Miaojing Shi. 2024. Au-
tomated Grading and Feedback Tools for Programming Education: A System-
atic Review. ACM Trans. Comput. Educ. 24, 1, Article 10 (feb 2024), 43 pages.
https://doi.org/10.1145/3636515

[25] Fatema Nafa, Lakshmidevi Sreeramareddy, Sriharsha Mallapuram, and Paul
Moulema. 2023. Improving Educational Outcomes: Developing and Assessing
Grading System (ProGrader) for Programming Courses. In International Confer-
ence on Human-Computer Interaction. Springer, 322–342.

[26] J.W. Orr and N. Russell. 2021. Automatic Assessment of the Design Qual-
ity of Python Programs with Personalized Feedback. Proceedings of the 14th
International Conference on Educational Data Mining, EDM 2021 (2021), 495–
501. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137237797&
partnerID=40&md5=9c217bd17748b93a67fce110bbc70a07 cited By 7.

[27] M. Pankiewicz and R.S. Baker. 2023. Large Language Models (GPT) for au-
tomating feedback on programming assignments. 31st International Con-
ference on Computers in Education, ICCE 2023 - Proceedings 1 (2023), 68–
77. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181532783&
partnerID=40&md5=94b6a283167f03aee2752b7b2292ecb6 cited By 0.

[28] L. Roest, H. Keuning, and J. Jeuring. 2024. Next-Step Hint Generation for Introduc-
tory Programming Using Large Language Models. ACM International Conference
Proceeding Series (2024), 144–153. https://doi.org/10.1145/3636243.3636259 cited
By 0.

[29] Scott A Schartel. 2012. Giving feedback–An integral part of education. Best
practice & research Clinical anaesthesiology 26, 1 (2012), 77–87.

[30] Thanveer Shaik, Xiaohui Tao, Yan Li, Christopher Dann, Jacquie McDonald, Petrea
Redmond, and Linda Galligan. 2022. A review of the trends and challenges in
adopting natural language processing methods for education feedback analysis.
IEEE Access 10 (2022), 56720–56739.

[31] Diomidis Spinellis. 2006. Code quality: the open source perspective. Adobe Press.
[32] Xiaoyi Tian and Kristy Elizabeth Boyer. 2023. A Review of Digital Learning

Environments for Teaching Natural Language Processing in K-12 Education.
arXiv preprint arXiv:2310.01603 (2023).

[33] C. Troussas, C. Papakostas, A. Krouska, P. Mylonas, and C. Sgouropoulou. 2023.
Personalized Feedback Enhanced by Natural Language Processing in Intelligent
Tutoring Systems. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13891 LNCS
(2023), 667–677. https://doi.org/10.1007/978-3-031-32883-1_58 cited By 8.

[34] Siyu Wu, Yang Cao, Jiajun Cui, Runze Li, Hong Qian, Bo Jiang, and Wei Zhang.
2024. A Comprehensive Exploration of Personalized Learning in Smart Educa-
tion: From Student Modeling to Personalized Recommendations. arXiv preprint
arXiv:2402.01666 (2024).

[35] Yue Zhan and Michael S Hsiao. 2022. A Hybrid Approach for Automatic Feed-
back Generation in Natural Language Programming. In 2022 Fourth International
Conference on Transdisciplinary AI (TransAI). IEEE, 32–39.

[36] J. Zhang, D. Li, J.C. Kolesar, H. Shi, and R. Piskac. 2022. Automated Feedback
Generation for Competition-Level Code. ACM International Conference Proceeding
Series (2022). https://doi.org/10.1145/3551349.3560425 cited By 1.

A AI USE DISCLOSURE
During the preparation of this work, the author(s) used ChatGPT-3.5,
Copilot, Google Gemini and HuggingChat to generate feedback for
the experiment in Section 6 on programming exercises for students
to review and evaluate their usefulness, clarity, etc. Additionally,
ChatGPT-4o was used to improve the clarity and grammar of the
paper, making it easier to read. After using these tool/service, the
author(s) reviewed and edited the content as needed and take(s) full
responsibility for the content of the work.

9

https://doi.org/10.1109/GHTC55712.2022.9910998
https://doi.org/10.1155/2022/5215722
https://doi.org/10.1155/2022/5215722
https://doi.org/10.1145/3231711
https://doi.org/10.1007/978-3-030-52240-7_26
https://doi.org/10.1007/s40593-021-00267-x
https://doi.org/10.1109/FIE58773.2023.10342972
https://doi.org/10.1109/FIE58773.2023.10342972
https://doi.org/10.1145/3469885
https://doi.org/10.1145/3469885
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132115839&partnerID=40&md5=efb9629d71354344887d56117529b9e7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132115839&partnerID=40&md5=efb9629d71354344887d56117529b9e7
https://doi.org/10.1007/978-3-031-11647-6_6
https://doi.org/10.1145/3587102.3588822
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3636515
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137237797&partnerID=40&md5=9c217bd17748b93a67fce110bbc70a07
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137237797&partnerID=40&md5=9c217bd17748b93a67fce110bbc70a07
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181532783&partnerID=40&md5=94b6a283167f03aee2752b7b2292ecb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181532783&partnerID=40&md5=94b6a283167f03aee2752b7b2292ecb6
https://doi.org/10.1145/3636243.3636259
https://doi.org/10.1007/978-3-031-32883-1_58
https://doi.org/10.1145/3551349.3560425

	Abstract
	1 Introduction
	2 Problem statement
	2.1 Research question

	3 SRQ1 Results — characteristics of programming exercises
	3.1 Approach
	3.2 Framework Classification Results
	3.3 Experimental Results
	3.4 Comparison

	4 SRQ2 Results — current methods and technologies in automated feedback for programming exercises
	4.1 Approach
	4.2 Data-Driven Approach
	4.3 Expert-Driven Approach
	4.4 Mixed Approach
	4.5 Applicability and Use of Automated Feedback Approaches

	5 SRQ3 Results — Benefits and limitations of AI in Automated Feedback Systems
	5.1 Approach
	5.2 Benefits
	5.3 Limitations

	6 Experiment Evaluating LLM-Generated Feedback on Programming Exercises
	6.1 Experimental design
	6.2 Evaluation form
	6.3 Results
	6.4 Evaluation

	7 Future work and Limitations
	8 Conclusion
	References
	A AI use disclosure

