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In the landscape of cybersecurity the ability to analyse and prevent new
cyber attacks is essential for a business’s survival. Most businesses rely on
outsourcing cybersecurity to a Security Operations Center, which comprise
of IT specialists responsible for analysing and classifying security logs.
Traditional methods of security log analysis fall short due to the complexity
and volume of security logs. This leads to analyst burnout causing disruptions
to business processes. Leveraging Large LanguageModels’ ability to interpret
and generate text could automate analysis and classification of security logs
reducing the likelihood that business processes are disrupted. This paper
examines GPT, a specific Large Language Model’s ability to analyse and
evaluate windows security logs as benign or malicious according using three
different prompt complexities. Results indicate that a GPT based approach
with a medium or high complexity prompt consistently identify and classify
benign logs but is ineffective when identifying malicious security logs.

Additional Key Words and Phrases: Log analysis, Large Language Models,
Security Operations Center, Prompt Engineering.

1 INTRODUCTION
The number and sophistication of cyber attacks has increased expo-
nentially since their inception, posing threats to business processes
and organisations. It is estimated that 90% of businesses have re-
ported a security incident resulting in 46% of those business losing
sensitive data [6]. Furthermore, cyber attacks often target delicate
processes such as supply chains, threaten resource availability via
denial of service attacks (DDoS), and lead to disinformation [1].
A security log is a piece of text describing key information about
performed user actions and contextual information such as the time
when using specific software.

Security logs are essential to understanding how these attacks
unfold as they provide information such as the time, date, and user
behaviour of when the attack took place. Traditional cyber security
methods for businesses are outsourced to Security Operations Cen-
ters (SOCs) that comprise of a team of IT specialists who analyse
and classify security logs. The volume and complexity of security
logs contribute to frequent analyst burnout, increasing the number
of undetected malicious logs [2]. A disruption in SOC processes
leads to delays in a business’ execution requests, leading to a loss in
revenue [7].

Advancements in Artificial Intelligence (AI) have the potential to
improve existing cyber security measures. Large Language Models
(LLM) are AI techniques focused on human language interpreta-
tion and text generation. LLMs suh as GPT 4 are shown to score in
the 90th percentile of the Uniform Bar Exam and in the 99th per-
centile for the Graduate Record Examination (GRE) verbal section
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[10]. When using GPT to perform security log analysis, preliminary
research by [4] highlights LLM’s slight improvement in precision,
recall, and F1 on classifying logs over existing security log analysis
software such as SentiLog and DeepLog.

This paper aims to bridge the gap between existing SOC security
log analysis methods and LLM’s text interpretation abilities in order
to improve cyber attack protection for business processes. The im-
portance of this research lies on the profound impact cyber attacks
have on business and how novel technologies such as LLMs have
the potential of improving cyber attack detection. To explore the ef-
fect LLMs have on security log classification the following research
question is used: What is the effectiveness of Large Language Mod-
els (LLMs) in distinguishing between malicious and benign security
logs?

The majority of security log analysis software classifies security
logs as low, medium or high priority while security logs between be-
nign and malicious. Why does this difference occur? This is because
the label dataset used for this paper includes malicious labels for
each log. As a result, it allows an LLM to easily distinguish between
benign and malicious logs. The research question can be divided
into the following sub research questions:

• How accurately can LLMs classify security logs as malicious
or benign?

• What are the potential implications of integrating large lan-
guage models into SOC workflows for improving threat de-
tection and incident response capabilities?

• What is the impact of prompt complexity on LLM compre-
hension and response generation in security log analysis?

How will the sub research questions be addressed? The first sub
research question will be addressed by LLM’s performance on sys-
tem logs with measures such as accuracy, precision, recall, and F1
score. The second sub research question will be addressed by ex-
amining LLM’s broader integration into current SOC security log
analysis processes. The third research question will be addressed
by incorporating three different prompt complexities.
The data used in this paper collected by Alsaheel et al. contains

several types of windows security logs meant for training and test-
ing security log classification models. Similarly, Python scripts for
data processing will not be used as the machine learning models
used in dataset use tokenized data in contrast to this paper’s use of
human language in security log analysis. To understand the uses
and limitations of LLMs in log analysis it is essential to examine
what LLMs are capable of along with the current landscape of SOCs.

2 STATE OF THE ART
The state of the art for SOCs involves the use of specific software
and communication between analysts to to analyse and classify
security logs. This section focuses on the state of the art of SOCs
followed by LLMs abilities and limitations when classifying security
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logs. Existing security log analysis solutions include software such
as SentiLog and DeepLog which make use of specific algorithms
rank security logs as low, medium, or high priority. Insufficient
literature and confidential benchmarking metrics makes it difficult
to assess the performance of security log analysis software[11].

A typical security log a text file which contains information about
the user’s operating system, time, and the requested resource. Ana-
lysts use software such as SentiLog and DeepLog to view security
logs and receive insights on a security log’s content. Using DeepLog
and SentiLog enables analysts to make decisions on security logs,
however, analysts struggle when analysing sophisticated attacks
due to the volume of information contained within a log [2]. A ses-
sion is a period where a user’s behaviour is being monitored as they
use a software, and one session can contain several security logs.
When an analyst must classify an intrusion detection, they must
reconstruct the session from the security log [8]. As a result, the
analyst must not only reconstruct the session but examine the over-
all session in order to determine if a security breach has occurred.
This involves examining user behaviour, IP addresses, and failed
login attempts. An analyst must look at several pieces of data to
label the security log and then the analyst must distinguish between
common human behaviour such as having several login attempts
versus a genuine attack.

The volume of information is particularly seen in signature based
attacks. A signature based architecture stores malicious signatures
and compares new signatures to malicious ones. For cybersecurity
analysts the distinction is not obvious since some users will behave
in a way in which logs are not easily distinguishable from logs
where the user is acting as expected [8]. As a result, it is difficult
for an analyst to distinguish the difference between a malicious
user adapting their behaviour and a user who is behaving correctly.
Experienced analysts are better able to distinguish the difference but
are often not available due to their high turnover rate [2] . Further-
more, the lack of communication between novice and experienced
analysts prevents skill transfers. When presented with a security
log, analysts typically work on issues independently, resulting in
more time being spent in problems and less skills being transferred
from more experienced analysts[11].

Skill differences between experienced and novice analysts could
be reduced using LLM to analyse security logs and provide insights
to analysts. LLMs could limit the amount of skill needed to analyse
a security log which could reduce the amount of time and work
needed to analyse and classify security logs.
Benchmarking data for security log classification for a previous

iteration of GPT (GPT-2) indicate false positive rates of between
0.756 and 0.875 for the baseline model and 0.005 and 0.121 for a
fine tuned version[5]. A false positive rate is the rate which benign
security logs get classified as malicious. A low false positive rate
is useful indicates that benign logs will most likely be correctly
classified limiting the number of logs analysts must analyse. There
is no significant public research illustrating LLM’s ability to classify
malicious security logs so its ability to correctly detect malicious
security logs is unknown. The next section addresses LLMs ability
to detect and classify malicious logs.

3 METHODOLOGY
The objective of this paper is to understand the feasibility of using
LLMs to classifying analysing security logs. The ATLAS dataset was
selected for this study due to its range of security events from various
sources, enabling GPT to recognize different types of incidents
similar to real attacks. Likewise, the dataset also includes single-
host attacks and multi-host attacks. A single host attack is an attack
that targets a specific machine or user, and a multi host attack is
comprised of coordinated actions are taken across multiple systems.

There are three types of security logs found in the dataset: firewall,
intrusion detection system (IDS), and application logs. Firewall logs
record traffic allowed or denied by the firewall, including details
about the source and destination IP addresses, ports, and protocols
used. Intrusion detection system (IDS) logs generate alerts when
potential malicious activity is detected and provide details about
the nature of the suspected attack. Application logs record user
activities and system errors.

Data collection involved downloading raw security logs that were
not labelled as benign or malicious. A single log entry from the
ATLAS dataset contains the user or account that initiated the action,
the target of the action, the process involved, and the specifics of
the access request.

The entry typically identifies the user with a security ID, account
name, and login ID. It describes the target object with details such as
the object type and name. The security log also includes information
about the process that performed the action, including the process
ID and name. Additionally, each security log outlines the access
request details and specifies the types of access requested. Given
the dataset, functional and non functional requirements were made
in order to define success criteria for security log classification. In
order to compare the dataset against the functional requirements
preprocessing the data was required. Preprocessing served to enable
GPT to interpret the dataset.

3.1 Functional Requirements
Functional requirements are target requirements of a system with
specific behaviours and outcomes.
FR1.1: The system shall preprocess logs to remove entries that

contain noise with an accuracy equal to or greater than 0.95.
• AC1.1: The system is able to remove noise with an accuracy
of at least 0.95.

• R1.1: Noise refers to the information in a security log which
is not used. Most accuracy values target 0.90 to 0.99, however,
due to the novelty of LLMs it is expected that it will make
mistakes. A value smaller than 0.95 could significantly reduce
the number of security logs being evaluated which could
negatively affect the evaluation process of the methodology.
In order to avoid this a threshold is higher than than the
actual classification of security logs.

FR2.1: The system shall use GPT to classify log alerts with a
target classification accuracy of at least 0.90.

• AC2.1: The system’s classification accuracy is equal to or
greater than 0.90.

• R2.1: There is no objective metric for cutoff in accuracy but
common values range from 0.90 to 0.99. Since security logs are
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complex and they are being analysed using novel technology,
it is unlikely that GPT will consistently produce extremely
accurate results which is why the value of 0.90 is chosen. Re-
search by Ban. et al identify that LLMs are capable to escalate
malicious security logs with an accuracy greater than 0.90
[3].

FR3.1: The system shall generate a textual response which indi-
cates if a log is benign or malicious.

• AC3.1: For each log given, the system outputs a "0" for a
benign log or a "1" for a malicious log.

• R3.1: A binary system was chosen in contrast to traditional
classification methods in order to provide a baseline under-
standing of GPT’s ability to classify logs. Furthermore, a bi-
nary classification system allows for scalability to employ
traditional classification methods which comprise of low,
medium, and high priority security logs.

Non Functional Requirements
Non functional requirements represent system objectives and crite-
ria without attributing specific values and metrics.
NFR1.1: LLMs aid humans in a decision making process where

humans are responsible for the classification of logs.
• AC1.1: The system shall provide suggestions and insights to
human analysts without making autonomous decisions.

• R1.1: Onwukibo et al. claim that LLMs should not completely
remove human interaction. This is because a significant chal-
lenge in log analysis is the over reliance on technologies such
as machine learning to perform the analysis. The requirement
for human interaction is also known as “human-in-the-loop”.
A “human-in-the-loop” incorporates a holistic decision which
includes the “Social, human, financial, risk, reputation and
otherwise” [9].

3.2 Preprocessing
The preprocessing steps for this study involves preparing raw logs
for analysis using two different models: the GPT 3.5 base model
and a fine tuned version of GPT 3.5. These models were chosen for
several reasons. The first reason is the use of OpenAI’s API which
can automate large amounts of prompts and metric calculation.
Similarly, GPT 3.5 is substantially cheaper than recent models such
as GPT 4 which makes analysing a large amount of security logs
cost effective. A base model and a fine tuned version were chosen
in order to better understand the relationship fine tuning has on a
model. This relationship allows for a comparison between the base
and fine tuned model.

For the GPT 3.5 base model the security logs had to be separated
into separate files to ensure that each input to the model did not
exceed its processing limit of 60,000 tokens. This step was done to
maintain data integrity while conforming to the GPT’s constraints.
Logs containing indicators of malicious activity were labeled as
malicious, while logs without such indicators were labeled as be-
nign. The labeling process allowed to assess GPT’s performance by
comparing its predicted labels to the actual labels.

Preprocessing data for the fine tuned model involved splitting the
raw logs into two subsets: 70% of the data was reserved for training

the model and 30% was set aside for testing. This split is a common
ratio in machine learning. Fine-tuning the GPT 3.5 model required
creating a .jsonl file that containing a minimum of 10 messages. A
message consists two prompts: a prompt made by the user and the
corresponding GPT response. The prompt given to GPT has a role
of "system", while the response has a role of "assistant". The final
message contains both prompts separated by a comma. An example
system prompt is shown below:
{"role": "system", "content": "Process Information: SYS-
TEM Process ID:3776, Process Information: Source Ad-
dress:0.0.0.0}

The security log contains information such as the ID of the system
process, and source address. The assistant prompt with the correct
classification is shown below:
{"role": "assistant", "content": "0"}

The final message will contain both prompts in a single line:
{"role": "system", "content": "Process Information: SYS-
TEM Process ID:3776, Process Information: Source Ad-
dress:0.0.0.0},{"role": "assistant", "content": "0"}
Each message prompt contained 16 raw logs and the response

prompt was the correct classification of those logs. A total of 10
messages were used to train the model. The choice of 10 messages
was chosen for two reasons. The first reason is that the model’s per-
formance did not improve when using a larger number of messages.
Likewise, the costs associated with fine tuning GPT encourages a
lower number of messages due to the lower amount of resources
required. Fine tuning substantially increased GPT’s performance
described later in this section.

3.3 Prompt Engineering
Prompt engineering serves to leverage GPT’s abilities and provide
insight into the effect prompts have on performance. Initially, the
approach involved including one file containing raw logs and an-
other separate file containing the corresponding malicious labels.
However, uploading two files proved to be impractical due to GPT
3.5’s token limit. Including malicious labels in the prompt itself was
found to reduce the number of tokens in the prompt. Furthermore,
GPT’s token limit requires waiting for one minute until the limit is
reset.

A chunk is a single file consisting of a subset of the raw security
logs as described in preprocessing. Ten chunkswere given in total for
each prompt totaling circa 9000 security logs. Includingmore chunks
for identification and classification would significantly increase the
time for data collection and ten chunks appears to be a sufficient
number of security logs. When reducing the number of logs, GPT
would frequently analyse less security logs than given thus resulting
in an insufficient number of classified logs.

When prompting the fine tuned model ten chunks from the train-
ing data were used. OpenAI offers parameters for influencing the
text generated by GPT. There are three main parameters: temper-
ature, presence penalty, and frequency which range from 0 to 1.
Temperature adjusts the randomness of the generated text. A low
temperature value (e.g. 0.1) produces more focused and predictable
responses while a high value (e.g. 0.9) results in more diverse and
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creative outputs. Presence penalty discourages the repetition of to-
kens. A high presence penalty value encourages the introduction
of new concepts and a low value allows more topic repetition. Fre-
quency penalty reduces the likelihood of repeating the same tokens
in close proximity. For example, a high frequency penalty makes
the model less likely to repeat words and a low frequency penalty
does not penalize repetitions thus encouraging more frequent use of
the same words. All parameters are set to 0 produce a classification
which is not random, does not introduce new concepts, and stays
within the same topic.

This paper examines three different prompt complexities: low,
medium, high. While prompt complexities are subjective, a brief ex-
planation is provided as to why the prompt belongs to the specified
complexity shown below:
Low complexity prompt:

Please classify each log as 0 (benign) or 1 (malicious).
Write either a 0 or 1 followed by a space for each log
in a single line.

This prompt was used as a low complexity prompt since it was
straightforward. This did not involve passing in the malicious logs
since it is reserved for the medium and high complexity prompt.
Medium complexity prompt:

You are given logs which must be classified as 0 for
benign and 1 for malicious. If a log contains a malicious
label classify the log as 1. Please separate each classifi-
cation by a space and in a single line. The total number
of benign and malicious logs should be given at the
end. One of the malicious logs is 0xalsaheel.com

The methodology behind the medium complexity prompt was
to introduce malicious labels in the prompt itself. The aim of the
medium complexity prompt is to analyse if introducing malicious
labels will aid GPT in identifying unseen malicious labels.
High complexity prompt:

Suppose you are an SoC analyst responsible for iden-
tifying anomalies in the log entries using the labelled
training data. You are responsible for classifying these
anomalies as malicious (1) or benign (0). Identify the
malicious labels and make sure to classify all logs given
in the .txt file in a single line. After you are fin-
ished include the total number of classified benign
and malicious logs where each classification is either a
0 or 1 separated by a space. Malicious labels are 0xal-
saheel.com and c:/users/aalsahee/payload.exe.
An example response would be 0 1 0 1 0 0 where there
are 6 security logs to be classified.

The high complexity prompt differs from the medium complexity
prompt in which it employs a hypothetical scenario along with an
example output. This prompt aims to examine the effect of secu-
rity log classification by providing contextual information about
the given task. After providing low, medium, and high complexity
prompts performance metrics were calculated.

4 RESULTS
Each prompt would return a classification containing predicted la-
bels which would be compared to the actual labels and performance
metrics would be calculated as shown below:

• True Negative (TN): The number of benign logs correctly
classified.

• False Positive (FP): The number of benign logs incorrectly
labelled as malicious.

• False Negative (FN): The number of malicious logs incorrectly
classified as benign.

• True Positive (FP): The number of correctly identified mali-
cious logs.

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

F1 Score = 2 · Precision · Recall
Precision + Recall (4)

Example performance metrics are shown below using a low com-
plexity prompt in a single chunk:

Metric Value
Accuracy 0.95
Precision 0.14
Recall 1.00
F1 Score 0.25

Table 1. Example Performance Metrics

Each prompt was analysed using 10 chunks and their average
performance metrics were taken. The table below illustrates the
prompt complexity used, total number of logs given, total number
of logs analysed by GPT and average performance metrics:

Complexity Logs Giv. Logs An. Acc. Prec. F1 Rec.
Low 8597 1252 0.722 0 0 0.88
Medium 3824 677 0.795 0 0 0.5
High 9534 2916 0.706 0.0005 0.001 0.9
Table 2. Average Performance Metrics by Prompt Complexity

The results indicate significant variations in the performance
of the model across different levels of prompt complexity. For low
complexity prompts, GPT achieved an accuracy of 0.722, a precision
of 0, an F1 score of 0, and a recall of 0.88. A high accuracy but low
precision suggest that although GPT was able to correctly identify a
large number of relevant logs it also generated a substantial number
of false positives. In the context SOC classification a high amount
of false positives suggest that a large number of benign logs would
be classified as malicious.
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When increasing the prompt complexity to medium, the GPT’s
accuracy improved to 0.795, indicating a better overall performance.
However, the precision and F1 score remained at 0, and the recall
decreased to 0.5. A lower recall suggests that GPT is more likely
to classify malicious as benign compared to the low complexity
prompt. A high accuracy and low recall indicate that GPT is able
to better identify security logs but it still struggles with high false
positive rates.
For the high complexity prompt GPT demonstrated the highest

recall but this was at the expense of accuracy, precision, and F1
score, which were all low. The drop in accuracy and particularly
low precision suggest that given a higher prompt complexity, GPT
generated a higher number of false positives. Across all prompt
complexities the number of logs analyzed was significantly lower
than the number of logs given highlighting GPT’s limited processing
capabilities. There appears to be a trade-off between prompt com-
plexity and performance particularly when examining that higher
prompt complexities present a higher accuracy but a higher number
of false positives. Significant performance differences are seen when
comparing the base GPT model shown below:

Complexity Logs Giv. Logs An. Acc. Prec. F1 Rec.
Low 9421 968 0.976 0.937 0.876 0.823
Medium 6569 753 0.995 1 0.727 0.571
High 8697 1764 0.991 0.793 0.827 0.864

Table 3. Average Fine Tuned Performance Metrics

The fine tuned model showed improvements over the base model.
For low complexity prompts the accuracy increased and had signifi-
cant improvements in precision and F1 score which indicate a reduc-
tion in false positives. A balance between accuracy and precision
suggests that GPT was able to better identify malicious security logs
compared to the base model. For the medium complexity prompt the
fine tuned model showed improvements in accuracy and a substan-
tial increase in precision and F1 score compared to the base model
although recall slightly decreased. An increase in accuracy and a
decrease in recall indicates a balanced performance with fewer false
positives and a reasonable detection rate. For the high complexity
prompt the fine-tuned model achieved slightly lower accuracy than
medium complexity while surpassing the base model’s performance
with improved precision and maintained a high recall. A high pre-
cision and high recall suggest that the high complexity prompt is
able to handle complex prompts with improvements in the number
of correct and incorrect malicious security log classifications.

5 DISCUSSION
The results demonstrate the differences in performance between the
GPT 3.5 base model and a fine tuned version for security log analy-
sis using three prompt complexities The base model showed high
accuracy but struggled significantly with precision and F1 score,
especially under low and medium complexity prompts, indicating
a high rate of false positives. This high recall but low precision
suggests that while GPT could identify a large number of relevant
logs, it also incorrectly flagged several benign security logs as mali-
cious leading to inefficiencies in threat detection. In contrast the fine

tuned model had performance improvements in security log classi-
fication more specifically on precision suggesting a great reduction
in incorrectly flagged benign security logs.

When reflecting on the methodology specific steps were particu-
larly effective. The data from the ATLAS dataset provided a large
range of security logs and allowed for results closer to those in the
real world. Likewise, the decision to split the raw logs into 60,000
token chunks was necessary to conform to GPT 3.5’s token limit.
Shuffling the logs to balance benign and malicious entries ensured
that GPT was exposed to a more balanced number of benign and
malicious security logs which is more representative of real world
SOC security logs.

Fine tuning GPT using a .jsonl file proved to be effective because
of GPT’s performance increase. The structure of giving security logs
and receiving the correct classification in the fine tuning process
enabled the GPT to learn from specific examples which could have
contributed to its performance improvement. The choice of 10 mes-
sages enabled a balance between providing enough examples for
GPT to improve without spending significant resources.

The methodology could be improved if more time and resources
were available. For example, increasing the number of fine tuning
messages beyond 10 could lead to even better performance. This
is because larger and more diverse training set might allow GPT
to better classify new and unseen security logs. Additionally, im-
plementing more sophisticated preprocessing techniques such as
advanced noise filtering could further improve the data quality re-
sulting in higher performance. Another area for improvement is the
performance evaluation of this paper. While accuracy, precision, re-
call, and F1 score are common metrics in machine learning, metrics
such as the time taken for log analysis and the could provide a more
comprehensive assessment of its applicability in SOCs due to the
large amount of security logs needed to be analysed.

5.1 Limitations
The dataset only contained security logs from the ATLAS dataset
which most likely does not cover the full spectrum of possible se-
curity events encountered by SOCs. As a result, this could affect
GPT’s ability to classify new types of security logs.
Computational constraints when processing security logs influ-

enced the methodology. The decision to split logs into 60,000 token
chunks was resulted from GPT’s processing limits and may not
be able to handle longer security log sequences. When comparing
performance metrics, values such as true positive, true negative,
false positive, and false negative were not recorded during data
collection thus reducing the amount of information for security
log classification. Furthermore, GPT’s processing limits required a
minute of idleness after classifying a chunk resulting in a significant
time increase when classifying security logs.
The methodology for fine tuning GPT 3.5 was relatively basic.

Fine tuning was done by uploading the .json file with example
messages to OpenAI’s fine tuning system. As a result, the specific
algorithms used for fine tuning are not known. More sophisticated
fine tuning techniques combined with larger and more complex
datasets could yield better results. Furthermore, the fine tuning file
was limited to 10 messages due to the financial cost associated with
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fine tuning. A substantially larger number of messages could prove
effective in increasing GPT’s learning capability. GPT’s learning
capability could reduce its performance over time as new types of
attacks emerge, suggesting the need for continuous model updates
and retraining for new types of security logs.
The categorization of security logs as benign or malicious is

different than the classification methods SOCs use. Most log analysis
software classify logs based on their priority level comprising of low,
medium, and high priority. While a binary classification method
can distinguish a security log simply it cannot prioritize security
logs which is a common practice in SOCs.

5.2 Further Research
Further research involves improving the methodology for security
log detection and classification. Security logs are currently classified
as benign or malicious and by developing a model that can also
assign priority levels (low, medium, high), researchers can create
a more nuanced threat detection system that aligns better with
traditional SOC workflows. One of the main limitations of the AT-
LAS dataset is that the types of logs fall short compared to those
received by SOCs. Expanding the dataset to include a wider variety
of log sources and types, could enhance GPT’s ability to perform
effectively across a larger number of real world environments. Ad-
ditionally, continuous fine tuning and retraining of GPT with newer
models and up to date datasets could better adapt to the evolving
nature of cyber attacks. Examining GPT’s time performance could
offer a more comprehensive evaluation of its effectiveness for daily
SOC operation. Research needs to be done to benchmark current
SOC software and enable direct performance comparisons between
traditional and novel methods of security analysis.
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