
Efficient Traffic sign and Object detection
implementation for a Self Driving Car

D.H. Honderd

Abstract—Autonomous vechiles are revolutionizing transporta-
tion, yet their efficacy depends on sophisticated object detection
systems capable of real-time performance under resource con-
straints. This thesis delves into the creation and optimization
of a object detection system for a self-driving car, leveraging
the YOLO-v5 framework to identify and classify traffic signs,
pedestrians, and other vechiles. Through the use of a combination
of quantization and downsampling, the system achieves high
processing speed and accuracy, while running on a modest CPU
computational power of an Intel NUC mini-computer.

This thesis shows the application of the RDW Self-Driving
Challenge 2024 in which this system was used for the University
of Twente team. The results highlight third place in the compe-
tition and a system that is capable of stopping before red lights,
adhering to the speed limit, letting a pedestrian cross and spotting
cars.

The discussion highlights the trade-offs between accuracy and
processing speeds, the possible impact of different optimization
techniques, and the practical considerations and adaptations it
would need for the real world environment. The findings provide
a valuable groundwork for future teams of the RDW challenge
and overall object detection for autonomous vechiles.

I. INTRODUCTION

Self-driving cars, also known as autonomous vehicles, have
been a topic of interest and development for decades. The
concept of a self-driving car was first introduced in 1939
during the World’s Fair by General Motors, envisioning a
future where cars could drive themselves [Mot39]. A major
part of self-driving cars consists of interacting with traffic
signs and acting accordingly. This requires algorithms or
models that look through the camera of the self-driving car
and can recognize and classify the different traffic signs and
objects.

The importance of accurate traffic sign recognition is
underscored in competitive events such as the RDW Self-
Driving Challenge (SDC) organized by the RDW. This annual
event, starting from 2019, offers a platform for young talent
to develop and demonstrate their skills in smart mobility. The
2024 edition of the challenge will take place at the RDW
Test Center in Lelystad, where student teams will navigate a
custom track designed to mimic real-world driving scenarios
[RDW23]. These scenarios include recognizing and reacting
to traffic lights, complying with speed limits, stopping for
pedestrians, overtaking stationary obstacles, and performing
complex maneuvers, such as parallel parking.

For this thesis part of the work will be subjected towards
this challenge for 2024 consisting of the real-time subsystem

for traffic object detection and recognition. Not only will this
thesis work on a system that can perform object detection
on speed limits, pedestrians and cars. It will also develop a
system that can make decisions based on the information that
it detects.

A. Background and Motivation

The most common way of object detection is through
convolutional neural networks (CNNs) and frameworks like
YOLO (You Only Look Once) further revolutionized the
field. The YOLO algorithm, with its real-time object detection
capabilities, has been widely adopted for traffic sign recogni-
tion in advanced driver-assistance systems (ADAS) [Nam22].
Optimizations such as pruning and quantization have made
these models more efficient, enabling deployment on low-
power edge devices like FPGAs (Field Programmable Gate
Arrays) or implementations with only a CPU and no GPU as
is the case with the self driving car.

However, there are a few problems with all the work that
has already been done like an object detection system with
YOLO, most of it being company assignments, resulting in that
none of the code or documentation of this progress mentioned
is open source. This makes it difficult to use these previous
studies besides their methods, techniques and literature to use
as a foundation to build off of.

Second, training a model like YOLO requires a dataset
to train it. As will be discussed later, there are currently
datasets like mapillary or GTSRB, which contain most of
the common traffic signs such as all the speed limits, stop
signs and much more. However, the collection of classes that
need to be detected in this scenario are not part of any public
dataset like the 10 km/h and 15 km/h speed signs. This requires
the creation of a custom dataset tailored to the requirements.
[Map24] [Ins24] [Ert+20]

It is important to know beforehand of creating an object
detection system the specifications of the system that it will
run on. The relevant specifics to object detection in this self-
driving car system are:

• Intel NUC mini-computer
• Intel® CoreTM i5-1135G7 processor with 16 GB RAM

and 4 cores and 8 threads
• 3 x Logitech StreamCam (1920x1080 @ 60 fps, 78° FOV,

540 focal length), however these are set to 848x480 and
30 FPS to reduce the system load, and only the middle
camera will be used for object detection

[RDW23]

A system that will implement object detection and only
contains a decent CPU requires it to be implemented efficiently
to not overload the CPU, because as it is running on the self-
driving car, also other subsystems will run, like steering to
stay between the white lines and communication between the
car and the NUC.

B. Requirements for the Self-Driving Car

For a self-driving car to operate safely and efficiently, it
must meet several key requirements:

• Accurate detection and classification of traffic signs,
traffic lights, pedestrians and cars, can detect objects
within required distance thresholds.

• Real-time processing capabilities to interpret objects
quickly. That means stopping before a red light, adhering
to the speed limit, allowing a pedestrian to cross, and
detecting a car.

• Distance estimation to the detected objects to react to
them in time

• Robustness to varying lighting conditions, weather, and
occlusions.

• Integration with other autonomous vehicle systems for
decision making and navigation.

II. RELATED WORK

A lot of work has been done in the field of object detection
mostly with YOLO models, dataset creation, distance estima-
tion from images and integration of real time decision systems.

A. Object Detection through YOLO models

There are a lot of different algorithms that can do object
detection in this scenario. The most popular options are
YOLO, R-CNN(Regional Convolutional Neural Network) and
its variants and SSD(Single shot detector). These different
type of models are discussed in [Jia+19]. Where I concluded
from that R-CNN are overkill for this scenario and would
most likely overload the CPU and that SSD is better at small
and overlapping object detection but is generally slower and
more complex to implement and train then YOLO, leaving
YOLO as the best option for the real-time requirements.
Within the YOLO family there are a lot of different variants,
in a study published July 2023, multiple different versions
of the YOLO models were tested, specifically for the use
of traffic sign recognition. What was concluded from this
study is that YOLO-v5 was the best version for this task
[yolo˙systematic˙review]. The ultralytics open-source project
of YOLO-v5 is one of the best frameworks for building a
object detection system [Ult24b]. The frameworks comes with
model trainers, pre-trained-models to build of from, evaluators
and automatic optimization techniques like pruning, it allowed
a very quick creation of a model.

The YOLO algorithm can be quite complicated to fully
understand, but it is not worth mentioning the intricacies in
this paper; for a detailed explanation of the structure, refer to
papers [Ami+23] and [yolo˙systematic˙review].

Training a model through the YOLO framework is made as
easy as possible [Ult24b], besides needing a dataset to train a
model, the optimal training parameters and hyper parameters
also need to be determined, this paper used for detection of
pest has a section dedicated for optimal training parameters
and I used it as a starting ground to start my base parameters
from. [Ami+23]

B. Dataset creation

Creating a dataset for a convolutional neural network has
been done before, a detailed tutorial of how it works is
explained in [Ult24a]. In addition, a key part of creating a
dataset is balancing the data sets class occurrences to prevent
bias inside a dataset. This was done inside the study of [Sin20]

C. Distance estimation

Distance estimation from monocular images is essential
for autonomous driving and has been extensively researched.
Previous studies, such as those of Faculty of Applied Sciences,
Macao Polytechnic University, utilize the known object dimen-
sions and camera parameters to accurately compute distances.
This is done through leveraging the camera’s focal length
and the objects real-world dimensions to determine distance,
which is crucial for the self driving cars to react timely to
their environments. For the formulas used please refer to
subsection III-B Distance estimation. [Cho+23]

III. METHODOLOGY

The methodology of this thesis is divided into several
key stages, each with a specific task and goal aimed at
requirements of the detection system for a self-driving car.
This section will cover dataset creation, distance estimation,
model training, evaluation metrics, integration, and optimiza-
tion strategies. For all of the code of this project refer to the
appendix section VI-A.

A. Data set

A dataset is used to train a CNN model, it consists of
labelled images. To obtain the proper accuracy of the model, it
requires that the data set consists of a wide variety of circum-
stances in its classes. Such as different weather conditions/
lighting, different angles and distances from the classes and
different image augmentations such as zooming, blur, contrast/
brightness and flipping. After that to prevent bias for certain
classes, the dataset needs to re-balanced if certain classes are
under-represented.

The creation of the data set can be summarized by the
diagram in Figure 1.

2

Fig. 1: The flow chart of the database creation with small
motivation for each step, the blocks are coloured to show the
specific type of step it is:
Green: Image preparation,
Blue: Image augmentation,
Red: Overall dataset creation and preparation

1) Class definitions: The object detection on the self driv-
ing car needs to be able to detect the following classes:

• Traffic Speed sign 20-km/h, width: 0.6m, height: 0.6m
• Traffic Speed sign 15-km/h, width: 0.6m, height: 0.6m
• Traffic Speed sign 10-km/h, width: 0.6m, height: 0.6m
• Traffic Light Green, width: 0.07m, height: 0.3m
• Traffic Light Red, width: 0.07m, height: 0.3m
• Pedestrian, width: 0.5m, height: 2m
• Car, width: 1.8m, height: 1.4m

Fig. 2: The object classes listed in the class definitions

The visual representation of these classes can be seen in
Figure 2.

2) Collecting live images from the track: The first step
in creating a new data set is to have a database of images
containing the classes mentioned above so to achieve this, live
video data from the self-driving car throughout the track was
recorded, this included the same objects for different weather
and lighting conditions. The next step was to select certain
frames that contain the classes to add to the data set. It was
done from the perspective of the car to assure that once the
object detection runs on the car itself, there would be no
change in perspective compared to its training.

3) Annotation of the images: Before an image is ready to be
used for training, its first annotated by hand, so that the model
knows where in an image the object is. This is done with the
help of tools such as Roboflow. The process, explained simply,

consists of going through an image, finding the area of interest,
and labeling it as one of the according predefined classes.

Fig. 3: In this picture a heat-map can be seen of where all
the annotations reside, where it can be seen that there are no
relevant annotations in the bottom 50 % of the image, besides
a picture containing the whole car

4) Image preparation: After all annotations were com-
pleted, it was noticed that in the heat-map Figure 3 that in the
bottom 50 % of the images, there was no relevant information,
and thus not relevant for training. After that because the
YOLOv5 framework works only with square images, and that
most detections can be found within a 50 % width of image
width of the image, the dataset could be optimized to further
reduce noise, by cropping the images to only include the 50
% of the image width that contains the classes, and if not all
classes fit within that just split it into 2 separate images in the
training data. The region that is included in the crop is based
on where the annotations are located.

5) Data Augmentation: Data augmentation was done at 2
different levels, the yolo-v5 framework before training has
some built in image augmentation that can be set in its training
configuration file, but not enough to solely rely on it. Thus to
fill out this augmentations they are listed below:

• Zoom: different levels of zoom of the same class, which
means that the images in the dataset will be trained on
different surroundings of the class its trying to detect, it
also allows more detailed

• Blur: Different levels blur, to be robust enough that even
if there is motion blur or other types of blur it could still
detect the image.

• Contrast: Besides the different real world lighting condi-
tions, create artificial levels with increased and decreased

3

lighting
These augmentations assure that the model is trained on

different scenarios of lighting, blur and further distances from
the car itself.

The augmentations that are done through the YOLO-v5
framework:

• Rotation: Rotate the images slightly (up to 5 degrees)
• Horizontal flipping, basically mirroring the images

B. Distance Estimation

Distance estimation can be done from monotone images as
long as the camera parameters are known and the real metrics
of the object that the is distance is being measured from.

As mentioned section II-C the most simple way of object
detection is through the use of focal length. In knowing the real
width and height of an object, the focal length of the camera
and the pixel width and height of the detection, distance can
be calculated.

The distance D to the object can be calculated using both
the width and height of an object as shown in equations 1 -
3:

Dw =
W · f
w

(1)

Dh =
H · f
h

(2)

D =
Dw +Dh

2
(3)

where: (in meters)
• Dw is the distance calculated using the object’s width
• Dh is the distance calculated using the object’s height
• D The eventual distance calculated using width and

height
• W is the real width of the object
• H is the real height of the object
• f is the focal length of the camera, 540 in this case
• w is the width of the object in the image (in pixels)
• h is the height of the object in the image (in pixels)
[Cho+23]

C. Model training

Throughout progressing of the RDW challenge and thesis,
different models were created, throughout experimentation of
the hyper-parameters and training parameters and related work
the final hyper parameters can be seen in Table I.

The model was trained using the utwente jupyter servers
[Twe24], besides its hyper parameters, it also has training
parameters which can be found in Table II.

D. Evaluation Metrics

For this system, there are different metrics to take into
consideration to define a real-time robust and efficient system.

Parameter Value Description
lr0 0.01 Initial learning rate
lrf 0.1 Final OneCycleLR learning rate
momentum 0.937 SGD momentum/Adam beta1
weight_decay 0.0005 Optimizer weight decay
warmup_epochs 3.0 Warmup epochs
warmup_momentum 0.8 Warmup initial momentum
warmup_bias_lr 0.1 Warmup initial bias learning rate
box 0.05 Box loss gain
cls 0.5 Classification loss gain
cls_pw 1.0 Classification BCELoss positive weight
obj 0.7 Object loss gain
obj_pw 1.0 Object BCELoss positive weight
iou_t 0.20 IoU training threshold
anchor_t 4.0 Anchor-multiple threshold
anchors 3 Anchors per output layer
fl_gamma 0.0 Focal loss gamma
hsv_h 0.015 Image HSV-Hue augmentation
hsv_s 0.7 Image HSV-Saturation augmentation
hsv_v 0.4 Image HSV-Value augmentation
degrees 5.0 Image rotation (+/- deg)
translate 0.1 Image translation (+/- fraction)
scale 0.5 Image scale (+/- gain)
shear 0.0 Image shear (+/- deg)
perspective 0.0 Image perspective (+/- fraction)
flipud 0.0 Image flip up-down probability
fliplr 0.5 Image flip left-right probability
mosaic 1.0 Image mosaic probability
mixup 0.0 Image mixup probability
copy_paste 0.0 Segment copy-paste probability

TABLE I: Hyperparameters for YOLOv5 Training

Parameter Value
Image Size 448
Batch Size 3
Epochs 100
Model Configuration ./models/yolov5s.yaml
Initial Weights yolov5s.pt
Cache Enabled
Patience 10

TABLE II: Relevant Training Parameters for YOLOv5 Model

1) Object Detection Accuracy Metrics: There are several
metrics that express the accuracy of a convolutional neural
network. It should be kept in mind that these metrics are
calculated within a validation set of the database which differs
on the set that it trains on, which is a useful tool to get an
initial estimation of the accuracy, but cannot fully represent
how it would perform in real-time in the real world. Some of
these metrics use the IOU (Intersection over Union, where
the calculations off are shown in equation 4, it shows the
overlap between the detection and the original annotation. The
different accuracy metrics are shown below:

IoU =
Area of Intersection

Area of Union
(4)

• Recall is the ratio between the true positive detections
to the total number of actual positives (true positives +
false negatives).

• Precision is the ratio of true positive detections in re-
gards to the total predicted number of positive detections
(true positives + false positives).

4

• mAP0.5 stands for Mean Average Precision at IoU
threshold of 0.5, which quantifies the object detection
inside the images.

• mAP0.5:0.95 is the Mean Average Precision averaged
over the IoU thresholds from 0.5 to 0.95, which means
that the object detection is really close to the training
annotation.

2) Object detection speed metrics: These metrics represent
the speed and efficiency of the system, used to determine how
memory, CPU efficient the system is.

• FPS: The amount of frames per second the object detec-
tion process calculated through the average of 1 over the
processing time per frame.

• CPU usage: CPU usage will be presented as a % of the
potential total CPU usage of the CPU of the NUC.

• RAM memory usage: this shows the RAM usage of
the Object detection in GB, used to see how memory
intensive the program can be.

E. Integration

The integration consists of 5 main parts: initialization, frame
acquisition and preprocessing, Inference, Post-Processing and
Distance Estimation and Detection and State Management.
Each part plays a crucial role to go from a frame captured
from an image to instructions for the cars throttle and breaks.

For a detailed overview of how this system operates refer
to Figure 4.

1) Initialization: The model is first initialized through the
use of the YOLO-v5 framework which is used to handle a
variety of models. The model then goes through a warm-up
which optimizes the accuracy and processing speed. After the
model will go through quantization, originally the parameters
of the model each consist of 32 bits, this can be lowered
to 8 bits, which can reduces the calculation size for each
detection. In the section III-F an experiment is run to test
different optimization combinations between quantization and
downsampling.

2) Frame acquisition and Preprocessing: Frames are cap-
tured from the front facing camera of the car, the frame is
then separated into 3 separate images, (TL)top left, (TR)top
right and (TM) top middle. For a visual representation of what
is meant with this can be seen in Figure 5. These 3 images
are resized to the dimensions of frame to a multiple of the
models stride which in this case is to 448x448, because as
mentioned before the YOLO-v5 framework only works with
square images and the model is trained on this format which
the same sort of resizing as training. This is also the step where
downsampling can be applied the model, in subsection III-F
the experiment for this can be found.

Fig. 5: This picture shows the images that are taken from a
detection frame in the preprocessing stage of integration

3) Object detection Inference: The object detection is
done with the help of the pytorch library and the YOLO-
v5 framework, [Ult24b] by simple giving the loaded model
an image with proper dimensions it will run inference and
give an array of predictions. Then through processing these
predictions with NMS(non maximum suppression), where
based on the set based on Intersection over Union (IoU) and
confidence thresholds will these turn these predictions into
actual detections with according classes.

4) Post processing and distance estimation: After the de-
tections are generated for all 3 of the sub-images, an offset
is applied to all of their detections based on their original
positions (top left, right, middle), to properly put them in
the correct place. Then the distances to all of the objects
are calculated based on the focal length described in subsec-
tion III-B. Detections that overlap between 2 sub images are
filtered based on to which center of the sub image the detection
is closer, which allows for a smooth transition between the
sub images, allowing for example the tracking of a pedestrian
throughout the whole image, while stile feeding the same input
resolution before downsampling as it was trained on.

5) State Machine: The state machine is what will be read
to make decisions from. The state is structured as a dictionary
with the following elements:

• spotted red light: A boolean indicating if a red traffic light
has been detected.

• Speed limit: An integer that represents the last detected
speed limit. This updates every time it sees a new speed
limit sign.

• Initial Person Position: A string that indicates the starting
position of a detected pedestrian relative to the car. It can
be ”None”, ”Left”, ”Middle” or ”Right”

• Starting Person Position: A string that indicates the
current position of the pedestrian, it can have the same
states as the initial person position.

• Car Spotted: A boolean indicating if a car has been
detected within the distance threshold, which is used by
a separate sub system to start an intake manoeuvre.

With these states, the system has enough information to
simply alter its speed or stop.

5

Fig. 4: In this diagram a whole flow chart of the steps of Integration can be seen including the sub-steps of the object detection
system

For the state diagram to update on the right distances from
objects, each individual class has a distance threshold.

• Red Light: 5m
• Pedestrian: 10m
• Speed Sign: 10m
• Car: 10m
To add another level of robustness, a memory buffer has

been implemented, meaning that the system needs to see the
same class within the distance threshold 5 times before it
updates the state. The state is monitored with data loggers
including the all the possible evaluation parameters.

After the state diagram is updated it has a shared variable
with a different thread where it will give the most recent
version of the state. Then based on the state the adjust throttle
thread, will alter its speed based on a priority of objects, it
will respond in order to red lights, pedestrians, Spotting cars,
Speed limits.

6) Virtual test environment for Object detection: Keeping
the end-goal requirements in mind of creating a system on a
self-driven car, the system needs to be tested in real-time on
the self driving car test track. Because real-time testing was
limited to 1.5 hours per week (on a 6 week period) and because
not just object detection, but other subsystems needed to be
debugged, running extensive experiments on the real car was
not viable. Thus, a virtual testing environment was created;
it acts as a video player running the video data of an earlier
recorded run, keeping the same resolution and FPS. It draws

boxes of the detections that the model makes and shows the
current state diagram in text. The virtual testing environment
is ran on a spare NUC and also used in this way to measure
CPU performance in the section III-F.

F. Optimization

The optimization is done through techniques such as quan-
tization of model parameters and downsampling the input
images of the system. To test the optimization performance,
the accuracy, Precision, mAP:0.5, mAP: 0.5-0.95, FPS, RAM
usage and CPU usage will be tracked for a set of optimization
combinations. The goal is to see how effective the optimization
methods are and how far we can push optimization until the
system stops meeting the requirements. All accuracy metrics
are tested through the YOLO-v5 framework val.py, with some
adaptations to allow downsampling and quantization [Ult24b].
The speed metrics and seeing if it still meets the requirements
of properly reacting to the objects are tested using the virtual
testing environment. The speed metrics are run using the
image merging mentioned in the integration section of the
methodology. It should be noted that the accuracy metrics are
run with a confidence threshold of 0. 001 %, which means that
predictions of which the model is not very certain are also
kept in as part of the calculations for the accuracy metrics,
which could cause more false positives than if you were to
put a higher confidence %, but this does allow evaluation

6

to better represent the performance of the model between
different optimizations.

IV. RESULTS AND DISCUSSION

This section will go over the resulting products and ex-
periment results for the object detection system, including the
annotated dataset, trained model, integrated system and results
from optimization.

A. Dataset creation

The created dataset consists of a total of 6167 different
images with labels after image augmentation, created from
211 different annotated images. The occurrence of each class
throughout the dataset is shown in figure 6. This shows that
the dataset is balanced enough to not cause any major bias
towards a single class.

Fig. 6: This pictures shows the class count for each different
class, showing a balanced distribution of classes

B. Model training

The model accuracy performance over the epochs can be
seen in Figure 7. Both curves are logarithmic like, rapidly
rising in the first few epochs but slowly flattening out in their
growth. For all the training parameters please refer to the
appendix at Figure 9.

Fig. 7: This figure shows the MAP of 0.5(left) and
0.5:0.95(right) in a graph plotted against its epochs, showing
a logarithmic like growth in MAP over the epochs

C. Integration

Integration is difficult to visualize through text or picture,
so to see our live run during the RDW competition, refer to
[Cha24]. Where it can be seen that during the competition that
the car

• Stopped before a red light and went on green
• Switched its speed limit on the 20 and 10 sign
• Spotted the car and started to steer to the left, but did not

finish the manoeuvre due to some other errors unrelated
to object detection.

• Stopped too late for the second run second traffic light
indicating that the distance estimation reaction thresholds
were not tuned enough

This implies that all the requirements of accurately detect-
ing classes, real-time processing, and integration were met.
However, distance estimation was good enough to react only
on objects that are actually close, but it was not perfect in the
sense that the meters that you gave it as a threshold to stop
for was not the same as the actual distance that it stopped. It
was good enough for an estimate, but not for exact distances.

Besides not explicitly testing different for lighting condi-
tions, the model was trained to handle it in the model training
and dataset creation stages.

To see an example visualisation of what the system sees
refer to Figure 8. This was created using the virtual testing
environment.

7

TABLE III: Object Detection Performance and Efficiency Metrics

Model Precision Recall mAP0.5 mAP0.5:0.95 FPS CPU Usage (%) RAM Usage (GB) Meets Detection Requirements
Standard 0.985 0.99 0.993 0.874 11.92 55.65 0.62 True
Quantized (8 bits) 0.985 0.99 0.993 0.874 12.10 55.01 0.62 True
Quantized (8 bits) + Downsampled (factor: 1.2) 0.985 0.989 0.993 0.878 14.52 55.12 0.61 True
Quantized (8 bits) + Downsampled (factor: 1.5) 0.985 0.989 0.993 0.88 18.9 55.4 0.62 True
Quantized (8 bits) + Downsampled (factor: 2) 0.977 0.998 0.993 0.879 26.87 54.21 0.62 True
Quantized (8 bits) + Downsampled (factor: 2.5) 0.975 0.999 0.993 0.87 28.46 54.01 0.62 True
Quantized (8 bits) + Downsampled (factor: 3) 0.982 0.991 0.993 0.858 36.4 52.7 0.61 True
Quantized (8 bits) + Downsampled (factor: 4) 0.982 0.977 0.99 0.821 50.87 51.26 0.61 False
Quantized (8 bits) + Downsampled (factor: 6) 0.954 0.907 0.953 0.709 53.80 50.90 0.61 False
Quantized (8 bits) + Downsampled (factor: 8) 0.93 0.755 0.836 0.542 72.8 49.9 0.61 False

Fig. 8: A visualisation of what the model detects, the de-
tections boxes are drawn as green rectangles around objects,
where around it has the class that it detects and the distance
calculated towards it

D. Efficiency

The data from the efficiency experimentation can be seen
in table III. The accuracy parameters seem to stay close to
constant until the downsampling factor of 3, where mAP 0.5-
0.95 sees a drop in ≈ 2%, indicating that part of the validation
set is no longer recognizable. The FPS of object detection is
capped at 30 FPS, so as seen in table III CPU usage starts
dropping after it passes the FPS cap as from there it can start
to remain dormant between frames. Besides the parameters
in the table, a metric called confidence % from 0-100% is
given with each prediction, it differs between classes and
occasion, but the more down-sampled the input image was
the lower the average confidence rate, as with the standard
model it was between 0.9 - 0.98, and when the down sample
factor became as low as 4 it was already falling below the
confidence threshold of 70 %, so to continue the experiment,
the confidence threshold was dropped to 60% from down-
sample factor 4 on to determine if detection requirements were
still met. Which was met partially as it performed all the tasks
correctly, expect seeing the speed sign of 10 as a speed sign
of 15 once it can only see the corner of the speed sign, this
confusion was originally filtered out through a high confidence
threshold, as it was not certain with corners of speed sign.
But now the corner of speed sign confidence % is as low
as the normal detections, meaning that confidence % filtering
with a global confidence % threshold is no longer possible.
At a down-sample factor of 6 the pedestrian detector started
functioning inconsistently, it could not fully keep track of the

pedestrians positions during the whole crossing manoeuvre.
At down-sample factor of 8 it fails all of the requirements of
object detection as it fails to detect anything 5 times in a row to
trigger the memory and change the state. The different jumps
in FPS not being linear with the downsampling factor could
be explained by that the image dimensions must always be a
multiple of 32 (model stride), because after downsampling it
is resized to the closest multiple of 32, which could slightly
alter the actual downsampling factor being performed within
the system.

V. CONCLUSION AND FUTURE OUTLOOK

To conclude, the self driving car was capable to meet
the accuracy, real time and integration requirements of the
system fully, however distance estimation was only accurate
enough that it can differ close from far objects, the estimated
distances are not exact depending on the distance between 10-
20% margin. Al though during testing days with the real self
driving car there were different weather conditions and that
this seemed to pose no issues, it was not tested directly with
limited access to the testing faculty.

For optimization the decision was to choose of a combina-
tion of quantization and a downsampling factor of 2, to leave a
margin of error during the competition. For future research on
the self-driving car, these experiments should be ran on the real
self driving car instead of in the virtual testing environment,
as to see if it also keeps working in real life instead of just
in the state diagram. Also an experiment can be ran testing
the optimal FPS cap in combination with the optimizations,
as this would allow a multi dimensional experiment which
would be more time intensive to perform but allows to find to
optimal parameters to lighten the load of the CPU in the NUC.
Another optimization technique to consider in the future was
to do the detections of all the merged 3 frames at the same
time using batches instead of after each other, batches are
used in CNN to detect multiple images at the same time as
a single image, which can significantly speed up processing
speed if done correctly. To finally conclude, this research and
code can be expanded outside the self driving car testing track
itself, these tools and frameworks are set up to be capable of
creating a more broadly trained model capable of doing this
tasks in the real world and perform different types of task
besides the ones part of this track.

8

Fig. 9: This figure shows all of the different accuracy parameters for the training of the model over the epochs

VI. APPENDIX

A. GIT

Repository with all of the code used for the real time system,
model training, dataset creation and virtual test environment, it
also includes some other subsystems besides object detection
under RealTime.

SDC Github

B. Training parameters

The full training parameters over time can be seen in
Figure 9.

AI USE STATEMENT

AI was used for a variety of things in this thesis. My most
used AI was chatGPT-4o, its most important use was for
brainstorming ideas, generating potential solutions as a starting
point, a quicker way of scouring the internet and summarizing
papers, worth mentioning is that before citing a paper used
here, I carefully read the entire paper to ensure the summarized
contents. I used it to create citation entries of different sources,
but revised it and took full responsibility for it. I also used it
to create initial drafts and examples of certain ideas in code,
allowing me to quicker learn interactions with certain libraries
and frameworks. But none of that code made it into the final
product as code or text and I assume full responsibility for all
the code and text in this thesis. I also used the auto vocabulary
correcter of overleaf showing me if I misspelled any words.

REFERENCES

[Mot39] General Motors. Futurama Exhibit at the 1939
World’s Fair. Accessed: 2024-05-01. 1939. URL:
https://example.com/futurama exhibit.

[Jia+19] Licheng Jiao et al. “A Survey of Deep Learning-
based Object Detection”. In: arXiv preprint
arXiv:1907.09408 (2019).

[Ert+20] Christian Ertler et al. The Mapillary Traffic Sign
Dataset for Detection and Classification on a
Global Scale. arXiv:1909.04422v2 [cs.CV]. 2020.
URL: https://arxiv.org/abs/1909.04422.

[Sin20] Amit Singh. Solving Class Imbalance Problem in
CNN. Accessed: 2024-05-21. 2020. URL: https :
//medium.com/x8-the-ai-community/solving-clas
s-imbalance-problem-in-cnn-9c7a5231c478.

[Nam22] Author Name. “An Edge Implementation of a
Traffic Sign Detection System for Advanced
Driver Assistance Systems”. In: Journal of Edge
Computing 10.2 (2022). URL: https://link.springe
r.com/article/10.1007/s41315-022-00232-4.

[Ami+23] Javeria Amin et al. “Pest Localization Using
YOLOv5 and Classification Based on Quantum
Convolutional Network”. In: Agriculture 13.3
(2023), p. 662. DOI: 10.3390/agriculture130306
62. URL: https://doi.org/10.3390/agriculture1303
0662.

[Cho+23] Ka Seng Chou et al. “A Lightweight Robust
Distance Estimation Method for Navigation Aid-
ing in Unsupervised Environment Using Monoc-
ular Camera”. In: Applied Sciences 13.19 (2023),

9

https://github.com/dej-h/sdc-challenge
https://example.com/futurama_exhibit
https://arxiv.org/abs/1909.04422
https://medium.com/x8-the-ai-community/solving-class-imbalance-problem-in-cnn-9c7a5231c478
https://medium.com/x8-the-ai-community/solving-class-imbalance-problem-in-cnn-9c7a5231c478
https://medium.com/x8-the-ai-community/solving-class-imbalance-problem-in-cnn-9c7a5231c478
https://link.springer.com/article/10.1007/s41315-022-00232-4
https://link.springer.com/article/10.1007/s41315-022-00232-4
https://doi.org/10.3390/agriculture13030662
https://doi.org/10.3390/agriculture13030662
https://doi.org/10.3390/agriculture13030662
https://doi.org/10.3390/agriculture13030662

p. 17. DOI: 10.3390/app131911038. URL: https:
//doi.org/10.3390/app131911038.

[RDW23] RDW. Self Driving Challenge 2024 Information
Document. Accessed: 2024-05-01. 2023. URL: ht
tps://www.selfdrivingchallenge.nl/edition-2024.

[Cha24] Self Driving Challenge. Self Driving Challenge
2024 - Final Race. Accessed: 2024-06-24. 2024.
URL: https://www.youtube.com/live/2dxOsTFq
VdE?si=ZeszVv9vWupcZjiY&t=10646.

[Ins24] Ruhr University Bochum Institute of Neural Infor-
mation Processing. German Traffic Sign Recog-
nition Benchmark (GTSRB) Dataset. Accessed:
2024-05-01. 2024. URL: https://benchmark.ini.ru
b.de/gtsrb dataset.html.

[Map24] Mapillary. Mapillary Traffic Sign Dataset. Ac-
cessed: 2024-05-01. 2024. URL: https://www.ma
pillary.com/dataset/trafficsign.

[Twe24] University of Twente. Jupyter Wiki. Accessed:
2024-05-01. 2024. URL: https : / / jupyter .wiki .ut
wente.nl.

[Ult24a] Ultralytics. Train Custom Data. Accessed: 2024-
04-21. 2024. URL: https://docs.ultralytics.com/yo
lov5/tutorials/train custom data/#local-logging.

[Ult24b] Ultralytics. YOLOv5: Master README. Ac-
cessed: 2024-05-01. 2024. URL: https://github.co
m/ultralytics/yolov5/blob/master/README.md.

10

https://doi.org/10.3390/app131911038
https://doi.org/10.3390/app131911038
https://doi.org/10.3390/app131911038
https://www.selfdrivingchallenge.nl/edition-2024
https://www.selfdrivingchallenge.nl/edition-2024
https://www.youtube.com/live/2dxOsTFqVdE?si=ZeszVv9vWupcZjiY&t=10646
https://www.youtube.com/live/2dxOsTFqVdE?si=ZeszVv9vWupcZjiY&t=10646
https://benchmark.ini.rub.de/gtsrb_dataset.html
https://benchmark.ini.rub.de/gtsrb_dataset.html
https://www.mapillary.com/dataset/trafficsign
https://www.mapillary.com/dataset/trafficsign
https://jupyter.wiki.utwente.nl
https://jupyter.wiki.utwente.nl
https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/#local-logging
https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/#local-logging
https://github.com/ultralytics/yolov5/blob/master/README.md
https://github.com/ultralytics/yolov5/blob/master/README.md

	Introduction
	Background and Motivation
	Requirements for the Self-Driving Car

	Related Work
	Object Detection through YOLO models
	Dataset creation
	Distance estimation

	Methodology
	Data set
	Class definitions
	Collecting live images from the track
	Annotation of the images
	Image preparation
	Data Augmentation

	Distance Estimation
	Model training
	Evaluation Metrics
	Object Detection Accuracy Metrics
	Object detection speed metrics

	Integration
	Initialization
	Frame acquisition and Preprocessing
	Object detection Inference
	Post processing and distance estimation
	State Machine
	Virtual test environment for Object detection

	Optimization

	Results and Discussion
	Dataset creation
	Model training
	Integration
	Efficiency

	Conclusion and Future Outlook
	Appendix
	GIT
	Training parameters

