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Fig. 1. A Thingy 52 By Nordic Semiconductors. [1]

In the modern day, Machine Learning and Artificial Intelligence Systems
have grown exponentially in their capabilities of performing a wide range
of tasks, but with that so has their energy demands in the training phase
of development and the inference phase on the end device. This has led to
severe concerns about their impact on global greenhouse gas emissions. It
is not realistic to expect the new era of ML to come to a halt to address
these environmental concerns, therefore there exists a need to explore ways
to improve the efficiency of these ML models to consume fewer resources.
This paper explores some potential improvements to this process, namely
deploying Machine Learning models on resource-constrained IoT devices,
reducing the amount of data needed to train these models, and minimizing
the number of neurons needed to develop them. For the practical aspect
of research, we will be exploring the most efficient manner of developing
Machine Learning for motion classification on the cloud using Edge Impulse
and deploying this model on a Thingy 52, a small IoT Device by Nordic
Semiconductors.Wewill explore the effect of reducing the amount of training
data required, number of training epochs, hidden layers, and neurons to
converge on an acceptable model despite the reduced training factors and
with the limiting resources of the Thingy 52, as well as discussing the various
issues encountered and potential future improvements.
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1 INTRODUCTION
Within the past few decades, the world has seen an exponential rise
in the capabilities of Artificial Intelligence systems. From their hum-
ble beginnings in the 1960s [13], where systems like the "Shakey"
robot and "Eliza" were able to display basic logical reasoning and
problem-solving abilities, AI Systems today can demonstrate sophis-
ticated capabilities in perception, reasoning, learning, and creativity.
AI systems nowadays surround us in all corners of life, from stu-
dents using ChatGPT to get help with their assignments, advanced
analytical systems predicting future market trends, and expert sys-
tems performing medical diagnosis based upon symptoms amongst
many more. However, as models become more complex and their
usage becomes more widespread, energy demands of these systems
have also seen a rather alarming rise [14]. This rise in power usage
is concerning, especially at a time when reducing greenhouse gas
emissions is critically important for combating climate change [7].
Remarkably, it is estimated that the computational power required
to sustain the rise in AI systems doubles every 100 days [5]. While
more complex models like Natural Language Processing (NLP) con-
sume significantly more energy [12], for relatively simpler models
like image or motion classification it is not necessary to use such
energy-demanding sources. While the current state-of-the-art uses
a central location where all data collection points send their data to
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be evaluated, a newer architecture has been explored where data
is processed and evaluated at the point of collection instead, with-
out the need of transmitting large volumes of data to a centralized
location[8]. This is a process called Edge Computing and will form
the primary basis for the research aspect of this paper.
It is evident that there is a need to mitigate the environmental

impact of training and deploying AI models. While it is unrealistic
to forgo the immense benefits these systems offer in terms of finan-
cial power and convenience, exploring alternative, energy-efficient
approaches to machine learning is crucial. This thesis investigates
strategies for a case study of deploying a motion classification ma-
chine learning models on resource-constrained Internet of Things
(IoT) devices, aiming to reduce power and energy consumption
during the training process without compromising performance by
using an Edge Computing architecture.

2 THE ALTERNATIVE
The rise in the capabilities of the “Internet of Things” devices serves
as a potential alternative to several of the problems associated with
the resource consumption of machine learning. These devices are
generally more resource-constrained, therefore deploying Machine
Learning models on them requires a slightly different approach to
what is conventionally done for larger devices. In particular, due
to the smaller amounts of RAM and FLASH available, the models
created for such devices are generally kept as small as possible
[4]. This is performed by reducing the complexity of the created
model to as low as possible. Some of the factors that determine the
complexity of these models are as follows;

• The number of hidden layers in the neural network
• The number of neurons in each layer of the neural network
• The individual weights and biases
• The architecture used
• The activation function used
• The pruning methods used

The paper will explore the means through which some of the
mentioned points may be minimized for the model to consume
as little data as possible during the training phase of the process
whilst simultaneously consuming limited resources to be able to
perform inference on the IoT Device. The paper will evaluate how
changing the collected data for training affects the performance of
the model, assess how many epochs it will take to converge on a
reasonable accuracywith these volumes of training data, the number
of neurons and layers that are reasonable within the case study as
well as ensuring that the total resources required do not exceed the
capacity of the IoT device.

To connect the research to the goal of sustainability within Arti-
ficial Intelligence, as mentioned before it is not realistic to simply
reduce consumption of AI systems. While for more complex models
(like NLP) it is not feasible to deploy on IoT devices, for a lot of
simpler applications it is possible to allocate the task of inference of
data to be done on edge devices instead of on a central server. The
smaller resource availability of these devices means that the mod-
els produced for them are generally more compact, which is often
achieved through simplifying the training phase of the model itself
initially, reducing power consumption. Although this reduction may

be a very small amount in one particular application, the nature of
such models (like motion or image classification) is such that they
are often continuous, performing up to millions of inferences per
second worldwide and a switch to such an architecture on a large
scale can potentially lead to a significant reduction in the power
and subsequent power consumption of these relevant applications.

3 RESEARCH QUESTIONS
The first item of interest within the research lies within the vari-
ous challenges encountered while deploying the Machine Learning
model on the target device. This includes the entire process of col-
lecting & labeling data, creating a model, deploying this model, and
running inference on the target device. We shall also compare how
this process differs from the current state-of-the-art.

(1) What are the technical challenges and performance implica-
tions of deploying machine learning models directly on IoT
devices, and how do they compare to traditional server-based
approaches?

Another key topic of interest is how the process used to develop and
deploy the model on the target device for this particular research
may be generalized to form a basis to be used in applications beyond
the target scope of this research.

(1) What are the key components and design considerations for
developing a framework to enable the deployment of machine
learning algorithms on IoT devices, and how can this framework
be generalized for broader adoption and applicability?

4 ARCHITECTURE

Fig. 2. The difference between a cloud and edge computing architecture
[17]

The proposed architecture used in this case study is an example
of an application where data is processed near the point of collec-
tion (on the Edge) rather than through a central server. Within this
research, we will be focusing on creating a motion classification
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model for a Wii Controller in a Mario game. However, the same
architecture may be applied in a wide range of applications where
real-time sensor data is collected to perform relatively simple infer-
ences. These applications may include robotics, self-driving cars,
industrial processes, etc. The current state-of-the-art is cloud com-
puting, where data is collected by various sensors and sent to a
central server to create the model and perform inference [3]. While
this architecture is necessary for dealing with larger complex mod-
els with high resource requirements, for smaller applications like
we have mentioned before we may move the inference part closer to
the data collection point [4], as may be seen in figure ??. Within the
context of this case study, data is collected by a sensor on the Thingy
52, and the model is created through the cloud, but the inference
data is carried out on the Edge Device itself, rather than through
the central server.

Later on, the paper will discuss the various implications such an
architecture may bring, explore the various advantages, address the
disadvantages, and offer potential future solutions to these.

5 EXISTING RESEARCH
To gain a better understanding of where the industry is currently
at in the field of deploying Machine Learning on Edge Devices,
I conducted research into various fields to find potential gaps to
explore further, as well as finding citations to aid my research. The
following list summarizes my findings.

• A comprehensive overview behind the rise of Edge Comput-
ing may be found in a paper by Wang et al. (2020) [10]. The
primary point of interest in the context of this project is the
various drawbacks associated with traditional cloud computing
in many contexts today, with issues arising in reduced band-
width, latency, security, and privacy. Within the research, the
architecture of edge computing is defined and compared to the
current state-of-the-art, which will be used to form the structure
of the case study in this paper.

• Edge Computing and IoT are two different concepts in the field
of Machine Learning but have to be combined to form the foun-
dation of the case study. Research conducted by Zhou et al.
(2019)[18] outlines how these two concepts are compiled to cre-
ate the proposed architecture. It also provides detail into the
potential of energy efficiency achieved through such means.

• A practical example of the use of the Thingy 52 to collect sensor
data and transmit information via BLE may be found in the
research conducted by Gupta et al. (2019) [6]. The paper outlines
their architecture for collecting data from the target device and
establishing communication, as well as outlining problems they
faced in the particular setup. Both of these elements proved to
be useful in the implementation aspect of the research.

6 THE PRACTICAL RESEARCH
Within the course of this Research Project, the primary focus was
on creating a practical example of a Machine Learning Model cre-
ated by collecting data from an IoT Device, compiling that data
on the cloud, and producing a model that may be deployed on a
resource-constrained device. The device used to collect the sensor
data and run inference on the new data is the Thingy 52 by Nordic

Semiconductors [11]. The Thingy 52 is an ideal example of an Edge
Device that can collect and transmit sensor data to the cloud while
also having the capacity to run inference on basic models, making
it suitable for testing the abovementioned architecture. Sensor data
is collected from the Thingy 52 and the aim is to produce a model
that is able to run motion classification on one of the 5 classes as
mentioned below.

• Left Tilt
• Right Tilt
• Up Movement
• Spin Movement
• Still

Each of these movements corresponds to a move in a Mario game.
One of the aims of the project was to utilize the created model
to be able to use the Thingy 52 as a Wii Controller for the game,
developing on the work produced by an earlier Masters project, a
perfect example of using IoT devices as an alternative means to the
current state-of-the-art to enhance the efficiency of usage. To run
the inference on the Thingy 52, the produced model had to meet
the resource restrictions of the device, as seen in table 1. To tackle

TOTAL RAM 256KB
TOTAL FLASH 32KB

USABLE RAM FOR MODEL 128
USABLE FLASH FOR MODEL 12
Table 1. Resources available on Thingy 52

the constraints of these resource requirements, Edge Impulse was
used to compile the data and create the model. This was selected as
the platform for a variety of different reasons. Edge Impulse is an
industry leader in creating models for Embedded Systems, making
it much simpler to create efficient models in terms of resource allo-
cation. Furthermore, it is extremely simple to gather and label data
using the platform from the Thingy 52. They also offer the ability to
use model optimizations like the EON Compiler, which can reduce
the RAM & FLASH usage by half while not affecting model perfor-
mance. Finally, apart from their basic model-making capabilities
Edge Impulse also offers a variety of potential efficiency improve-
ments with hardware-related aspects like custom DSP blocks that
may further enhance the efficiency of the created model.

Fig. 3. A visual representation of the architecture

The entire development process is as follows;
(1) Sensor data (accelerometer data) is collected from the Thingy

52 at a frequency of 50Hz and sample length of 5s
(2) This data is transmitted to the Nrf52DK board via BLE
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Fig. 4. Connecting the Thingy 52, Nrf52DK Board and the Nrf Connect
Desktop Programmer

Fig. 5. An example of one of the labeled data, at a frequency of 50HZ and
length of 5s with the label "left".

(3) This data is then transmitted from the nrf board to the desktop
computer via USB, as seen in figure 4

(4) Edge Impulse Command Line tools (the Edge Impulse data for-
warder) are used to transmit this data to the Edge Impulse
Project, as seen in figure 3

(5) Each of these data samples is then manually provided a label
corresponding to the movement detected, as seen in figure 5

(6) Once enough data has been collected to create a model, the data
is split into a test and training set.

(7) Edge Impulse’s easy-to-use tools are used to create the features
to extract and create blocks to classify the data and detect anom-
alies

(8) A low pass filter is applied to the data and features are generated.

(9) The classifier architecture is determined. I can experiment with
different numbers of epochs, hidden layers, neurons in individ-
ual layers, etc here

(10) Anomaly detection is determined. The features selected are usu-
ally the RMS anomalies for the x,y and z values.

(11) Some values of live classification are selected of varying sample
sizes and movements

(12) Confidence levels are selected for the anomaly and movement
detection. These should ideally be strict to ensure a high level
of confidence in the model’s ability.

(13) The model is then tested to evaluate its efficiency.

The following is a complete list of hardware and software used
to stream the data from the Thingy 52 to creating a model;

• Thingy 52
• nRF52DK Board
• JTAG cable 1.27mm
• nRF Connect for Desktop v4.1.1
• nRF Programmer v3.0.5
• nRF SDK Toolchain Manager v1.2.1
• nRF Connect SDK v2.1.0
• Edge Impulse Command Line Tools
• Edge Impulse Data Forwarder

7 RESULTS
Once the Thingy 52 was connected to the Edge Impulse Project, the
practical research commenced. The first point of interest was to
investigate the amount of collected data required to converge onto
a reasonably accurate model. To investigate this, the first model was
created with 10 minutes of total acquired data time, and the accuracy
of the produced model was recorded after a selected number of
training cycles. After this, a second model with half the collected
time (at just 5 minutes) was used and its accuracy at the same
number of epochs was recorded. The primary goal of this aspect
of the research was to evaluate how the accuracy of the trained
model during testing was affected by the total amount of training
time fed into it. The accuracy of the testing model was plotted
against the number of training cycles to visualize these factors and
further research was conducted to evaluate how these results affect
the model training resources. To ensure consistency in results, the
following elements were kept consistent.

• The split of classes in the dataset was to be equal. Since 5
classes need to be classified, the total split was 2 minutes
and 1 minute of recorded data for each class for the 10 and
5-minute models respectively.

• The train-test split had to be consistent. For this application,
a 75% to 25% train-test split was selected. While higher than
the most common 80& to 20% split, this was selected due to
the small amount of data available for the test set.

• All models are trained on just 2 hidden layers, with 20 neu-
rons in the first layer and 10 neurons in the second. This
was selected due to the resource constraints of the Thingy
52, deploying greater amounts of hidden layers or neurons
increases the model size beyond the capacity of the IoT device.
Meanwhile, selecting fewer layers or neurons may result in
the model converging at a much slower rate.
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• The confidence and anomaly detection threshold were set
to be strict to perform a harsher evaluation of the produced
accuracy. This was due to the relatively large separation of
most of the classified feature blocks. The confidence rating
was set to 0.8 (with 1 being the highest) and anomaly rating
to 0.3 (with 0 being the highest).

• Since the model has to make live classifications on a video
game with a lot of sudden movements, a very high accuracy
is required for the model. Therefore, from this point onwards
a "reasonable accuracy" for a model refers to an accuracy rate
of greater than 90%.

Fig. 6. Accuracy (y-axis) and Epochs (x-axis) with 10 minutes data

Fig. 7. Accuracy (y-axis) and Epochs (x-axis) with 5 minutes data

The model with 10 minutes of training data converged very
quickly onto a model with reasonable accuracy, as seen in figure 6.
This was achieved in just 10 epochs. By contrast, it took longer for
the 5-minute model to converge into a reasonable margin, as shown
in figure 7, with 50 epochs needed to hit the target accuracy. While it
may be tempting to believe that reducing the amount of data needed
to train the model by half significantly reduces the amount of power
consumed in the training phase, a study has shown that in order
to produce the most efficient model in terms of power consump-
tion, the number of epochs used has to be kept to a minimum [2].

Therefore, the model that converges to a reasonable model in fewer
epochs will be preferred despite their larger dataset size, and the
difference in training cycles required to converge on the reasonable
model is significant enough to ignore the potential increase due
to the reduced training set size. The practical result is backed by
another study, which concluded that increasing the training dataset
size leads to a logarithmic increase in efficiency per epoch [15]. In
context of the wider view of things, it should hold therefore that
when selecting the amount of training data required to create mod-
els for IoT devices the focus should be on collecting high-quality
data to converge onto the target accuracy in as few training cycles
as possible, rather than depending on gathering smaller amounts of
data relying on more epochs to converge on the target accuracy.

It should be noted, however, that the number of epochs needed to
converge to thewantedmodel in this particular casewas rather small
due to the nature of the data collected, as seen in figure 8. 3 of the 5
classes are already well separated visually in terms of their features,
with the only potential classes with difficult-to-see separation being
left & right. This is due to the nature of the movements, the x,y
and z accelerometer values within the movements are only similar
when turning left and right, while they are vastly different in other
movements. This makes the model relatively easy to train with a
reduced amount of epochs in the current context, but this may not
be the case for all forms of classification, as seen in a simple image
classification feature model in figure 9 where different features
appear closer together requiring greater processing to classify them.

Fig. 8. A visual representation of the features.

With the final model selected with 10 minutes of training data,
50 epochs with 2 hidden layers with 20 and 10 neurons each respec-
tively, a C++ model (quantized by EON Compiler which reduces
RAM & FLASH USAGE without loss of performance, as claimed
by Edge Impulse) was downloaded. The code from a repository de-
scribing how to run Machine Learning on the Thingy 52 [16] was
used since a specialist C++ pipeline needs to be utilized as Edge
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Fig. 9. Feature separation of a small image classification model.

Impulse does not offer direct support for the target device. The total
amount of resources available on the Thingy 52, and those used by
the model to perform inference, may be seen in table 2. RAM refers
to the volatile memory used in the inference phase, FLASH refers to
the permanent memory required to run the model while IDT LIST
refers to the list of Interrupts that may be generated and need to be
dealt with by the code.

Memory Region Used Size Region Size % used
FLASH 372260 B 512 KB 71.00%
SRAM 52672 B 64 KB 80.37%

IDT LIST 0 KB 2 KB 0.00%
Table 2. The resources used to create themodel, compared to those available.

The end result is a proof of concept for the proposed architecture,
it was possible to develop and deploy a machine learning model
with high levels of accuracy within the resource constraints of the
Thingy 52 2. Whilst this is just a starting point, it is possible to
develop these ideas further and deploy other variants of ML models
on edge devices in the future, using the same framework to collect
data, create a model, and deploy it that has been mentioned in the
paper.

8 PROBLEMS ENCOUNTERED AND FUTURE WORK
Currently, the paper can demonstrate the capabilities of deploying
a motion-detecting machine-learning model on a Thingy 52 device.
The initial plan was to merge this model with an existing project [9],
written by a Master’s Student at UT and uses the Thingy 52 as a Wii
Controller for a Mario game. Unfortunately, converting the model
from C++ into Rust proved to be a task too complicated to complete
within the time restrictions of 9 weeks, especially since the C++
model is not directly deployable on the Thingy 52, meaning the

entire C++ pipeline provided [16] without support from the original
authors. Furthermore, getting the pipeline working to first collect
the data and then run the model also seemed more complicated
than first thought, since it was written 3 years ago with many of
the dependencies being depleted in the newer versions of the nrf
connect application, sdk and toolchain, as well as the VS Code
extensions leading to a very time-consuming process of trial and
error to find the most suitable versions to use (which have been
mentioned in the paper). Provided more time, the following would
have been completed to add content to the research;

• Converting the C++ pipeline into Rust to allow integration
into the Wii Controller project for a more interactive demon-
stration of the IoT device’s capabilities.

• Contacting Edge Impulse to get concrete data into how the re-
source consumption on their servers varied with the number
of epochs, layers, and neurons added.

• While motion detection is a good starting point, Nordic Semi-
conductors claims on its website that the device is capable
of a wider range of IoT applications. Deploying an image
classification model within the resource constraints of the
Thingy 52 would also serve as a great proof of concept into
the capabilities of IoT devices to be able to perform more
complex ML Models on Edge Devices.

• Explore the hardware optimizations (like custom DSP Blocks)
that Edge Impulse offers.

• The nature of IoT devices is such that they are often mass-
produced and, to keep costs low, follow common hardware
and software for all produced items. These make them ex-
tremely susceptible to security risks since one fault affects a
large number of active devices [10]. The scale of production
for IoT devices is greater than that for GPUs, CPU, etc since
mass production is a key factor of IoT production. Further-
more, due to limited interfaces associated with IoT devices,
it provides greater challenges in updating these devices af-
ter potential security vulnerabilities are discovered. Further
research needs to be conducted on creating a framework in
terms of the production of edge devices to address these se-
curity concerns.

9 CONCLUSIONS
To conclude, the rise in the capabilities of Machine Learning devices
has created an immense load on the energy consumption in the pro-
cess of training and deploying these models, which potentially leads
to tremendous environmental effects in the foreseeable future.While
it is not feasible to simply stop in the middle of such a promising
era of Artificial Intelligence, there are several means through which
we can minimize the environmental effect of Machine Learning by
improving efficiency in terms of the training process, of which the
number of training cycles and length of gathered data was discussed
in this project. Furthermore, with the rise of IoT devices it is also
possible to create efficient Machine Learning models on specialised
systems for ML on Embedded Devices like Edge Impulse to deploy
these models in a more energy efficient manner, like on a Thingy 52
which consumes little energy relative to the current state-of-the-art,
providing a framework for developing ML Models for Edge Devices
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leading to reduced power and resource consumption. While there is
great space for further exploration into this topic, this paper outlines
the key concepts and acts as a proof of concept into the door of
Edge Computing.

10 USE OF AI IN THE PROJECT
During the preparation of this work the author(s) used ChatGPT
Copilot in order to generate latex code for creating tables and lists
as well as inserting references and images. Furthermore, the cita-
tions found in the document for the bib file were also generated
with the help of these systems. After using this tool/service, the
author(s) reviewed and edited the content as needed and take(s) full
responsibility for the content of the work.”
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