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This study explores the application of Recurrent Neural Networks (RNN)
to recognise emotions using multimodal physiological signals from cyclists,
specifically heart-rate variability (HRV) and electrodermal activity (EDA).
These signals are used to develop prediction models(such as LSTM and
GRU) that can be deployed on bike-mounted edge devices. This approach
aims to enhance urban cycling safety by enabling timely adaptations. The
study evaluates the feasibility of these models on edge devices and provides
recommendations for their effective deployment to reduce accidents and
improve cycling safety.
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1 INTRODUCTION

1.1 Background
1.1.1 Cycling safety in the Netherlands. In the Netherlands, cycling
is not just a leisure activity, it is the fundamental mode of transporta-
tion. This is evident from the fact that it is the number one country
by bicycle use in Europe [4, 24], and has a strong infrastructure to
support the millions of cyclists in the country. Despite that, there is
evidence that cycling is becoming increasingly dangerous [9, 15, 23].
The number of cyclists seriously injured in traffic incidents has
increased by over 30% in recent years [15], particularly the older
cyclist being the number one category in mortal accidents [27],
due to slower reaction time and increased vulnerabilities to serious
accidents. An experiment in Utrecht found that many women feel
unsafe riding alone at night [3]. This perception of danger can influ-
ence the levels of anxiety and stress and further compromise safety.
A systematic Literature review of 10 years of cyclist safety research
shows us a growth of the field that is anticipated to rise more. It
also the necessity for data mining, more specifically mentioning
it as "the last methodological frontier to explore cyclist crash data
by searching for structures, commonalities, and hidden patterns or
rules”. The current studies also lack more research about emerging
topics like e-bikes and are more focused on themes such as crash
severity and safety equipment[19]. Based on the studies, this re-
search will delve deeper into the potential that emotion recognition
can have.

1.1.2 Emotion recognition from wearables. Recent studies have suc-
cessfully employed wearable wristbands to monitor emotional re-
sponses [8, 20]. These devices, capable of measuring physiological
data such as Heart-Rate Variability (HRV) and Electrodermal Activ-
ity (EDA), facilitate a possibility of enhancement for cyclist safety.
While various libraries are available for analysing physiological data,
pre-processing, and generating features [6, 11, 12] the practical ap-
plication of these in cycling environments remains underexplored.

TScIT 41, July 5, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Fig. 1. Affective model

1.1.3 Affective model. Systems for recognising and interpreting
emotions in humans utilise a framework called the affective model.
In order to precisely identify and assess emotional states, this model
often collects and analyses data from a variety of sources, including
body language, speech tones, facial expressions, and physiological
signals (such as the EDA, HRV, Electroencephalogram - EEG, and
Electrocardiogram -ECG) [22]. The goal of affective computing,
which includes these concepts, is to develop computers that can
communicate with people naturally and efficiently way by being
aware of their emotional states [22].
Monitoring the valence of cyclists can provide critical insights

into their behaviour, potentially predicting and preventing accidents
caused by stress, anxiety, or inattentiveness. As shown in the 1, the
affective model frequently maps emotions on a two-dimensional
plane determined by arousal, which is the physiological and psycho-
logical state of being awake or responsive to stimuli, and valence,
which is the natural attractiveness or adverseness of an event. Emo-
tions like joy, on the other hand, are characterised by both high
arousal and high valence, whereas emotions like rage are charac-
terised by low valence [7]. With a systematic approach to recognis-
ing emotions, this quadrant model assists in the classification and
comprehension of various emotional states.

1.2 Problem Statement
The current approach to safety in the cycling area reflects this prob-
lem and is heavily focused on measures such as infrastructure and
regulatory design enhancements [5]. While such measures prove
useful, they are somewhat limited by nature in terms of their abil-
ity to respond to the immediate, individualised needs of cyclist in
the ever-changing urban environments. The advent of consumer-
friendly wearable technology has enabled the real time collection
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of physiological and emotional data, presenting a significant oppor-
tunity to enhance cyclist safety. For instance, heightened anxiety
levels can lead to slower reaction times and increased risk-taking
behaviours, critical factors in accident scenarios [13]. However, this
potential remains largely unexplored in most safety frameworks.
The following research questions aim to guide this exploration

and assess the feasibility and effectiveness of these innovative ap-
proaches:

1.3 ResearchQuestions
Main Question: How effectively can RNN models classify cyclists’
valence states using multimodal physiological data for potential de-
ployment on bike-mounted edge devices?
Model Performance
(1) What are the accuracy and reliability of RNN models in clas-

sifying valence states from multimodal physiological data?
(2) How do different architectures and hyper-parameters of RNN

models affect classification performance?
Edge Device Deployment

(3) How can the models be optimised to run efficiently on edge
devices without compromising classification accuracy?

1.4 Contribution
In this work, multimodal physiological data from cyclists—heart-rate
variability (HRV) and electrodermal activity (EDA) in particular—are
used to investigate the applicability of Recurrent Neural Networks
(RNN) to emotion recognition. Prediction models that can be de-
ployed on edge devices attached to bicycles are created using these
signals. With this approach, emotion identification systems under
dynamic cycle situations should be more capable and adaptive.
The study’s novel approach to emotion identification in cycling

involves combining real-time physiological data gathering with
advanced deep learning algorithms. This makes it innovative and
significant. In contrast to previous research that focuses on non-
cycling activities or static locations, this study tackles the particular
difficulties associatedwith emotion identification in dynamic cycling
situations.

2 RELATED WORK
This section provides a literature review on multiple topics, such as
emotion recognition by physiological data and applications of it in
deep learning, to create the base for the next steps needed in this
research.

2.1 Emotion Recognition via Physiological Data
Recent studies have successfully employed wearable devices such as
wristbands and chest belts to monitor emotional responses. These
devices measure physiological signals like HRV and EDA, which are
indicative of emotional states. For example, [17] demonstrated the
use of HRV and EDA data to recognise stress and anxiety levels in
real time. These findings suggest that physiological data can be a reli-
able indicator of emotional states. However, the practical application
of these technologies in enhancing cyclist safety remains an under
explored area. Another study [26] validates the use of physiological
signals, such as HRV and electrodermal activity EDA achieving a

relatively high accuracy rate for emotion recognition. This study’s
recommendation for improving the overall performance is to ex-
plore other deep learning approaches, such as neural networks, to
compare to their approach.
A comprehensive discussion of physiological signal-based emotion
recognition was given in [21]. A number of key insights were em-
phasised, including the importance of feature extraction techniques,
and the necessity of multimodal data fusion for improving accu-
racy. For instance, their review stressed that integrating features
from several signals (e.g, HRV,EDA,EEG) improves the robustness
of models used for emotion recognition. This is relevant for this
research, as the goal is to include features derives from multiple
physiological signals.

2.2 Applications of Deep Learning in Emotion Recognition
Deep learning models, particularly those designed for time-series
data, have shown significant potential in emotion recognition tasks.
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
networks are especially effective for handling sequential data due to
their ability to retain information over time. Studies [16, 28], have
demonstrated that LSTM and GRU models can accurately predict
emotional states from physiological data streams. Despite these
advancements, there is limited research [17, 26, 28], on applying
these models in real time, naturalistic environments such as cycling.
Addressing this gap is crucial for developing interventions that
enhance safety through immediate valence state recognition.

2.3 Wearable Technology and Real Time Data Processing
Wearable technology has advanced to the point where devices like
the Empatica E4 wristband can provide continuous, real time physi-
ological data. Research [18] has explored the use of these devices in
various contexts, such as monitoring stress in workplace environ-
ments and tracking emotional responses in social settings. highlight
the potential of wearables to offer detailed, real time insights into
valence states, making them suitable for applications in dynamic
environments like cycling.

2.4 Feasibility of Edge Computing for real time
Applications

Deploying deep learning models on edge devices for real time appli-
cations presents several challenges, including computational con-
straints, power consumption, and data privacy. Studies like [30]
have addressed some of these challenges by optimising model ar-
chitectures to run efficiently on edge devices. For instance, they
implemented energy-efficient algorithms that significantly reduce
the computational load without compromising accuracy. Addition-
ally, [1] has emphasised the importance of local data processing to
ensure privacy and reduce latency, making real time interventions
more feasible. These insights will inform our approach to develop-
ing models that are accurate, efficient, and practical for real time
use on bike-mounted edge devices.
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3 METHODS OF RESEARCH

3.1 Data Handling and Processing
The data for this study was pre-collected using Empatica E4 wrist-
bands. Each participant’s data was organised in individual folders
containing CSV files with various physiological measurements, in-
cluding Blood Volume Pulse (BVP) and electrodermal activity (EDA).
Additionally, each participant’s bike was equipped with three but-
tons that they could press to log their valence state (negative, neutral,
and positive). The button press data, including timestamps, was also
stored in CSV files within each participant’s folder. Initially, the data
collected was from 30 participants. However, several data quality
issues led to the exclusion of some datasets. Some participants were
missing either the Empatica files, and others had errors with button
presses. For example, certain participants recorded an unrealistic
number of button presses (e.g., 250 button touches during a single
ride), making it impossible to correlate with physiological data. Ad-
ditionally, some participants had button presses recorded before or
after their rides, or only on the third button, resulting in an imbal-
ance in the dataset. To maintain a balanced dataset, the problematic
records were excluded, Upon receiving the remaining pre-collected
data, the initial step involved organising and preparing the data
for analysis. Python scripts were employed to read and structure
the data, ensuring that all datasets were correctly aligned by times-
tamps and participant IDs. This step was crucial for maintaining the
integrity of the measurements across different devices and sessions.
Initially, an attempt was made to manually clean and preprocess the
data. However, the theoretical knowledge of physiological data was
insufficient for this task. Recognising this gap, various libraries were
explored for processing and feature generation of physiological data.
After multiple iterations were tested the library ultimately used was
the FLIRT library, which is specifically tailored for handling data
from Empatica devices. The FLIRT library preprocesses the data
according to literature recommendations, ensuring that the prepro-
cessing steps align with established research standards. This library
handles missing values, noise, and outliers in the data, providing a
clean and reliable dataset for further analysis. Additionally, FLIRT
calculates 178 features related to HRV, EDA, and accelerometer data
(ACC), encompassing statistical measures and patterns relevant to
emotion recognition. After using the FLIRT library, additional post-
processing steps were necessary to handle any remaining infinite
(Inf) and not-a-number (NaN) values. Python scripts were used to
identify and remove these values, ensuring the dataset was suit-
able for model training. The cleaned data was then saved back into
individual participant files for further use.

3.2 Model Development
The development of the predictive models was carried out using Ten-
sorFlow, a robust deep learning framework well-suited for handling
time-series data. TensorFlow’s extensive support for sequential data
processing and its powerful library of tools and resources made it
the ideal choice for this research. The model architecture focused on
two types of Recurrent Neural Networks (RNNs): Long Short-Term
Memory (LSTM) networks and Gated Recurrent Units (GRU) net-
works. These architectures were selected for their ability to retain

information over time, which is essential for analysing sequential
physiological data.

3.2.1 Model Architecture. The models were then designed with the
first two LSTM/GRU layers, each followed by a dropout layer to
prevent overfitting. The first layer had 128 units, and the dropout
rate 0.2, and the second layer had 64 units and a dropout rate of 0.1
After, a dense layer with 16 units and ReLU activation was added,
followed by an output layer with softmax activation to classify the
emotional states. The model was compiled with the Adam optimiser
and a learning rate of 0.001, using sparse categorical cross entropy
as the loss function. Early stopping was implemented to monitor
the validation loss and restore the best weights if the validation loss
did not improve for five consecutive epochs.

3.2.2 Hyperparameter Tuning. The hyperparameterswere fine-tuned
through a manual grid search process.
This involved varying units, drop rates, learning rates, batch sizes,
and optimisers.
The best parameters identified were: 128 units, a dropout rate of 0.2,
a learning rate of 0.005, a batch size of 64, and the Adam optimiser.
These parameters ensured the model’s optimal performance

3.3 Model Training and Validation
Training the models required labelled data to teach the RNNs to
recognise emotional states. The labelled data comprised button press
events, where users self-logged their valence state(negative, neutral,
and positive). In trainingmodels, 50 epochs were usedwith the ‘early
stopping’ technique to minimise the overfitting of the model. The
training was also stopped early at the point where the validation
loss failed to drop in five consecutive epochs. In order to cross-
reference the button presses with the physiological measurements,
a time window beginning 60 seconds prior to a button press and
ending 60 seconds after the button press was correlated, creating
sequences with this data. The data was then made into sequences
to match the input structure of the LSTM Model. The performance
of the demonstrated models was assessed considering accuracy,
precision, recall, F1-score, and AUC-ROC coefficients. Confusion
matrix and classification reports enabled the exploration of the
specific attributes of the models’ classification capacity to select the
most appropriate valence state. The plot of training and validation
accuracy or loss was used to show the learning characteristics of
the models.

3.4 Optimisation for Edge Devices
Because of their limited processing resources and energy restrictions,
it is essential that the models produced have the ability to operate
properly on edge devices installed on bicycles. Since many bike-
mounted computers lack specific specifications, these constraints
make it difficult to generalise the criteria for optimisation.
The study took into account the usual limitations of low-power,

ARM Cortex-based processors—which are frequently employed
in micro-controller applications and other related embedded sys-
tems—in order to tackle this issue. Because of their low power con-
sumption and real-time processing capabilities, these processors are
a good starting point for the present research. Their RAM(Random
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Access Memory) ranges from 64MB to 2GB, their clock speeds are
often lower, and their power consumption is typically limited to
less than 5 watts [2, 29].

Several optimisation methods were used to make sure the model
could potentially fit within the limitations of bike-mounted devices.
The parameters for data processingwere first adjusted. Typically, the
FLIRT library preprocesses data with a time step of one second and
a window length of 180 seconds. These parameters were changed
to a 60-second window length and a 10-second time step, which
greatly decreased the data amount without sacrificing important in-
formation. This change of reducing the window time, means around
ten times less data, which was easier to handle for edge device
processing. Another crucial step in the optimisation process was
feature selection. The initial 178 features have been reduced back to
a more manageable subset due to the resource constraints of edge
devices. Correlation tests, Recursive Feature Elimination (RFE), and
Random Forest (RF) algorithms were used in the feature selection
process in order to assess each feature’s significance. After much
consideration, about thirty features that were both computationally
efficient and offered significant insights into emotional states were
chosen. These selected features were then used to train the models,
ensuring that the data input size was optimised for edge device con-
straints without compromising the accuracy of emotion recognition.
Additionally, in order to decrease the size of the model and increase
inference efficiency, model optimisation methods including quanti-
sation and pruning were investigated. By transforming the model
weights and activation’s from 32-bit floating-point to 8-bit integers
by quantisation, the model’s size and computing load were greatly
decreased. Conversely, pruning reduced model complexity without
appreciably sacrificing performance by eliminating unnecessary or
insignificant connections from the neural network [10, 14].

TensorFlow’s profiling tools were used to quantify the inference
time, processing power, and energy consumption on a development
computer in order to assess the performance of the optimised model
[25].

4 RESULTS
This section presents the performance of the models, supported
by figures and graphs to illustrate the process for the training, the
validation, and the overall accuracy of the models.

4.1 Model Performance Metrics
The performance of the LSTM and GRUmodels was evaluated on the
test dataset. Here, is presented the accuracy, precision, recall, and
F1-score for each model. Additionally, the performance is visualised
through training and validation curves as well as confusion matrices.
For the LSTMmodel, the accuracy was 0.80, the precision was 0.7997,
recall was 0.80, F!-score was 0.7995, and AUC-ROC was 0.9358. The
detailed classification report showed precision, recall, and F1-scores
for the negative (Class 0), neutral (Class 1), and positive (Class
2) classes. The positive class had the highest scores, indicating the
model’s robustness in detecting positive emotional states. The LSTM
model’s classification report is as follows: Class 0: Precision 0.74,
Recall 0.78, F1-score 0.76 Class 1: Precision 0.73, Recall 0.68, F1-score
0.71 Class 2: Precision 0.86, Recall 0.86, F1-score 0.86 Similarly, the

GRU model achieved an accuracy of 0.7947, precision of 0.7923,
recall of 0.7947, F1-score of 0.7932, and AUC-ROC of 0.9270. The
GRU model’s classification report showed strong performance, with
slightly lower precision and recall for the neutral class compared to
the LSTMmodel. The GRUmodel’s classification report is as follows:
Class 0: Precision 0.78, Recall 0.77, F1-score 0.78 Class 1: Precision
0.70, Recall 0.65, F1-score 0.68 Class 2: Precision 0.84, Recall 0.87,
F1-score 0.86

4.2 Cross-Validation Results
To ensure the robustness and generalizability of the models, k-fold
cross-validation was employed. The cross-validation performance
metrics demonstrated the stability of both the LSTM and GRU mod-
els. The LSTM model achieved a final epoch validation accuracy of
0.8309 ± 0.0061 and a final epoch validation loss of 0.3990 ± 0.0231.
The GRU model had a final epoch validation accuracy of 0.8298 ±
0.0134 and a final epoch validation loss of 0.4112 ± 0.0401. These
results indicate that both models are stable and reliable.

4.3 Figures and Tables
The training and validation accuracy and loss curves illustrate how
the models learned over time and indicate when early stopping was
triggered. Figures 2 and 3 show the training and validation accu-
racy and loss for the LSTM model, respectively. Similarly, Figures
4 and 5 present the training and validation accuracy and loss for
the GRU model. These plots help in understanding the learning
dynamics of the models. Confusion matrices provide a detailed view
of the models’ performance by showing the actual vs. predicted
classifications. Figures 6 and 7 depict the confusion matrices for the
LSTM and GRU models, respectively. These matrices highlight the
classification accuracy for each emotional state, indicating areas
where the models performed well and where improvements might
be needed. Detailed classification reports for each model summarise
the precision, recall, and F1-scores for each class. Tables 1 and2
present the classification reports for the LSTM and GRU models,
respectively. These reports provide a comprehensive overview of
the models’ classification performance. Figure 8, 9 shows the k-fold
cross-validation mean and variance accuracy and loss the LSTM
model, highlighting the consistency and variance of model perfor-
mance across different folds. Figures 10,11, 12 show the accuracy
and loss per epoch for both the LSTM and GRU models without the
mean and variance, providing insight into the model performance
over each training epoch. Table 3 shows the inference time, memory
usage during inference, and model size for both the LSTM and GRU
models in their baseline, pruned, and quantised versions.

Table 1. LSTM Model Classification Report

Class Precision Recall F1-Score Support
0 0.74 0.78 0.76 145
1 0.73 0.68 0.71 133
2 0.86 0.86 0.86 287
Accuracy 0.80
Macro Avg 0.78 0.78 0.78

Weighted Avg 0.80 0.80 0.80
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Fig. 2. LSTM model accuracy

Fig. 3. LSTM model loss

Fig. 4. GRU model accuracy

Fig. 5. GRU model loss

4.4 Summary of Key Metrics
In summary, both the LSTM and GRU models showed strong per-
formance in recognising emotional states from wearable data. The
LSTM model achieved a higher consistency in performance, while
the GRUmodel demonstrated slightly more variance but comparable
accuracy. Cross-validation confirmed the robustness of the mod-
els, highlighting their potential for real time emotion recognition
applications.

Fig. 6. LSTM confusion matrix

Fig. 7. GRU confusion matrix

Table 2. GRU Model Classification Report

Class Precision Recall F1-Score Support
0 0.78 0.77 0.78 145
1 0.70 0.65 0.68 133
2 0.84 0.87 0.86 287
Accuracy 0.79
Macro Avg 0.77 0.77 0.77

Weighted Avg 0.79 0.79 0.79

5 DISCUSSION

5.1 Introduction
The purpose of this study was 3to assess how well multimodal
physiological data from cyclists might be used to characterise their
emotional states using Recurrent Neural Network (RNN) models,
particularly Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) networks. The main research question posed was: How
effectively can RNN models classify cyclists’ valence states
using multimodal physiological data for potential deploy-
ment on bike-mounted edge devices? Furthermore, the research
investigated the sub-questions in regard to Model Performance and
Edge Device Deployment:
Model performance First, the study discovered that both Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) ar-
chitectures performed well in predicting valence states from HRV
and EDA data, indicating the accuracy and dependability of RNN
models. The models’ capacity to reliably identify emotional states
from physiological inputs is shown by their satisfactory accuracy
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Model Inference Time (s) Memory Usage (MiB) Model Size (MB)
LSTM

Baseline 0.043687 1.28125 1.59
Pruned 0.044265 2.765625 0.54

Quantized 0.000479 0.390625 0.15
GRU

Baseline 0.044456 3.765625 0.39
Pruned 0.042778 1.65625 0.05

Quantized 0.000438 0.1875 0.05
Table 3. Inference time, memory usage, and model size for LSTM and GRU models in their baseline, pruned, and quantized versions.

rates. This result is noteworthy because it validates these models’
potential for real-world bicycle safety applications. The study also
looked at how various designs and hyper-parameters affected the
performance of the model. It was found that the LSTM networks
perform the same overall as GRU networks. Enhancing classification
accuracy also required careful adjustment of hyper-parameters like
the number of layers and units in the RNNs. The hyperparameters
were selected after a grid-search, because at the start of the experi-
ment there were cases when the model was not learning at all, or
the loss was not decreasing at all through the epochs. The outcomes
highlight how crucial it is to optimise these parameters in order to
get the most performance out of the models.
Edge Device Deployment The initial, unoptimised models re-
quired more processing power and memory than the typical edge
devices employed in this study, making them too resource-intensive.
Several optimisation strategies were used to address these con-
straints.
One of the main methods for lowering the model’s size and pro-

cessing load was quantization. The models were much more effi-
cient when the weights and activation’s were changed from 32-bit
floating-point numbers to 8-bit integers. Because of this decrease in
numerical precision, the models were nevertheless able to function
accurately even with the constrained processing capacity of edge
devices. As a result, quantization made sure that the models could
identify emotions in real time without straining the computing
power of the device. Pruning was used in addition to quantization
to further optimise the models. This method reduced the complexity
of the model by removing less important neurons and connections
from the neural network. Pruning allowed the models to function
more effectively by reducing memory consumption and computa-
tional demands. The models maintained their accuracy in spite of
this reduction in complexity, proving that the optimisations had no
adverse effect on their capacity to accurately categorise emotions.
The implementation of the RNN models on the edge devices

mounted on bikes necessitates the use of these optimisation tech-
niques. They demonstrated that real-time emotion identification
on resource-constrained platforms is feasible without needing a
compromise between computational efficiency and classification
accuracy, as the accuracy remained on par with previous levels.

5.2 Limitations
The study faced several limitations, including the quality and com-
pleteness of the data. Some participants had missing or noisy data,

which required extensive preprocessing. Additionally, the dataset
size was relatively small, and further validation with larger datasets
is necessary to confirm the models’ generalizability. The potential
for overfitting was mitigated using early stopping, but more ro-
bust methods could be explored in future research. Environmental
factors were an additional limitation of the study, as it omitted to
take into consideration elements that could potentially impact the
physiological responses and emotional states of cyclists, such as
weather patterns and traffic density. The results’ potential for gen-
eralisation may be impacted by this disregard for environmental
influences. Moreover, no real-world testing was done on edge de-
vices installed on bikes, even though the models were evaluated
in controlled settings. Therefore, further validation is required to
guarantee the models’ robustness in a variety of dynamic cycling
scenarios.

5.3 Future Work
Future research should explore additional physiological signals,
such as respiratory rate or skin temperature, to enhance emotion
recognition accuracy. Testing the models on more diverse and larger
datasets would provide better validation of the findings. Additionally,
integrating other machine learning techniques, such as ensemble
learning, could further improve model performance. Developing
lightweight models optimised for real time processing on wearable
devices remains a key area for future investigation. For bike manu-
facturers considering the integration of emotion detection systems,
it is recommended that each individual participant manually label
their emotional state when they first get a new e-bike. This person-
alised labelling should continue until the local model learns from
their specific data. Since each individual has different baselines and
emotional responses, this approach ensures a more accurate and
personalised emotion recognition system, rather than relying on
data from other participants.

6 CONCLUSION

6.1 Summary of Key Findings
This study successfully demonstrated the use of LSTM and GRU
models for emotion recognition from physiological data collected
via wearables. Both models achieved high accuracy, validating the
potential of RNNs in real time emotion detection.
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6.2 Significance of the Study
The research contributes to the field of emotion recognition by
showcasing the effectiveness of advanced deep-learningmodels. The
findings highlight the potential applications of real time emotion
monitoring, paving the way for innovative uses in mental health,
personalised user experiences, and adaptive interfaces.

6.3 Final Remarks
In conclusion, this study underscores the feasibility and effective-
ness of using wearables for real time emotion recognition. Future
research should aim to build on these findings, exploring new signals
and techniques to further enhance the capabilities and applications
of emotion recognition systems. The integration of such technol-
ogy holds promise for significantly improving user experience and
well-being across various domains.
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also used to ensure grammatical correctness and improve clarity.
After using these tools/services, the author(s) reviewed and edited
the content as needed and take(s) full responsibility for the content
of the work.
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Fig. 9. Lstm loss mean and variance on k-fold

Fig. 10. LSTM Cross-Validation loss per Epoch

Fig. 11. GRU Cross-Validation Accuracy per Epoch

Fig. 12. GRU Cross-Validation loss per Epoch
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