
Safety Risks and Security Threats in Low-code Software
Development
Alkisti Onoufriou

a.onoufriou@student.utwente.nl
University of Twente

Enschede, The Netherlands

ABSTRACT
The demand for application development is increasing exponen-
tially, however there is a lack of IT talent to meet the market de-
mands. Organizations are switching to low-code development in
order to address this issue. Low-code development enables busi-
nesses to meet their needs outside their IT department, but there
are certain safety and security implications involved. Research can
help identify these implications, in an effort to support citizen de-
velopers in building safe and secure applications. For this purpose,
this work aims to 1) identify which safety risks and security threats
involved in software development apply to low-code development
practices, 2) jointly model these risks and threats through the use of
a multi-level model and a scenario, 3) provide guidelines reflecting
the identified points of awareness for developers.

KEYWORDS
low-code development · safety · security · case study · multi-level
model

1 INTRODUCTION
In today’s fast-developing technological society, corporations are
put in a position in which they have to keep up with the tools,
demands and requirements of a constantly evolving industry. This
need forminimum time-to-market andmore human resourceswhen
building software solutions, gave low-code development platforms
the opportunity to shine and start becoming an integral part of
many enterprises’ IT projects and overall workflows [1]. Low-code
development is a visual approach to software development, that
enables faster delivery of applications through minimal hard coding
[2]. The end users of these platforms are among others business
analysts, marketing professionals and to a large extent citizen de-
velopers. Citizen developers are defined as users with little to no
coding experience who build applications with IT-approved tech-
nology [3].

In all software development platforms there are certain safety
risks and security threats involved in the development process
and also in the resulting applications. When it comes to low-code,
this is not adequately explored in existing scientific literature. The
distinction and interactions between safety and security are also
still ill-understood in the literature, adding value to this work [4],
[5]. The two concepts entail different aspects of a system and are
highly interrelated, making it important to look at them jointly, in
order to properly and holistically assess the risks and threats of a
system and be able to model them in a complete way [6].

The topic of low-code development is more relevant than ever,
since the use of low-code development platforms by citizen devel-
opers is expected to rise in the upcoming years. Gartner predicts

that by 2026, developers outside formal IT departments (citizen de-
velopers) will account for at least 80% of the user base for low-code
development tools, up from 60% in 2021 [7]. In addition to this, a
clear gap in the existing literature has been identified when it comes
to the risks and threats of using such platforms. This gap could be
related to the fact that it is a relatively new technology ([8]), but
nonetheless it is something that especially IT experts slowly start
to highlight (89% of IT leaders that talked with SalesForce in 2017
focused on the security issues of low-code development among
other things [9]). This work aims to bridge this gap and produce
new knowledge by looking into the risks and threats in software
development, adjusting them to the low-code context while adding
value by the use of the multi-level model and a safety-security
categorization. A combination of methods is used to achieve these
outcomes, including a case study, qualitative analysis and modeling.

This document is structured as follows: in the following sub-
section (1.1) the research question and sub-research questions are
defined, followed by section 2 where the related work is presented.
Section 3 outlines the methodology for answering the defined re-
search question. In section 4 the results of the conducted case study
are presented and discussed, followed by section 5 where these re-
sults are modeled and put into a safety and security categorization.
Section 6 is concerned with validating all the presented work which
is followed by section 7 that provides a critical reflection and dis-
cussion of all results. All this leads to sub-section 7.3 that presents
the proposed guidelines for developers, as the final outcome of
this work. The document is concluded with section 8, outlining the
contribution of this work to the current body of knowledge.

1.1 Research Question
In this research project the following research question will be
investigated:

RQ:What are themain safety risks and security threats
involved in low-code software development and how
can they be modeled to best provide insights for de-
velopers?

The research question aims to fill a literature gap by analyzing
and modeling risks and threats in low-code development, start-
ing from traditional development as a baseline. Naturally, some
sub-research questions arise from the main research question that
roughly outline the steps and knowledge gaps to be filled, in order
to answer the main research question.

Sub-RQs:
1) What are the main safety risks and security threats
in software development?
2) Which of these risks and threats apply to low-code
development and why?

Safety Risks and Security Threats in Low-code Software Development Alkisti Onoufriou

3)Which of these risks and threats are related to safety
and which to security?
4) How can they be showcased in a model and through
a scenario?

2 RELATEDWORK
This section covers the related work (i.e. literature) in both the
safety and security domain and the domain of low-code software
development. Due to the nature of the research, preliminary liter-
ature review had to be performed in the two domains separately,
in order to gather an in depth understanding of the existing work,
before advancing to the review of literature in the risks of software
development. As mentioned, the field of low-code development
is relatively new, hence there is limited scientific literature in the
domain.

When it comes to safety and security, there exists literature
that aims to define these concepts and highlight the importance of
considering both aspects together in software development.

[6] have proposed a complete development cycle combining the
execution of safety and security activities simultaneously, by inte-
grating both, in each phase of the cycle. Their work was evaluated
through two hypothetical case studies in the field of cyber physical
systems, showcasing the importance of both safety and security in
the development lifecycle.

[5] conducted a literature review aiming to define and conceptu-
alize the concepts of safety and security focusing on the interpretive
issues, and their complex interactions that could result in risk ampli-
fication, unintended consequences and ‘blind spots’ in a developed
system. This is particularly useful for this work, since it helps define
and use these concepts in practice.

Lastly, when it comes to modeling safety and security, [4], and
[10] and [11] have conducted an analysis showcasing the gaps of
existing literature in the domains, a multi level analysis of the roots
of the interactions between the two concepts, and the nature of
their relationship by means of a use case in the area of automotive
systems, respectively. It should be noted that there is also literature
covering more aspects of model-based safety and security that have
been reviewed (e.g. [12], [13]), with a focus on their overlaps.

In the domain of low-code software development, there is a clear
gap in the literature when it comes to its safety and security im-
plications. Nonetheless, some important work is presented to help
understand the process of low-code development, which can help
in identifying applicable safety risks or security threats from tradi-
tional development. In addition, for the purpose of this research,
certain platforms’ documentation and research institutes in the
field are also of value (e.g. [14], [15]).

[16] conducted a literature review focused on the challenges in
low-code software development and corresponding mitigation sug-
gestions. Concepts like citizen development and the architecture of
low-code development platforms (LCDPs) are related to the identi-
fied challenges and some of these challenges could be addressed in
the concept of security, making the work highly relevant for this
research.

A significant find was also the work by [8] on the vulnerabilities
in LCDPs, highlighting the lack of knowledge regarding underlying
vulnerabilities of developing and deploying low-code applications.

Their research is focused on the vulnerabilities of the apps that
have been developed using low-code technologies. The outcome
of their research is a list of the top three vulnerabilities in three
defined perspectives, which were derived by combining different
data sources. These vulnerabilities can also be directly or indirectly
linked to security aspects of the development process.

This review served as a starting point towards establishing a
background to all the concepts involved in order to meet the re-
search objectives. The next phase was focused on literature high-
lighting safety threats and security risks in software development
as a whole, in order to apply this knowledge to the context of low-
code development. The outcomes of this phase were used to reach
the findings of this research, as further explained in section 3.

In this regard, [17], [18], [19], [20] discuss important threats
involved in all types of software development projects, shedding
light on the main aspects involved.

[21], [22] and [23]’s work focuses on the risks and vulnerabilities
in specifically the development and deployment of web applica-
tions. This is of utmost relevance for this research since low-code
platforms are primarily used for web application creation. [24] and
[25] elaborate on the dangers and issues of agile software devel-
opment, which is another characteristic of low-code development.
[26]’s work is also of great value, since it is a mapping study and
survey covering all risks involved in the use of Off-The-Shelf com-
ponents. His work thoroughly analyses the important pitfalls and
risk sources of externally furnished and ready-made components.
Lastly, [27]’s work focuses on security challenges in software de-
velopment that makes use of high levels of abstraction. This was
included in the review due to the abstract and multi-layered nature
of LCDPs.

3 METHODOLOGY
This section describes the steps followed in order to answer the
chosen research question.

Firstly, a preliminary literature reviewwas carried out in order to
identify and evaluate the relevant literature in the field, and obtain
a complete overview of the areas being studied [28].

Then, in order to answer the first sub-research question a case
study was conducted. A case study is the systematic investigation
of a specific area or unit, used for the comprehensive exploration of
research questions [29]. In this case, it refers to the comprehensive
review of literature on risks and threats in software development,
and the synthesis of findings from all reviewed studies. Low code
and high code development can be seen as separate units within
the area of software development. This methodology also enables
the comparison of similarities and differences of such units ([29]),
making it useful for this work.

The focus was on vulnerabilities and threats in software de-
velopment and their potential categorizations. The results were
obtained from 9 scientific papers, including 5 systematic literature
reviews ([21], [24], [17], [19], [16]). Databases used were: Google
Scholar, IEEE Xplore Digital Library, FINDUT and the Science Di-
rect digital library due to their comprehensive collections of papers
and accessibility. Search keywords included risks, vulnerabilities,
threats, software development, web application development, and
low-code development to ensure a broad yet relevant search scope.

Page 2

The papers chosen for review cover multiple areas of software de-
velopment namely traditional, agile and development including
the use of Commercial Off The Shelf (COTS) components and high
levels of abstraction. Since the ultimate aim of this research was
to identify the risk factors involved in low-code software develop-
ment, the aforementioned sub-categories of traditional software
development are relevant, because they entail characteristics that
are present in low-code development.

Additionally, concerning the first sub-research question, the aim
is to create a list of risks and threats in software development, based
on the reviewed literature. After rigorous review of the selected pa-
pers, the outcomes of the papers were summarized in an initial table
of risks and risk factors that consisted of 219 entries. These entries
were then divided into two categories depending on whether they
are inherently of non-technical or technical nature. This grouping
provided a clear segmentation, organizing the results and making
their management and analysis simpler. This also allowed for more
focused discussion and reporting, and enabled the identification of
relationships between factors. The next step was an initial filtering
of the obtained results, that comprised the removal of duplicates
and merging identical factors that were phrased in different ways
within the literature. Next, the factors that did not concern the
developers (i.e. relating to managerial or other issues) and factors
that were too generic, in the sense that they were true for any
project and not just software development projects, were omitted.
This helped to narrow down the results, focusing on this work’s
objectives. Further analysis and additional research followed, in
order to pinpoint which of the identified risks and threats are most
relevant for low-code development and thus answering the second
sub-research question. Finally, the results were qualitatively anal-
ysed and classified with respect to which phase of the Software
Development Life Cycle (SDLC) they occur in. The final results are
presented in a simple, clear and concise manner in Table 1 and 2.

The next step was modeling the identified risk factors in the
multi-level model proposed in [10], based on the existing analysis.
Alongside this model, in order to answer the third sub-research
question, all factors were categorized in terms of safety and security.
This analysis is discussed in section 5. In addition to this, the same
model is used to model the risk factors involved in a chosen, real-
life scenario. The scenario was chosen due to its impact in the
field of low-code and its nature, as it demonstrates the multi-level
model’s capabilities and allows the discussion of certain important
risk factors in more detail. This modeling answers the fourth and
final sub-research question.

The next phase addresses the validation of the research outcomes.
For this purpose, two industry experts from the field of security
and low-code development were interviewed. In this way, insights,
attitudes and opinions regarding the research results were gathered
and extracted, allowing the critical assessment of the validity of
the research findings. The research findings combined with the
gathered input, enabled the formation of guidelines for developers
in low-code software development. Upon completion of this stage,
the research is concluded and all research results are obtained.

4 CASE STUDY
This section provides a thorough discussion of the case study re-
sults.

The results can be found in Table 1 and 2 in the Appendix (9).
They are presented in a tabular view with respect to which phase of
the SDLC they can occur in and the phases considered are: require-
ment engineering, design, coding/development, testing, deploy-
ment, maintenance. The categorization of the factors with respect
to these phases was presented by [17], and is useful to structure and
group the findings in a clear way, hence it is used in this study as
well. For this research an extra category was added, the entire SDLC
category, which refers to the factors that can take place throughout
all the defined phases.

As mentioned in section 3, in order to simplify the qualitative
analysis, the factors were divided into inherently non-technical and
technical in the first phase of the study.

The non-technical factors pertain to human and procedural as-
pects of the development process, focusing on the essential work
happening around feature implementation, rather than the imple-
mentation itself. These factors still impact the developer’s ability to
effectively use the low-code platform. For example, in this category
factors entailing planning, requirement engineering, skill/knowledge
gaps and training are included.

The identified technical factors in low-code development, focus
on the technical aspects of using and working with the low-code
platform. These can relate to integration, scalability, functional-
ity limitations and other technical matters. It must be noted that
potential attacks against the resulting system/application are also
included in this category. In addition, these potential attacks are
classified under the Coding phase of the SDLC since their roots
usually relate to gaps in code or configurations.

Both non-technical and technical factors are identified for all
phases of the SDLC, except the Requirements Engineering phase
were only non-technical factors were identified, and the Testing
and Deployment phases were only technical factors were identified.
The following sub-sections contain separate analyses of all phases
for both categories and a discussion of certain points of interest.

4.1 Non-technical factors
This sub-section contains an analysis of the key points of the iden-
tified non-technical risk factors, with respect to the SDLC phase
they occur in.

i. Requirements Engineering Phase
The first phase of the SDLC is the Requirements Engineering phase.
It deals with the definition of objectives and requirements for the
project, answering questions such as: What will be developed and
why? What features will be included in the final product? and
others. This phase continues to be recognized as the key to on-time
and on-budget delivery of software projects ([30]), hence it is vital
for the considerations of security and corresponding safety risks,
to start in this phase.

The main source of risk in low-code development identified for
this phase is unclear objectives or requirements and the negligence
of non-functional requirements, including security. In low-code
platforms, with the focus being on Rapid Application Development
(RAD), the emphasis on clear requirements might be overlooked

Page 3

Safety Risks and Security Threats in Low-code Software Development Alkisti Onoufriou

in the face of ‘jumping’ straight to development [18]. This can
lead to compromised quality and security of the resulting service.
In addition, more often than not, applications built in low-code
platforms are developed by business professionals, in order to meet
their business needs [31]. This might lead to a less formalized
requirements engineering process, that can then result to technical
debt. This also relates to the lack of COTS-driven requirements
engineering process to be followed, mentioned in [26].

The negligence of security requirements is also a significant risk
factor in this phase, and can be the result of the lack of awareness
of their role and importance by the citizen developers. It is vital for
security requirements to be considered in all phases starting from
their definition (in this phase), followed by their careful implemen-
tation, evaluation and management [17]. Overall, the requirements
engineering phase is a highly cited factor relating to the develop-
ment of secure software [17]. This remains the case in the area of
low-code development.

ii. Design Phase
The next phase is the design phase which is concerned with the way
and means used to achieve the defined objectives and requirements.

In low–code development, this entails platform selection, plan-
ning and risk assessment of the selected platform and resulting
application. Regarding the selection process, the developers need
to evaluate all aspects of the candidate platforms in terms of match-
ing with the specified requirements and security. Failure to do so
could result in a vulnerable or even useless system. Two interesting
findings in this phase are the overly optimistic learning curve ([26])
and inadequate assumptions ([24]). Citizen developers should be
aware that low-code platforms still require familiarization with a
user interface and the technicalities involved, in order to properly
build an app.

Low-code platforms make use of multiple levels of abstraction,
and security issues arise when implementations diverge from this
abstract intuition [27]. Thus, in order for developers to defend their
system against threats, they need to be aware of all the different
layers that are ‘abstracted away’ from them. It is also important for
citizen developers, just like all application developers, to be aware
of potential vulnerabilities and their consequences prior to software
development [23]. The first step in this direction is thorough risk
assessments during this phase.

Alongside their abstract nature, low-code platforms are also char-
acterized by building on Model-Driven Software Development [32].
This brings another dimension of risks in the discussion, that goes
further than the identified factor of the lack of abuse case models,
attack patterns and data flow diagrams. This dimension includes
the risks of creating/generating wrong models, which in turn can
highly affect the safety of the resulting system. There are a lot of
aspects related to poor quality models and in part they relate to the
modeler’s lack of knowledge [33]. This means that citizen devel-
oper’s may lack the modelling knowledge, the modelling language
knowledge, which relate to semantic and syntactic aspects of a
chosen modelling language, or the domain knowledge. This leads
to the creation of incomplete models or models not representative
of the underlying, organizational or other, real-world structure.

iii. Coding Phase
For this phase, the only non-technical factor identified in the litera-
ture is the lack of difference between developer’s role and security
reviewer to have objective results, presented in [17]. In low-code
development, citizen developers are the ones to develop the appli-
cation and configure, implement and test its security settings. This
can lead to subjective results or even dropping security testing as a
whole, in favor of releasing the software as quickly as possible [25].

iv. Maintenance Phase
In this phase, the web application has been developed through the
selected LCDP, and it is released and used within the workflow. Risk
factors connected to this phase are somewhat outside the control
of the individual developers and have to do with the low-code
technology itself.

An important risk factor here is vendor lock-in. Vendor lock-in,
refers to a situation in which a client is dependent on a certain
provider in order to complete their computing needs, as stated in
[34]. This leads to the customer being highly dependent on the
platform provider for all aspects of their own systems and services,
including security management and defense, which could result in
dangerous mismatches of vulnerabilities.

Similarly, as mentioned in [26], the developers have reduced con-
trol of the future evolution of their system, since it follows the steps
of the platform provider. This risks the system becoming obsolete
or posing difficulties in upgrading an already developed and in-use
system.

v. Entire SDLC
Naturally, there are certain factors that concern the entirety of the
project’s life cycle and are inherent to low-code software develop-
ment. These can be seen in the last row of Table 1. An important
factor has to do with the lack of comprehensive documentation
from the platform providers ([16]), but also by the developers them-
selves. In low-code development, the few lines of code that are
written do not have comments and do not always follow the field’s
best practices ([35]), which can create additional vulnerabilities due
to the lack of structure and consistency. Overall, documentation
is one of the aspects that can be easily overshadowed by speedy
delivery in low-code environments.

Another thing that developers need to keep in mind is the cred-
ibility of the vendors [26]. The market of low-code development
is expected to be worth approximately 137 billion euros by 2030,
meaning it is becoming increasingly competitive [36]. With this in
mind, each vendor tries to become as appealing as possible to all
potential customers. This means that quality expectations need to
remain in check, and no claim should be treated as a fact, to prevent
exploitable loopholes in released systems.

4.2 Technical Factors
This sub-section contains an analysis of the key points of the iden-
tified technical risk factors, with respect to the SDLC phase they
occur in.

i. Design Phase
Similarly to the non-technical factors, the technical factors identi-
fied in the Design phase, have to do with the selection of a LCDP.

Page 4

As mentioned, the market of low-code development is competitive
and expanding [36]. Nowadays, enterprises do not only have to
choose whether to include low-code development in their workflow
but if they do, which platform to go with. As shown in the find-
ings, shortfalls in externally furnished components and unknown
features and quality, can be sources for vulnerabilities and also
complicate the identification of the root of occurring defects for the
developer. This is something directly linked with platform selection,
as it depends on the components each vendor provides.

ii. Coding Phase
The coding phase is where applications are actually developed by
the (citizen) developers, so security of the system becomes concrete
by the implementation of access rules, authentication, data security
and other similar features.

Two interesting findings were found in [26]’s work regarding
Off-The-Shelf based software development, and relate to the up-
grade to new versions of the used components. This is extremely
relevant for low-code development since there are constant releases
of new versions of the development platforms, and these could take
place post-release, or even mid-development of an application. This
makes it difficult for developers to keep up with the platform and
can lead to increased complexity, while the unneeded and unused
services may interfere with intended functionality, posing serious
risks to the system [18].

Security (or other) misconfigurations and accessibility issues are
also crucial for building secure low-code applications and can be
challenging for developers [16]. Moreover, data security is also a
root of common threats like information leakage and data exposure
in low-code development [16]. [1]’s survey found that data security
was mentioned as the top concern of IT professionals regarding
citizen development. Regardless of the numerous out-of-the-box
data storing options provided by low-code platforms, the security
and access rules of the stored information is up to the developer to
dictate and configure. If this does not happen in a rigorous manner,
it can be detrimental not only for the system or user, but for the
whole organization.

In this part it is also important to briefly discuss the potential
attacks (as defined by [17]: An actual event done by a person, in
order to harm as an asset the software, through exploiting a vulner-
ability) that could take place in a web application developed in a
low-code environment. In the market of low-code platforms there
are vendors that claim that it is impossible for injection attacks
to take place when developers use their native components [37].
Even though it is not in the scope of this research to test that claim,
interestingly, common web application vulnerabilities are cited in
literature in the context of low-code applications [8]. Specifically,
injection attacks like cross-site request forgery, cross-site scripting
or SQL injection are vulnerabilities that can result from the use of
low-code development platforms [8]. Moreover, alongside this type
of attacks, there are other attacks like brute force and password
spraying that have been observed in leading low-code platforms
in the past five years [38]. This also highlights the risk involved in
vendor claims and the importance for their critical assessment.

iii. Testing Phase
In the testing phase the developed software is evaluatedwith respect

to its features, functionality and security. All aspects of the system
need to be considered, in order for existing vulnerabilities and
errors to be identified and resolved before deployment.

In low-code development the main type of testing that takes
place is so-called black box testing. Black box testing is a testing
technique in which the internal workings of the software are not
known to the tester. The tester only focuses on the input and output
of the software [39]. While this technique does allow the compre-
hensive evaluation of the features and functionality of the software,
the hidden layers of the system are not covered by the test cases.
Therefore, the security of the overall system cannot be rigorously
evaluated or guaranteed solely based on whether it performs the
intended functions. Overall, limited testing is a challenge faced in
low-code development ([16]) and it can lead to the deployment of
vulnerable systems, leaving room for exploitation.

iv. Deployment Phase
The next phase of the SDLC is concerned with deploying the devel-
oped system, which includes its integration to the existing archi-
tecture or environment of the enterprise.

Low-code practices accelerate development, foster closer collab-
oration between software development and business teams, and
enable the rapid organizational response to market demands ([40]),
increasing project agility. As a result of its frequent and rapid it-
erations, applications and software can end up having systems
deployed that are not fully understood, or do not follow, the secu-
rity solutions and policies in place [25]. An architectural mismatch
or underestimation of integration efforts then takes place. This
could also take place due to the lack of technical knowledge of the
citizen developers. In turn, this can lead to gaps in the enterprise’s
architecture and vulnerable access points to the whole organiza-
tion’s environment.

v. Maintenance Phase
This final phase of the SDLC regards the activities taking place post-
release of the system. It is focused on continuous improvement,
scalability as well as error handling.

As mentioned in [16], in the context of low-code there are scala-
bility considerations that should be addressed in a secure manner
to avoid large-scale vulnerable systems.

Insufficient logging and monitoring of threats could also pose
certain risks ([21]), and could be the result of unawareness of the
users or developers or the lack of the prioritization of security
monitoring.

Lastly, configuration management is an important component in
the secure maintenance and operation phase of low-code software
projects [17]. Serious data breaches have happened in the past in de-
veloped applications, due to the use of default configuration ([41]),
proving the above statement, and showcasing that vulnerabilities
should be accounted for and handled, even after an application is
in use.

vi. Entire SDLC
When it comes to the entire SDLC, security needs to be prioritized
and accounted for in every step of the way. In the use of low-code
platforms, there are factors identified that relate to this.

Page 5

Safety Risks and Security Threats in Low-code Software Development Alkisti Onoufriou

Firstly, the developers do not have access to the source code
behind the functionality of the user interface and the features being
used. This significantly limits the knowledge and ability to evaluate
the security/defense measures already in place. As mentioned in
[27], in security, the defender has to move first, so it is important
for defense measures and strategies to be in place and properly
understood, before an application is released.

Secondly, low-code applications can be susceptible to high tech-
nical debt throughout the entire Life Cycle, where future rework
is required. Technical debt is accrued work that is “owed” to an
IT system [42]. Sources of technical debt include the negligence
of certain requirements, temporary speedy solutions of bugs and
errors, or even contracting limitations.

The next part is concerned with showcasing and modeling these
potential risks and risk factors.

5 MODELING SAFETY RISKS AND SECURITY
THREATS

In this section, a further analysis, categorisation and modeling of
the factors identified and discussed above, is presented.

One of the goals of this research is to identify which of the factors
refer to safety and which to security, in order to make the analysis
of their potential relationships and interactions possible. For this
purpose, the factors from the previous section are used as input, and
are further analysed to achieve their categorization and modeling.

From the developer’s perspective, it is important for these two
aspects (safety and security) to be considered together in the de-
velopment lifecycle ([6]), to ensure the development of both safe
and secure systems and applications. This consideration is also
critical due to the intertwinement of the two aspects. There are
various types of interactions that can take place between them in
different situations. For example a system’s safety measure might
strengthen, hinder or have no effect to the system’s security (this is
further explained in 5.1) [10]. This makes their joint consideration
a necessary step for safe, secure and complete development.

In the field, safety and security take different forms when dif-
ferent definitions are applied and the terms are sometimes even
used interchangeably [5]. No precise definitions and meanings are
shared by all individuals in the field ([5]), making their distinction
unclear. Nonetheless, it remains necessary to investigates both con-
cepts in order to account for all the risks and threats in software
development.

In order to adjust the terms to the context of this work, we com-
bine two different approaches/definitions, one presented in [4] and
one presented in [5]. In [4], the distinction is clear; safety refers to
the absence of unintended failures, and security refers to absence
of malicious attacks. This means that safety risks concern acci-
dental failures, for example (on the highest level) a system failure,
while security risks concern malicious attacks, and aspects related
to intended vulnerability exploitation. In [5], sub-themes for both
safety and security are defined, aiming at the holistic representa-
tion of the terms, while showcasing the range of aspects they can
entail. In essence, security is more focused on all types of potential
threats, incident prevention and risk assessment and mitigation,
while safety revolves more around all types of potential hazards or

accidents. Additionally, it is mentioned that safety science is also
concerned with social and psychological factors that incorporate
human cognition and behavior and their variability. Combining
these two approaches enables the distinction of the identified risk
factors in the context of low-code development.

Given the developer’s perspective, two safety-security related
categorizations of the identified factors are possible. The first one
concerns whether the factor is under the developer’s control, so
whether the developer can change or influence it and the second
one concerns whether the developer knows about the factor, so
whether the developer is aware of the situation despite having or
not having control over it. For the final categorization the latter
distinction was chosen. This is because it incorporates the intended
versus unintended nature of security and safety respectively, as well
as human cognition and behavior when it comes to the developer’s
awareness of the selected factors. To be clearer, when a developer
is unaware of the existence of a factor due to lack of knowledge or
due to their own perception and behavior, that factor is categorized
as safety related, capturing the accidental and unintended nature
of the term. Similarly, security related factors occur when the de-
veloper is aware of the situation and it is under the developer’s
control to properly manage it and mitigate the potential threats. It
should be noted that attack-specific factors as well as the potential
attacks themselves also concern the security of the system. This
distinction is visualized in the multi-level model, and section 5.1
provides a further discussion.

5.1 Multi-level Model
This section showcases and analyzes the initial modeling of all the
findings. For this part the multi-level model initially proposed in
[10], as well as the extension proposed in [11] is used. This de-
composition was chosen because LCDPs are multi-leveled complex
systems, so it is crucial to investigate which part of the system each
factor can affect, which goes alongside the severity of each factor.
In the visualization, the distinction between security and safety
related factors is also visible (security is denoted with red and safety
with blue color text in the model, the numbers in the black brackets
denote the occurrence of the factor in multiple levels) and Mendix
is used as a reference platform due the variety of open sources and
the fact that it is a leading platform for IT Services [43].

The proposed, extended multi-level model consists of four levels,
each capturing a different layer/dimension of the complete, complex
system. As described in [11], each level represents the following:

Level 0: Component level; self-contained elements that make up
a sub-system or system. In the case of low-code development this
refers to all the different features of a platform that are used to make
up a certain desired functionality. These components are usually in
a ready-to-use form but can also be customized and modified by
the developers. A good example is certain buttons that platform
offer, with pre-defined functionality, like the native back button in
Mendix ([44]).

Level 1: Information level; the information that facilitates inter-
action within or between sub-systems. In the present case, this

Page 6

consists of all factors related to data storage, data exchange and
validation, essential for the safe and secure use of a web application.

Level 2: Sub-system level; functional decomposition of the system,
different sub-systems have dedicated functionalities that must be
integrated to make the whole system. In the present case, this refers
to all sub-processes that make up the whole application’s function-
ality, for which more than one features/components are involved.
For example, this could be a specific microflow or workflow within
the app like an input validation flow or others.

Level 3: System level; represents the system as an atomic unit and
also includes its high-level objectives. In the case of low-code this
relates aspects affecting the whole, developed application and also
certain characteristics of the whole LCDP.

Level 4: System level, human; represents the human aspects in-
volved. In [11] this level is limited to the needs or consequences for
a human to be safe, but for the sake of this research we extend this
to include all aspects related to human behavior, perception and
roles involved.

Figure 1 presents the resulted multi-level model. The following
analysis contains certain points of interest and the interactions be-
tween safety and security in LCDPs. This relationship is analysed
within and across the levels, with respect to mutual reinforcement,
antagonism and independence. As defined in [10], mutual reinforce-
ment refers to the situation when fulfillment of safety requirements
enhances security (or vice versa), antagonism refers to conflicting
requirements or effects between safety and security, and indepen-
dence is the case when there is no interplay between the two.

It is worth noting that the relationship between safety and se-
curity within the same level can differ per combination of factors.
Dominantly, security reinforces safety within all levels in LCDPs,
though independent interactions also occur. Between the levels
potential antagonistic interactions are mainly seen. The analysis be-
low explains this further. Assume independence when no between
level relationship is observed (or mentioned).

A. Level 0: Component level
In this level, we look at factors related to the lowest level of ab-
straction within the low-code platform. Individual components or
features of the platform are involved, as well as code customiza-
tions where business logic threats can occur. Unknown features and
quality limitations are important factors here, as all components
that can be used, customized or created on each platform, occur on
this level.

An interesting observation here is the importance of the identi-
fied safety factors. Externally furnished components can be com-
plex and developers are usually unaware of the details behind them,
such as the source code ([16]) making their use unsafe without
the needed caution. Lastly, there are five factors in this level that
belong to two other levels, namely security misconfigurations, lack
of proper testing, insufficient threat monitoring, improper risk as-
sessment and poor documentation. Different LCDPs allow security

configurations at various levels. For example, Mendix gives the
developer the opportunity to configure security both on a global
and a module level ([45]), making it relevant for numerous layers of
the final system and increasing the points where security miscon-
figurations could take place. Security risk assessment and analysis
are crucial for creating secure software artifacts [17]. With this in
mind, assessment and monitoring of security threats, testing and
documentation are integral across all three levels (namely the com-
ponents, the subsystems and the system as a whole) and essential
for eliminating vulnerabilities and developing secure applications.

Interactions: When it comes to the relationship of safety and
security, it can be seen that addressing security factors, like insuffi-
cient testing and improper risk assessment at the component level,
enhances its safety by improving reliability and predictability. For
example, applying rigorous testing as a security measure, lowers
the possibilities of shortfalls in the externally furnished compo-
nents or logic threats to go undetected, thereby strengthening the
component level safety and showcasing a clear reinforcement. A
significant relationship here, is how strong component security can
affect the safety of the other levels, namely level 1 and 2. Compo-
nent security mutually reinforces safety in the Information level by
securing the stored data with the implementation of the relevant
features/configurations and best practices. On the other hand, an
antagonistic relationship can be observed with safety on the Sub-
system level. Overly complex component security measures, can
hinder the safety of a sub-system by making the integration of the
different components extremely challenging, potentially causing
accessibility issues or unintended failures within workflows, like
incorrect log-out implementations.

B. Level 1: Information level
In this level, factors related to information, such as data storage and
input validation, are included. Even though the included attacks
can affect multiple parts of the system or a sub-system, they revolve
around information manipulation or exploitation (Injection-based
threats, XSRF, Tampering etc.), hence are included in this level. It is
also worth mentioning that insecure data storage and information
leakage are categorized as safety issues, since the most common
scenario is considered where the developer is unaware of the pos-
sibility of wrong-doing, assuming no malicious intent. This can
be the result of limited knowledge, awareness or attention to the
information related aspects and threats.

Interactions: Within this level, certain security factors (e.g. en-
cryption) can be linked with data storage and information leakage,
that when addressed minimize the risk of these potential safety
issues. This can also take place vice versa, as the secure data storage
can better guard the system against information related security
attacks. When it comes to interactions with the safety of the above
levels, increased data security can lead to a potentially antagonistic
relationship with the safety in levels 2 and 3. This can happen since
strict data access governance might highly complicate data flows
both within and between sub-systems, which in turn, can lead to
availability or workflow execution issues. When it comes to the
overall developed system, safety could be compromised, due to
performance or reliability issues that could arise from the added

Page 7

Safety Risks and Security Threats in Low-code Software Development Alkisti Onoufriou

Figure 1:Multi-level model of all identified factors

Page 8

technical complexity.

C. Level 2: Sub-system level
This level is concerned with activities involving the integration
and manipulation of components and features to achieve desired
functionality. Notably, most factors at this level pertain to security,
which aligns with the nature of these activities.

The incorrect logout implementation is included in this level
because it can take place in the sub-system/microflow in which the
logout operation is taken care of. Some platforms offer ready-to-use
logout functionality ([46]), which makes it a feature of the platform,
hence a potential inclusion in level 0, but there is a possibility to
implement the signout on the server side using a (micro)flow (also
a possibility in Mendix) which can then entail multiple features of
the platform and combination of actions, making the categorization
into this level possible and a more holistic choice. This factor is
categorized into safety, since the developer is usually unaware
about the potential of this factor occurring, assuming no malicious
intentions from the developer’s side.

There are three factors included in both this level and level 3.
This is because the system failing to handle errors, can relate to
errors occurring both at the sub-system and the system level and
also attack and data modeling can and should take place, both for
the whole system but also for each implemented functionality.

Interactions: As this level is dominated by security, no signifi-
cant interactions with safety are identified internally. A significant
finding here is the potential antagonistic relationship observed be-
tween sub-system security and human-level safety in low-code. In
low-code development, usability and user experience are important
parts of development, but also of the resulting application. Overly
frequent security checks might hinder usability, causing frustration
and confusion and leading to unsafe practices or mistakes that can
impact the safe use of the developed application.

D. Level 3: System level
As previously mentioned, this level considers the system as an
atomic unit, encompassing factors related to the entire system as
well as its high-level goals. The requirement engineering process
is directly linked to the system’s high-level objectives and desired
functions, hence all factors relating to this process are included in
this level.

An interesting observation here is the categorization of technical
debt into safety. There are several potential roots of technical debt
within a software development project are often hidden to the
developer, making it a safety rather than a security concern. Despite
technical debt involving necessary future rework for specific system
functionalities, it is addressed at this highest level ([47]), due to the
variety of organizational aspects it often entails.

Another interesting categorization is regarding vendor lock-in
and the reduced control of future evolution of the system. These
are unavoidable factors of low-code development and out of the
developer’s control. However the developer is aware of them, and
can take proactive measures to mitigate the risk they entail, cate-
gorizing them as security related factors. Lastly, side channel and
interception attacks are included in this level because they have to

do with the exploitation of characteristics of the way the system
operates, in its whole and final form.

Interactions:Within this level, securitymutually reinforces safety
for the most part, by leading to increased overall resilience of the
system. A system inwhich the identified security factors are present,
will be prone to the corresponding safety risks, such as failure to
handle errors and unnecessary complexity. When it comes to the
interaction with level 4, the overall safety of a system (i.e. absence
of the mentioned safety risk factors), protects against human error
and misconceptions, thereby enhancing level 4 security. Conversely,
overly strict system-wide security, can affect user-friendliness and
users’ attitudes, potentially hindering level 4 safety. Additionally,
user awareness, assumptions and other aspects mentioned in level
4 are entirely independent of the security or safety measures in
place in the system. All of the above contribute to the formation
of a relationship between level 3 and 4, that cannot be holisti-
cally interpreted by one of the defined interaction types. Rather,
the relationship combines reinforcement (level 3 safety with level
4 security), antagonism (level 3 security with level 4 safety) and
independence (for specific factors; e.g. faulty vendor claims or in-
adequate assumptions are not affected by any level 3 measures).

E. Level 4: System level, human
In the fourth and final level, the factors revolve around human be-
havior and decision making. For low-code development this entails
the selection process and the developer’s assumptions and percep-
tions such as overly optimistic learning curve, quality expectations
and unrealistic planning. The developers are of course unaware
of such behaviors at the time of development making these safety
considerations.

Another safety consideration in this level are faulty vendor
claims. Developers unawarely taking claims as facts poses serious
risk and could result in the development of unsafe and vulnera-
ble systems. Neglected security requirements are included in this
human level since it is a factor that depends on the developer’s
attitude towards these non-functional requirements.

Lastly, even though phishing and scam are types of attacks, they
are included in this level because they are based on the exploitation
of human perception and the psychology of the system’s users.

Interactions: Safety and security are independent within this
level due to the diversity and nature of the factors. Independence
is also observed with respect to the other levels, as the influence
of factors at this level on the system is indirect, complex, and in-
volves numerous external aspects beyond the scope of this research.

All in all, it can be concluded that LCDPs are complex systems
that need thorough understanding of all their levels in order to be
used safely and securely. It can also be concluded that security and
safety can interact antagonistically in certain cases, when it comes
to between level interactions, while within the levels, security mea-
sures are either independent or mutually reinforcing one another.
It is key for the developers to consider these concepts together and
aim to find the right balance between safety and security for the
system being developed.

Page 9

Safety Risks and Security Threats in Low-code Software Development Alkisti Onoufriou

5.2 Model-based Scenario Analysis
This section demonstrates themulti-levelmodel’s application through
a real-life scenario involving the Microsoft PowerApps LCDP and
a number of the identified factors. It emphasizes the importance of
developer awareness and caution in LCDP usage, aligned with the
guidelines proposed in this study.

In 2021, the vendor risk management and assessment organiza-
tion UpGuard published a research article, unraveling the exposure
of 38 million data records from multiple PowerApps portals [41].
According to Microsoft, PowerApps Portals are an extension of
PowerApps, that enables citizen developers to build external facing-
websites that allow users to sign in with a wide variety of identities,
create and view data in Microsoft Dataverse, or even browse con-
tent anonymously [48]. The incident was covered by several IT
blogs and magazines like [49] and [50], and got a lot of deserved at-
tention, given that the leaked data included names, email addresses,
Covid-19 vaccination appointments and even Social Security num-
bers. It is worth noting that this is a safety incident since it is not
clear whether this data was exposed to any threat actors, and the
portals in question could reveal this information to any user via
simple browser searches.

In order to be able to model this, the root of the incident needs
to be understood first, as well as which of the identified risk fac-
tors it relates to. Within PowerApps portals there is the possibility
for configuration and usage of OData (Open Data Protocol) APIs,
to retrieve information from the Tables stored in the Microsoft
Dataverse, where the application’s data is. Now, Table Permissions
is the feature that imposes access limitations on the data of the
Tables and it was (until prior to this incident) turned OFF by de-
fault. This means that developers had to manually turn this feature
ON, and configure the desired access rules, if they wanted to avoid
anonymous access to the Tables’ data. Although there was a warn-
ing message shown by the platform regarding anonymous access,
this was evidently not enough to avoid the incredibly serious con-
sequences of a data breach, and guide the developer to the right
direction. It is now clear that the root of the incident was a security
misconfiguration, or more precisely, the absence of a necessary
security configuration. Adding to this, the data seems to be stored
in a readable form, judging by the example records presented by
UpGuard, hinting at the absence of encryption and maximizing the
damage done by the data breach.

With all the aforementioned in mind, the model is constructed,
as shown in Figure 2.

The model follows the approach outlined in [11] and it show-
cases the activities taking place at each level alongside two severity
indices. At each level, a tuple can be seen at the left hand side of the
model of the form (h, s), where h denotes the human safety cate-
gory and s denotes the security category. The possible values are as
follows: 1 human-safety is only a bit in danger, 2 human-safety is
in danger, 3 human-safety is highly in danger, and for the security
levels 1 security is only slightly endangered, 2 security is endan-
gered, 3 security is highly endangered [11]. This same ranking is
used for this work because it holistically describes both concepts
and perfectly fits this analysis. In this case human safety does not
strictly regard physical safety but the overall effect the incident

can potentially have to a person’s well-being. The factors related
to the incident are represented by the grey color rectangles and the
human level is represented by the blue rectangle.

The root of the model is of course the security misconfiguration,
and specifically the default setting of the Table Permissions feature
to OFF. This has no effect on human safety, hence the score for the
category is 0 and slightly endangers security since no other part
of the application has been yet affected. In the Information Level
(level 1) there are two conditions present. The insecure data storage
resulting from the anonymous access to the data and a new factor
of the information layer related to encryption. The score of the

Figure 2: Multi-level Model for Microsoft PowerApps breach

security category is increased since the state of data used for the
operation of the application is now affected. In the Sub-system
Level (level 3), an API request is made by a client and the OData
API in place pulls all the available data of the requested Table
unfiltered. The scores in this level remain the same since the effect
is still only internal and the data has not yet been shared externally.
In the System Level, the application displays all the information
to the client. This is the incident’s turning point, it compromises
the security and safety of the system as a whole, violating basic
security principles. In this level, the human score also becomes a
3, since by the moment the information is made publicly available,
the people whose data are leaked can be highly affected. Similarly,
in the Human Level (level 4), the compromised information about
individuals is included, once again with both human and security
scores of 3 as both are fully compromised. A large-scale data breach
can have numerous consequences, not only on an organizational
but also on an individual level. Especially when it comes to sensitive,
personal-identifiable data like home addresses, medical history data
or Social Security numbers, it can lead to lack of privacy, making

Page 10

the individual more vulnerable to dangers like identity theft or
other fraud, as well as social matters like discrimination ([51]), or
even physical safety.

This analysis perfectly showcases how this multi-level model
can be a valuable tool to assess, manage and trace the risk involved
in low-code development. The incident itself should serve as a
warning, regarding how risky the use of ready-made application
programming interfaces to interact with data can be, and how trust
to the platform vendor should be limited. Concluding, it should be
pointed out that it resulted in further action by Microsoft, namely
in a change to the default settings of the platform for the Table
Permissions feature to ON, and the introduction of a Portal Checker
tool, enabling developers to detect data sets that allow anonymous
access [41].

6 VALIDATION
The purpose of this section is to outline the process and outcomes
of the validation phase of the study.

To ensure the validity and relevance of the results, as well as
investigate the degree to which the case study findings reflect the
real-world practice of low-code development, expert interviews
were conducted. The results of the interviews are presented below,
together with the contribution of these results to the formation of
the ultimate outcome of this study; the developer guidelines.

For the above purpose two experts were interviewed, one from
the field of security and one from the field of low-code development.
The inclusion of at least one expert from each domain is necessary
to make sure that aspects from both domains are covered in a rigor-
ous manner. The experts have more than 10 years of experience in
their respective fields, making them highly knowledgeable and cred-
ible. The interviews were brief, semi-structured interviews aiming
to evaluate the study results. Semi structured interviews are helpful,
when the interviewer is certain about the topics to be addressed (in
this case the research findings) but still aims to allow interviewees
to raise other important issues from their perspectives, add to the
findings, while leaving room for clarifications [52]. The focus of
the sessions was the results of the case study (Table 1, Table 2),
since they capture the essence of the study, and are the foundation
of all additional analysis and modeling that was conducted. The
questions asked during the interviews covered evaluative aspects
like the extent to which the findings reflect the main risk sources
experienced in low code/the main aspects of safety or security in
software development and other more field specific questions.

Interviews outcomes:

The first interview was conducted with an expert in the field
of security, specifically working with certain aspects of human
behaviour that are directly linked to security, aiming to identify
countermeasures/interventions that make end users take safer and
more conscious cybersecurity decisions. The second interview was
conducted with an expert in the field of low-code development,
mainly working with the Mendix and Emagiz platforms and with

more than 15 years of experience in the field and also experienced
with high-code development.

In the first interview the dynamics between safety and security
were discussed. The value of this is an aspect that this study aims
to highlight, and the interview validated that indeed the two con-
cepts are intertwined. It was also mentioned that they are rarely
considered together in practice, bringing additional value to this
study’s objectives. Diverse user profiles were also discussed, with
regards to how they can best be supported by the LCDP, hinting
to the need for further investigation into how platforms support
developers, which is a future work prospect of this research.

Key outcomes of the case study were verified during both ses-
sions. Specifically, in the second interview, the role of the Require-
ments Engineering phase as a significant source of risk, the rele-
vance of common web application vulnerabilities and attacks oc-
curring in low-code development were verified. Additionally, the
first interviewee emphasized the importance of considering non-
technical aspects in development, particularly concerning safety
and security. These points validate the dual nature of the findings
and strengthen the presented division and analysis.

The interviews also revealed certain factors that were not directly
accounted for in the findings of the case study. In the first interview,
the risk imposed by of an overlook of the platform’s pointer was
mentioned. This goes beyond the lack of vendor support factor
identified, and focuses on the risk that could be inherent to the de-
veloper’s actions. Another important aspect that surfaced was how
the use of many different building blocks in low code development,
can be dangerous for security. In the findings this is represented
only in an architectural level, but the interviewee expressed this
in terms of data privacy and information being handled by the
application. A final addition that surfaced in the second interview,
was the absence of maintenance as a risk factor. Although product
aging/obsolescence is included in the findings, the root of such a
risk is not included, and it is the absence of maintenance. More
specifically, an application could become insecure as time passes,
given that it is not adapted to the changes of the world around
it, and this is regardless of how safe and secure it was at the time
of development or release. For example, the introduction of new
regulations, like the GDPR, require essential changes, like library
updates, even in applications that already followed the best prac-
tices. Another scenario mentioned, was the possibility of certain
vendors to become defunct, which calls for a careful joint process
between vendor and client, in order to keep the application securely
operational. This is connected to technical debt, whose diversity
and unavoidable nature in low-code was also discussed. These were
incorporated in the presented developer guidelines, as they are of
key relevance for this research.

In both interviews, the importance of the developer and user
profile was of focus, as well as how this can pose additional risk to
the system. This is also reflected in the findings by the inclusion of
numerous non-technical factors that are connected to the developer
profile, actions and awareness level. Another interesting common
outcome was the hesitant stance towards citizen development and
the need for involvement of IT personnel to ensure the development
of safe and secure applications. This of course depends on the scale

Page 11

Safety Risks and Security Threats in Low-code Software Development Alkisti Onoufriou

of the application and the information being handled in the system,
as data privacy is a dominant concern in low-code; both in practice
and in literature. Peer reviews for security requirements in the field
of low-code (as also in high-code) was mentioned as a best practice
to be followed, by both interviewees.

Overall the interviews validated the findings, but also the re-
search objectives and scientific value of the joint analysis of the
involved domains. They also revealed relevant key point for this
research, enhancing the presented results.

7 DISCUSSION, REFLECTION & FUTURE
WORK

This section starts with a discussion of the findings, followed by a
critical reflection of the entire research project alongside potential
futyure work and finally, the developer’s guidelines are presented
as the ultimate outcome of this work.

7.1 Discussion of Findings
This research aimed to identify and model safety risks and security
threats of low-code development, providing insights to developers
in the form of guidelines. The research question that has been an-
swered is:

What are the main safety risks and security threats involved in
low-code software development and how can they be modeled to best
provide insights for developers?

To answer the first part of the research question a case study
was conducted.

Even though in low-code development the focus is shifted from
hard coding to the more business-oriented issues involved (like
requirement engineering and business processes), the findings re-
vealed that many risk factors can still occur in the requirement
engineering phase. Another primary finding was that the safety
and security of a developed application, highly depends on the
developer’s profile. This can be seen from the numerous identified
factors that entirely depend on the developer’s actions and choices
(e.g. misconfigurations, negligence of non-functional requirements).
This, in turn, can impact the safety and security of the system. As
expected and also seen in the results, the platform vendors also play
an important role in the safety and security of resulting systems
when it comes to complexity, features and provided support. It was
also shown that commonweb application vulnerabilities can also be
present in low-code development (e.g. injection-based threats) and
that additional overall risk is imposed by the off-the-shelf nature
of LCDPs. Related factors include imposed black box testing, no
access to source code and vendor lock-in.

LCDPs are multi-level systems, so a model that utilizes this struc-
ture was used to better showcase the findings and provide further
insights. From the multi-level model it was clear that most risk
factors relate to the overall system (Level 3). This is attributable
to the inherent structure and design of LCDPs, wherein lower lev-
els entail reduced control and greater reliance on preconfigured

software, thereby affording developers predominant control at the
highest tier. It can also be observed that most factors concern se-
curity, which is aligned with the nature of non-critical software
applications.

7.2 Reflection & Future Work
All in all, the objectives of the study were met, and a concise set
of results is presented. Nonetheless, reflecting on the outcomes
reveals certain areas requiring improvements. Regarding the case
study, the research focuses solely on the developer’s perspective,
making the resulting guidelines applicable for developers in prac-
tice, but requiring caution when considering other stakeholders
and external factors. Broadening the scope of the search could en-
hance the findings, providing an overview to these aspects for all
involved stakeholders (e.g. the organization, management, users
etc.). These external factors and stakeholders could still have a sig-
nificant impact in the safety or security of a system being developed.
Furthermore, the validation process has identified the potential for
external changes to impact the security or safety of developed sys-
tems, warranting further investigation. Lastly, the outcomes of the
case study constitute an identified area for improvement in order
to better account for risk factors that occur in low-code practice
that were not cited in the literature (like the ones mentioned in the
interviews, see section 6). This omission may be attributed to the
researcher’s lack of practical experience with low-code develop-
ment.

The multi-level model enabled the clear presentation of the find-
ings and their categorization, fitting perfectly in this work. Ad-
ditionally, the observed interactions between safety and security
were analyzed, however they are not visually incorporated in the
model. This calls for further exploration as to how these relation-
ships can be visually presented in such a multi-level model, as a
future expansion. The used scenario fit the purpose of this research
excellently, outlining the importance of the findings in practice and
the capabilities of such a model.

Regarding validation of the results, the focus was on the findings
of the case study. Validation and critical discussion of the developed
models is not rigorously covered. This can also include the future
direction, of exploring how the development and use of suchmodels
can best be integrated within the SDLC. A final remark for future
exploration that was discussed in the validation process, regards
the investigation into the diversity of user profiles and how they
can best be guided towards safer decisions.

The study has certain scope limitations as it only included risks
from specific types of software development. A broader review
could reveal additional factors that are relevant to low-code devel-
opment. Additionally, this work does not go beyond the developer,
so it does not take into account other external aspects tied to devel-
opment, like the social or organizational context, that could also
contribute to the development of risky or unsafe systems through
low-code practices. Further research focusing on these aspects
would provide an even more complete analysis of the risk and
threats in low-code software development.

With all this in mind, the guidelines for developers were formed.
Integrating all key aspects of the findings and accounting for the

Page 12

parts that were not directly covered, the guidelines aim to serve as
a starting point for developers to critically think about the safety
and security of the low-code development process and the resulting
application.

7.3 Guidelines
Mapping all the identified risks and risk factors to more generic
concepts combined with the gathered expert input, allows the cre-
ation/generation of certain guidelines to support the low-code de-
velopment process. Overall, it is crucial to prioritize security by
design throughout the entire SDLC. The resulting guidelines are
mentioned in the list below. It should be noted that these guidelines
may concern different stakeholders depending on the organiza-
tional context of the project (for example a company may have a
group dedicated to post release monitoring), but for the sake of this
research, it assumed that developers are also involved in all the
mentioned tasks.

Developer’s Guidelines:

- Aim for a structured and holistic requirement engineering
process; it is the foundation of every project

- Focus on configuration management in all levels of the sys-
tem and all phases of the Software Development Lifecycle

- Review of security requirements done by IT personnel or
other knowledgeable peers for objective results and knowl-
edge sharing

- Take platform’s security pointers seriously into account
when developing, but without solely relying on them to
secure your system

- Avoid shortcuts for platform errors and temporary function-
ality

- Conduct risk assessment(s) and threat modelling prior to the
Coding Phase of both the overall system/application and the
used third party components

- Make sure the existing architecture that the developed sys-
tem will be integrated in is well understood

- Plan time for platform selection and familiarisation with the
chosen platform

- Critically evaluate vendor claims and the circumstances un-
der which they are true

- Monitor bugs, threats and failure even post release
- Plan the implementation of version upgrades
- Aim to follow the field’s best practices wherever possible
- Do not compromise rigorous testing in the face of rapid
deployment

- Raise security awareness and provide security training to
users

- Ensure that the developed application is adapted to the ever-
changing technological ecology around it

8 CONCLUSION & CONTRIBUTION
The following part concludes the document by highlighting what
was achieved, and the contribution of this work to the existing body
of knowledge.

This research addressed an identified gap in the literature, re-
garding the risks and threats associated with low-code software
development.

Research has been carried out regarding both safety and security
in software development. Even though limited, some research has
also been done in the domain of low-code application development.
However, a joint analysis concerning both areas is still missing.
Given that the usage of LCDPs is rising, the need for more research
in this domain has become urgent. This research addressed this
gap, by providing the following contributions; 1) identification of
which safety risks and security threats involved in software devel-
opment, apply to low-code practices, 2) joint modeling these risks
and threats through the use of a multi-level model and a scenario, 3)
categorization of the identified factors between safety and security
and analysis of their interactions 4) guidelines reflecting the identi-
fied points of awareness for developers. Additionally, it contributes
to the domain by serving an initial platform for designing a virtual
tutoring system for citizen developers, like the one proposed in [53],
specifically focusing on security aspects. The use of the multi-level
approach in combination with the findings of the case study, adds
value to the research and makes the followed approach unique. This
constitutes an important stepping stone towards the right direc-
tion of the field; the safe and secure creation and deployment of
applications, through the use of low-code practices.

9 ACKNOWLEDGMENTS
I want to thank my supervisors, Christina Kolb and Gayane Se-
drakyan, for their continuous support and for sharing their exper-
tise. I also want to thank the experts that dedicated their time to
participate in the interviews, forming a crucial part of this work.

Page 13

Safety Risks and Security Threats in Low-code Software Development Alkisti Onoufriou

APPENDIX
“During the preparation of this work the author used no artificial intelligence tools.”

Table 1: Non-technical risk factors

SDLC Phase Risk/risk factor/threat/vulnerability Source

Requirement Engineering - Ambiguous/incomplete/conflicting/poorly defined/changing requirements
- Unclear project objectives
- Lack of COTS-driven requirements engineering process
- Negligence of non-functional requirements
- Neglected security requirements (and their negotiation, management, validation and prioritization etc.)
- Lack of threat modeling development
- Lack of security requirements awareness in customers/users

Menezes et al. (2018), Meckenstock (2024),
Kusumo et al. (2012), Khan et al. (2022b)

Design - No/inadequate/inaccurate/unrealistic planning
- Complicated licensing arrangements
- Security concerns in selection
- Requirements mismatch with OTS selection
- Too much time spent on selection
- Overly optimistic learning curve
- Lack of early analysis of system quality
- Inadequate assumptions
- Improper risk assessment/analysis/improper risk evaluation from third party components
- Lack of building abuse case models and attack patterns, data flow diagram

Menezes et al. (2018), Meckenstock (2024),
Kusumo et al. (2012), Khan et al. (2022b)

Coding - Lack of difference between developers’ roles and security reviewer roles to have objective results Khan et al. (2022b)

Testing

Deployment

Maintenance (/post-release) - Reduced control of future evolution of system
- Product aging/obsolescence
- Vendor lock-in

Kusumo et al. (2012)

Entire SDLC - Poor/limited specifications/documentation
- Faulty vendor claims
- Overly optimistic expectations of quality
- Vendor/organization not providing enough support/training (including security training)
- Loss of cross functionality of IT developers
- Distracting workflow interactions
- Negligence of non-functional requirements
- Lack of formal guidelines (context)/not following security design phase principles
- Neglected security requirements (and their negotiation, management, validation and prioritization etc.)

Menezes et al. (2018), Kusumo et al. (2012),
Meckenstock (2024), Khan et al. (2022b)

Page 14

Table 2: Technical risk factors

SDLC Phase Risk/risk factor/threat/vulnerability Source

Requirement Engineering

Design - Shortfalls in externally furnished components/third party resources (unknown security, difficulty to identify whether
defects are yours or the component’s/add ons, using components with known vulnerabilities)
- Unknown features and quality

Menezes et al. (2018), Kusumo et al. (2012), Sadqi
and Maleh (2020), Silva et al. (2016)

Coding (including potential vulner-
abilities of resulted app)

- Technical complexity/added complexity of unused features
- Component not sufficiently adapted to changing reqs
- Difficulty to upgrade to latest version
- Version upgrade during development
- Negative impact of component upgrade in system operability
- Difficult introduction of new features/Extensibility limitations
- Security misconfigurations
- Interception attacks (Man In The Middle/Man in The Browser attack vulnerability)
- Injection-based threats (client/server side, SQLi, XSS, command)
- Business logic threats
- Use of weak password-based systems
- Insecure data storage
- Information leakage/insecure or sensitive data exposure
- Authentication & authorization (Unauthenticated key exchange, broken/missing authentication/authorization)
- Encryption/Failure to use cryptographically strong random numbers
- Input/output validation
- Cross-site request forgery
- Brute force
- Logout incorrectly implemented
- Timing attack (side channel attacks)
- Phishing or scam
- Tampering attacks

Menezes et al. (2018), Kusumo et al. (2012),
Meckenstock (2024), Rokis et al. (2022), Sadqi
and Maleh (2020), Silva et al. (2016), Howard,
M., LeBlanc, D., & Viega, J. (2005), Chaudhari
et al. (2014), Khan et al. (2022b), Nirmal et al.
(2018), Gollmann (2009)

Testing - Lack of proper tests/low test coverage/insufficient testing/lack of unit testing/Lack of testing of non-functional
requirements
- Imposed black box testing
- Lack of final security review

Menezes et al. (2018), Meckenstock (2024), Khan
et al. (2022b), Rokis et al. (2022), Kusumo et al.
(2012)

Deployment - Architectural mismatches/inadequate architecture
- Lack of internal system integration/difficulty with integration with other systems

Menezes et al. (2018), Kusumo et al. (2012),
Meckenstock (2024)

Maintenance (/post-release) - Difficulty to upgrade to latest version [two phases]
- Insufficient logging and monitoring of threats
- Failure to handle errors
- Considerations of scalability

Kusumo et al. (2012), Sadqi and Maleh (2020),
Howard, M., LeBlanc, D., & Viega, J. (2005),
Khan et al. (2022b), Rokis et al. (2022)

Entire SDLC - Technical debt
- No access to source code

Meckenstock (2024), Howard, M., LeBlanc, D.,
& Viega, J. (2005), Rokis et al. (2022)

Page 15

Safety Risks and Security Threats in Low-code Software Development Alkisti Onoufriou

REFERENCES
[1] Joe Mckendrick and Research Analyst. THE RISE OF THE EMPOWERED CIT-

IZEN DEVELOPER 2017 LOW-CODE ADOPTION SURVEY. Technical report,
2017. URL www.unisphereresearch.com.

[2] What is low-code?, . URL https://www.ibm.com/topics/low-code#:~:
text=Explore%20IBM’s%20low%2Dcode%20solutions,applications%20through%
20minimal%20hand%2Dcoding.

[3] What is Citizen Developer? | Mendix Glossary, . URL https://www.mendix.com/
glossary/citizen-developer/.

[4] Stefano M. Nicoletti, Marijn Peppelman, Christina Kolb, and Mariëlle Stoelinga.
Model-based joint analysis of safety and security:Survey and identification of
gaps. Computer Science Review, 50:100597, 11 2023. ISSN 1574-0137. doi: 10.1016/
J.COSREV.2023.100597.

[5] Georgios Boustras and AlanWaring. Towards a reconceptualization of safety and
security, their interactions, and policy requirements in a 21st century context.
Safety Science, 132:104942, 12 2020. ISSN 09257535. doi: 10.1016/j.ssci.2020.104942.

[6] Christoph Schmittner, Zhendong Ma, and Erwin Schoitsch. Combined safety
and security development lifecylce. In 2015 IEEE 13th International Conference on
Industrial Informatics (INDIN), pages 1408–1415. IEEE, 7 2015. ISBN 978-1-4799-
6649-3. doi: 10.1109/INDIN.2015.7281940.

[7] Gartner forecast: use of low-code technologies continues to boom., . URL
https://ninox.com/en/blog/gartner-forecast-use-of-low-code-technologies-
continues-to-boom#:~:text=Gartner%20predicts%20that%20by%202026,not%
20finding%20enough%20skilled%20workers.

[8] Miguel Lourenço, Tiago Espinha Gasiba, and Maria Pinto-Albuquerque. You Are
Doing it Wrong-On Vulnerabilities in Low Code Development Platforms. 2023. ISBN
9781685581138.

[9] Vaishali S. Phalake and Shashank D. Joshi. Low Code Development Platform for
Digital Transformation. In Lecture Notes in Networks and Systems, volume 190,
pages 689–697. Springer Science and Business Media Deutschland GmbH, 2021.
ISBN 9789811608810. doi: 10.1007/978-981-16-0882-7{_}61.

[10] Megha Quamara, Christina Kolb, and Brahim Hamid. Analyzing Origins of Safety
and Security Interactions Using Feared Events Trees andMulti-level Model. pages
176–187. 2023. doi: 10.1007/978-3-031-40953-0{_}15.

[11] Christina Kolb and Lin Xie. Security and Safety in Urban Environments: Evaluat-
ing Threats and Risks of Autonomous Last-Mile Delivery Robots. 2024.

[12] Kit Siu, Heber Herencia-Zapana, Daniel Prince, and Abha Moitra. A model-based
framework for analyzing the security of system architectures. Proceedings -
Annual Reliability and Maintainability Symposium, 2020-January, 1 2020. ISSN
0149144X. doi: 10.1109/RAMS48030.2020.9153607.

[13] Panagiotis Manolios, Kit Siu, Michael Noorman, and Hongwei Liao. A Model-
based framework for analyzing the safety of system architectures. Proceedings -
Annual Reliability and Maintainability Symposium, 2019-January, 1 2019. ISSN
0149144X. doi: 10.1109/RAMS.2019.8769216.

[14] Mendix Docs, . URL https://docs.mendix.com/.
[15] Gartner , . URL https://www.gartner.com/en.
[16] Karlis Rokis and Marite Kirikova. Challenges of Low-Code/No-Code Software

Development: A Literature Review. pages 3–17. 2022. doi: 10.1007/978-3-031-
16947-2{_}1.

[17] Rafiq Ahmad Khan, Siffat Ullah Khan, Habib Ullah Khan, and Muhammad Ilyas.
Systematic Literature Review on Security Risks and its Practices in Secure Soft-
ware Development. IEEE Access, 10:5456–5481, 2022. ISSN 21693536. doi:
10.1109/ACCESS.2022.3140181.

[18] A. Fuller, P. Croll, and O. Garcia. Why software engineering is riskier than ever.
In Proceedings Second Asia-Pacific Conference on Quality Software, pages 113–119.
IEEE Comput. Soc. ISBN 0-7695-1287-9. doi: 10.1109/APAQS.2001.990009.

[19] Júlio Menezes, Cristine Gusmão, and Hermano Moura. Risk factors in software
development projects: a systematic literature review. Software Quality Journal, 27
(3):1149–1174, 9 2019. ISSN 15731367. doi: 10.1007/S11219-018-9427-5/TABLES/
13. URL https://link.springer.com/article/10.1007/s11219-018-9427-5.

[20] J. Whitmore, S. Turpe, S. Triller, A. Poller, and C. Carlson. Threat analysis in the
software development lifecycle. IBM Journal of Research and Development, 58(1):
1–6, 1 2014. ISSN 0018-8646. doi: 10.1147/JRD.2013.2288060.

[21] Yassine Sadqi and Yassine Maleh. A systematic review and taxonomy of web
applications threats. Information Security Journal: A Global Perspective, 31(1):
1–27, 1 2022. ISSN 19393547. doi: 10.1080/19393555.2020.1853855. URL https:
//www.tandfonline.com/doi/abs/10.1080/19393555.2020.1853855.

[22] Gopal R. Chaudhari and M. Vaidya. A Survey on Security and Vulnerabilities of
Web Application. 2014.

[23] K. Nirmal, B. Janet, and R. Kumar. Web Application Vulnerabilities - The Hacker’s
Treasure. Proceedings of the International Conference on Inventive Research in
Computing Applications, ICIRCA 2018, pages 58–62, 12 2018. doi: 10.1109/ICIRCA.
2018.8597221.

[24] Jan Niklas Meckenstock. Shedding light on the dark side – A systematic literature
review of the issues in agile software development methodology use. Journal
of Systems and Software, 211:111966, 5 2024. ISSN 0164-1212. doi: 10.1016/J.JSS.
2024.111966.

[25] Tracey Caldwell. Taking agile development beyond software – what are the
security risks? Network Security, 2015(12):8–11, 12 2015. ISSN 1353-4858. doi:
10.1016/S1353-4858(15)30110-0.

[26] Dana S. Kusumo, Mark Staples, Liming Zhu, He Zhang, and Ross Jeffery. Risks of
off-the-shelf-based software acquisition and development: A systematic mapping
study and a survey. IET Seminar Digest, 2012(1):233–242, 2012. doi: 10.1049/IC.
2012.0031.

[27] Dieter Gollmann. Software Security – The Dangers of Abstraction. pages 1–12.
2009. doi: 10.1007/978-3-642-03315-5{_}1.

[28] Amanda Bolderston. Writing an Effective Literature Review. Journal
of Medical Imaging and Radiation Sciences, 39(2):86–92, 6 2008. ISSN
19398654. doi: 10.1016/j.jmir.2008.04.009. URL http://www.jmirs.org/article/
S193986540800057X/fulltexthttp://www.jmirs.org/article/S193986540800057X/
abstracthttps://www.jmirs.org/article/S1939-8654(08)00057-X/abstract.

[29] Roberta Heale and Alison Twycross. What is a case study? Evidence-Based Nurs-
ing, 21(1):7–8, 1 2018. ISSN 1367-6539. doi: 10.1136/EB-2017-102845. URL https:
//ebn.bmj.com/content/21/1/7https://ebn.bmj.com/content/21/1/7.abstract.

[30] Phillip A. Laplante. Requirements Engineering for Software and Systems. 10
2013. doi: 10.1201/B15939. URL https://www.taylorfrancis.com/books/mono/10.
1201/b15939/requirements-engineering-software-systems-phillip-laplante.

[31] Minerva Journal, Minaya Vera, Cristhian Gustavo, Mendoza Vélez, Oswaldo
Vicente, Arias Vera, Irina Loreley, Ministerio De Educación Daule-Ecuador,
Andrés Alexander, Bravo Vera, and Henry Fabricio. Low/No-code develop-
ment platforms and the future of software developers. Minerva, 1(Special):
21–33, 12 2022. ISSN 2697-3650. doi: 10.47460/MINERVA.V1ISPECIAL.
76. URL https://minerva.autanabooks.com/index.php/Minerva/article/view/76/
236https://minerva.autanabooks.com/index.php/Minerva/article/view/76.

[32] Marien R. Krouwel, Martin Op ’t Land, and Henderik A. Proper. From enterprise
models to low-code applications: mapping DEMO to Mendix; illustrated in the
social housing domain. Software and Systems Modeling, 2024. ISSN 16191374. doi:
10.1007/s10270-024-01156-2.

[33] H. James Nelson, Geert Poels, Marcela Genero, and Mario Piattini. A conceptual
modeling quality framework. Software Quality Journal, 20(1):201–228, 2012. ISSN
15731367. doi: 10.1007/S11219-011-9136-9. URL https://www.researchgate.net/
publication/220636080_A_conceptual_modeling_quality_framework.

[34] GeeksforGeeks. Vendor Lock-in, .
[35] Hana A Alsaadi, Dhefaf T Radain, Maysoon M Alzahrani, Wahj F Alshammari,

DimahAlahmadi, and Bahjat Fakieh. Factors that affect the utilization of low-code
development platforms: survey study. Romanian Journal of Information Tech-
nology and Automatic Control, 31(3):123–140, 2021. doi: 10.33436/v31i3y202110.
URL https://doi.org/10.33436/v31i3y202110.

[36] Low Code Platform Market. URL https://straitsresearch.com/report/low-code-
development-platform-market.

[37] Mendix Docs. Best Practices for App Security . URL https://docs.mendix.com/
howto/security/best-practices-security/.

[38] Michael Bargury. Hackers Abuse Low-Code Platforms And Turn Them Against
Their Owners, 10 2021.

[39] GeeksforGeeks. Black Box Testing, . URL https://www.geeksforgeeks.org/
software-engineering-black-box-testing/.

[40] Karlis Rokis and Marite Kirikova. Exploring Low-Code Development: A Compre-
hensive Literature Review | Rokis | Complex Systems Informatics and Modeling
Quarterly, 2023. URL https://csimq-journals.rtu.lv/article/view/csimq.2023-36.04.

[41] UpGuard Team. By Design: How Default Permissions on Microsoft Power Apps
Exposed Millions, 2021. URL https://www.upguard.com/breaches/power-apps.

[42] Gartner. Technical Debt, . URL https://www.gartner.com/en/information-
technology/glossary/technical-debt.

[43] Gartner. Enterprise Low-Code Application Platforms Reviews and Ratings, .
URL https://www.gartner.com/reviews/market/enterprise-low-code-application-
platform.

[44] Mendix. Native Back Button. URL https://marketplace.mendix.com/link/
component/114055.

[45] Mendix Security, . URL https://docs.mendix.com/refguide/security/.
[46] Mendix Logout, . URL https://docs.mendix.com/appstore/partner-solutions/ats/

rg-one-logout/.
[47] Jaspreet Bedi and Kuljit Kaur. Understanding factors affecting technical debt.

International Journal of Information Technology (Singapore), 14(2):1051–1060, 3
2022. ISSN 25112112. doi: 10.1007/S41870-020-00487-9/TABLES/6. URL https:
//link.springer.com/article/10.1007/s41870-020-00487-9.

[48] Someleze Diko. Differences between PowerApps Portals and Power
Pages, 2022. URL https://techcommunity.microsoft.com/t5/educator-
developer-blog/differences-between-powerapps-portals-and-power-pages/ba-
p/3571229#:~:text=PowerApps%20Portals%20are%20an%20extension,or%
20even%20browse%20content%20anonymously.

[49] Scott Ikeda. Power Apps Data Leak, 8 2021. URL https://www.cpomagazine.com/
cyber-security/microsoft-power-apps-data-leak-fallout-38-million-records-
exposed-state-and-city-governments-among-those-breached/.

[50] Lily Hay Newman. 38M Records Were Exposed Online—Including Contact-
Tracing Info. 2021. URL https://www.wired.com/story/microsoft-power-apps-

Page 16

www.unisphereresearch.com.
https://www.ibm.com/topics/low-code#:~:text=Explore%20IBM's%20low%2Dcode%20solutions,applications%20through%20minimal%20hand%2Dcoding.
https://www.ibm.com/topics/low-code#:~:text=Explore%20IBM's%20low%2Dcode%20solutions,applications%20through%20minimal%20hand%2Dcoding.
https://www.ibm.com/topics/low-code#:~:text=Explore%20IBM's%20low%2Dcode%20solutions,applications%20through%20minimal%20hand%2Dcoding.
https://www.mendix.com/glossary/citizen-developer/
https://www.mendix.com/glossary/citizen-developer/
https://ninox.com/en/blog/gartner-forecast-use-of-low-code-technologies-continues-to-boom#:~:text=Gartner%20predicts%20that%20by%202026,not%20finding%20enough%20skilled%20workers.
https://ninox.com/en/blog/gartner-forecast-use-of-low-code-technologies-continues-to-boom#:~:text=Gartner%20predicts%20that%20by%202026,not%20finding%20enough%20skilled%20workers.
https://ninox.com/en/blog/gartner-forecast-use-of-low-code-technologies-continues-to-boom#:~:text=Gartner%20predicts%20that%20by%202026,not%20finding%20enough%20skilled%20workers.
https://docs.mendix.com/
https://www.gartner.com/en
https://link.springer.com/article/10.1007/s11219-018-9427-5
https://www.tandfonline.com/doi/abs/10.1080/19393555.2020.1853855
https://www.tandfonline.com/doi/abs/10.1080/19393555.2020.1853855
http://www.jmirs.org/article/S193986540800057X/fulltext http://www.jmirs.org/article/S193986540800057X/abstract https://www.jmirs.org/article/S1939-8654(08)00057-X/abstract
http://www.jmirs.org/article/S193986540800057X/fulltext http://www.jmirs.org/article/S193986540800057X/abstract https://www.jmirs.org/article/S1939-8654(08)00057-X/abstract
http://www.jmirs.org/article/S193986540800057X/fulltext http://www.jmirs.org/article/S193986540800057X/abstract https://www.jmirs.org/article/S1939-8654(08)00057-X/abstract
https://ebn.bmj.com/content/21/1/7 https://ebn.bmj.com/content/21/1/7.abstract
https://ebn.bmj.com/content/21/1/7 https://ebn.bmj.com/content/21/1/7.abstract
https://www.taylorfrancis.com/books/mono/10.1201/b15939/requirements-engineering-software-systems-phillip-laplante
https://www.taylorfrancis.com/books/mono/10.1201/b15939/requirements-engineering-software-systems-phillip-laplante
https://minerva.autanabooks.com/index.php/Minerva/article/view/76/236 https://minerva.autanabooks.com/index.php/Minerva/article/view/76
https://minerva.autanabooks.com/index.php/Minerva/article/view/76/236 https://minerva.autanabooks.com/index.php/Minerva/article/view/76
https://www.researchgate.net/publication/220636080_A_conceptual_modeling_quality_framework
https://www.researchgate.net/publication/220636080_A_conceptual_modeling_quality_framework
https://doi.org/10.33436/v31i3y202110
https://straitsresearch.com/report/low-code-development-platform-market
https://straitsresearch.com/report/low-code-development-platform-market
https://docs.mendix.com/howto/security/best-practices-security/
https://docs.mendix.com/howto/security/best-practices-security/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://csimq-journals.rtu.lv/article/view/csimq.2023-36.04
https://www.upguard.com/breaches/power-apps
https://www.gartner.com/en/information-technology/glossary/technical-debt
https://www.gartner.com/en/information-technology/glossary/technical-debt
https://www.gartner.com/reviews/market/enterprise-low-code-application-platform
https://www.gartner.com/reviews/market/enterprise-low-code-application-platform
https://marketplace.mendix.com/link/component/114055
https://marketplace.mendix.com/link/component/114055
https://docs.mendix.com/refguide/security/
https://docs.mendix.com/appstore/partner-solutions/ats/rg-one-logout/
https://docs.mendix.com/appstore/partner-solutions/ats/rg-one-logout/
https://link.springer.com/article/10.1007/s41870-020-00487-9
https://link.springer.com/article/10.1007/s41870-020-00487-9
https://techcommunity.microsoft.com/t5/educator-developer-blog/differences-between-powerapps-portals-and-power-pages/ba-p/3571229#:~:text=PowerApps%20Portals%20are%20an%20extension,or%20even%20browse%20content%20anonymously
https://techcommunity.microsoft.com/t5/educator-developer-blog/differences-between-powerapps-portals-and-power-pages/ba-p/3571229#:~:text=PowerApps%20Portals%20are%20an%20extension,or%20even%20browse%20content%20anonymously
https://techcommunity.microsoft.com/t5/educator-developer-blog/differences-between-powerapps-portals-and-power-pages/ba-p/3571229#:~:text=PowerApps%20Portals%20are%20an%20extension,or%20even%20browse%20content%20anonymously
https://techcommunity.microsoft.com/t5/educator-developer-blog/differences-between-powerapps-portals-and-power-pages/ba-p/3571229#:~:text=PowerApps%20Portals%20are%20an%20extension,or%20even%20browse%20content%20anonymously
https://www.cpomagazine.com/cyber-security/microsoft-power-apps-data-leak-fallout-38-million-records-exposed-state-and-city-governments-among-those-breached/
https://www.cpomagazine.com/cyber-security/microsoft-power-apps-data-leak-fallout-38-million-records-exposed-state-and-city-governments-among-those-breached/
https://www.cpomagazine.com/cyber-security/microsoft-power-apps-data-leak-fallout-38-million-records-exposed-state-and-city-governments-among-those-breached/
https://www.wired.com/story/microsoft-power-apps-data-exposed/
https://www.wired.com/story/microsoft-power-apps-data-exposed/

data-exposed/.
[51] Ningning Wu and Robinson Tamilselvan. A Personal Privacy Risk Assessment

Framework Based on Disclosed PII. Proceedings - 2023 7th International Conference
on Cryptography, Security and Privacy, CSP 2023, pages 86–91, 2023. doi: 10.1109/
CSP58884.2023.00021.

[52] Chauncey Wilson. Semi-Structured Interviews. In Interview Techniques for UX
Practitioners, pages 23–41. Elsevier, 2014. doi: 10.1016/B978-0-12-410393-1.00002-
8.

[53] Gayane Sedrakyan and Monique Snoeck. Lightweight semantic prototyper for
conceptual modeling. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8823:
298–302, 2014. ISSN 16113349. doi: 10.1007/978-3-319-12256-4{_}32.

[54] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo
Tisi, andManuelWimmer. Low-code development andmodel-driven engineering:
Two sides of the same coin? Software and Systems Modeling, 21(2):437–446, 4

2022. ISSN 1619-1366. doi: 10.1007/s10270-021-00970-2.
[55] Yajing Luo, Peng Liang, ChongWang,Mojtaba Shahin, and Jing Zhan. Characteris-

tics and challenges of low-code development: The practitioners perspective. In In-
ternational Symposium on Empirical Software Engineering and Measurement. IEEE
Computer Society, 10 2021. ISBN 9781450386654. doi: 10.1145/3475716.3475782.

[56] Lissette Almonte, Universidad Autónoma de Madrid Madrid, Spain Iván Cantador,
Spain Esther Guerra, Spain Juan de Lara, Iván Cantador, Esther Guerra, and Juan
de Lara. Towards automating the construction of recommender systems for
low-code development platforms. Proceedings - 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS-C 2020
- Companion Proceedings, pages 451–460, 10 2020. doi: 10.1145/3417990.3420200.
URL https://dl.acm.org/doi/10.1145/3417990.3420200.

[57] Megha Quamara, Christina Kolb, and Ankur Lohachab. Where do Safety and Se-
curity Mutually Reinforce? A Multi-level Model-based Approach for a Consistent
Interplay. 2024.

Page 17

https://www.wired.com/story/microsoft-power-apps-data-exposed/
https://dl.acm.org/doi/10.1145/3417990.3420200

	Abstract
	1 Introduction
	1.1 Research Question

	2 Related work
	3 Methodology
	4 Case Study
	4.1 Non-technical factors
	4.2 Technical Factors

	5 Modeling Safety Risks and Security Threats
	5.1 Multi-level Model
	5.2 Model-based Scenario Analysis

	6 Validation
	7 Discussion, Reflection & Future Work
	7.1 Discussion of Findings
	7.2 Reflection & Future Work
	7.3 Guidelines

	8 Conclusion & Contribution
	9 Acknowledgments
	References

