
MSc Thesis Applied Mathematics

Learning Distributionally
Robust Solutions for Inverse
Problems using the Wasserstein
Distance

Floor van Maarschalkerwaart

Graduation Committee:
Prof. Dr. Christoph Brune
Dr. Marcello Carioni
Dr. Matthias Schlottbom

July 23, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Acknowledgement
Before you lies my Master Thesis, a project I have dedicated the past six and a half months to. This
thesis combines a topic I am already quite familiar with (inverse problems) and subjects that were
entirely new to me (distributionally robust optimization and optimal transport). Throughout this
project, I have significantly expanded my theoretical knowledge in these areas and deepened my un-
derstanding of foundational topics such as measure theory and duality. Unlike my previous projects,
which were predominantly numerical, this thesis is heavily theoretical. This theoretical emphasis has
been both the most rewarding and the most challenging aspect of my work. Most importantly, I have
thoroughly enjoyed the opportunity to dive so deeply into a topic and conducting my own research.

I would like to express my sincere gratitude to my entire graduation committee for their supervision
and help over these past months. Your unwavering confidence in me and my project often provided
the encouragement I needed to regain my own confidence in my research during challenging times. I
am very proud of the final result, which I could not have achieved without your guidance.

Marcello, thank you for being accessible and willing to meet on short notice. Your explanations and
insights were invaluable, often helping me to finalize the proofs in this thesis. Christoph, I am grateful
for your frequent availability despite your busy schedule. Your ability to draw connections to other
research projects and maintain a high-level view of the research and its context was immensely helpful.
Lastly, I want to thank Matthias for joining my graduation committee, taking the time to read my
report and providing critical questions and feedback.

I hope you enjoy reading my thesis.

Floor van Maarschalkerwaart
July 23, 2024

Learning Distributionally Robust Solutions for Inverse
Problems using the Wasserstein Distance

Floor van Maarschalkerwaart

July 23, 2024

Abstract

This thesis proposes a novel data-driven framework that integrates Wasserstein robustness into
inverse problem modeling. It aims to bridge the research fields of inverse problems and Wasserstein
robustness, providing insights into the relationship between regularization and robustness, which
are critical for developing stable and reliable solutions in various applications. We introduce
a general framework to find distributionally robust solutions and prove a new strong duality
result that can be modified to be applied in many fields. For an academic impact case, the
dual representation of an inverse problem robust to Gaussian noise in the measurement space is
further explored and reduced to a convex, finite-dimensional problem, making it computationally
tractable. The framework is validated through numerical simulations, demonstrating that it can
learn solutions for inverse problems that are robust to perturbations in the Wasserstein distance.
This work expands the theoretical foundations of both distributionally robust optimization and
inverse problems and is applicable to various other types of problems. The developed framework
holds promise for practical applications in diverse fields, including more complex inverse problems
and higher-dimensional applications.

Keywords: Wasserstein distance, robustness, distributionally robust optimization, optimization,
duality, inverse problems, regularization, probability measures, conditional shifts, proximal oper-
ator

1

Contents
1 Notation and definitions 4

2 Introduction 5
2.1 Related works . 6
2.2 Approach and main contributions . 7

3 Theoretical framework 9
3.1 Measure theory . 9
3.2 Probability measures . 10
3.3 Distributionally Robust Optimization (DRO) . 11

3.3.1 Wasserstein distance and optimal transport . 11
3.3.2 DRO problem . 12

3.4 Inverse problems . 13

4 Fundamental theorems 16
4.1 Dual representation . 16
4.2 Proof of Proposition 4.1 . 18

4.2.1 The primal problem . 19
4.2.2 The dual problem and weak duality . 19
4.2.3 Strong duality . 20
4.2.4 Dual optimizer . 22

4.3 Evaluation of dual representation using the proximal operator 22
4.3.1 Quadratic loss function . 23
4.3.2 Norm loss . 23

4.4 Fenchel duality theorem . 24
4.5 Alternative proof for strong duality . 25

4.5.1 Strong duality . 26
4.6 Convex reduction of Wasserstein-DRO problem . 27

5 Wasserstein robustness for Bayesian estimation 30
5.1 Problem variants . 30

5.1.1 Inverse problems . 31
5.1.2 Other problem variants . 32

6 Dual representation 34
6.1 Primal problem . 34
6.2 Dual problem and weak duality . 35
6.3 Strong duality . 36
6.4 Finite-dimensional reduction of dual . 41

7 Inverse problem with Guassian noise in measurement space 43
7.1 Dual representation . 43
7.2 Finite-dimensional reduction . 43

8 Numerical examples 48
8.1 Picard condition for a high-dimensional operator . 48
8.2 Inverse problem with measurement in Rn and Gaussian noise 49

8.2.1 Non-singular, stable forward operator . 49
8.2.2 Non-singular, unstable forward operator . 52
8.2.3 Singular forward operator 1 . 55
8.2.4 Singular forward operator 2 . 59

8.3 Conclusions on numerical results . 61

9 Conclusion and outlook 63

Bibliography 65

2

A Appendix 69
A.1 Python code for constrained Wasserstein-DRO . 69
A.2 Python code for Picard condition . 76

3

1 Notation and definitions

R+ := {x ∈ R : x ≥ 0} Set of non-negative real numbers
R̄ := R ∪ {∞} Extended real number line
R̄+ := R+ ∪ {∞} Set of non-negative real numbers including infinity
M(Ω) Space of finite Borel measures on Ω
Cb(Ω) Space of continuous bounded functions on Ω
P (Ω) Space of probability measures on Ω
P(Ω) Power set of Ω
B(Ω) Borel algebra of Ω
mU (Ω;R) Collection of measurable functions ϕ : (Ω,U(Ω)) → (R̄,B(R̄)),

where U(Ω) = ∩µ∈P (Ω)Bµ(S) is the universal σ-algebra
[f,A] Epigraph of a function f over a set A
Π(µ1, µ2) Set of joint probability measures with first marginal µ1 ∈ P (Ω1)

and second marginal µ2 ∈ P (Ω2)
µ∗ Upper script on a probability measure denotes a fixed probability

measure

4

2 Introduction
Inverse problems are present across all fields where there is a necessity to reconstruct data from (ill-
posed) measurements. Examples include engineering (e.g. electromagnetic waves, elastodynamics),
medical imaging (e.g. CT, MRI, X-ray), wavefield imaging (e.g. ultrasound) and data assimilation
(e.g. numerical weather prediction) [1]. Solving inverse problems is often challenging due to noisy
measurements and the ill-posed nature of the problems (unstable, no or several solutions). There
is well-established classical theory on inverse problems guaranteeing mathematically that a solution
obtained by classical methods actually solves the inverse problem. For more detailed notes on inverse
problem, we refer to [2]. Unfortunately these methods still have some limitations. The forward models
used are approximations of reality, accurate models have a (too) high numerical complexity and the
inputs do not cover the full model parameter space [3]. Consequently, these models struggle to cap-
ture the highly specific structures in data [3], leading to suboptimal results across different applications.

Recently, data-driven methods have demonstrated significant success in solving inverse problems.
These are generic models that learn solutions for specific problems through training data, thus be-
ing easily applicable to many different datasets from different fields [3]. However, a major drawback
of data-driven approaches is their lack of interpretability, explainability and general theoretical guar-
antees. This thesis seeks to bridge this gap by relating data-driven methods for inverse problems with
classical approaches, thereby enhancing their explainability and interpretability. Specifically, we will
explore Wasserstein robustness in inverse problems and aim to draw insights into its relationship with
classical regularization methods.

Inverse problems Usually, we work with a model that transforms certain inputs into outputs
through a well-defined process. This model could be anything: a medical imaging device, a weather
prediction model or something as simple as a matrix operating on the input. In mathematical terms, we
describe this process as a forward problem. Here, we know the input x ∈ X and the model, represented
by a forward operator H : X → Y , processes this input to produce an output y = Hx ∈ Y . The
real challenge arises when you face an inverse problem. Instead of a known input, you begin with the
output, which is often noisy:

y = Hx+ e ∈ Y.

In this equation, e represents the noise that corrupts the measurement. The goal is to work backward
to reconstruct the unknown input x. For example, in medical imaging, we obtain a CT-scan of a
patient, which gives us a measurement y. However, our objective is to reconstruct the image of the
person, represented by x.

Inverse problems are tricky for several reasons. First, the noise can corrupt the measurement. Sec-
ond, these problems are often ill-posed, meaning that small changes in the noisy output can lead to
significant variations in the reconstructed input and there might be multiple (or no) possible inputs
that could lead to the same output. To combat these difficulties, there are various classical regular-
ization techniques. These methods help to stabilize the solutions, allowing us to extract meaningful
information from noisy, incomplete, or indirect measurements. Examples are truncated SVD [4], total
variation (TV) [5] and Tikhonov [6] regularization. Solutions to inverse problems play a crucial role
in various scientific and engineering applications such as medical imaging techniques, enhancing signal
processing, or refining data analysis.

With the rise of deep learning models, data-driven approaches to solving inverse problems have gained
prominence. One such approach is the Bayesian framework, which provides a method for addressing the
uncertainties inherent in inverse problems. In this framework the possible input x and its corresponding
measurement y are viewed as realizations of X- and Y -valued random variables x and y respectively.
The objective of Bayesian inversion is to characterize the full posterior distribution ppost of x given y
by using Bayes’ theorem:

ppost(x|y) =
1

Z(y)
pw(y −Hx)p0(x).

5

Here, p0 is the prior probability density on x, reflecting any prior knowledge or assumptions about
the input. Z(y) is a normalizing constant ensuring that the posterior distribution is properly scaled.
The data likelihood is specified through the noise distribution pw and the forward operator H which
together describe how the input x is transformed into the measurement y and how noise affects this
process. Bayesian inversion allows for a probabilistic interpretation of the solution. This probabilistic
framework can be further refined and made robust. One such technique involves assuming that the
true distribution is close to the perturbed measure in terms of the Wasserstein distance. This allows
for the establishment of a robust estimation framework against perturbations on probability measures
defined over the joint input and measurement spaces. This Bayesian perspective can be incorporated
into inverse problems by setting up a Distributionally Robust Optimization framework.

Distributionally Robust Optimization and the Wasserstein distance Numerous problems
across various fields are impacted by uncertain parameters, which can only be estimated indirectly
through sample observations. Data-driven methods aim to learn a solution from a finite number
of training samples but an often-occurring problem is that it is difficult to find a solution that will
perform well on unseen test samples. A Distributionally Robust Optimization (DRO) [7] problem
minimizes the expected risk of a problem under uncertainty where the true distribution of the data
is usually unknown but can be approximated by an observed distribution. This observed distribution
however, often leads to a low out-of-sample performance. Therefore, in a DRO we assume that the
real distribution of the data must be ’close’ to the observed distribution and choose an ambiguity set
of distributions ’close’ to the observed distribution. We then find the solution with minimal risk under
the worst cases allowed within the ambiguity set. In other words, it finds the ’best worst-case’ scenario.
This robust solution then has guaranteed low out-of-sample error: it generalizes well to new data. In
order to formulate a DRO problem, a metric is needed that measures the distance between probability
measures - to determine which measures are ’close’ to the observed one. For this, the Wasserstein
distance is often chosen as a suitable metric. The Wasserstein distance is well-defined for any pair of
probability measures, regardless of any mutual singularity - unlike ϕ-divergences - and it is sensitive to
the relative position of the supports of singular distributions being compared, thus being less sensitive
to vanishing gradient problems - unlike integral probability measures (IPMs) [8].

Aim of thesis In the previous paragraph, it is mentioned that robust solutions generalize well to
new data. This generalizing effect is similar to a regularizing effect we have seen in machine learning
and inverse problems. Thus the question arises, is there more than just similarity to these methods?
What happens when we want to robustify an inverse problem? In specific cases, could the robust and
regularized problems be equivalent? The overarching goal of this thesis is to address these questions.
It aims to bridge the topics introduced and provide insights into the relationship between robustness
and regularization for inverse problems. Can we learn solutions for inverse problems that are robust
with respect to perturbations in the Wasserstein distance (measurement space, ground-truth space or
both)? How well does this learned solution perform (with respect to classical regularization methods)?
What do we gain with respect to classical regularization methods? The fields of Wasserstein robustness
and data-driven approaches for inverse problems have both seen considerable growth in recent years.
The challenge in this thesis is how to connect the two topics and to determine what we gain with the
Wasserstein robust optimization framework with respect to classical regularization methods.

2.1 Related works
Inspiration Recently, Daniel Kuhn has made significant contributions to the field of Wasserstein-
DRO. Notably, Kuhn et al. [7] present a comprehensive overview of Wasserstein-DRO with applications
in machine learning, while Carioni et al. [8] provide a review on using Wasserstein-DRO as a data-
driven method for solving inverse problems, including an extensive overview of the mathematical results
underlying the mentioned methods. Both works serve as the main inspiration for this thesis.

Data-driven approaches for inverse problems The literature on data-driven approaches for
inverse problems has seen considerable growth in recent years. For surveys on this subject see [3, 9–
11]. The work in [12] compares the performance of two classical and two data-driven approaches. The
increased use of neural networks (in combination with a classical regularization term) as (adversarial)

6

regularizers for inverse problems is highlighted in works such as [13–18]. For a survey and a review on
neural networks as regularizers, see [10] and [11] respectively. Additionally, neural networks can be used
to learn the regularization parameters [19] or an auxiliary network to generate adversarial examples
can be used to improve the robustness of deep-learning based approaches for inverse problems [20].
Another data-driven approach for inverse problems, proposed in [21] is to find an optimal low-rank
regularized inverse matrix by using the training data in a Bayesian risk minimization framework.
The results in [22] build upon this by combining data-driven and model-based methods in Bayesian
inverse problems in a learned-SVD regularization method, showing a connection between Tikhonov
and learned-SVD regularization.

(Wasserstein) DRO The DRO framework is used in many applications, for a review on DRO in
general see [23]. We are mainly interested in its applications in machine learning and inverse problems.
The DRO framework is used in [24] to learn models that are robust to perturbations in the data
distribution. Bayesian and minimax approaches to solve the minimum MSE estimation problem for
inverse problems are combined by setting them in the Wasserstein DRO framework in [25] while [26]
uses a spectral decomposition method to solve the Wasserstein DRO problem for Gaussian process
regression and Bayesian linear inverse problems. The Wasserstein distance itself finds applications in
various aspects of inverse problems, serving as a regularization term [27, 28], appearing in a proximal
gradient method [29] or as a loss function [30].

DRO and regularization Connections between DRO and regularization methods have been ex-
plored extensively. According to Shafieezadeh-Abadeh et al. [31], the first connection between robus-
tification and regularization is found in [32]. Specifically, they show that the DRO problem with a
Frobenius norm-uncertainty set is equivalent to Tikhonov regularization. In [33], an overview of the
conditions under which robustification and regularization are equivalent can be found, see Table 2 on
page 15 for a summary. Specific connections between Wasserstein DRO and regularization have been
found in [31, 34, 35]. Wasserstein DRO as a regularization technique for linear regression is introduced
in [31], guaranteeing an upper confidence bound on the loss on test data and proving the regularized
learning problems are tractable. They show that classical regularized learning models are special cases
of their proposed framework. A new concept, the ’variation of a function’ is introduced in [34] as a
new form of regularization that generalizes Total-Variation, Lipschitz and gradient regularization to
provide a general connection between Wasserstein DRO and regularization. Their results show that
Wasserstein DRO is closely related to a ’variation regularization’ problem.

Connections It is evident that the fields of Wasserstein DRO and data-driven approaches for in-
verse problems are fast-growing and there are already some connections between the two. Notable
approaches connecting machine learning and DRO are Distributionally Robust classification, Distribu-
tionally Robust regression, Distributionally Robust Maximum Likelihood Estimation, Distributionally
Robust Minimum Mean Square Error Estimation [7], Wasserstein Generative Adversarial Networks
(W-GANs) and adversarial regularization [8]. Specifically, Wasserstein robustness has been incorpo-
rated in inverse problems before [26], numerically showing that the method holds promise. Ultimately,
there are currently not many theoretical and general results on the subject. Connections between
(Wasserstein-)DRO and regularization have been established in linear regression problems [31–33, 35]
and in general [34], but not fully incorporating the possible ill-posedness and non-linearity of an inverse
problem and often only looking at robustness in either the input- or output-distributions instead of
considering perturbations in the joint or conditional distribution. This thesis aims to fill this gap and
extend the theory on Wasserstein robustness as a regularization method to inverse problems.

2.2 Approach and main contributions
To connect the two main topics of this thesis (inverse problems on the one hand and Wasserstein
robustness on the other), we propose a framework to find distributionally robust solutions for inverse
problems by building on an existing idea for a framework and combining concepts from optimal trans-
port and inverse problems in a novel way. We formulate a Bayesian (i.e. conditional) framework for
inverse problems as a DRO-problem. We explore the characteristics of this framework by presenting
a dual representation for the problem and a general strong duality result which allows us to see some

7

connections to regularization. Subsequently, a specific inverse problem case is chosen, assuming a
conditional setting with Gaussian noise in the measurement process. We continue our exploration of
the proposed framework by exploring the dual problem for this specific scenario and reducing it to a
convex, finite-dimensional problem in order to verify and validate the model through numerical sim-
ulations which suggests the Wasserstein-DRO solution coincides with the least-squares solution. This
research presents a significant advancement in distributionally robust optimization and inverse prob-
lems by integrating Wasserstein robustness in inverse problem modeling. Through thorough analysis,
this work not only expands theoretical foundations but also holds promise to significantly enhance the
reliability of solutions to inverse problems across various fields in practice.

8

3 Theoretical framework
This section outlines the theoretical framework for this thesis, mainly stemming from two key research
areas: distributionally robust optimization and inverse problems. To ensure the thesis is self-contained,
we begin by establishing foundational concepts related to (probability) measures. Following this, we
delve into the theory of Wasserstein distance and optimal transport, before exploring the specifics of
distributionally robust optimization. Finally, we address the theory of inverse problems.

3.1 Measure theory
Measure theory extends concepts such as the length of an interval on the real line to more complex
and abstract subsets, enabling us to apply various notions of length to suit specific problems. Before
we define what a measure is, we will introduce some essential concepts that form the foundation for
defining measures. For a comprehensive introduction to measure theory, we refer to [36].

Definition 3.1 (Power set). The power set of a set Ω, denoted by P(Ω), is the set of all subsets of Ω,
including the empty set and Ω.

Definition 3.2 (σ-algebra). We define a σ-algebra on Ω as a special set of subsets of Ω. The set
F ⊆ P(Ω) is called a σ- algebra if it satisfies the following properties:

(a) Empty and full set: ∅,Ω ∈ F .

(b) Closed under complement: if A ∈ F , then Ac := Ω\A ∈ F .

(c) Closed under countable unions: if Ai ∈ F , i ∈ N then ∪∞i=1Ai ∈ F .

It follows from these properties that any σ-algebra is also closed under intersection.

Definition 3.3 (Measurable set). Let F be any σ-algebra on Ω. Then any A ∈ F is called a F-
measurable set.

Definition 3.4 (Generated σ-algebra). Let B ⊆ P(Ω) be any collection of subsets of a set Ω. We
define the σ-algebra generated by B as the smallest σ-algebra that contains B:

σ(B) := ∩{F ⊂ P(Ω) : B ⊂ F ,F is a σ-algebra}.

This set is nonempty as P(Ω) is a σ-algebra that contains B and an intersection of σ-algebras is itself
a σ-algebra.

Definition 3.5 (Borel σ-algebra). Let (Ω, τ) be a topological space. We define the Borel σ-algebra of
Ω as the set generated by the collection τ of open set on Ω:

B(Ω) := σ(τ).

In other words, it is the smallest σ-algebra that contains all open sets of Ω.

Finally, we have all ingredients to give the definition of a measure. We define measures on σ-algebras
as we want measures to satisfy certain properties that cannot in general be satisfied on the whole
power set, but they can be fulfilled on a (Borel) σ-algebra.

Definition 3.6 (Measure and measure space). Let F be a σ-algebra of Ω and (Ω,F) a measurable
space. A map µ : F → [0,∞] is called a measure if it satisfies the following properties:

(a) The empty set maps to zero: µ(∅) = 0.

(b) Non-negativity: µ(A) ≥ 0 ∀A ∈ F .

(c) Countable additivity or σ-additive: if A1, A2, ... ∈ F are all disjoint (i.e. Ai ∩ Aj = ∅ whenever
i ̸= j for all Ai ∈ F), then µ (∪∞i=1Ai) =

∑∞
i=1 µ(Ai).

If µ is a measure on (Ω,F), then we call (Ω,F , µ) a measure space.

In the special case that µ(Ω) = 1, we call µ a probability measure and (Ω,F , µ) a probability space.
This brings us to the next section on probability measures.

9

3.2 Probability measures
This section expands the theory on measures to probability measures specifically. The contents of this
section are heavily informed by [8].

Definition 3.7 (Probability space). A probability space consists of the triplet (Ω, F , µ) providing a
formal model of a random process. It contains:

– The sample space Ω, the space of all possible outcomes. We will assume Ω to be a Polish space
which is characterized by being a complete metric space with an underlying metric d : Ω×Ω→
[0,∞] and possessing a countable dense subset.

– An event space F which is a σ-algebra consisting of subsets of Ω, a collection of all events we
want to include where an event is a set of outcomes.

– A probability measure µ : F → [0, 1] which assigns a probability to each event in the event space.
Let P (Ω) denote the set of all possible probability measures on the measurable space (Ω, F).

Definition 3.8 (Probability law). For any Rd-valued random variable x on a probability space, the
corresponding probability law is defined as the following probability measure µx on (Rd, B(Rd)), where
B(Rd) denotes the Borel σ-algebra of Rd:

µx(B) := µ(x−1(B)) ∀B ∈ B(Rd).

Definition 3.9 (Probability density function). We define the probability density function of x by the
nonnegative function px : Rd → [0,+∞] such that µx(B) =

∫
B pxdλ ∀B ∈ B(Rd) where λ is the

Lebesgue measure.

The existence of px is guaranteed by the Radon-Nikodym theorem if px is absolutely continuous with
respect to λ, so if µx(B) = 0 whenever λ(B) = 0 for any B ∈ B(Rd). If this is the case, it is unique
λ-almost everywhere.

Definition 3.10 (Expected value of a random variable). The expected value of a random variable x,
denoted as Ex∼µx [x] or E[x] is defined as

Ex∼µx [x] :=
∫
Ω

X(ω)dµ(ω) =

∫
Rd

xdµx(x).

If x has a density px, the expectation can equivalently be written as

Ex∼µx [x] :=
∫
Rd

xpxdλ(x).

Definition 3.11 (Measurable function). Any mapping T : (Ω1,F1)→ (Ω2,F2) between two measur-
able spaces with the property that T−1(A) ∈ F1 ∀A ∈ F2 is said to be a measurable function from
(Ω1,F1) to (Ω2,F2).

Definition 3.12 (Push-forward measure). Given any any measurable function T : (Ω1,F1)→ (Ω2,F2)
between two measurable spaces and a probability measure µ on (Ω1,F1). The push-forward measure
of µ through T , denoted as T#µ is defined as a probability measure on (Ω2,F2) such that

T#µ(A) = µ(T−1(A)) = µ{x ∈ Ω1 : T (x) ∈ A} ∀A ∈ F2.

For a measurable function g : (Rd,B(Rd)) → (Rm,B(Rm)), let µy := g#µx. The expected value of
y = g(x) can be written as:

Ex∼µx [g(x)] :=
∫
Rd

g(x)dµx(x) =

∫
Rm

ydµy(y).

10

Definition 3.13 (Joint probability distribution). We denote by µ(µ1, µ2) the set of joint probability
distributions with marginals µ1 ∈ P (Ω1) and µ2 ∈ P (Ω2), which is defined as follows. For every
µ ∈ µ(µ1, µ2),

µ(A× Ω2) = µ1(A) for every Borel subset A ⊂ Ω1 and
µ(Ω1 ×B) = µ2(B) for every Borel subset B ⊂ Ω2.

This is equivalent to stating that for every ϕ1 ∈ C(Ω1) and ϕ2 ∈ C(Ω2):∫
Ω1×Ω2

ϕ1(x)dµ(x, u) =

∫
Ω1

ϕ1(x)dµ1(x) and∫
Ω1×Ω2

ϕ2(u)dµ(x, u) =

∫
Ω2

ϕ2(u)dµ2(u).

Now that we have established the definitions of probability spaces, (probability) measures, random
variables and their expected value, we proceed to the topics this thesis aims to connect: distributionally
robust optimization and inverse problems.

3.3 Distributionally Robust Optimization (DRO)
In a distributional optimization problem, we want to minimize the expected risk of a decision problem
under uncertainty. In other words, each decision has an uncertain loss, where the true distribution is
usually unknown but may be indirectly observed through data samples. One could use the observed
distribution, but this will always be different from the true distribution and the decision problem
will inherit (often even amplify) estimation errors in the observed distribution. Furthermore, it can
generally be shown that even when the input parameters of a decision problem are unbiased in their
distribution, the optimization outcomes are often optimistically biased, leading to worse than expected
out-of-sample results. This phenomenon is sometimes called the optimizer’s curse or optimization bias.
For a deeper understanding of this phenomenon, we refer to [7], which heavily informs the contents
presented in this section. Additionally, the content of this section draws extensively from another
relevant work, namely [8]. The optimizer’s curse shows that a distributional optimization problem is
not robust, as we do not have a guarantee of low out-of-sample risk. In order to have this guarantee, it
is essential to quantify the sensitivity of the risk with respect to the unknown distribution. To compare
distributions, we require a distance measure between them. In the next section, we will introduce the
Wasserstein distance and some of its properties in order to formulate a general DRO problem.

3.3.1 Wasserstein distance and optimal transport

As mentioned, the Wasserstein distance is a metric to describe how ’close’ probability measures are to
each other. It is sometimes called the ’earth movers distance’ as it gives the minimal amount of work
(= cost) needed to transform one pile of sand (= probability measure) to another. The Wasserstein
distance finds the transport plan that can transform one pile into another for the least amount of work.
The smaller this amount of work is, the more similar the two measures are. Figure 1 illustrates this
concept by showing to piles or probability measure to be transformed into each other.

The Wasserstein distance is a suitable metric for probability measures as it is well-defined for any pair
of probability measures, regardless of any mutual singularity (i.e. it does not matter if their support
overlaps), unlike ϕ-divergences. The latter are only well-defined if the distributions have overlapping
support, which is often not the case when data is approximated on low-dimensional manifolds. This
leads ϕ-divergences to be unstable, thus suffering from vanishing or exploding gradients. Moreover,
the Wasserstein distance is sensitive to the relative position of the supports and to the geometry of
distributions that are being compared, unlike integral probability measures (IPMs). Additionally, the
Wasserstein distance has an intuitive interpretation as the minimum ’cost’ required to transform one
distribution into another. For examples of the mentioned metrics, see [8, p. 5-6].

11

Figure 1: Two probability measures, or ’piles of sand’ to be transformed into one another.

Definition 3.14 (Wasserstein distance). Given a cost function c : Ω × Ω → [0,∞) satisfying the
properties of a distance metric the p-Wasserstein distance (1 ≤ p <∞) between two Borel probability
measures µ1, µ2 ∈ P (Ω) is defined as

Wp(µ1, µ2) :=

(
min

π∈Π(µ1,µ2)

∫
Ω×Ω

cp(x, u)dπ(x, u)

)1/p

, µ1, µ2 ∈ P (Ω)

It can be shown that the Wasserstein distance is a distance metric on the space of probability measures
P (Ω), see [37, p. 106] for the proof and more properties of the Wasserstein distance. The optimization
problem in (3.14) represents an infinite-dimensional linear program over the transportation plan π.
This linear program admits a strong dual, offering an alternative definition of the Wasserstein distance
which can be further simplified if p = 1.

Theorem 3.1 (Dual Kantorovich Problem). For any p ∈ [1,∞), the pth power of the p-Wasserstein
distance between π1 and π2 admits the dual representation

W p
p (µ1, µ2) = sup

∫
Ω

ψ(u)dµ2(u)−
∫
Ω

ϕ(x)dµ1(x)

s.t. ϕ and ψ are bounded continuous functions on Ω with

ψ(x)− ϕ(u) ≤ cp(x, u) ∀x, u ∈ Ω.

Theorem 3.2 (Kantorovich-Rubinstein theorem). The type-1 Wasserstein distance between µ1 and
µ2 admits the dual representation

W1(µ1, µ2) = sup
Lip(ϕ)≤1

∫
Ω

ϕ(x)dµ1(dx)−
∫
Rm

ϕ(u)dµ2(u)

where Lip(ϕ) = supx ̸=u
|ϕ(x)−ϕ(u|
c(x,u) is the Lipschitz modulus of an extended real-valued function ϕ on Ω

with respect to the cost c(x, u).

For the proof of each theorem we refer to [38, Ch. 5] and [38, Remark 6.5], respectively.

3.3.2 DRO problem

Definition 3.15 (Wasserstein-DRO). Finally, we can define the Wasserstein-distributionally robust
optimization (DRO) problem as

inf
g∈Σ

sup
µ:Wp(µ,µ∗)≤ϵ

∫
Ω

l(x; g)dµ(x) (1)

where we parameterize the loss function with g in some set Σ,
∫
Ω
l(x; g)dµ denotes the expected total

loss under the distribution µ and µ∗ is the unknown true distribution.

12

By defining the Wasserstein ball, we can slightly rewrite (1).

Definition 3.16 (Wasserstein Ball). We define the p-Wasserstein ball as

Bϵ,p(µ
∗) := {µ ∈ P (Ω) :Wp(µ, µ

∗) ≤ ϵ}.

This gives an alternative formulation of the Wasserstein-DRO:

inf
g∈Σ

sup
µ∈Bϵ,p(µ∗)

∫
Ω

l(x; g)dµ(x). (2)

In [7, Th. 18-23], it is shown that for some specific cases the worst-case risk provides an upper confi-
dence bound on the true risk and that the best worst-case (optimal value of DRO) provides an upper
confidence bound on the out-of-sample performance of its optimizers. This motivates the idea that the
(Wasserstein-)DRO can beat the optimizer’s curse.

3.4 Inverse problems
The contents of this section draw heavily from the theory in [8, 39]. As mentioned before, inverse prob-
lems aim to approximate the unknown true solution x∗ ∈ X from its noisy and indirect measurement
yδ ∈ Y , usually given by an additive noise model

yδ = Hx∗ + e

where H : X → Y is a linear operator and X and Y are Banach spaces endowed by the norms ∥·∥X and
∥·∥Y respectively. Finally, e represents the combined measuring and modeling error with ∥e∥Y ≤ δ.
Note that an inverse problem can also be modeled by yδ = Hδx∗ where the noise (or corruption) is
not additive but incorporated in the operator Hδ : X → Y . Poisson noise for example is not additive.

Inverse problems often suffer from ill-posedness due to modeling and measurement errors. We call an
inverse problem ill-posed if it is not well-posed.

Definition 3.17 (Well-posed inverse problem). An equation Hx = y is well-posed if all three of the
following criteria hold:

• Existence: there exists at least one x for which Hx = y.

• Uniqueness: there is exactly one x for which Hx = y.

• Stability: the solution depends continuously on the data, i.e. there is a constant C < ∞ s.t.
∥x− x′∥ ≤ C∥y − y′∥ where Hx = y and Hx′ = y′.

If we find an xδ for which Hxδ = yδ, we can ask ourselves how big the backward error
∥∥xδ − x∗∥∥

X
is

with respect to the forward error
∥∥Hxδ −Hx∗∥∥

Y
= ∥e∥Y . In practice, we call a problem ill-posed if a

small error in the data can lead to a large error in the reconstruction.

Ill-posedness causes problems in applicability of inverse problems. In the physical world, there is only
one reality. If our model gives us one or multiple solutions this would yield an obvious problem: in
reality there is exactly one solution representing the physical reality. How do we know which one to
take? How do we make sure there even exists a solution? In many applications, well-posedness is
generally not satisfied, for example in matrix inversion but also in sensitive fields such as computed
tomography, where accuracy is crucial to the application of medical imaging.

To solve an inverse problem, the first elements to address are the existence and uniqueness of our
solution. We cannot guarantee to recover the true solution x∗ for all measurements so we introduce
the concept of a generalized solution: a solution that is closest to the measured data with respect to a
term measuring data discrepancy (often called the loss function) f : Y × Y → R+ such as the squared
normed difference f(Hx, y) = ∥Hx− y∥2Y . We look for a solution x̃ minimizing this data discrepancy:

x̃ ∈ X̃ := argmin
x∈X

f(Hx, y)

13

This addresses the existence of a solution, but the operator H can still have non-trivial null-space,
causing x̃ not to be unique. To address that problem, we choose the solution with the smallest norm.
Thus we define the minimum norm solution

x̂ := argmin
x∈X̃

∥x∥X .

When f and ∥·∥X are both given by the squared L2-norm, we call this the least-squares minimum-
norm solution.

Now that we have established existence and uniqueness, the stability issue becomes the next challenge
to address, presenting a more involved problem to resolve. If we consider inverse problems as a
system of linear equations Hx = y with H ∈ Rm×n a given matrix of rank k ≤ min{m,n} and
y ∈ Rm the data, we can apply different notions of inverses. The generalized inverse Hg ∈ Rn×m
of a matrix H is any matrix satisfying HHgH = H, see [40] for a book on theory and applications
of generalized inverses. When a matrix has a ’regular’ left-inverse (i.e. it is non-singular), this is its
unique generalized inverse. Notable types of generalized inverses include the ’regular’ left inverse, the
right inverse HR (s.t. HHR = I) , the Drazin inverse [41] and the Moore-Penrose pseudo-inverse
[42, 43]. The Drazin inverse can be applied for square matrices and is the unique matrix HD such that
HDHHD = HD, HHD = HDH and Hk+1HD = Hk with k the smallest non-negative integer such
that rank(Hk+1) =rank(Hk). The most notable one however, is the Moore-Penrose pseudo-inverse
which is defined in terms of the singular value decomposition:

H† := VkΣ
−1
k UTk

where Vk = (v1, v2, ..., vk) and Uk = (u1, u2, ..., uk) contain the first k right and left singular vectors
respectively and the diagonal of Σk contains the k largest singular values. The solution x† := H†y
coincides with the least-squares minimum-norm solution. This means we can guarantee the existence
and uniqueness of the solution but unfortunately this solution may still be unstable. The condition
number κ(H) =

∥∥H†
∥∥∥H∥ characterises if a matrix is ill-conditioned since∥∥x∗ − xδ∥∥

X

∥x∗∥X
≤ κ(H)

∥∥y∗ − yδ∥∥
Y

∥y∗∥Y
with y∗ = Hx∗ the true solution and yδ = Hxδ the noisy measurement. Thus, the larger the condition
number, the more ill-posed the problem is. We now have a unique solution x†, but the condition
number ∥H∥2

∥∥H†
∥∥
2
= σ1/σk may still be large.

Alternatively, we can express the solution as

x† = VkΣ
−1
k UTk y =

k∑
i=1

⟨ui, y⟩
σi

vi.

This allows us to see that the component in y corresponding to vi is amplified by σ−1
i . The discrete

Picard condition is satisfied by the vector y ∈ Rm if |⟨ui, y⟩| decays faster with i than the singular
values σi, in which case the stability is usually not a problem.

The pseudo-inverse of a matrix and the discrete Picard condition can be extended to operators in
function spaces. Assume the forward operator H : X → Y to be a bounded linear operator and that
the spaces X and Y are Hilbert spaces. Denote the restriction of H to the orthogonal complement
of its null space N (H)⊥ mapping to its range as H̃ : N (H)⊥ → R(H). The Moore-Penrose pseudo-
inverse H† : R(H) ∪ R(H)⊥ → N (H)⊥ is then defined as the unique linear extension of H̃−1 with
N (H†) = R(H)⊥ and R(H†) = N (H)⊥. It can be shown [39, Ch. 3.2] that if y is an element of the
domain of H†, this pseudo-inverse gives the unique minimum-norm solution x† = H†y. This again
gives existence and uniqueness, but no guarantees of stability (continuity).

For a compact operator H its pseudo-inverse can be expressed as H†y =
∑∞
i=1

⟨ui,y⟩Y
σi

vi with σi the
i-th singular value and ui, vi the i-th left and right singular vectors. The Picard condition is fulfilled
if for every y ∈ D(H†),

14

∞∑
j=1

∣∣⟨y, uj⟩Y ∣∣2
σ2
j

<∞.

This condition tells us how stable or unstable our unique solution is, so how can we modify our solution
to make sure it is stable? This is where regularization comes in. When applying regularization, we
basically force a stable solution. For compact operators, we can regularize the pseudo-inverse to force
it to be bounded (and continuous). Define the regularized pseudo-inverse as

H†
αy =

∞∑
i=0

gα(σi) ⟨y, ui⟩ vi

where gα describes the type of regularization that is used. For example, Tikhonov regularization uses
gα(σ) =

σ
σ2+α and truncated SVD uses

gα(σ) =

{
σ−1, if σ > α

0, otherwise.

The regularization term should provide that H†
α is a bounded linear operator for α > 0 and converges

pointwise to H† as α→ 0, for y ∈ D(H†).

The most popular regularization methods fall under the umbrella of variational regularization. This
approach seeks to construct a family of reconstruction operators Gλ : Y → X, parameterized by λ,
such that Gλ(y) provides a satisfactory approximation of x. The idea is to incorporate prior knowledge
on the solution x into the problem. This method establishes these reconstruction maps as the solution
to a variational minimization problem:

Gλ(y) ∈ argmin
x∈X

f(Hx, y) +Rλ(x)

where f : Y × Y → R+ represents the data fidelity and Rλ : X → R is a regularization term
parameterized by λ incorporating prior information on the input. Often, the regularizer is constructed
as Rλ = λR(x) with R a fixed regularizer and λ ∈ R+ a penalty parameter balancing data fidelity and
regularization. With small λ, the emphasis lies on fitting the data and with a large λ the emphasis
lies on regularization. Most classical reconstruction operators are convergent regularization schemes,
where the regularization term is chosen such that Gλ(y) varies continuously in y and there exists a
parameter selection rule λ : δ 7→ λ(δ) such that as the noise level δ → 0, Gλ(δ)(y) converges to a
generalized solution of the noiseless operator equation y∗ = Hx∗, where y∗ denotes the noise-free
measurement. Popular choices are Total-Variation (TV) regularization with Rλ(x) = λ∥∇x∥1 and
generalized Tikhonov regularization with Rλ(x) = λ∥Bx∥2Z where B : X → Z is a bounded linear
operator.

15

4 Fundamental theorems
Although the theoretical framework has been established, there are still numerous preliminary results
that we will build upon, mostly related to the DRO problem and its dual formulation. In this thesis,
we will draw on findings from other notable researchers across the various fields we are integrating.
This section begins by presenting a dual representation for a problem analogous to ours, though
simpler, which yields a representation similar to Tikhonov regularization. We will provide a detailed
proof of the strong duality of this representation, as it serves as a significant source of inspiration.
Additionally, an interesting alternative proof of strong duality is given. Following this, we will give a
convex, finite-dimensional reduction of the Wasserstein problem to make it computable.

4.1 Dual representation
In [35], Blanchet et al. construct a DRO formulation for the setting of linear and logistic regression
models where the goal is to find the best fitting parameter vector β ∈ Rd relating the given data points
{(xi, yi) : i = 1, ..., n} with predictor variables xi ∈ Rd and responses yi ∈ R ∀i. The goal is to find the
β that best fits all parameterized models relating each data-point. They show that when considering
a square loss and the 2-Wasserstein distance with lq-norm as cost function, the DRO problem can be
reformulated as a problem very similar to Tikhonov-regularization. In order to discuss their results in
detail, their DRO formulation, Proposition 1 and 2 and Theorem 1 [35, p. 8-11] will be repeated here
along with their proofs [44] [35, p.28-29], with some changes in notation to facilitate better connection
with our context in a later stage.

Blanchet et al. use a slightly more general formulation of the Wasserstein-distance, which they define
as follows.

Definition 4.1 (Optimal transport cost). Let c : Rm × Rm → [0,∞] be any lower semi-continuous
function such that c(u, u) = 0 ∀u ∈ Rm. Given two probability distributions µ1, µ2 ∈ P (Rm), the
optimal transport cost is defined as

Dc(µ1, µ2) = inf
π∈Π(µ1,µ2)

∫
Rm×Rm

c(x, u)dπ(x, u),

Blanchet et al. do not apply any other assumptions on the cost function c(·), but if we choose
c1/p(u,w) = ∥u− w∥q for some p, q ≥ 1, then D1/p

c (·) coincides with the p-Wasserstein distance.

Using this generalization, their DRO formulation of this problem is defined as:

inf
β∈Rd

sup
µ:Dc(µ,µ∗)≤ε

∫
Rd+1

l(x, y;β)dµ(x, y). (3)

Here,

– µ∗(x, y) := 1
n

∑n
i=1 δ(xi,yi)(x, y) is the empirical distribution,

–
∫
Rd+1 l(x, y;β)dµ(x, y) denotes the expected loss under the distribution µ,

– and the loss function l(x, y;β) evaluates the fit of the regression coefficient vector β for data
point (x, y).

Proposition 4.1. Let c : Rd+1×Rd+1 be a lower semi-continuous cost funtion satisfying c((x, y), (u, v)) =
0 whenever (x, y) = (u, v). For γ ≥ 0 and loss functions l(x, y;β) that are upper semi-continuous in
(x, y) for each β, define

ϕγ(x, y;β) := sup
u∈Rd,v∈R

{l(u, v;β)− γc((u, v), (x, y))} .

Then

sup
µ:Dc(µ,µ∗)≤ε

∫
Rd+1

l(x, y;β)dµ(x, y) = min
γ≥0

{
γε+

∫
Rd+1

ϕγ(x, y;β)dµ
∗(x, y)

}
.

16

The DR regression problem (3) then reduces to

inf
β∈Rd

sup
µ:Dc(µ,µ∗)≤ε

∫
Rd+1

l(x, y;β)dµ(x, y) = inf
β∈Rd

min
γ≥0

{
γε+

∫
Rd+1

ϕγ(x, y;β)dµ
∗(x, y)

}
. (4)

For the proof of this proposition, see Section 4.2.

Proposition 4.2. Fix q ∈ [1,∞] and let β̄ = (−β, 1) for brevity. Consider l(x, y;β) = (y−βTx)2 and
c((x, y), (u, v)) = ∥(x, y)− (u, v)∥2q. Then,

inf
β∈Rd

sup
µ:Dc(µ,µ∗)≤ε

∫
Rd+1

l(x, y;β)dµ(x, y) = inf
β∈Rd

(√
MSEn(β) +

√
ε
∥∥β̄∥∥

p

)2
,

where MSEn(β) =
∫
(y−βTx)2dµ∗(x, y) = 1

n

∑N
i=1(yi−βTxi)2 as the assumed distribution is discrete,

and p is such that 1/p+ 1/q = 1.

Proof. For brevity, let x̄ = (x, y) and β̄ = (−β, 1). The loss function is then l(x, y;β) = (β̄T x̄)2.
We will start by evaluating ϕγ(x, y;β) as it is defined in Proposition (4.1) and use this expression to
evaluate the right hand side of (4) in Proposition (4.1).

ϕγ(x, y;β) = sup
ū∈Rd+1

{
(β̄T ū)2 − γ∥x̄− ū∥2q

}
.

Apply a change of variables ∆ = ū − x̄ and use that by Hölders inequality
∣∣β̄T∆∣∣ ≤ ∥∥β̄∥∥

p
∥∆∥q with

1/p+ 1/q = 1, where the equality holds for some ∆ ∈ Rd+1:

ϕγ(x̄;β) = sup
∆∈Rd+1

{
(β̄T x̄+ β̄T∆)2 − γ∥∆∥2q

}
= sup

∆∈Rd+1

{
(β̄T x̄+ sign(β̄T x̄)

∣∣β̄T∆∣∣)2 − γ∥∆∥2q}
= sup

∆∈Rd+1

{
(β̄T x̄+ sign(β̄T x̄)

∥∥β̄∥∥
p
∥∆∥q)

2 − γ∥∆∥2q
}

= (β̄T x̄)2 + sup
∆∈Rd+1

{
−(γ − ∥β∥2p)∥∆∥

2
q + 2

∣∣β̄T x̄i∣∣∥∥β̄∥∥p∥∆∥q}
=

(β̄T x̄)2 γ

γ−∥β̄∥2
p

if γ > ∥β∥2p,

∞ else.

We can use this to evaluate

sup
µ:Dc(µ,µ∗)≤ε

∫
Rd+1

l(x, y;β)dµ(x, y) = inf
γ≥0

{
γε+

∫
Rd+1

ϕγ(x, y;β)dµ
∗(x, y)

}

= inf
γ≥∥β∥2

p

γε+ γ

γ −
∥∥β̄∥∥2

p

∫
Rd+1

(β̄T x̄)2dµ∗(x̄)

 .

(5)

Since Blanchet et al. assume a discrete setting, we have
∫
(β̄T x̄)2dµ∗(x̄) = 1

n

∑n
i=1(β̄

T x̄)2 =:MSEn(β)
which we recognize as the mean square error.

The right-hand side of (5) is a convex function growing to ∞ (when γ → ∞ or γ →
∥∥β̄∥∥2

p
) so the

global minimizer of this function can be characterized uniquely by first optimality condition. After
some calculations, we finally have

sup
µ:Dc(µ,µ∗)≤ε

∫
Rd+1

l(x, y;β)dµ(x, y) =
(√

MSEn(β) +
√
ε
∥∥β̄∥∥2

p

)2
.

17

Combining this with the duality result from Proposition (4.1), we have

inf
β∈Rd

sup
µ:Dc(µ,µ∗)≤ε

∫
Rd+1

l(x, y;β)dµ(x, y) = inf
β∈Rd

inf
γ≥0

{
γε+

∫
Rd+1

ϕγ(xi, yi;β)dµ
∗
}

= inf
β∈Rd

(√
MSEn(β) +

√
ε
∥∥β̄∥∥

p

)2

Finally, Blanchet et al. modify the cost such that c((x, y), (u, v)) = (Nq((x, y), (u, v)))
ρ with ρ = 2 and

Nq((x, y), (u, v)) =

{
∥x− u∥q, if y = v,

∞, otherwise.

This modified cost function assigns infinite cost when y ̸= v so the supremum in (3) is only over
joint distributions that do not alter the marginal distribution of y, thus only admitting distributional
ambiguities with respect to the predictor variables x in the ambiguity set.

Theorem 4.1. Consider l(x, y;β) = (y−βTx)2 and c((x, y), (u, v)) = (Nq((x, y), (u, v)))
ρ with ρ = 2.

Then,

inf
β∈Rd

sup
µ:Dc(µ,µ∗)≤ε

∫
Rd+1

l(x, y;β)dµ(x, y) = inf
β∈Rd

(√
MSEn(β) +

√
ε∥β∥p

)2
where MSEn(β) :=

∫
(y − βTx)2dµ∗(x, y) = 1

n

N

i=1
(yi − βTxi)2 as the assumed distribution is discrete,

and p is such that 1/p+ 1/q = 1.

Thus recovering an lp-norm regularized regression.

Proof. Again, start by seeing that

ϕγ(xi, yi;β) = sup
u∈Rd,v∈∈R

{
(vT − βTx)2 − γNq((u, v), (xi, yi))

}
= sup
u∈Rd

{
(yi − βTx)2 − γNq((u, yi), (xi, yi))

}
= sup
u∈Rd

{
(yi − βTx)2 − γ∥u− xi∥2q

}
=

{
(yi − βTx)2 γ

γ−∥β∥2
p

if γ > ∥β∥2p,

∞ else.

The second equality follows from the fact that Nq((u, v), (xi, yi)) = ∞ whenever v ̸= yi so the supre-
mum is effectively only over (u, v) such that v = yi. The last equality follows the same lines of reasoning
as in the proof of Proposition 4.2 and the rest of the proof for Theorem 4.1 is exactly the same as that
of Proposition 4.2.

4.2 Proof of Proposition 4.1
As mentioned before, the proof of Proposition 4.1 is an application of Theorem 1 from [44]. The
assumptions and definitions will be summarized here in order to repeat the Theorem with some changes
in notation with respect to Blanchet et al.

Assumption 1 (A1) c : S × S → R+ is a non-negative lower semi-continuous function satisfying
c(x, u) = 0 if and only if x = u.

Assumption 2 (A2) f ∈ L1(dµ∗) is upper semi-continuous.

18

4.2.1 The primal problem

The primal problem then is to evaluate

I := sup

{∫
ldν : Dc(µ∗, ν) ≤ ε

}
.

As the infimum of the definition of the optimal transport cost Dc is attained for any given non-negative
semi-continuous cost function c, this can be rewritten as follows:

I = sup

∫
l(u)dπ(x, u) : π ∈

⋃
ν∈P (S)

Π(µ, ν),

∫
cdπ ≤ ε

 .

If we let

I(π) :=

∫
l(u)dπ(x, u) and Φµ∗,ε :=

 ⋃
ν∈P (S)

Π(µ, ν) :

∫
cdπ ≤ ε

then

I = sup{I(π) : π ∈ Φµ∗,ε} (6)
is the primal problem.

4.2.2 The dual problem and weak duality

Use mU (S;R) to denote the collection of measurable functions ϕ : (S,U(S)) → (R̄,B(R̄)) where
U(S) = ∩µ∈P (S)Bµ(S) is the universal σ-algebra. Since U(S) ⊆ Bµ(S) for every µ ∈ P (S), any
ϕ ∈ mU (S;R) is also measurable when S and R̄ are equipped with the σ-algebras Bµ(S) and B(R̄)
respectively. This leads the integral

∫
ϕdµ to be well-defined for any non-negative ϕ ∈ mU (S;R).

Define ∆c,l to be the collection of all pairs (λ, ϕ) such that λ is a non-negative real number, ϕ ∈
mU (S;R) and

ϕ(x) + λc(x, u) ≥ l(u), ∀x, u.
In other words,

∆c,l := {(λ, ϕ) : λ ∈ R+, ϕ ∈ mU (S;R), ϕ(x) ≥ l(u)− λc(x, u) ∀x, u ∈ S} .

For every such (λ, ϕ) ∈ ∆c,l consider the dual problem

J(λ, ϕ) := λε+

∫
S

ϕ(x)dµ∗(x). (7)

Theorem 4.2 (Weak duality). Assume (A1) and (A2) hold. We have J ≥ I whenever I and J are
defined as in (6) and (7), respectively.

Proof. For any π ∈ Φµ∗,ε and (λ, ϕ) ∈ Λc,l, we have

J(λ, ϕ) = λε+

∫
ϕ(x)dπ(x, u)

≥ λε+
∫

(l(u)− λc(x, u))dπ(x, u)

=

∫
l(u)dπ(x, y) + λ

(
ε−

∫
c(x, u)dπ(x, u)

)
≥
∫
l(u)dπ(x, u)

= I(π).

Thus,
J := inf{J(λ, ϕ) : (λ, ϕ) ∈ ∆c,l} ≥ I.

19

4.2.3 Strong duality

Theorem 4.3. Under the Assumptions (A1) and (A2),

(a) I=J. In other words,

sup{I(π) : π ∈ Φµ∗,ε} = inf{J(λ, ϕ) : (λ, ϕ) ∈ ∆c,l}.

(b) For any λ ≥ 0, define ϕλ : S → R+ as follows:

ϕλ(x) := sup
u∈S
{l(u)− λc(x, u)}.

There exists a dual optimizer of the form (λ, ϕλ) for some λ ≥ 0. In addition, any feasible
ϕ∗ ∈ Φµ∗,ε and (λ∗, ϕλ∗) ∈ ∆c,l are primal and dual optimizers, satisfying I(π∗) = J(λ∗, ϕλ∗) if
and only if

(i)
l(u)− λ∗c(x, u) = sup

z∈S
{l(z)− λ∗c(x, z)} π∗a.s., and

(ii)

λ∗
(∫

c(x, u)dπ∗(x, u)− ε
)

= 0.

Outline of a Proof. For the full proof we refer the reader to [35, Ch.4], here we will summarize the
outline of the proof for (a) with the additional assumptions that S is a compact Polish space and
c : S × S → R+ is continuous. This is part of the proof has been the most significant source for our
own strong duality proof later on.

Let X = Cb(S × S) and identify its topological dual X∗ = M(S × S) which represent the vector
space of bounded continuous functions equipped with the supremum norm and finite Borel measures
on S × S equipped with the total variation norm, respectively.

Define C and D as the sets of functions

C := {g ∈ X : ∃ϕ ∈ Cb(S), λ ≥ 0 s.t. g(x, u) = ϕ(x) + λc(x, u) ∀x, u ∈ S}

and

D := {g ∈ X : g(x, u) ≥ l(u) ∀x, u ∈ S} .

Every g in the convex subset C is defined by the pair (λ, ϕ), which in turn, can be uniquely identified
by,

ϕ(x) = g(x, x) and λ =
g(x, y)− ϕ(x)

c(x, y)
,

for some (x, y) ∈ S such that c(x, y) ̸= 0. With this invertible relationship in mind, define the
functionals Θ : C → R and Γ : D → R as:

Θ(g) := λε+

∫
ϕdµ and Γ(g) := 0.

The functional Θ is convex, Γ is concave, and we are interested in

inf
g∈C∩D

{Θ(g)− Γ(g)} = inf{J(λ, ϕ) : λ ≥ 0, ϕ ∈ Cb(S), ϕ(x) + λc(x, u) ≥ l(u) ∀x, u}.

Next, we want to identify the conjugate functionals Θ∗ : C∗ → R and Γ∗ : D∗ → R and their respective
domains C∗ and D∗. By definition of the conjugate functional,

20

C∗ =

{
π ∈ X∗ : sup

g∈C

{∫
gdπ −Θ(g)

}
<∞

}
and D∗ =

{
π ∈ X∗ : inf

g∈D

∫
gdπ < −∞

}
,

Θ∗(π) := sup
g∈C

{∫
gdπ −Θ(g)

}
and Γ∗(π) := inf

g∈D

∫
gdπ.

To determine C∗ and Θ∗, see that ∀π ∈M(S × S),

Θ∗(π) = sup
g∈C

{∫
gdπ −Θ(g)

}
= sup

(λ,ϕ)∈R+×CB(S)

{∫
S×S

(ϕ(x) + λc(x, u))dπ(x, u)−
(
λε+

∫
S

ϕ(x)dµ∗(x)

)}
= sup

(λ,ϕ)∈R+×CB(S)

{
λ

(∫
S×S

c(x, u)dπ(x, u)− ε
)
−
∫
S

ϕ(x) (dπ(x, u)− dµ∗(x))

}

=

{
0 if

∫
cdπ ≤ ε and π(Q× S) = µ∗(Q) ∀Q ∈ B(S),

∞ otherwise.

Thus, we have

C∗ =

{
π ∈M(S × S) :

∫
cdπ ≤ ε, π(Q× S) = µ∗ ∀Q ∈ B(S)

}
and Θ∗ = 0.

To determine D∗, we use Lemma 15 in appendix B from [44] which states that infg∈D
∫
gdπ < −∞

whenever π ∈M(S × S) is not non-negative. If it is non-negative, then

inf

{∫
g(x, u)dπ(x, u) : g(x, u) ≥ l(u), ∀x, u

}
=

∫
l(u)dπ(x, u)

as l is upper semi-continuous and bounded from above. Thus it can be approximated pointwise by a
monotonically decreasing sequence of continuous functions (if d(·, ·) is a function that metrizes S then
fn(x) = supu∈S{f(u)−nd(x, u)} is continuous and satisfies fn ↓ f pointwise) and the equality follows
by the monotone convergence theorem. Thus we have

D∗ =

{
π ∈M+(S × S) :

∫
ldπ > −∞

}
and Γ∗(π) =

∫
ldπ.

Then

Γ∗(π)−Θ∗(π) =

∫
ldπ

on C∗ ∩D∗ =

{
π ∈ ∪ν∈KΠ(µ∗, ν) :

∫
cdπ ≤ ε,

∫
ldπ > −∞

}
.

Since I is defined to equal sup
{∫

ldµ : Dc(µ, µ∗) ≤ ε,
∫
ldµ > −∞

}
, it follows that

sup
π∈C∗∩D∗

{Γ∗(π)−Θ∗(π)} = I.

sup{Γ∗(π)− Φ∗(π) : π ∈ C∗ ∩D∗} = I.

The set C ∩ D contains points in the relative interiors of C and D and the epigraph of the function
Γ has non-empty interior. Thus it follows from Fenchel’s duality theorem [45, p.201] (see Section 4.4)
that

21

inf
g∈C∩D

{Θ(g)− Γ(g)} = sup{Γ∗(π)− Φ∗(π) : π ∈ C∗ ∩D∗}.

where the supremum on the right hand side is achieved by some π∗ ∈ Φµ∗,ε. We can rewrite,

inf{J(λ, ϕ) : λ ≥ 0, ϕ ∈ Cb(S), ϕ(x) + λc(x, u) ≥ l(u) ∀x, u} = max{I(π) : π ∈ Φµ,ε} =: I.

Since Cb(S) ⊆ mU (S; R̄),

J ≤ inf{J(λ, ϕ) : λ ≥ 0, ϕ ∈ Cb(S), ϕ(x) + λc(x, u) ≥ l(u) ∀x, u} = I.

Due to weak duality we have J ≥ I, therefore, J = I and we have strong duality.

4.2.4 Dual optimizer

Blanchet’s proof that (λ, ϕλ) with ϕλ(x) := supu∈S{l(u) − λc(x, u)} optimizes the dual problem is
quite involved and part of a larger proof including some parts not relevant to us, and releases some
assumptions that we wish to maintain. Therefore, we present our own small Lemma below to show
(λ, ϕλ) is an optimizer.

Lemma 4.4. Define ϕλ(x) := sup{ϕ(x) + λc(x, u)}. We have

inf
(λ,ϕ)∈∆c,l

J(λ, ϕ) = inf
λ≥0

J(λ, ϕλ).

Proof. We want to prove

inf
(λ,ϕ)∈∆c,l

{
λδ +

∫
ϕ(x)dµ∗

}
= inf
λ≥0

{
λδ +

∫
sup
u
{l(u)− λc(x, u)}dµ∗

}
.

Recall that for every (λ, ϕ) ∈ ∆c,l:

ϕ(x) ≥ l(u)− λc(x, u) ∀x, u

then also
ϕ(x) ≥ sup

u
{l(u)− λc(x, u)} ∀x.

which leads us to our first inequality,

inf
(λ,ϕ)∈∆c,l

{
λδ +

∫
ϕ(x)dµ∗

}
≥ inf
λ≥0

{
λδ +

∫
sup
u
{l(u)− λc(x, u)}dµ∗

}
. (8)

Secondly, let ϕλ(x) := sup{ϕ(x) + λc(x, u)} and see that

inf
(λ,ϕ)∈∆c,l

{
λδ +

∫
ϕ(x)dµ∗

}
≤ inf

(λ,ϕλ)∈∆c,l

{
λδ +

∫
ϕλ(x)dµ

∗
}

(9)

= inf
λ≥0

{
λδ +

∫
sup{ϕ(x) + λc(x, u)}dµ∗

}
(10)

because in (9) the infimum on the left-hand side is taken over a bigger set than the infimum on the
right-hand side. Combining (8) and (10), we get an equality. This completes the proof.

4.3 Evaluation of dual representation using the proximal operator
This section, we will explore some characteristics of the dual optimizer, which is a new contribution to
the best of our knowledge. We take again ϕλ(x̄;β) := supū∈S{l(ū;β) − λc(x̄, ū)} and we choose cost
function c(x̄, ū) := ∥ū− x̄∥22. Notice that

ϕλ(x̄;β) = sup
ū∈S
{l(ū;β)− λ∥ū− x̄∥22} = −λ inf

ū∈S

{
− 1

λ
l(ū;β) + ∥ū− x̄∥22

}
.

22

Here we can recognize the proximal operator since

argmin
ū∈S

{
− 1

λ
l(ū;β) + ∥ū− x̄∥22

}
=: prox− 1

λ l(ū;g)
(x̄).

Dependent on our choice for the loss function, this allows for an explicit expression of ϕλ. To the
best of our knowledge, this is a new contribution and could help us find an explicit expression for
higher-dimensional problems than linear regression.

We will use the following properties for proximal operators [46]:

1. Quadratic function: for any quadratic function f(x) = 1
2x

TAx+bTx+c with A a semi-definite
square matrix we have proxtf (x) = (I + tA)−1(x− tb).

2. Composition with affine mapping: If f(x) = g(Ax+b) with AAT = (1/α)I, then proxf (x) =

(I − αATA)x+ αAT (proxα−1g(Ax+ b)− b).

3. Moreau decomposition: for λ > 0, x = proxλf (x) + λ proxλ−1f∗(x/λ) ∀x.

4.3.1 Quadratic loss function

To take on the linear regressional setting from Blanchet et al. (Section 4.1) we modify the cost

c((x, y), (u, v)) =

{
∥u− x∥22, if v = y

∞, else

to only admit ambiguities in the x-space to simplify the problem. This allows us to write x and u
without the bars. We take u, x, β ∈ Rd, y = v ∈ R and a square loss function l(u, v; g) = (βTu− v)2.
We rewrite the loss:

l(u, v;β) = (βTu− v)2 = (βTu− v)(βTx− v)T

= (βTu)T (βTu)− vβTu− βTuv + v2

= uTββTu− 2vβTu+ v2

=
1

2
uT 2ββTu− 2vβTu+ v2

=
1

2
uTAu+ bTu+ c

where we let A = 2ββT , b = −2vβ, c = v2 to recognize a quadratic function. Finally letting t = − 1
λ

we can use property 1 for quadratic functions to find an explicit expression for the proximal operator:

proxtl(x) = (I + tA)−1(x− tb) = (I − 2

λ
ββT)−1(x+

2

λ
vβ) = (I − 2

λ
ββT)−1(x+

2

λ
yβ) =: û.

since we only consider v = y. This means that ϕλ(x, y;β) = (y − βTx)− λ∥û− x∥22.

4.3.2 Norm loss

Let g(u) = Gu where G ∈ Rn×m, n,m > 0 s.t. GGT = 1
αI and l(u; g) = ∥g(u)− y∥ = ∥Gu− y∥ for any

norm ∥·∥. To simplify notation, let f(u) = − 1
λ l(u). Then, we are looking for proxf (x). Additionally,

let k(x) = − 1
λ∥x∥

2, then f(u) = k(Gu− y). Using property 2, we see that

proxf (x) = x− αGT (Gx− y − proxα−1k(Gx− y)) . (11)

If we let h(x) = ∥x∥, then α−1k(x) = −(αλ)−1h(x). Assuming −(αλ)−1 > 0, use the Moreau
decomposition to see that

23

proxα−1k(Gx− y) = prox−(αλ)−1h(Gx− y)
= Gx− y − (−(αλ)−1) prox((αλ)−1h∗(−αλ)(Gx− y))
= Gx− y + (αλ−1 prox−αλh∗(−αλ(Gx− y)).

(12)

Notice that in the dual problem, we optimize over λ ≥ 0, which means we require α < 0.

For h(·) = ∥·∥ any norm we have h∗(y) = δB∥·∥∗
(y) with B∥·∥∗

:= {y | ∥y∥∗ ≤ 1}, which is the indicator
function of the dual norm ball. Thus for γ any scalar we know proxγh∗(x) = projγB∥·∥∗

(x) where
γB∥·∥∗

:= {y | ∥y∥∗ ≤ γ} and projγB∥·∥∗
is the orthogonal projection onto the scaled dual norm ball

[46]. Thus,

prox−λαh∗ (−αλ(Gx− y)) = projB∥·∥∗
(−λα(Gx− y)) (13)

Putting (11), (12) and (13) together we finally have

proxf (x) = x− αGT
(
Gx− y −

(
Gx− y + (αλ)−1 projB∥·∥∗

(−αλ(Gx− y)
))

= x− αGT
(
Gx− y −Gx+ y − projB∥·∥∗

(
(αλ)−1(Gx− y)

))
= x+ λ−1GT projB∥·∥∗

(
(αλ)−1(Gx− y)

)
. (14)

To evaluate the value of the proximal operator further, we can choose the L2 norm as this has an
explicit expression for the proximal operator [46]. Since the L2-norm is self-dual, we can use that the
projection onto the unit ball is given by

projB∥·∥2
(x) =

{
x

∥x∥2
if ∥x∥2 > 1

x if ∥x∥2 ≤ 1.

Thus,

projB∥·∥2
(−αλ(Gx− y)) =

{
− Gx−y

∥Gx−y∥2
, if ∥Gx− y∥2 ≥ 1

−αλ(Gx− y) else

Plugging this into (14), we get

proxf (x) = x+ λ−1GT ·

{
− Gx−y

∥Gx−y∥2
, if ∥Gx− y∥2 ≥ 1

−αλ(Gx− y), else

= x−GT (Gx− y) ·

{
1

λ∥Gx−y∥2
, if ∥Gx− y∥2 ≥ 1

α, else.

In this thesis, we will focus on achieving a duality result and some numerical simulations but the insights
from this section could be useful for future research wanting to explicitly evaluate higher-dimensional
DRO-problems.

4.4 Fenchel duality theorem
The Fenchel Duality Theorem [45, p.201] is necessary for Blanchet et al.’s proof of strong duality, and
will also be necessary for our strong duality proof later in this thesis. The theorem is as follows.

Theorem 4.5 (Fenchel Duality Theorem). Assume that f and g are, respectively, convex and concave
functionals on the convex sets C and D in a normed space X. Assume that C ∩ D contains points

24

in the relative interior of both C and D and that either [f, C] or [g,D] has nonempty interior, where
[f, C] denotes the epigraph of f over C. Lastly, suppose infx∈C∩D{f(x)− g(x)} is finite. Then

inf
x∈C∩D

{f(x)− g(x)} = max
x∗∈C∗∩D∗

{g∗(x∗)− f∗(x∗)}

where the maximum on the right-hand side is achieved by some x∗0 ∈ C∗ ∩D∗. If the infimum on the
left is achieved by some x0 ∈ C ∩D, then

max
x∈C

[⟨x, x∗0⟩ − f(x)] = ⟨x, x∗0⟩ − f(x0)

and
max
x∈D

[⟨x, x∗0⟩ − g(x)] = ⟨x, x∗0⟩ − g(x0).

For the proof we refer the reader to [45, p.201].

4.5 Alternative proof for strong duality
In [47], Chen et al. provide an interesting alternative proof of strong duality of the Wasserstein-DRO
problem using the Lagrangian dual and push-forward measures. Ultimately, a proof similar to this
one does not allow us the freedom to manipulate the definitions to suit our framework (which we
will introduce in the next section). However, it provides an interesting alternative perspective on the
proof/problem. We define the primal problem similarly, as

I := sup
π∈Φ

I(π) (15)

where I(π) :=
∫
l(u)dπ(x, u) and Φ :=

{
π ∈ P (S × S), π ∈ ∪ν∈P (S)Π(µ∗, ν) :W (µ∗, ν) ≤ ε

}
.

We define the dual problem as

J := inf
λ≥0

J(λ) (16)

where J(λ) := λε+
∫
supu∈S {l(u)− λc(x, u)} dµ∗(x).

Note that in this method, we choose a specific map inside the integral right away, instead of leaving it
general as in the proof by Blanchet et al. [44].

Definition 4.2 (Growth Rate). Define the growth rate of the loss function l(u) given an unbounded
set X and a fixed x ∈ X as

GRl := lim sup
c(x,u)→∞

|h(u)− h(x)|
c(x, u)

.

In [47, Th.3.1.1.], Chen et al. show that if the growth rate of the loss function is infinite, the primal
problem will not have a finite optimal value and that strong duality fails to hold.

Theorem 4.6 (Weak duality). Suppose the loss function is upper semi-continuous and has finite
growth rate GRl <∞. Then weak duality holds: I ≤ J , where I and J are defined as in (15) and (16)
respectively.

Chen et al. use a slightly different proof for their weak duality theorem than what we will show below.
As the expressions are similar, a weak duality proof similar to the one employed by Blanchet et al. in
Section 4.2 suffices here as well.

Proof. For any π ∈ Φ:

25

J(λ) := λε+

∫
sup
u∈S
{l(u)− λc(x, u)} dµ∗(x)

≥ λε+
∫
l(u)− λc(x, u)dπ(x, u)

=

∫
l(u)dπ + λ

(
ε−

∫
c(x, u)dπ(x, u)

)
≥
∫
l(u)dπ(x, u)

:= I(π)

So J := infλ≥0 J(λ) ≥ supπ∈Φ I(π) = I and we have weak duality.

4.5.1 Strong duality

Theorem 4.7 (Strong duality). Suppose the loss function is upper semi-continuous and has finite
growth rate GRl < ∞. Then the dual problem (16) always admits a minimizer λ∗ and strong duality
holds: I = J <∞, where I and J are defined as in (15) and (16) respectively.

Proof. Let ϕλ := infu∈S{λc(x, u) − l(u)}. Construct a measure ν (candidate optimizer) as a convex
combination of two measures, each of which is a perturbation of µ∗ :

ν = qT#µ∗ + (1− q)T̂#µ∗ (17)

where T, T̂ : S → S produce a minimizer to ϕλ∗ where λ∗ is the optimal solution to the dual problem.
In other words,

T (x), T̂ (x) ∈ {u ∈ S : λ∗c(x, u)− l(u) = ϕλ∗(x)}

The q in (17) is chosen such that q ∈ [0, 1] and

q

∫
S

c(T (x), x)dµ∗(x) + (1− q)
∫
S

c(T̂ (x), x)dµ∗(x) = ε. (18)

To ensure the existence of such a q, choose T, T̂ to satisfy∫
S

c(T (·), ·)dµ∗ ≤ ε and
∫
S

c(T̂ (·), ·)dµ∗ ≥ ε.

First, see that

W (ν, µ∗) = sup
f,g

{∫
S

f(u)dν(u) +

∫
S

g(x)dµ∗(x) : f(u) ≤ inf
x∈S
{c(x, u)− g(x)} , ∀u ∈ S

}
= sup

f,g

{
q

∫
S

f(u)dµ∗(T−1(u)) + (1− q)
∫
S

f(u)dµ∗(T̂−1(x))

+

∫
S

g(x)dµ∗(x) : f(u) ≤ inf
x∈S
{c(x, u)− g(x)} , ∀u ∈ S

}
≤ sup

g

{
q

∫
S

(c(T (x), x)− g(x)) dµ∗(x) + (1− q)
∫
S

(
c(T̂ (x), x)− g(x)

)
dµ∗(x)

+

∫
S

g(x)dµ∗(x)

}
= q

∫
S

c(T (x), x)dµ∗(x) + (1− q)
∫
S

c(T̂ (x), x)dµ∗(x)

= ε

26

where the first equality follows from Kantorovich duality (see Theorem 3.2), the second step uses the
structure of ν defined in (17), the third step replaces f(u) with its upper bound and the last step uses
the definition of q in (18). This means that ν is in the Wasserstein-ball, in other words it is primal
feasible.

Now we will establish the optimality of ν by showing its objective value is equal to the optimal dual
value.

∫
S

l(u)dν(u) = q

∫
S

l(u)dµ∗(T−1(u)) + (1− q)
∫
S

l(u)dµ∗(T̂−1(u))

= q

∫
S

(λ∗c(T (x), x)− ϕλ∗(x)) dµ∗(x) + (1− q)
∫
S

(
λ∗c(T̂ (x), x)− ϕλ∗(x)

)
dµ∗(x)

= qλ∗
∫
S

c(T (x), x)dµ∗(x)−
∫
S

ϕλ∗(x) + (1− q)λ∗
∫
S

c(T̂ (x), x)dµ∗(x)

= λ∗ε−
∫
S

ϕλ∗(x)dµ∗(x)

= J.

where the second equality follows from the definition of T and T̂ , the fourth quality comes from the
definition of q and the final equality follows from the optimality of λ∗. Then I = supπ∈Φ

∫
l(u)dν(u) ≥

J and since I ≤ J we have strong duality: I = J .

4.6 Convex reduction of Wasserstein-DRO problem
The sections above have focused on the dual representation and a finite-dimensional reduction for a
linear regressional setting. In general, the Wasserstein-DRO problem in (2) is an infinite-dimensional
optimization problem and thus intractable. Esfahani and Kuhn [48, Section 4.1] have shown that the
Wasserstein-DRO problem can be expressed as a finite-dimensional convex program, as will be stated
in the following Theorem which corresponds to Theorem 4.2 in [48, p.129]. We repeat the theorem
here with the following changes of notation, where the symbol before the arrow is the symbol used by
Esfahani and Kuhn: Ξ→ S, ξ → x, Q→ µ, P̂N → µ∗.

Theorem 4.8 (Convex reduction.). Let Bε(µ∗) := {µ ∈ P (S) :W1(µ, µ
∗) ≤ ε}, lk(x) := maxk≤K lk(x)

with lk : Rm → R̄, k ≤ K. Assume that S ⊆ Rm is convex and closed, that the functions −lk are proper,
convex and lower semi-continuous for all k ≤ K and that lk does not always equal −∞ on S for all
k ≤ K.

With these conventions and assumptions, we have

sup
µ∈Bε(µ∗)

∫
S

l(x)dµ =

inf

λ,si,zik,vik
λε+

1

N

N∑
i=1

si

s.t.[−lk]∗(zik − vik)− σS(vik)− ⟨zik, x̂i⟩ ≤ si ∀i ≤ N, ∀k ≤ K
∥zik∥∗ ∀i ≤ N, ∀k ≤ K

(19)

with χS(x) :=

{
0 if x ∈ S
∞ else

the characteristic function of S and σS(z) := supx∈S⟨z, x⟩ its conjugate

which is the support function of S. Lastly, [−lk]∗(zik − vik) denotes the conjugate of −lk evaluated at
zik − vik and ∥zik∥∗ denotes the dual norm of zik.

Proof. Using the definition of the Wasserstein-distance, we rewrite

sup
µ∈Bε(µ∗)

∫
S

l(x)dµ =

supπ,µ

∫
S
l(x)dµ

s.t.
∫
S×S ∥x− u∥dπ(x, u) ≤ ε
π ∈ Π(µ, µ∗)

=

{
supµi∈P (S)

1
N

∑N
i=1

∫
S
l(x)dµi(x)

s.t. 1
N

∑N
i=1

∫
S
∥x− x̂i∥dµi(x) ≤ ε.

(20)

27

where the second equality follows from using using Bayes law to see that π(x, u) can be constructed
from the marginal distribution µ∗(u) and the conditional distributions µi(x|u = x̂i), i ≤ N , in other
words π = 1

N

∑N
i=1 δx̂i

(u)⊗ µi(x). By duality we can rewrite (20):

sup
µi∈P (S)

inf
λ≥0

1

N

N∑
i=1

∫
S

l(x)dµi(x) + λ

(
ε− 1

N

N∑
i=1

∫
S

∥x− x̂i∥dµi(x)

)

≤ inf
λ≥0

sup
µi∈P (S)

λε+
1

N

N∑
i=1

∫
S

(l(x)− λ∥x− x̂i∥) dµi(x)

= inf
λ≥0

λε+
1

N

N∑
i=1

sup
x∈S

(l(x)− λ∥x− x̂i∥) (21)

where the first (in-)equality follows from the max-min inequality and the second follows from the fact
that P (S) contains the dirac distributions supported on S. Introducing the auxiliary variables si,
i ≤ N we rewrite (21):

infλ,si λε+ 1

N

∑N
i=1 si

s.t. supx∈S (l(x)− λ∥x− x̂i∥) ≤ si, ∀i ≤ N
λ ≥ 0

=

infλ,si λε+ 1

N

∑N
i=1 si

s.t. supx∈S
(
lk(x)−max∥zik∥∗≤λ⟨zik, x− x̂i⟩

)
≤ si, ∀i ≤ N, ∀k ≤ K

λ ≥ 0

≤

infλ,si λε+ 1

N

∑N
i=1 si

s.t. min∥zik∥∗≤λ supx∈S (lk(x)− ⟨zik, x− x̂i⟩) ≤ si, ∀i ≤ N, ∀k ≤ K
λ ≥ 0

where the first equality uses the definition of the dual norm ∥x∥∗ := sup∥z∥≤1⟨z, x⟩ and decomposes
l(x) while the second inequality follows from interchanging the maximization over zik with the minus
sign and once again using the max-min inequality. We can move the minimum over zik to a new
constraint:

inf

λ,si,zik
λε+

1

N

N∑
i=1

si

s.t. sup
x∈S

(lk(x)− ⟨zik − x⟩) + ⟨zik − x̂i⟩ ≤ si, ∀i ≤ N, ∀k ≤ K

∥zik∥∗ ≤ λ ∀i ≤ N, ∀k ≤ K

=

inf

λ,si,zik
λε+

1

N

N∑
i=1

si

s.t.[−lk + χS]
∗(zik)− ⟨zik − x̂i⟩ ≤ si, ∀i ≤ N, ∀k ≤ K

∥zik∥∗ ≤ λ ∀i ≤ N, ∀k ≤ K

(22)

where the equality follows from the definitions of the conjugate function and the characteristic function
and the substitution of zik with −zik. In [48], they show that using the assumption of upper semi-
continuity on the loss functions lk, the inequalities in the proof above actually become equalities, which
means the optimal values of (2) and (22) are the same and

[−lk + χS]
∗(zik) = inf

vik
([−lk]∗(zik − vik) + [χS]

∗(vik))

= cl
[
inf
vik

([−lk]∗(zik − vik) + σS(vik))

]
,

28

where cl[·] denotes the closure operator mapping a function to its larges lower semi-continuous mi-
norant. Finally, by seeing that cl[l(x)] ≤ 0 if and only if l(x) ≤ 0, we have that (2) is equal to
(19).

29

5 Wasserstein robustness for Bayesian estimation
In this section, we introduce a new framework for Wasserstein robustness in Bayesian estimation. The
remainder of this thesis is dedicated to analyzing the properties of this framework and conducting
simulations to support our findings.

Let A ⊂ Rn and B ⊂ Rm be two measurable sets for n,m ∈ N. We assume that µ∗
AB is a fixed

probability measure on the space A × B and that the true measure µAB is ’not far’ from the fixed
distribution µ∗

AB in terms of the Wasserstein distance. For a bounded loss L : A × B → R we can
define the ’worst-case scenario’ as:

sup
µAB∈K:Wp(µAB ,µ∗

AB)≤ε

∫
A×B

L(a, b)dµAB

where:

– ε > 0 is a positive constant,

– 1 ≤ p <∞,

– and K ⊆ P (A × B) is weakly* closed, where P (A × B) represents the set of joint probability
measures on A and B.

To compute a robust estimator we seek an unknown estimator g giving us the ’best worst-case scenario’
for a bounded loss l : A×B → R parameterized by g, which is found through the following variational
objective

RK,ε,p := inf
g∈Σ

sup
µAB∈K:Wp(µAB ,µ∗

AB)≤ε

∫
A×B

l(a, b; g)dµAB (23)

where Σ is a finite-dimensional set. This set is often chosen as a parameterized family of functions
of given complexity. For example, it could be the family of linear or affine maps or neural networks
of a fixed architecture. Analogous to the alternative formulation of the Wasserstein-DRO using the
Wasserstein ball, we give the following definition.

Definition 5.1 (Constrained Wasserstein Ball). We define the p-Wasserstein ball constrained to the
set K as

BK,ε,p(µ
∗) := {µ ∈ K :Wp(µ, µ

∗) ≤ ε}.

With this concept we have the final definition for our problem framework.

Definition 5.2 (Constrained Wasserstein-DRO Problem). We define the Constrained Wasserstein-
DRO Problem as finding the g ∈ Σ that minimizes the following objective function with a bounded
loss function l : A×B → R parameterized by g

RK,ε,p = inf
g∈Σ

sup
µAB∈BK,ε,p(µ∗

AB)

∫
A×B

l(a, b; g)dµAB . (24)

Note that equations (23) and (24) are equivalent and can be interchanged.

5.1 Problem variants
By making choices for A, B, Σ, and K in (24) we can recover robust reconstruction frameworks
for different types of problems. In [35], the DRO-problem Blanchet et al. consider is basically a
specific version of our framework. We can make choices for the spaces we work with to recover their
linear regressional setting. Consider the input xi (or a in our case) as a real vector, the output or
measurements yi (b in our case) as a real scalar and the parameter β (g in our case) as a vector.
In other words, in (24), choose A = Rd, B = R and Σ = Rd and we would have the same input,
output, and parameter spaces. Second, they assume a discrete observed probability distribution P̂n
(corresponding to µ∗

AB in our case) which we leave more general and continuous. The last and most

30

important difference is that for the non-fixed marginal of π, they consider the whole space of joint
probability measures to optimize over, while we restrict to an arbitrary subset K ⊆ P (A × B) which
makes the problem generalizable to other settings, like inverse problems. In addition to the choices for
the spaces, we can recover a linear regression problem by choosing K = P (A×B). By making the
same choices but B = {−1,+1} for the output space, and seeing β as a weight vector we can recover
a binary classification problem.

5.1.1 Inverse problems

In an inverse problem with the input space X and output space Y , given an observation likelihood
µ∗
Y |X : X → P (Y) and a ground-truth distribution µ∗

X ∈ P (X), we want to obtain a reconstruction
of the ground-truth. We may want a reconstruction that is robust with respect to the whole joint
probability space or a reconstruction robust with respect to the noisy distribution of either µ∗

Y |X or
µ∗
X . For ease of notation, let µ∗

XY := µ∗
Y |X ⊗ µ

∗
X . In (24), choose A = X, B = Y . In an unsupervised

setting, so if only µ∗
Y is known instead of µ∗

Y |X , the Bayesian framework introduced in the previous
section cannot be applied anymore so we consider a supervised setting. In practice, this means the
input- and output-data must be paired.

Definition 5.3 (Wasserstein-DRO for inverse problems). If we want to obtain a reconstruction that
is robust with respect to corrupted ground-truth, we choose K := {µX ⊗ µ∗

Y |X : µX ∈ P (X)}
and we obtain

RXK,ε,p := inf
g∈Σ

sup
µX⊗µ∗

Y |X∈BK,ε,p(µ∗
XY)

∫
X

∫
Y

l(x, y; g)dµ∗
Y |X(y|x)dµX(x).

If on the other hand a reconstruction that is robust with respect to corrupted measurements
is desired, we choose K := {µ∗

X ⊗ µY |X : µY |X conditional probabilities} and we have

RYK,ε,p := inf
g∈Σ

sup
µ∗
X⊗µY |X∈BK,ε,p(µ∗

XY)

∫
X

∫
Y

l(x, y; g)dµY |X(y|x)dµ∗
X(x).

Suppose that given data {x1, ..., xn}, we want to choose deterministic distributions. We can take empir-
ical distributions µ∗

Y |X(xi) := δHxi where H : X → Y is some forward operator and µ∗
X = 1

N

∑N
i=1 δxi .

Then µ∗
X,Y = µ∗

X ⊗ µ∗
Y |X = 1

N

∑n
i=1 δ(xi,Hxi). If we want to model measurements corrupted with

additive Gaussian noise, we can choose deterministic µY |X by choosing K = {µ∗
X ⊗ µY |X : µY |X ∼

N(Hx, σ2), σ ∈ R̄} with H : X → Y an operator describing the forward model. For dual representa-
tions later on, it will become clear that K must be weakly* closed so it is necessary to include δHx in
K. For simplicity, we will disregard whether K is closed or not in this section.

We can refine the set K even further if we know the type of noise present in the inverse problem.
Various choices can be made based on the specific noise present in the problem. Let x∗ be the unknown
noise-less ground-truth, H : X → Y some forward operator and e noise with some distribution.

• Additive noise. We model an inverse problem with additive noise in the measurement or
input as yδ = Hx∗ + e or yδ = H(x∗ + e) respectively. A common choice is to model additive
white Gaussian noise (AWGN) on the measurement. We can recover this in the Wasserstein-
DRO for inverse problems by choosing K := {µ∗

X ⊗ µY |X : µY |X ∼ N(Hx, σ2), σ ∈ R} or
K := {µX ⊗ µ∗

Y |X : µX ∼ N(x̃, σ2), x̃, σ ∈ R}. A simple problem would be to assume our
measurement is a noisy image and we want to include only ambiguities in the measurement-space.
Then we choose H = I the identity operator and K := {µ∗

X ⊗ µY |X : µY |X ∼ N(x, σ2), σ ∈ R}.
Instead of Gaussian we can also assume a Laplace-, uniform- or Poisson (with constant parameter)
distribution for the noise [39].

• Multiplicative noise. In the case of multiplicative noise, we model the inverse problem as
yδ = Hx∗ · e or yδ = H(x∗ · e) if the noise is applied to the measurement or input, respectively.
If we have noise on the measurement given by Gamma distributed random variables we can
choose K := {µ∗

X ⊗ µY |X : µY |X ∼ Gamma(α, β
Hx), α, β ∈ R}, with shape parameter α and

scale parameter β. In the case of noise on the input, we choose K := {µX ⊗ µ∗
Y |X : µX ∼

Gamma(α, β), α, β ∈ R}.

31

• Noise with general dependency on input or measurement. Generally, we model an inverse
problem as yδ = Hδx∗ with Hδ : X → Y a forward operator including the noise dependency.
Other than additive or multiplicative, the noise could also be neither of those but dependent
the input and/or measurement. If the measurement is done with noisy input we model it as
Hδx = H(δ(x)) where δ : X → X is some noise operator. Or the other way around, with
Hδx = δ(Hx), δ : Y → Y . Take for example Poisson noise, often used to model errors in photon
counting which finds application in various fields, including tomography, microscopy and CCD
sensors of digital cameras or astronomy systems [39]. The noise is applied via a Poisson process.
We view the measurements yδi as stochastic variables having a Poisson distribution with mean
(Hx)i so we model the problem as y ∼ Pois(Hx). In this case we choose K := {µ∗

X ⊗ µY |X :
µY |X ∼ Pois(Hx)}.

Other than K, we can refine the set Σ and the loss function to specify the type of inverse problem we
are modeling, as this set can basically be seen as the ’candidate inverses’. For example:

• Signal processing and deblurring. When we are trying to recover a sharp image (signal)
x∗ from a (possibly noisy) blurred image (filtered or distorted signal) yδ this can be modeled
as yδ = H ∗ x∗ with H a convolution kernel or point spread function and ∗ representing a
convolution. To recover this type of problem, one may choose Σ as (a subset of) (de-)convolution
operators that work in the frequency domain.

• Rootfinding. Given a continuous function H : R → R and y ∈ R we want to find x such that
H(x) = y. This problem is ill-posed when the derivative of H is small near the root. For these
types of problem we choose Σ as the continuous functions.

• Matrix inversion. If a square matrix H has large condition number
∥∥H−1

∥∥∥H∥, the inversion
problem is ill-posed. If H is non-singular we may choose Σ as square matrices with full rank to
find the inverse of H. If we have more knowledge on the operator H we can incorporate this into
Σ. For example, if H is diagonal, we can take the subset of matrices in Σ that are diagonal. If
H ∈ Rm×n is singular, we may choose Σ ⊆ Rn×m. Knowledge about the sparse elements in the
forward operator can help us find a suitable subset of Σ.

• Wavefield imaging. Wavefield imaging uses acoustic or electromagnetic waves emitted or
reflected by an object of interest to find information about that object such as its location or size
which is used in radar, ultrasound or seismic imaging. The simplest forms of wavefield imaging
problems have measurements yi(t) = v(t, xi), i ∈ {1, 2, ..., n} where the underlying physics are
described be some wave equation. An inverse source problem tries to reconstruct the source term
q(t, x) from the wavefield v(t, x) and assumes a known and constant c(x) = c0 whereas an inverse
medium problem tries to reconstruct the speed of propagation c(x). An example would be to
consider the operator as a convolution with the Green function in which case we could choose Σ
again as (a subset of) (de-)convolution operators in the frequency domain.

• X-ray tomography. The Radon transform describes all possible X-ray measurements of a two-
dimensional image where the measurement (a sinogram) is calculated by taking line-integrals
along straight lines at various angles and shifts. To compute its inverse precisely, we would need
a large amount of angles and shifts which is undesirable in practice. In this case, we can again
choose Σ as a specific subset of (de-)convolution operators in the frequency domain.

5.1.2 Other problem variants

The framework introduced in this thesis can be used to model all kinds of problems so this chapter
is in no way exhaustive. We list two more potential problems which could incorporate our proposed
framework.

Neural network classifiers. Let B = {1, ..., N} be labels, and A ⊂ Rn a given dataset. Let
µ∗
A ∈ P (A) be a ground-truth data distribution and µB|A : A → P(B) a stochastic classification

method. If we let g be parameterized by θ, we have gθ : A → B parameterized by a neural network
with weights in Σ. We can make choices for K similar to the previous section to obtain a framework
robust to corruptions in either the ground-truth or the classification method distribution.

32

Distributionally Robust Maximum Likelihood Estimation In Maximum Likelihood Estima-
tion (MLE), we are looking to estimate parameters of a probability distribution from data. Suppose
we have independent training samples x̂i ∈ X, i ∈ [N] and are looking to estimate the mean vector
µ ∈ Rm and the precision matrix X, which is the inverse of the covariance matrix ∆ ∈ Sm+ of a random
vector x ∈ Rm, where Sm+ denotes the space of positive-definite matrices of size m ×m. [7]. We can
recover this setting by choosing Σ = Rm × Sm+ and K = P (X).

33

6 Dual representation
In the previous section, we have introduced the Wasserstein-DRO for inverse problems. However,
before delving into specific applications, we show a general strong duality result for the constrained
Wasserstein-DRO problem, which will subsequently be adapted for use in inverse problems.

Let I represent the inner supremum in (24), define µXY := µ∗
X ⊗ µY |X for simpler notation, choose

the 1-Wasserstein distance and suppress the subscript of p in the Wasserstein ball, i.e.

I := sup
µXY ∈BK,ε(µ∗

XY)

∫
X×Y

l(x, y; g)dµXY . (25)

We will continue to choose the 1-Wasserstein distance and suppress the subscript of p in the Wasser-
stein ball in the rest of this thesis, unless stated otherwise.

In this section, we focus on the quantity I and refer to it as the primal problem, as it represents
an infinite-dimensional optimization problem. Thus, we seek a dual problem that admits a finite-
dimensional reformulation that facilitates easier evaluation. Recall that Blanchet et al. [35] have a
similar but less general problem formulation. In [44], they prove a strong duality result for the inner
supremum which considers general space S (corresponding to X × Y in our case) and loss function
f ∈ L1(dµ) (corresponding to l ∈ L1(dµ∗

XY) in our case). We will follow a similar approach as Blanchet
et al in [44] to get to a duality result. The contents of this section are thus highly inspired by their
methods but altered to fit our (more general) problem framework. As we ignore the outer infimum of
(24) for now, the only difference with our case remains the set K: we restrict ourselves to an unspecified
subset of probabilities measures on X × Y and Blanchet et al. consider all joint probabilities. This
complicates the road to strong duality as we do not consider the entire joint probability space but a
subset of it.

6.1 Primal problem
To simplify our notation, let S := X × Y , x̄ = (x, y), ū = (u, v) where x, u ∈ X, y, v ∈ Y . We define
two ambiguity sets as

Φµ∗
XY ,K

:=

{
π ∈ P (S × S) : π ∈

⋃
ν∈K

Π(µ∗
XY , ν)

}

and

Φµ∗
XY ,K,ε

:=

{
π ∈ P (S × S) : π ∈

⋃
ν∈K

Π(µ∗
XY , ν),

∫
S×S

c(x̄, ū)dπ(x̄, ū) ≤ ε

}
where we leave K an unspecified subset of P (S). Recognize the first set as all joint probabilities in
S × S that have µ∗

XY as their first marginal and any ν ∈ K as their second marginal. The second
set can then be recognized as a subset of the first, including only those that are contained within the
Wasserstein ball.
We use the ambiguity set to define the objective function as

I(π) :=

∫
S×S

l(ū)dπ(x̄, ū)

where we ignore the g-parameter in the loss function for the time being. This lets us reformulate our
primal problem as

I = sup
π∈Φµ∗

XY
,K,ε

I(π). (26)

Finally, assume:

– (A1) c : S × S → R+ to be non-negative lower semi-continuous s.t. c(x, y) = 0 if and only if
x = y and

– (A2) l ∈ L1(dµ∗
XY) is upper semi-continuous.

34

6.2 Dual problem and weak duality
For the same reasons as in Section 4.2.2, let mU (S;R) denote the collection of measurable functions
ϕ : (S,U(S))→ (R̄,B(R̄)) where U(S) = ∩µ∈P (S)Bµ(S) is the universal σ-algebra. Define the set

Λc,l :=

{
(λ, ϕ, ψ) : λ ∈ R+, ϕ, ψ ∈ mU (S;R),

∫
S×S

(ϕ(x̄) + ψ(ū))dπ(x̄, ū)

≥
∫
S×S

(l(ū)− λc(x̄, ū))dπ(x̄, ū) ∀π ∈ Φµ∗
XY ,K

}
.

For such (λ, ϕ, ψ) ∈ Λc,l, consider

J(λ, ϕ, ψ) := λε+ sup
π∈Φµ∗

XY
,K

∫
S×S

(ϕ(x̄) + ψ(ū))dπ(x̄, ū).

Finally, let
J := inf

(λ,ϕ,ψ)∈Λc,l

J(λ, ϕ, ψ) (27)

which we refer to as the dual problem.

Theorem 6.1 (Weak duality). Assume (A1) and (A2) hold and S is a compact, Polish space. We
have J ≥ I where I and J are defined as in (26) and (27), respectively.

Proof. We have that
∫
ldµ∗

XY is finite and
∫
(ϕ+ ψ)dπ ≥

∫
ldπ for every (λ, ϕ, ψ) ∈ Λc,l, π ∈ Φµ∗

XY ,K
.

Thus, the integral in the definition of J(λ, ϕ, ψ) avoids ambiguities such as ∞−∞ for any (λ, ϕ, ψ) ∈
Λc,l, π ∈ Φµ∗

XY ,K
.

For any π ∈ Φµ∗
XY ,K,ε

and (λ, ϕ, ψ) ∈ Λc,l:

λε+

∫
S×S

(ϕ(x̄) + ψ(ū))dπ(x̄, ū) ≥ λε+
∫
S×S

(l(ū)− λc(x̄, ū))dπ(x̄, ū)

=

∫
S×S

l(ū)dπ(x̄, ū) + λ

(
ε−

∫
S×S

c(x̄, ū)dπ(x̄, ū)

)
≥
∫
S×S

l(ū)dπ(x̄, ū)

= I(π)

where the second equality follows from the assumption that (λ, ϕ, ψ) ∈ Λc,l and π ∈ Φµ∗
XY ,K,ε

and the
fifth inequality follows from the fact that

∫
cdπ ≤ ε, ∀π ∈ Φµ∗

XY ,K,ε
.

Taking the supremum with respect to π we obtain

J(λ, ϕ, ψ) = sup
π∈Φµ∗

XY

λε+

∫
S×S

(ϕ(x̄) + ψ(ū))dπ(x̄, ū)

≥ sup
π∈Φµ∗

XY
,K,ε

λε+

∫
S×S

(ϕ(x̄) + ψ(ū))dπ(x̄, ū)

≥ sup
π∈Φµ∗

XY
,K,ε

I(π)

So, taking now the infimum in Λc,l we conclude that

J := inf
(λ,ϕ,ψ)∈Λc,l

J(λ, ϕ, ψ) ≥ sup
π∈Φµ∗

XY
,K,ε

I(π) = I.

We have weak duality and will refer to J as the dual problem. The question now remains if we have
strong duality, i.e. J = I?

35

6.3 Strong duality
Before presenting the strong duality result, we need to define certain sets and functionals, verify their
convexity and introduce a lemma, all in preparation for the application of the Fenchel Duality Theorem
[45, p. 201].

Define the sets of functions

C :=

{
g ∈ X :∃ϕ, ψ ∈ Cb(S), λ ≥ 0 s.t.∫

S×S
g(x̄, ū)dπ(x̄, ū) =

∫
S×S

(ϕ(x̄) + ψ(ū) + λc(x, u))dπ(x̄, ū) ∀π ∈ Φµ∗
XY ,K

} (28)

and

D :=

{
g ∈ X :

∫
S×S

g(x̄, ū)dπ(x̄, ū) ≥
∫
S×S

l(ū)dπ(x̄, ū), ∀π ∈ Φµ∗
XY ,K

}
. (29)

Notice that both of these sets are convex. To see this, let g1, g2 ∈ C, γ ∈ [0, 1] and define g3 :=
γg1 + (1− γ)g2 and see that for every π ∈ Φµ∗

XY ,K
:∫

g3dπ =

∫
γg1dπ +

∫
(1− γ)g2dπ

=

∫
([γϕ1 + (1− γ)ϕ2] + [γψ1 + (1− γ)ψ2] + c[γλ1 + (1− γ)λ2]) dπ

=

∫
(ϕ3 + ψ3 + λ3c)dπ

and thus g3 ∈ C. Define g3, γ analogous for D, but now let g1, g2 ∈ D. Then for every π ∈ Φµ∗,K :∫
g3dπ ≥ γ

∫
ldπ + (1− γ)

∫
ldπ =

∫
ldπ

so g3 ∈ D. Thus, both C and D are convex.

Define the functionals Θ : C → R and Γ : D → R respectively as

Θ(g) := inf
(λ,ϕ,ψ)∈A(g)

{
λε+ sup

π∈Φµ∗
XY

,K

∫
S×S

(ϕ(x̄) + ψ(ū))dπ(x̄, ū)

}
and (30)

Γ(g) := 0. (31)

with

A(g) :=

{
(λ, ϕ, ψ) : ϕ, ψ ∈ Cb(S), λ ≥ 0∫
S×S

g(x̄, ū)dπ(x̄, ū) =

∫
S×S

(ϕ(x̄) + ψ(ū) + λc(x, u))dπ(x̄, ū) ∀π ∈ Φµ∗
XY ,K

}
It is simple to see that A is convex, since A(tg1 + (1− t)g2) = tA(g1) + (1− t)A(g2) for g1, g2 ∈ C and
t ∈ [0, 1]. To show Θ is convex, recall

J(λ, ϕ, ψ) := λε+ sup
π∈Φµ∗

XY
,K

∫
S×S

(ϕ(x̄) + ψ(ū))dπ(x̄, ū)

which we recognize to be convex: J(t(λ1, ϕ1, ψ1)+(1−t)(λ2, ϕ2, ψ2)) ≤ tJ(λ1, ϕ1, ψ1)+(t−1)J(λ2, ϕ2, ψ2).
We can rewrite

Θ(g) := inf
(λ,ϕ,ψ)∈A(g)

J(λ, ϕ, ψ).

36

Now let (λ1, ϕ1, ψ1) and (λ2, ϕ2, ψ2) realize the infima for g1, g2 ∈ C respectively, i.e.

Θ(g1) := inf
(λ,ϕ,ψ)∈A(g1)

J(λ, ϕ, ψ) = J(λ1, ϕ1, ψ1),

Θ(g2) := inf
(λ,ϕ,ψ)∈A(g2)

J(λ, ϕ, ψ) = J(λ2, ϕ2, ψ2).

Now consider

Θ(tg1 + (1− t)g2) = inf
(λ,ϕ,ψ)∈A(tg1+(1−t)g2)

J(λ, ϕ, ψ).

Since A(g) is convex we can construct a point

(λ3, ϕ3, ψ3) := t(λ1, ϕ1, ψ1) + (1− t)(λ2, ϕ2, ψ2) ∈ A(tg1 + (1− t)g2).

By convexity of J ,

J(λ3, ϕ3, ψ3) = tJ(λ1, ϕ1, ψ1) + (t− 1)J(λ2, ϕ2, ψ2)

and thus

Θ(tg1 + (1− t)g2) = inf
(λ,ϕ,ψ)∈A(tg1+(1−t)g2)

J(λ, ϕ, ψ)

≤ J(λ3, ϕ3, ψ3)

= tJ(λ1, ϕ1, ψ1) + (t− 1)J(λ2, ϕ2, ψ2)

= tΘ(g1) + (1− t)Θ(g2)

and thus we have shown that Θ is convex. Finally, we remark that Γ is concave.

Lemma 6.2. Let S × S be a compact Polish space, and assume (A1) and (A2) hold. Define C and
D as in (28) and (29) respectively. Their intersection C ∩D contains at least one point in the relative
interior of C and D. Finally, the epigraph of Γ over D has non-empty interior.

Proof. Denote by ri(A) the relative interior of a set A. We will show there exists an h ∈ C ∩ D
such that h ∈ ri(C) ∩ ri(D). We take h(x, u) = c(x, u) + supx∈S{l(x)}. We can choose ϕ(x) :=

c(x, x) + supx∈S{l(x)}, ψ(u) := 0 and λ = c(x,u)−c(x,x)
c(x,u) then ϕ(x) + ψ(u) + λc(x, u) = h(x, u) and

clearly
∫
ϕ+ ψ + λcdπ =

∫
hdπ ∀π ∈ Φµ∗

XY ,K
so h ∈ C. Clearly h ∈ D since h(x, u) ≥ l(u) for every

u and thus
∫
hdπ ≥

∫
ldπ ∀π ∈ Φµ∗

XY ,K
. Consequently, h ∈ C ∩ D and we will now show it is an

element of the relative interior of each set. Since both C and D are convex, we must show that for
every g ∈ C there exists a γ > 1 such that γh+ (1− γ)g ∈ C, and analogous for D.

Let γ > 1 and g ∈ C arbitrary. Define f(x, u) := γh(x, u) + (1− γ)g(x, u). Then for every π ∈ Φµ∗,K ,∫
f(x, u)dπ =

∫
γ(c(x, u) + sup

x∈S
{l(x)})dπ +

∫
(1− γ)g(x, u)dπ

=

∫
γ(c(x, u) + sup

x∈S
{l(x)})dπ +

∫
(1− γ)(ϕ(x) + ψ(u) + λc(x, u))dπ

=

∫
[(1− γ)ϕ(x) + ψ(u) + γ sup

x∈S
{l(x)}+ (γ − γλ− λ)c(x, u)]dπ

=

∫
[ϕ2(x) + ψ2(u) + λ2c(x, u)]dπ

where we define ϕ2(x) := (1 − γ)ϕ(x) + supx∈S{l(x)}, ψ2(u) := (1 − γ)ψ(u) and λ2 := γ − γλ + λ.
Thus f ∈ C which means h ∈ ri(C).

37

Now let γ > 1 and g ∈ D arbitrary. Define similarly f(x, u) := γh(x, u) + (1 − γ)g(x, u). Then for
every π ∈ Φµ∗,K , ∫

f(x, u)dπ =

∫
γ(c(x, u) + sup

x∈S
{l(x)})dπ +

∫
(1− γ)g(x, u)dπ

≥
∫
(γ(c(x, u) + l(u))dπ +

∫
(1− γ)l(u)dπ

=

∫
(γc(x, u) + l(u))dπ ≥

∫
l(u)dπ

and thus f ∈ D which means h ∈ ri(D).

To show [Γ, D] has non-empty interior, we need only show that D has non-empty interior. Let g ∈ D,
ε > 0 and let h = g + ε which is also in D since

∫
hdπ =

∫
g + εdπ ≥

∫
ldπ + ε ≥

∫
ldπ where we use

that π is a probability measure so
∫
εdπ = ε. Take η ∈ X such that ∥h− η∥∞ ≤ ε/2. We have

ε/2 > ∥h− η∥∞ = sup
x,u∈S

|h(x, u)− η(x, u)| = |g(x, u) + ε− η(x, u)| ≥ g(x, u) + ε− η(x, u) ∀x, u.

Then we have η(x, u) > g(x, u) + ε/2 and finally∫
ηdπ >

∫
(g + ε/2)dπ ≥

∫
ldπ + ϵ/2 >

∫
ldπ

and thus η ∈ int(D), so D has non-empty interior.

Lemma 6.3. Let S × S be a compact Polish space, l : S → R upper semi-continuous and D defined
as in (29). It holds that

inf
g∈D

∫
gdπ = −∞

if and only if π is not non-negative.

Proof. Clearly if π is non-negative then infg∈D
∫
gdπ > 0 > −∞.

Now suppose π is not non-negative, then we can use the Jordan decomposition π = π+−π− of a positive
measure π+ and a negative measure π− such that π+(A) = 0 < π−(A) < ∞ for some A ∈ B(S × S).
Any Borel measure on a Polish space is regular which means that for any finite measure µ on B(S×S),

µ(A) = sup{µ(C) | C ⊆ A,C compact}
and µ(A) = inf{µ(O) | A ⊆ O,O open}.

Thus given δ > 0, there exists a compact set Cδ ⊆ A and an open set Oδ ⊇ A such that π−(Oδ)− δ ≤
π−(A) ≤ π−(Cδ) + δ. Moreover, since 0 = π+(A) ≥ π+(O) + δ, we have π+(Oδ) ≤ δ.

Since S×S is compact, we can use Urysohn’s lemma [49, Th.10.8] to see that there exists a continuous
function h : S × S → [0, 1] such that h(x, y) = 1 for all x ∈ Cδ and h(x, y) = 0 for all x /∈ Oδ. Note
that since l is upper semi-continuous and S is compact, we have supx∈S l(x) < ∞. Also, by choosing
δ ≤ π−(A)/2, we have∫

hdπ =

∫
hdπ+ −

∫
hdπ− ≤ π+(Oδ)− π−(Cδ) ≤ 2δ − π−(A) < 0

where the second (in-)equality we use that
∫
hdπ− is bounded from below by π−(C) and

∫
hdπ+ is

bounded from above by π+(O). Combining these facts, we have that infn≥1

∫
gndπ = −∞ for the

sequence of continuous functions gn(x, y) = nh(x, y) + supx∈S l(x). As gn(x, y) ≥ l(y) for all x, y ∈ S,
also

∫
gndπ ≥

∫
ldπ ∀π ∈ Φµ∗

XY ,K
. It follows that infg∈D

∫
gdπ ≤ infn≥1 gndπ = −∞.

Finally, we have all the ingredients to state our strong duality result.

38

Theorem 6.4. Assume (A1) and (A2) hold, S is a compact Polish space and c : S × S → R+ is
continuous. Finally, assume K is weakly* closed.

If the assumptions hold, then strong duality holds: J = I < ∞, where I and J are defined as in (26)
and (27), respectively.

Proof. To prepare for the application of the Fenchel duality theorem, we will define the functionals and
spaces of interest and identify their conjugates. Define the sets of functions C and D as in (28) and
(29) respectively. Define the functionals Θ : C → R and Γ : D → R as in (30) and (31), respectively.
We let X = Cb(S × S) and recognize its topological dual X∗ = M(S × S) which represent the vector
space of bounded continuous functions equipped with the supremum norm and finite Borel measures
on S × S equipped with the total variation norm, respectively.

First, note that the infimum for Θ guarantees an invertible relationship between every g ∈ C and the
triple (λ, ϕ, ψ), i.e. they uniquely define each other. We are interested in

inf
g∈C∩D

{Θ(g)− Γ(g)} = inf
g∈C

(λ,ϕ,ψ)∈A(g)

{
J(λ, ϕ, ψ) :

∫
S×S

(ϕ(x̄) + ψ(ū) + λc(x, u))dπ(x̄, ū)

≥
∫
S×S

l(ū)dπ(x̄, ū) ∀π ∈ Φµ∗
XY ,K

}
.

Next, we want to identify the conjugate functionals Θ∗ : C∗ → R and Γ∗ : D∗ → R and their respective
domains C∗ and D∗. By definition of the conjugate functional,

C∗ =

{
π ∈ X∗ : sup

g∈C

{∫
gdπ −Θ(g)

}
<∞

}
and D∗ =

{
π ∈ X∗ : inf

g∈D

∫
gdπ < −∞

}
,

Θ∗(π) := sup
g∈C

{∫
gdπ −Θ(g)

}
and Γ∗(π) := inf

g∈D

∫
gdπ.

To determine C∗ and Θ∗, see that ∀π ∈M(S × S),

39

Θ∗(π) = sup
g∈C

{∫
gdπ −Θ(g)

}
= sup

g∈C
(λ,ϕ,ψ)∈A(g)

{∫
S×S

(ϕ(x̄) + ψ(ū) + λc(x̄, ū))dπ(x̄, ū)

− inf
g∈C

(λ,ϕ,ψ)∈A(g)

{
λε+ sup

π̃∈Φµ∗
XY

,K

∫
S×S

(ϕ(x̄) + ψ(ū))dπ̃(x̄, ū)

}}

= sup
g∈C

(λ,ϕ,ψ)∈A(g)

{∫
S×S

(ϕ(x̄) + ψ(ū) + λc(x̄, ū))dπ(x̄, ū)

+ sup
g∈C

(λ,ϕ,ψ)∈A(g)

{
−λε− sup

π∈Φµ∗
XY

,K

∫
S×S

(ϕ(x̄) + ψ(ū))dπ(x̄, ū)

}}

= sup
g∈C

(λ,ϕ,ψ)∈A(g)

{∫
S×S

(ϕ(x̄) + ψ(ū) + λc(x̄, ū))dπ(x̄, ū)

− λε− sup
π̃∈Φµ∗

XY
,K

∫
S×S

(ϕ(x̄) + ψ(ū))dπ̃(x̄, ū)

}

= sup
g∈C

(λ,ϕ,ψ)∈A(g)

{
λ

(∫
S×S

c(x̄, ū)dπ(x̄, ū)− ε
)

−

(∫
S×S

(ϕ(x̄) + ψ(ū))dπ(x̄, ū)− sup
π̃∈Φµ∗

XY
,K

∫
S×S

(ϕ(x̄) + ψ(ū))dπ̃(x̄, ū)

)}

= sup
g∈C

(λ,ϕ,ψ)∈A(g)

{
λ

(∫
S×S

c(x̄, ū)dπ(x̄, ū)− ε
)

−
(∫

S×S
(ϕ(x̄) + ψ(ū))dπ(x̄, ū)− sup

µ̃∈K

∫
S×S

(ϕ(x̄) + ψ(ū))dµ∗
XY (x̄)dµ̃(ū)

)}

=

0 if

∫
cdπ ≤ ε, π(Q× S) = µ∗

XY (Q) ∀Q ∈ B(S) and π(S ×R) = µXY ∀R ∈ B(S)
for some µXY (R) ∈ K

∞ otherwise

where the third equality follows from changing the infimum to a supremum and the fourth equality
removes the second supremum as it is redundant. The fifth equality uses that we take the supremum
over π̃ ∈ Φµ∗

XY ,K
which means the first marginal of π̃ is µ∗

XY . Thus, we are left with taking the
supremum over µ̃ ∈ K. The last equality uses that for the second term to be 0, we need π and π̃ to
have the same marginals. As K is assumed to be weakly* closed, the second marginal is contained
within K. Therefore, π has µ∗

XY and some µXY ∈ K as its marginals.

Thus, we have

C∗ =

{
π ∈M(S × S) :

∫
cdπ ≤ ε, π(Q× S) = µ∗

XY ∀Q ∈ B(S)

and π(S ×R) = µXY ∀R ∈ B(S) for some µXY (R) ∈ K
}

and Θ∗ = 0.

40

To determine D∗, we use Lemma 6.3, which states that infg∈D
∫
gdπ = −∞ whenever π ∈M(S × S)

is not non-negative. If it is non-negative, then

inf
g∈D

{∫
gdπ :

∫
gdπ ≥

∫
ldπ, ∀π ∈ Φµ∗

XY ,K

}
=

∫
ldπ

as l is upper semi-continuous and bounded from above. Thus it can be approximated pointwise by a
monotonically decreasing sequence of continuous functions, then the equality follows by the monotone
convergence theorem. Thus we have

D∗ =

{
π ∈M+(S × S) :

∫
ldπ > −∞

}
and Γ∗(π) =

∫
ldπ.

Then

Γ∗(π)−Θ∗(π) =

∫
ldπ

on C∗ ∩D∗ =

{
π ∈ ∪ν∈KΠ(µ∗

XY , ν) :

∫
cdπ ≤ ε,

∫
ldπ > −∞

}
.

Since I is defined to equal sup
{∫

ldµXY :W (µXY , µ
∗
XY) ≤ ε,

∫
ldµXY > −∞

}
, it follows that

sup
π∈C∗∩D∗

{Γ∗(π)−Θ∗(π)} = I.

By Lemma 6.2, C and D are convex, the set C ∩D contains points in the relative interiors of C and
D and the epigraph of the function Γ over D has non-empty interior. Thus, we can apply the Fenchel
duality Theorem [45, p.201]. By consequence of the mentioned theorem,

inf
g∈C∩D

{Θ(g)− Γ(g)} = sup{Γ∗(π)−Θ∗(π) : π ∈ C∗ ∩D∗}

where the supremum on the right hand side is achieved by some π∗ ∈ Φµ∗
XY ,K,ε

. We can rewrite,

inf
(λ,ϕ,ψ)∈A

{
J(λ, ϕ, ψ) :

∫
(ϕ+ ψ + λc)dπ ≥

∫
ldπ ∀π ∈ Φµ∗

XY ,K,ε

}
= max
π∈Φµ∗

XY
,K,ε

I(π) =: I.

Since Cb(S) ⊆ mU (S; R̄),

J ≤ inf
(λ,ϕ,ψ)∈A

{
J(λ, ϕ.ψ) :

∫
(ϕ+ ψ + λc)dπ ≥

∫
ldπ ∀Φµ∗

XY ,K,ε

}
= I.

Due to weak duality we have J ≥ I, therefore, J = I and we have strong duality.

6.4 Finite-dimensional reduction of dual
Currently, our dual formulation optimizes over ϕ, ψ ∈ mU (S;R) and is thus not yet finite-dimensional.
Ideally, we would like to find an explicit expression for ϕ and ψ, parameterized by λ. Recall that in
[44], Blanchet et al. optimize (λ, ϕ) over the collection of pairs

∆c,l := {(λ, ϕ) : λ ∈ R+, ϕ ∈ mU (S;R), ϕ(x) ≥ l(u)− λc(x, u) ∀x, u ∈ S}

and they find inf(λ,ϕ)∈∆c,l
J(λ, ϕ) = infλ≥0 J(λ, ϕλ) with ϕλ := supu{l(u)−λc(x, u)}, a finite-dimensional

problem. In order to evaluate our dual problem J := inf(λ,ϕ,ψ)∈Λc,l
J(λ, ϕ, ψ), we would like to find

similar expressions for ϕ and ψ. However with K unspecified, there exists little hope to find a general
finite-dimensional expression for J . We can demonstrate however, that when K = P (S), the opti-
mizers are ϕ = supu{l(u) − λc(x, u)} and ψ = 0. Thus verifying that for K = P (S) our problem is
equivalent to the one presented in [44], i.e. an unconstrained Wasserstein-DRO. In the next section,
we will explore an inverse problem case with a constrained K.

41

Theorem 6.5 (Finite-dimensional reduction for K = P (S)). Let K = P (S) and ϕλ := supu{l(u) −
λc(x, u)}. Then,

inf
(λ,ϕ,ψ)∈Λc,l

J(λ, ϕ, ψ) = inf
λ≥0

J(λ, ϕλ, 0).

Proof. We want to show

inf
(λ,ϕ,ψ)∈Λc,l

{
λε+ sup

π∈Φµ∗
XY

,K

∫
(ϕ(x) + ψ(u))dπ(x, u)

}

= inf
λ∈R+

{
λε+

∫
sup
u
{l(u)− λc(x, u)}dµ∗

}
.

First, see that

inf
(λ,ϕ)∈Λc,l

{
λε+ sup

π∈Φµ∗
XY

,K

∫
(ϕ(x) + ψ(u))dπ(x, u)

}
(32)

≤ inf
(λ,ϕ=ϕλ,ψ=0)∈Λc,l

{
λε+

∫
(ϕλ(x) + ψ(u))dµ∗

}
(33)

= inf
λ∈R+

{
λε+

∫
sup
u∈S
{(u) + λc(x, u)}dµ∗

}
because the infimum in (32) is taken over a bigger set than the infimum in (33).

Secondly,

inf
(λ,ϕ,ψ)∈Λc,l

{
λε+ sup

π∈Φµ∗
XY

,K

∫
(ϕ(x) + ψ(u))dπ(x, u)

}

= inf
(λ,ϕ,ψ=0)∈Λc,l

{
λε+ sup

π∈Φµ∗
XY

,K

∫
(ϕ(x) + ψ(u))dπ(x, u)

}

≥ inf
λ∈R+

{
λε+ sup

π∈Φµ∗
XY

,K

∫
(l(u)− λc(x, u))dπ(x, u)

}

= inf
λ∈R+

{
λε+

∫
S

sup
ν∈K

{∫
S

(l(u)− λc(x, u))dν(u)
}
dµ∗

XY (x)

}
≥ inf
λ∈R+

{
λε+

∫
S

sup
û∈S
{l(û)− λc(x, û)} dµ∗

XY (x)

}
= inf
λ∈R+

{
λε+

∫
ϕλ(x)dµ

∗
XY

}
where the second inequality uses that whenever (λ, ϕ, ψ) ∈ Λc,l,

∫
ϕ + ψdπ ≥

∫
(l − λc)dπ for all

π ∈ Φµ∗
XY ,K

, the third equality applies both marginals of π since π ∈ Φµ∗
XY ,K

, the fourth equality
applies the δ-measure over u as all δ-measures on S are included in K = P (S). This completes the
proof.

This Theorem verifies that whenK = P (S), our framework is equivalent to an unconstrained Wasserstein-
DRO problem.

In the linear regressional setting, with the assumptions from Theorem 4.1 this would give us the same
expression of an lp-norm regularized regression problem.

42

7 Inverse problem with Guassian noise in measurement space
In this chapter we study a particular case, namely an inverse problem where we assume y is given by
an operation on x and we desire robustness to additive Gaussian noise in the measurement space. For
this problem, we will verify the assumptions of the strong duality theorem and reduce the problem
to a finite-dimensional one to make it computationally tractable. We validate our framework with
numerical simulations of this case in the next section.

We let µ∗
Y |X := δHx and µ∗

X := 1
N

∑N
i=1 δxi

and assume additive Gaussian noise in the measurement
space so

µ∗ =
1

N

N∑
i=1

δ(xi,Hxi) and K =
{
µ∗
X ⊗ µY |X ∈ P (S) : µY |X = N(Hx, σ), σ ∈ [0,m]

}
∪ {δHx}

where N(Hx, σ) represents the normal distribution with mean Hx and variance σ and m ∈ R̄+. Fi-
nally, we choose as cost inside the Wasserstein-distance c((x, y), (u, v)) = ∥(x, y)− (u, v)∥2 any squared
norm and as loss function we choose l(x, y; g) = ∥x− g(y)∥22.

Notice that the assumptions for the strong duality theorem are satisfied: by choosing a closed interval
for σ and including the delta-measure of Hx in our definition of K, we have made sure that K is
weakly* closed.

7.1 Dual representation
The assumptions for strong duality are verified and thus we can simply apply Theorem 6.4 on our
primal problem to find a dual representation.

I = sup
µ∈BK,ε(µ∗

XY)

∫
S

l(x, y; g)dµ(x, y)

= inf
(λ,ϕ,ψ)∈Λc,l

λε+ sup
π∈Φµ∗

XY
,K

∫
S×S

(ϕ(x, y) + ψ(u, v))dπ((x, y), (u, v))

= inf
(λ,ϕ,ψ)∈Λc,l

λε+ sup
π∈Φµ∗

XY
,K

1

N

N∑
i=1

∫
X×Y

(ϕ(x, y) + ψ(x̂i, Hx̂i))dN(Hx̂i, σ)(x, y)

= inf
(λ,ϕ,ψ)∈Λc,l

λε+ sup
σ∈[0,m]

1

N
√
2πσ2

n

N∑
i=1

∫
Y

e−
1

2σ2 ∥Hx̂i−y∥2
R2 (ϕ(x̂i, y) + ψ(x̂i, Hx̂i))dy (34)

where the third equality follows from applying the first marginal µ∗ over (u, v) and applying µ∗
X

over x. We are left with the Gaussian measure which is applied in the fourth equality, leaving us
with a Lebesgue-integral over y. Here, n is the dimension of the data. Note that this is still an
infinite-dimensional problem as we optimize over ϕ, ψ ∈ mU (S;R). Ideally, we would like to find an
expression for ϕ and ψ, likely in terms of λ and the cost and loss functions, similar to Blanchet et
al. (see Section 4.2.4). The next section will implement an alternative approach to make the problem
finite-dimensional.

7.2 Finite-dimensional reduction
In order to make our problem computationally tractable, we will continue with (25) (i.e. only the inner
supremum of the Wasserstein-DRO) and reduce this problem to a finite-dimensional convex problem
for the case considered in this chapter. Inspired by the convex reduction of the Wasserstein-problem
by Esfahani and Kuhn [48] summarized in Section 4.6, we show a similar convex reduction for our
problem. We start with a short lemma on the convexity of the ambiguity set(s) to prepare for the
Theorem showing the convex reduction of (25) with K and µ∗ chosen as in this chapter. We finish
with a simple algorithm to solve the final convex optimization problem.

43

Lemma 7.1. Suppose K is convex, then Φµ∗
XY ,K

and Φµ∗
XY ,K,ε

are both convex.

Proof. Let π1, π2 ∈ Φµ∗
XY ,K

and define π3 := λπ1 + (1 − λ)π2 ∈ P (S × S) where λ ∈ [0, 1]. Let
ϕ ∈ C(S × S) be any test function.

First, since both π1 and π2 have µ∗
XY as a marginal we have

∫
ϕdπ3 = λ

∫
ϕdµ∗

XY +(1−λ)
∫
ϕdµ∗

XY =∫
ϕdµ∗

XY so π3 has µ∗
XY as marginal as well.

Second, we know
∫
ϕdπ1 =

∫
ϕdν1 and

∫
ϕdπ2 =

∫
ϕdν2 for some ν1, ν2 ∈ K. Thus,

∫
ϕdπ3 =∫

ϕd(λν1 + (1 − λ)ν2) =
∫
ϕdν3 where ν3 ∈ K by convexity of K. Thus, π3 ∈

⋃
ν∈K Π(µ∗

XY , ν) which
means π3 ∈ Φµ∗

XY ,K
. This concludes the convexity of Φµ∗

XY ,K
.

Now suppose that we restrict π1 and π2 to be inside the Wasserstein ball, in other words π1, π2 ∈
Φµ∗

XY ,K,ε
. Then

∫
cdπ3 = λ

∫
cdπ1 + (1 − λ)

∫
cdπ2 ≤ λε + (1 − λ)ε = ε so π3 is also inside the

Wasserstein ball and thus π3 ∈ Φµ∗
XY ,K,ε

. This concludes the convexity of Φµ∗
XY ,K,ε

and the proof is
complete.

Theorem 7.2 (Finite-dimensional convex reduction for an Inverse Problem with additive Gaussian
Noise). We let µ∗

Y |X := δHx and µ∗
X := 1

N

∑N
i=1 δxi

and assume additive Gaussian noise in the mea-
surement space so

µ∗
XY =

1

N

N∑
i=1

δ(xi,Hxi) and K =
{
µ∗
X ⊗ µY |X ∈ P (S) : µY |X = N(Hx, σ), σ ∈ [0,m]

}
∪ {δHx}

where N(Hx, σ) represents the normal distribution with mean Hx and variance σ and m ∈ R̄+. For the
cost inside the Wasserstein distance, choose c((x, y), (u, v)) := ∥(x, y)− (u, v)∥2 any squared norm and
let the loss l(x, y; g) be upper semi-continuous, proper and concave such that it is not −∞ everywhere
on S × S. Then our primal problem is equal to

I = sup
π∈Φµ∗

XY
,K,ϵ

∫
S×S

l(u, v; g)dπ((x, y), (u, v))

= inf
λ∈R+

sup
σ∈[0,m]

λϵ+
1

N
√
2πσ2

n

N∑
i=1

∫
Y

e−
1

2σ2 ∥Hx̂i−y∥2
Rn
(
l(x̂i, y; g)− λ∥Hx̂i − y∥2

)
dy. (35)

Proof. First, we note that K is convex. To see this let µ3 = λµ1 + (1 − λ)µ2 where λ ∈ [0, 1] and
µ1, µ2 ∈ K so µ1 = µ∗

X ⊗N(Hx, σ1) and µ2 = µ∗
X ⊗N(Hx, σ2) for some σ1, σ2 ∈ R̄+. Then

µ3 = µ∗
X ⊗ (λN(Hx, σ1) + (1− λ)N(Hx, σ2)) = µ∗

X ⊗ (N(λHx, λ2σ1) +N((1− λ)Hx, (1− λ)2σ2))
= µ∗

X ⊗N(Hx, λ2σ1 + (1− λ)2σ2) = µ∗
X ⊗N(Hx, σ3)

where σ3 ∈ R̄+ since σ1, σ2 ∈ R+ and λ, (1 − λ) ≥ 0 so µ3 ∈ K. By Lemma 7.1, the ambiguity set
Φµ∗

XY ,K,ϵ
is convex as well.

Recall BK,ϵ(µ∗
XY) := {µ ∈ K :W1(µ, µ

∗
XY) ≤ ϵ} and that our problem can equivalently be written as

I = sup
π∈Φµ∗

XY
,K,ϵ

∫
S×S

l(u, v; g)dπ((x, y), (u, v))

= sup
µ∈Bϵ,K(µ∗

XY)

∫
S

l(x, y; g)dµ(x, y).

44

Using the definition of the Wasserstein-distance, we rewrite

sup
µ∈BK,ϵ(µ∗

XY)

∫
S

l(x)dµ =

supπ,µ

∫
S
l(x, y; g)dµ(x, y)

s.t.
∫
S×S ∥(x, y)− (u, v)∥2dπ((x, y), (u, v)) ≤ ϵ
π ∈ Π(µ, µ∗

XY)

µ ∈ K

=

{
supµi∈K

1
N

∑N
i=1

∫
S
l(x, y; g)dµi(x, y)

s.t. 1
N

∑N
i=1

∫
S
∥(x, y)− (x̂i, Hx̂i)∥2dµi(x, y) ≤ ϵ.

(36)

Above, the second equality follows from Bayes law, which states that any joint distribution π of
(x, y) and (u, v) can be constructed from the marginal distribution µ∗

XY of (u, v) and the conditional
distribution µi of (x, y) given (u, v) = (x̂i, Hx̂i), i ≤ N . In other words, π = 1

N

∑N
i=1 δ(x̂i,Hx̂i)(u, v)⊗

µi(x, y) = with µi ∈ K. By duality we can rewrite (36):

sup
µi∈K

inf
λ∈R+

1

N

N∑
i=1

∫
S

l(x, y; g)dµi(x, y) + λ

(
ϵ− 1

N

N∑
i=1

∫
S

∥(x, y)− (x̂i, Hx̂i)∥2dµi(x, y)

)

≤ inf
λ∈R+

sup
µi∈K

λϵ+
1

N

N∑
i=1

∫
S

(
l(x, y; g)− λ∥(x, y)− (x̂i, Hx̂i)∥2

)
dµi(x, y) (37)

= inf
λ∈R+

sup
σ∈[0,m]

λϵ+
1

N

N∑
i=1

∫
Y

(
l(x̂i, y; g)− λ∥(x̂i, y)− (x̂i, Hx̂i)∥2

)
dN(Hx̂i, σ)(y) (38)

= inf
λ∈R+

sup
σ∈[0,m]

λϵ+
1

N

N∑
i=1

∫
Y

(
l(x̂i, y; g)− λ∥Hx̂i − y∥2

)
dN(Hx̂i, σ)(y) (39)

= inf
λ∈R+

sup
σ∈[0,m]

λϵ+
1

N
√
2πσ2

n

N∑
i=1

∫
Y

e−
1

2σ2 ∥Hx̂i−y∥2
Rn
(
l(x̂i, y; g)− λ∥Hx̂i − y∥2

)
dy (40)

where n is the dimension of the data (e.g. y ∈ Rn). The first (in-)equality follows from the max-min
inequality. From (37) to (38) we apply the δ measure over the x-variable and we are left with the
normal distribution over y. From (39) to (40) we apply the normal measure to transform the integral
to an integral over y. We have a linear problem with convex constraints and since l is upper semi-
continuous (thus −l is lower semi-continuous), we can apply a strong duality result [50, Proposition
3.4]. Thus, the inequality in (37) actually is an equality and we are finished with a finite-dimensional
optimization problem.

We see that the finite-dimensional reduction in (35) is very similar to the dual representation of the
problem in (34). In fact, if we find ϕ, ψ such that ϕ(x̂i, y)+ψ(x̂i, Hx̂i) = l(x̂i, y; g)−λc((x̂i, y), (x̂i, Hx̂i)) =
l(x, y; g) − λ∥Hx̂i − y∥2 we have the exact same expression. For this particular case, we can obtain
(35) by choosing ϕ(x̂i, y) = l(x̂i, y; g)− λ∥Hx̂i − y∥2 and ψ = 0 in (34).

We now have a finite-dimensional, convex problem in (35) which means we can compute the optimal
value of our problem using any convex optimization scheme. The focus of this thesis lies on the theory
so for the numerical examples we adopt a simple optimization scheme. We approximate the optimal
value of (35) by alternating a few steps of gradient descent for λ and a few steps of gradient ascent for
σ. We define

G(λ, σ; g) := λϵ+
1

N
√
2πσ2

n

N∑
i=1

∫
Y

e−
1

2σ2 ∥Hx̂i−y∥2
Rn
(
l(x̂i, y; g)− λ∥Hx̂i − y∥2

)
dy

so that (35) is equivalent to

inf
λ∈R+

sup
σ∈[0,m]

G(λ, σ; g).

45

The partial derivatives of G(λ, σ; g) with respect to λ and σ are respectively

dG

dλ
(σ) = ϵ− 1

N
√
2πσ2

n

N∑
i=1

∫
Y

e−
1

2σ2 ∥Hx̂i−y∥2
Rn ∥Hx̂i − y∥2dy

and

dG

dσ
(λ, σ; g) =

1

N
√
2πσ2

n

N∑
i=1

∫
Y

e−
1

2σ2 ∥Hx̂i−y∥2
Rn
(
l(x̂i, y; g)− λ∥Hx̂i − y∥2

)(1

σ3
∥Hx̂i − y∥2Rn −

2

nσ

)
dy.

Letting γ1, γ2 be two learning rates, m1 the number of iterations, m2 the number of sub-iterations and
λ0, σ0 our initial values our algorithm will look as in Algorithm 1.

Algorithm 1 Alternating Gradient Descent/Ascent to Find Optimizers for Discrete Worst-Case Prob-
lem
Require: λ0, σ0 ≥ 0, γ1, γ2,m1,m2 ∈ N, g ∈ Σ
Ensure: λ, σ
λ← λ0
σ ← σ0
for k ← 1 to m1 do

for i← 1 to m2 do
λ← max{λ− γ1 × dG

dλ (σ; g), 0}
end for
for j ← 1 to m2 do

σ ← max{σ + γ2 × dG
dσ (λ, σ; g), 0}

end for
if λ and σ converge OR objective G converges then

break
end if

end for

This algorithm gives us the values λ∗, σ∗ with which we approximate the optimal value of G(λ, σ; g) is
optimal i.e. G(λ∗, σ∗; g) ≈ infλ∈R+

supσ∈R+
G(λ, σ; g). Finally, recall that our full problem is to find

the value of g that minimizes the maximum value of G(λ, σ; g). Our original full full problem is

inf
g∈Σ

sup
µ∈Bϵ,K(µ∗

XY)

∫
S×S

l(x, y; g)dµ

which we approximate with

inf
g∈Σ

G(λ∗, σ∗; g).

We solve the latter by employing Algorithm 2 which finds the worst-case value for each g in a pre-
specified set Σ with Algorithm 1 and then finds the g with the smallest value for G(λ, σ; g). This
returns the g yielding the best worst-case.

46

Algorithm 2 Algorithm to Solve Discrete Best Worst-Case Problem
Require: Σ ▷ Set of candidates
Ensure: g∗, G∗ ▷ Optimal candidate and its worst-case value

Initialize worst-cases as an empty list
for i, g ∈ enumerate(Σ) do

λ[i], σ[i]← Algorithm 1(g)
worst-cases[i] ← G(λ[i], σ[i]; g)

end for
i∗ ← argmin(worst-cases)
g∗ ← Σ[i∗]
G∗ ← worst-cases[i∗]
return g∗, G∗

In the next section, we will verify that the optimization runs smoothly, giving motivation to the idea
that a decoupled optimization like this gives similar results to a coupled one. Decoupled meaning we
first optimize over λ, σ and then over g. To give some initial examples and simulations, we will choose
a simple set for Σ dependent on the simulated problem.

47

8 Numerical examples
This section shows some simple examples using Algorithms 1 and 2 to illustrate the robustness and
performance of the Wasserstein-DRO framework for inverse problems. We continue with the inverse
problem with additive Gaussian uncertainties in the measurement space, so we adopt again the as-
sumptions in Theorem 7.2. We take H ∈ Rn×n, Σ ⊆ Rn×n and X,Y = Rn to model the inverse
problem yδ = Hx∗ + δ where we assume the noise δ is normally distributed. In order to make some
simple calculations, we will manually choose Σ as a small set containing the (approximate) inverse
(left-inverse for non-singular cases, pseudo-inverses for singular cases) and a few random candidates.
We will refer to these ’candidate inverses’ as ’map index i’ with i = 0, 1, 2, 3 referring to the index
they have in the set Σ. For every example of a non-singular matrix, the last map in the set (map 3)
is the real inverse. Ideally, other methods (i.e. deep learning methods) would be used to include a
larger set Σ but as this thesis has a theoretical focus, we leave that up to future research. We ran-
domly generate the data x̂i, i = 1, 2, ..., 12 with values between 0 and 10. We take twelve data-points
because that is the number of simulatenous processes we can implement. For the remainder of this
section, denote the learning rates for σ and λ by γσ and γλ, respectively and their starting values by
σ0 and λ0 respectively. Unless stated otherwise, we take as number of sub-iterations 3 and number of
total iterations 300. When the difference between the current risk value and the previous risk value is
less than 0.0001 for two consecutive iterations we conclude the objective value has converged and we
terminate the iteration process. The same holds for the parameters: if for both parameters holds that
the difference between its current value and its previous value is less than 0.0001 for two consecutive
iterations, we terminate the iteration process.

For each iteration, we calculate the derivatives of λ and σ three times each and the objective value
once. As each of these contains a multi-dimensional integral that is calculated for each data-point, we
calculate 7 · 12 multi-dimensional integrals per iteration. We usually have four candidate inverses in
our set Σ, which means we calculate 100.800 of these integrals per map. To improve efficiency, we use
multi-processing to calculate the integral for each data-point in parallel and we set the bounds of the
integral at the smallest value where the integral seems to converge. During test simulations, we settled
on bounds of ±30. For future research, a more efficient numerical approach should be considered.

For simplicity, we refer to the value the objective function G(λ, σ; g) takes for a certain triple (λ, σ; g)
as the ’risk’. For each example, we give plots illustrating the decoupled optimization processes:

• The worst-case optimization process: for each candidate inverse we create a separate figure
which plots for every iteration the current value of σ on the left (blue) and λ on the right
(red) y-axis, against the risk for that pair on the x-axis. Ideally, these plots would all show the
convergence to a supremum of the risk.

• The best-worst case optimization process: in one figure, we plot the final ’worst-case’ risk
value on the y-axis for each candidate inverse on the x-axis. This is for each map the risk value
their ’worst-case’ optimization algorithm finished on.

As the examples focus on a low-dimensional (R2×2) forward operator and data for computational effi-
ciency, we first illustrate the Picard condition for a higher-dimensional operator before exploring these
examples.

The code for the Wasserstein-DRO examples can be found in Appendix A.1 and the code for the Picard
condition can be found in Appendix A.2.

8.1 Picard condition for a high-dimensional operator
To illustrate how the Picard condition is applied to a high-dimensional operator, we take as forward
operator H a 100 × 100 Hilbert matrix, a square matrix whose elements are given by Hij = 1

i+j−1 .
For example, this is the 3× 3 Hilbert matrix:1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

48

which has condition number approximately 524. The Hilbert matrix is a well-known ill-conditioned
matrix, as its condition number grows rapidly as its size increases. The 100 × 100 Hilbert matrix
has condition number 1.075 × 1019, meaning that inverting a Hilbert matrix will be numerically un-
stable. Recall that the Moore-Penrose pseudo-inverse applied to a measurement y ∈ Rn is given by
H†y =

∑n
i=1

⟨ui,y⟩Y
σi

vi with σi the i-th singular value and ui, vi the i-th left and right singular vectors.
Thus a vector y ∈ Rn satisfies the Picard condition if the projections |⟨ui, y⟩| decay faster than the
singular values σi. Recall that for a non-singular matrix, the real inverse is equal to the Moore-Penrose
inverse, which is the case here.

We build the 100×100 Hilbert matrix, generate random data x and noiseless and noisy measurements
y = Hx and yδ = y + δ respectively, where δ is normally distributed with mean zero and variance
σ2 = 0.012. We calculate the singular value decomposition and the projections of y and yδ with the left
singular vectors. Figure 2a depicts the decay of the singular values against the decay of the projections
of noisy and noiseless data with the left singular vectors while Figure 2b depicts the Picard ratio for
noisy and noiseless data, both are semi-log plots.

(a) Decay of σi against |⟨ui, y⟩| and
∣∣〈ui, y

δ
〉∣∣ (b) Picard ratio of y and yδ

Figure 2: Picard Condition for the 100× 100 Hilbert Matrix

The noiseless data decays in a similar exponential fashion to the singular values, but the noisy data
does not decay as the singular values do and thus does not satisfy the discrete Picard condition and
is ill-posed. This is further illustrated by the Picard ratio growing exponentially for the noisy data
but not for the noiseless data. We conclude that the matrix is near-singular and very sensitive to
noise in the data and the inverse might be difficult to work with numerically when we have noisy data.
Note that for any singular matrix, we have at least one singular value equal to 0, leading the Picard
ratio to grow to infinity. For the types of matrices mentioned in this section (unstable and/or singular
matrices), it would thus be very useful to obtain a robust inverse.

8.2 Inverse problem with measurement in Rn and Gaussian noise
We take input and output spaces X,Y = Rn, specifically n = 2. For this problem we model a non-
singular stable and a non-singular unstable forward operator to see if the Wasserstein-DRO gives the
real inverse. Next to that, we model two singular matrices to investigate whether the Wasserstein-DRO
gives a robust inverse, which we can compare to other inverses.

8.2.1 Non-singular, stable forward operator

We choose the forward operator H as H =

[
2 0
0 2

]
which has real left inverse H−1 =

[
1/2 0
0 1/2

]
. We

simulate the Wasserstein-DRO against two versions of Σ, each contains the real left inverse but Σ1

contains candidate inverses ’close’ to the left inverse and Σ2 contains candidates less ’close’ to the left
inverse. For Σ1 we randomly add values between [-0.5, 0.5] to the diagonal of the left inverse while
for Σ2 we randomly add values between [-5, 5]. Each set contains four candidates, including the left
inverse which has map index 3. For Σ1 we use γλ = 0.001, γσ = 0.001, λ0 = 0.1, σ0 = 2 and for Σ2

49

we use γλ = 0.0001, γσ = 0.00001, λ0 = 0.1, σ0 = 2. Notice that we have chosen smaller learning rates
for Σ2 as the gradients for maps further away from the real inverse are larger and could cause steps
that were too big. This is undesirable since we don’t want to skip over a maximum and don’t want
negative values for both parameters.

Figure 3 shows for each map in Σ1 the worst-case optimization process. The process for all maps
starts at λ0 = 0.1, σ0 = 2 and for each iteration gives the current value of λ, σ on right and left y-axis
respectively, with the corresponding risk on the x-axis. Map 3 is the only one that has converged and
is also the one with the smallest worst-case risk value, as can be seen in Figure 4. This Figure shows
the worst-case risk value for each map index, showing map 3 indeed has the smallest worst-case risk.
This means the algorithm has selected the real left-inverse as the most robust one. It is interesting
to note that map 2 has an optimization process that looks the most similar to the one from map 3
(parabolic shapes that converge to a line) and is also the one with closest ’worst-case’ risk value.

(a) Map index 0 (b) Map index 1

(c) Map index 2 (d) Map index 3

Figure 3: Worst-case optimization for non-singular, stable forward operator. Maps ∈ Σ1.

50

Figure 4: Best worst-case optimization for non-singular, stable forward operator. Maps ∈ Σ1.

Figure 5 shows the worst-case optimization process for each map in Σ2. Smaller learning rates result
in smaller steps between iterations, causing map 3 to not converge. Larger learning rates or more
iterations might improve this. The optimization process for maps in Σ2 differs significantly from those
in Σ1 and the real inverse, as they are ’further away’ from the real inverse. Figure 6 displays the
worst-case risk values for each map, which are higher due to the maps being less close to the real
inverse. Map index 3 has the smallest worst-case again, indicating the algorithm selected the real
left-inverse in both examples for a non-singular, well-posed operator.

(a) Map index 0 (b) Map index 1

(c) Map index 2 (d) Map index 3

Figure 5: Worst-case optimization for non-singular, stable forward operator. Maps ∈ Σ2.

51

Figure 6: Best worst-case optimization for non-singular, stable forward operator. Maps ∈ Σ2.

8.2.2 Non-singular, unstable forward operator

As an unstable forward operator, we choose H =

[
1 0
0 1e− 5

]
. For diagonal matrices, its condition

number is simply the ratio between the largest diagonal element and the smallest on the diagonal.

Thus we can calculate the condition number 1/(1e−5) = 100000 and its left-inverse H−1 =

[
1 0
0 1e5

]
.

We illustrate the ill-posedness of this matrix with the Picard condition in Figure 7 in a similar manner
as in the beginning of this chapter. In Figure 7a we see that while |⟨ui, y⟩| decays similarly to the
singular values, this is not the case for

∣∣〈ui, yδ〉∣∣ so it does not satisfy the Picard condition. This
is confirmed by Figure 7b, illustrating that the Picard ratio of noisy data grows much faster than
noiseless data. Thus, we have an ill-posed problem.

(a) Decay of σi against |⟨ui, y⟩| and
∣∣〈ui, y

δ
〉∣∣ (b) Picard ratio of y and yδ

Figure 7: Picard Condition for an ill-posed forward operator

We again simulate against two versions of Σ similar to the previous section. For Σ1 we randomly
offset the diagonal of the real inverse by ±10%. For Σ2 we randomly generate diagonal candidates
with first diagonal value between [0, 2] and the second between [103, 107]. Each set again contains four
candidates, including the left inverse (with index 3) and we use γλ = 10−6, γσ = 10−12, λ0 = 3, σ0 = 27.

Figure 8 shows the worst-case optimization process for Σ1 which shows a similar process for each map.
The optimization of σ starts on the left, makes some very big steps and then quickly converges while
λ also starts on the left but keeps growing steadily, and with it the risk as well. As the scales on these
plots are so large it seems like the risk converges, but this is not the case for any of the maps. More
iterations (800) give the same results. Figure 9 shows that map 1 has the smallest worst-case risk value
which is not the real inverse. Since none of these optimization processes seem to converge it is likely

52

(a) Map index 0 (b) Map index 1

(c) Map index 2 (d) Map index 3

Figure 8: Worst-case optimization for non-singular, stable forward operator. Maps ∈ Σ1.

Figure 9: Best worst-case optimization for non-singular, stable forward operator. Maps ∈ Σ1.

that the numerical implementation needs some improvements, for example better (adaptive) learning
rates or a restriction on the step size.

Figure 10 depicts the worst-case optimization process for Σ2. There is some jumping around in the
optimization processes of the maps further away from the real inverse and the optimization is not
very smooth. For maps 0 and 2, it seems like σ is converging to a maximum but then jumps away
from it only to converge toward it again. On the other hand, λ also makes jumps and then keeps
growing, similarly to the previous example. These jumps in the optimization process are likely a result

53

(a) Map index 0 (b) Map index 1

(c) Map index 2 (d) Map index 3

Figure 10: Worst-case optimization for non-singular, unstable forward operator. Maps ∈ Σ2 (less close
to real inverse).

Figure 11: Best worst-case optimization for non-singular, unstable forward operator. Maps ∈ Σ2 (less
close to real inverse).

of non-ideal learning rates, which should be improved for better performance. Figure 11 shows that
this time the real inverse, map 3, is selected by the algorithm as the robust solution.

A difficulty in the implementation of this case was caused by some iterations bringing σ below zero
while the variance is a non-negative parameter. Technically, it should be allowed to be zero (or
infinity) as this is needed for our set K to be closed. However, this gives computational problems as

54

the objective function and both its partial derivatives contain a division by σ. To combat this, we tried
projecting σ to a small value close to zero but this gave unsatisfactory results as at some point while σ
would converge towards the (local) maximum after the ’jump’, it would jump again to a negative value
which was projected to 10−5. After this, the optimization got ’stuck’ in this point with a very low
risk while at this point we are still maximizing the risk (find the worst-case for this candidate inverse).
For an example of this, see Figure 12. As an alternative approach we chose to use a smaller learning
rate (γ̂σ = γσ · 0.0001) whenever the original learning rate bring σ below zero. If it was still brought
below zero, we left σ unchanged but this was never necessary as the smaller learning rate solved that
issue. In the next iteration, a new value of λ could cause σ to change again. Again, this case could
likely benefit from better (adaptive) learning rates or a restriction on the step size to diminish the
’jumping’ to numbers that are large in magnitude (positive or negative). As the implementation needs
improvements, the results for the non-singular unstable operator are not to be taken at face-value.

Figure 12: Projection σ whenever it gets below 0. (Worst-case optimization for non-singular, unstable
forward operator. Σ less close to real inverse.)

8.2.3 Singular forward operator 1

As a singular operator we choose H =

[
1 0
1 0

]
which is neither injective (it has non-trivial null-space)

nor surjective (it has linearly dependent rows), meaning a left- or right-inverse does not exist. The left
singular vectors are u1 ≈ [−0.707,−0.707]T and u2 ≈ [−0.707, 0.707]T . If we let x = [x1, x2]

T , we have
y = Hx = [x1, x1]

T so |⟨u1, y⟩| = 1.414x1 and |⟨u2, y⟩| = 0 for any pair (x, y). As one of the singular
values is equal to 0, and the other is 1.414 we have Picard ratio x1 + 0

0 which is undefined and thus
makes no sense to plot. For the noisy data however this is not the case, as yδ = [x1, x1] + δ with δ
normally distributed with mean 0 and variance σ2 = 0.012. As one of the singular values is equal to
0, we replace this by 10−10 in order to plot it on the semi-log plot. Thus the 107 in Figure 13b would
in reality be infinity and this operator clearly does not satisfy the Picard condition.

The Moore-Penrose pseudo-inverse can be computed using the SVD: HMP =

[
1/2 1/2
0 0

]
. Notice

that HHMP and HMPH are Hermitian, HHMPH = H and HMPHHMP = HMP, thus satisfying the
properties of a pseudo-inverse. For this matrix, any matrix where the elements of the first row sum
to 1 is a generalized inverse, independent of the second row. Since H2 = H, the Drazin inverse of
H is equal to H itself: HD = H. This time we simulate against one version of Σ, containing the
Moore-Penrose and Drazin inverses and two randomly generated generalized inverses: one that has
zeros on the second row (which we denote by G1) and one that has completely random values on the
second row (G2). Map 0 is the Moore-Penrose inverse, map 1 is the Drazin inverse, map 2 is G1 and
map 3 is G2. We use γλ = 10−4, γσ = 10−4, λ0 = 6, σ0 = 4. As this case converged slower, we used
600 iterations.

55

(a) Decay of σi against
∣∣〈ui, y

δ
〉∣∣ (b) Picard ratio yδ

Figure 13: Picard Condition for a singular forward operator

Figure 14 shows that the worst-case optimization for each map starts with a large negative risk and
converges to a positive value. The optimization for the Moore-Penrose inverse converges to 76.81,
for the Drazin inverse it converges to 14.87, G1 converges to 14.87 and G2 converges to 84.64. This
means the algorithm selects the Drazin as the robust solution and that the Moore-Penrose and G1
actually give the same result. The decoupled optimization is smooth which makes the results plausible.

(a) Map index 0 (Moore-Penrose) (b) Map index 1 (Drazin)

(c) Map index 2 (G1) (d) Map index 3 (G2)

Figure 14: Worst-case optimization of risk against σ, λ for a singular forward operator.

To validate our findings, we test the performance of each inverse by investigating the reconstruction
error for each inverse. To do this, we randomly generate 100 input data-vectors where x is between

56

Figure 15: Best worst-case optimization for a singular forward operator.

0 and 10 and generate noiseless measurements y = Hx and noisy measurements yδ = y + δ where
δ is normally distributed with variance σ2 = 0.12. For each data-point (x, y) we calculate the re-
construction error

∥∥x−H†y
∥∥
2

where H† denotes the candidate inverse (map) being considered. We
do this for every candidate. Figure 24 shows the reconstruction errors for noiseless and noisy data
where MP denotes the Moore-Penrose inverse and D denotes the Drazin inverse. The noiseless data
gives average reconstruction errors approximately 4.806, 3.123, 4.806, 5.107 respectively, the noisy data
gives approximately 4.807, 3.128, 4.807, 5.107. The Drazin inverse actually gives the smallest average
reconstruction error while the Moore-Penrose and the first generalized inverse perform very similarly.
Figure 16 shows that the latter two overlap everywhere. The average reconstruction error is equal for
the noiseless data and the difference is approximately 0.0001 for the noisy data. The Drazin inverse
gives the smallest average reconstruction error for both noiseless and noisy data which coincides with
the result from the Wasserstein-DRO algorithm.

(a) Noiseless data (b) Noisy data

Figure 16: Reconstruction error for different inverses of singular forward operator.

This particular forward operator is quite tricky as it ’throws away’ any knowledge about the second

element of the data. Say we have input vector x =

[
x1
x2

]
. This gives measurement y = Hx =

[
x1
x1

]
.

The inverses give the following reconstructions for noiseless data y = Hx:

HMP =

[
x1
0

]
, HD =

[
x1
x1

]
, HG1 =

[
x1
0

]
, HG2 =

[
x1
Cx1

]
.

The forward operator projects the input to a line y1 = y2 in the measurement space. The MP inverse
and G1 project this back into the input space on a line x2 = 0 while the Drazin inverse projects it on
a line x1 = x2 and G2 projects it on a line x2 = C ·x1. In any case, it explains why the performance of

57

the MP inverse and G1 is equivalent for noiseless data. The performance of each inverse is extremely
sensitive to patterns between the two elements in x. If in our dataset the second element is often close
to 0, the MP inverse or G1 inverse will perform better and when the second element is often close
to the first element, the Drazin or G2 inverse will perform better. Simulations with data specifically
generated to reflect these two cases confirm these expectations.

Figure 17 shows the worst-case value for each map when then data has been chosen so the second
element is randomly generated between 0 and 0.05. The optimization process for each map has
converged with the risk for MP, D, G1 and G2 being respectively −0.0106, 18.377,−0.0108,−0.0043.
We see now that the MP or G1 inverse would be selected as robust inverse, which is confirmed by
plotting the reconstruction errors of each inverse as we did in Figure 18a with noisy data generated
similarly as in Figure 17. This yields average reconstruction errors 0.060, 5.356, 0.059, 0.345, giving
the same solution as our Wasserstein-DRO problem: for this data MP and G1 are the best inverses.
In Figure 18b we have generated noisy data randomly with elements of x between −10 and 10 to
depict more realistic data. This gives average reconstruction errors 5.060, 6.313, 5.060, 5.113. In this
case we see as well that the MP and G1 inverses perform the best. It is likely that if we repeat the
Wasserstein-DRO with this data, we would get the same solution. We conclude with the observation
that this problem is very sensitive to the nature of the data.

Figure 17: Best worst-case optimization for a singular forward operator, alternative data.

(a) Data with second element of x close to 0 (noisy) (b) Data with values of x between −10 and 10 (noisy)

Figure 18: Reconstruction error for different inverses of singular forward operator, for two datasets

58

8.2.4 Singular forward operator 2

To better investigate the performance of the Wasserstein-DRO we choose another singular operator

that does not ’throw away’ the second element of the input data. We choose H =

[
1 1
1 1

]
which

is neither injective nor surjective and has one singular value equal to zero. In a similar way as the
previous example, we see through Figure 19 that the Picard condition is not satisfied and this is an
ill-posed problem.

(a) Decay of σi against
∣∣〈ui, y

δ
〉∣∣ (b) Picard ratio of yδ

Figure 19: Picard Condition for a singular forward operator

The Moore-Penrose and Drazin inverse are equal and given by HMP = HD =

[
1/4 1/4
1/4 1/4

]
. Any matrix

such that all its elements sum to one is a generalized inverse for this forward operator. We simulate
against a Σ containing the Moore-Penrose/Drazin inverse and two randomly generated generalized
inverses. We use γλ = 10−4, γσ = 10−4, λ0 = 6, σ0 = 1. We use again 600 iterations.

Figure 20 shows the map with smallest worst-case risk is G1. Figure 21 shows the worst-case optimiza-
tion process. Notably, all optimizations have converged and they all look smooth. This simulation
used randomly generated data between 0 and 10. We ran another simulation with data between -50
and 50, which gave very different results, of which none converged. These results can be seen in Figures
22 and 23 which shows the Moore-Penrose/Drazin inverse is selected by the algorithm as the robust
solution for this dataset. The optimization processes are still smooth but have not (yet) converged.

Figure 20: Best worst-case optimization for a singular forward operator.

59

(a) Map index 0 (Moore-Penrose/Drazin) (b) Map index 1 (G1)

(c) Map index 2 (G2)

Figure 21: Worst-case optimization for a singular forward operator.

Figure 22: Best worst-case optimization for a singular forward operator, alternative data.

We calculate again the reconstruction errors for each candidate inverse and plot them in Figure 24 with
data generated between 0 and 10. The average reconstruction error of the MP/Drazin inverse and the
two generalized inverses are respectively 2.231, 2.880, 2.449 for the noiseless data and 2.232, 2.886, 2.451
for the noisy data. The average reconstruction error of data generated between −10 and 10 gives similar
results. The solution chosen by the Wasserstein-DRO for data between −10 and 10 is the one with
the smallest reconstruction error.

60

(a) Map index 0 (Moore-Penrose/Drazin) (b) Map index 1 (G1)

(c) Map index 2 (G2)

Figure 23: Worst-case optimization for a singular forward operator, alternative data.

(a) Noiseless data (b) Noisy data

Figure 24: Reconstruction error for different inverses of singular forward operator

8.3 Conclusions on numerical results
We have seen that for a non-singular stable forward operator, the Wasserstein-DRO algorithm selects
the real inverse as the solution for both cases of Σ and the optimization goes smoothly. For the two
singular operators we have looked at, it depends on the data what type of pseudo-inverse is chosen
as the solution. However, with data chosen carefully to represent a realistic problem, it seems the
Moore-Penrose inverse is often chosen as the most robust one. As we know, the Moore-Penrose in-
verse corresponds to the least-squares solution. This case used a squared 2-norm as loss function which
means the robust solution coincides with the least-squares solution. For the unstable forward operator,

61

the case where Σ was not necessarily close to the inverse, the real inverse was selected as the solution
but for the case of Σ close to the real inverse this was not the case. However, this optimization is not
smooth and shows some irregular behavior, indicating that the implementation needs improvement
and the decoupled optimization might not be the best approach. Consequently, the results should be
interpreted with caution. Especially a better implementation of the learning rate should be considered,
for example an adaptive learning rate and/or a restriction on the step size in any way. The handling
of parameters being brought below zero could also be improved upon in future implementations. In
the objective function G(λ, σ; g) and both its partial derivatives, there is a division by σ. Since K
must be closed in order to apply any of the theorems in this thesis, theoretically 0 (corresponding to
the delta-measure) and ∞ should be included as possible values for σ but this is not implemented into
the algorithm in any way.

The decoupled optimization for singular and non-singular operators goes smoothly, perhaps with some
fine-tuning it will work smoothly for the unstable operator as well. This smooth behavior suggests
that the decoupled approach could be a fine approximation.

In any case, the algorithm proposed in this thesis is very slow so future research should consider a
more efficient algorithm. There are many hyper-parameters to tune (starting values, learning rates,
number of iterations) which makes the implementation tedious. To compute the integrals, we used
scipy.integrate, which likely has some faster alternatives, using GPU for example.

While this thesis contains no numerical performance guarantees, the results of the implementation
suggest that there lies promise in the constrained Wasserstein-DRO problem. The implementation of
the constrained Wasserstein-DRO problem for ill-posed forward operators need careful consideration
of learning rates and step sizes while singular forward operators need careful consideration of the
data. Still, the optimization process works smoothly and results suggest that the solution chosen as
the robust solution to the constrained Wasserstein-DRO problem corresponds with the least-squares
solution.

62

9 Conclusion and outlook
The primary objective of this thesis was to apply Wasserstein robustness to inverse problems and to
explore the relationship between robustness and regularization. While the focus was predominantly
on the first goal, significant strides were also made towards achieving the second objective.

This thesis encompasses a wide range of topics, including (probability) measure theory, optimization
and duality, robustness, optimal transport, inverse problems and linear regression but the most signif-
icant contribution of this work is the novel combination of optimal transport and inverse problems as
presented herein. We proposed a novel framework integrating Wasserstein robustness within inverse
problem modelling using a Bayesian (conditional) approach. The integration of Wasserstein robust-
ness in inverse problems opens new ways to improve the reliability and stability of solutions in various
applied mathematics and engineering fields. The approach presented in this thesis has the potential
to significantly enhance the robustness of inverse problem-solving methods against noise and ill-posed
problems in general.

A thorough analysis of the relevant mathematical concepts was conducted, yielding new general strong
duality results. Building on the results by Blanchet et al. [44] for linear regression, we derived a dual
representation in a more general sense. By making specific choices for spaces and ambiguity set(s), we
can obtain Blanchet’s linear regression problem - which allows us to see a connection to regularization
- as well as various other types of inverse and forward problems that we wish to be robust to any type
of noise.

The theoretical framework we presented was applied to a specific case involving an inverse problem
with Gaussian additive noise. Analytical results for this particular case were derived, and a finite-
dimensional reduction was presented to make the framework computable. Numerical results for simple
forward operators were provided to verify and validate the proposed model. We have left numerical
performance guarantees to future research but have shown that while there is room for improvement,
we are able to learn a solution to an inverse problem that is robust in the measurement space, for mul-
tiple types of simple forward operators (non-singular well-posed, non-singular ill-posed and singular
matrices). In the case of a squared 2-norm loss, the robust solution to the constrained Wasserstein-
DRO coincides with the least squares solution. The numerical results of the Wasserstein-DRO were
further validated by numerical comparisons of the performance of the ’candidate inverses’, confirming
the solution to the Wasserstein-DRO has the smallest average reconstruction error. Future research
could directly compare the results of regularized inverse problems and Wasserstein-DRO problems
to further establish a connection between regularization and robustification. The unstable forward
matrices need improvement in the implementation as they require more careful consideration of learn-
ing rates and step sizes. These matrices have a large Picard ratio, which makes them difficult to
solve even with Tikhonov regularization. If we were to improve our implementation it could mean
that Wasserstein-DRO handles the ill-posedness better than regularization. It is simple to rewrite the
considered problem to an inverse problem with robustness in the input space so fair to assume that
numerical simulations for this case will also be successful.

The academic impact case of addressing a general inverse problem with Gaussian noise is significant,
as this scenario is encountered in many fields. Thus, it is an interesting case that holds importance
for both practical and research purposes. For future research, it would be interesting to complexify
the problem by using a multivariate Gaussian distribution in the definition of K, where we have a
covariance matrix that would be able to capture the nature of our data. This would likely make the
Wasserstein-DRO for inverse problems more powerful. Other than the case presented in this thesis,
there are many more interesting cases to explore: different types of inverse problems (i.e. non-linear
problems such as convolutions), robustness to noise on the input space instead of the measurement
space (or both), and robustness to other types of noise (i.e. applied Poisson noise). See Section 5.1.1
for an exploration of noise and problem types.

The general framework in this thesis can help us find a dual representation for many types of problems
that we wish to robustify to any type of noise, not just specifically applied to inverse problems. While
this thesis has laid a solid foundation, the general framework only goes so far. To evaluate the dual

63

representation and/or reduce the problem to a finite-dimensional one, choices need to be made with
regards to the spaces and ambiguity set(s) to represent a more specific problem. This thesis has made
some insights into the relationship between robustness and regularization but the general framework
presented within this thesis and its alternative representations can be a great starting point to continue
the exploration of this relationship.

This thesis has a strong focus on mathematical theory and analysis of the concepts presented. It is
only natural that future research should expand on the numerical work done in this thesis. In order
to make the proposed framework useful in practical applications, research must be done to increase
the computational efficiency in order to work with higher-dimensional data, more complicated sets of
’candidate inverses’ (Σ) and more complicated forward operators. The computational efficiency could
be increased by using the Sinkhorn distance (a type of entropic regularization [51]) and employing
a more powerful algorithm than the simple alternating gradient descent/ascent used in this thesis.
Perhaps incorporating neural networks could help to incorporate a larger set of candidate inverses.
In any case, the algorithm would be more powerful if the inner min-max problem was coupled to the
outer min-problem, as our current approach is de-coupled.

If the numerical methods can be improved upon, the proposed framework has promise to be useful
in many fields such as signal processing, medical imaging, wavefield imaging, data assimilation and
engineering, where inverse problems are prevalent and robustness is crucial.

In conclusion, this thesis represents a significant advancement in the fields of distributionally robust
optimization and inverse problems by introducing a novel framework that integrates Wasserstein ro-
bustness into inverse problem modeling. We have shown that we are able to learn solutions to inverse
problems through data, yielding a robust inverse operator. The idea is that the regularization is done
inherently by the robustification process. Through a thorough analysis of mathematical concepts and
the development of analytical and computational methods, this research makes some significant steps
to gain valuable insights into the relationship between robustness and regularization. The analytical
results show an inherent connection between robustness and regularization. The innovative combi-
nation of optimal transport and inverse problems presented herein not only expands the theoretical
foundations but also holds promise for practical applications in diverse fields. By addressing the lim-
itations of existing approaches and proposing new avenues for future research, this thesis sets a solid
foundation for further exploration and advancement in robust inverse problem-solving methods. With
its interdisciplinary approach and thorough analysis, this research holds significant value in enhancing
the reliability and stability of solutions to inverse problems across various disciplines.

64

Bibliography
[1] Fatih Yaman, Valery G Yakhno, and Roland Potthast. A Survey on Inverse Problems for Applied

Sciences. Mathematical Problems in Engineering, 2013:976837, 2013. ISSN 1024-123X. doi:
10.1155/2013/976837. URL https://doi.org/10.1155/2013/976837.

[2] Matthias J. Ehrhardt and Lukas F. Lang. Lecture Notes "Inverse Problems in Imaging", University
of Cambridge, 2018.

[3] Simon Arridge, Peter Maass, Carola-Bibiane Schönlieb, and Ozan Öktem. Solving inverse
problems using data-driven models. Acta Numerica, 28:1–174, 2019. ISSN 0962-4929.
doi: DOI:10.1017/S0962492919000059. URL https://www.cambridge.org/core/product/
CE5B3725869AEAF46E04874115B0AB15.

[4] Per Christian Hansen. Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed
Problems with Ill-Determined Numerical Rank. SIAM Journal on Scientific and Statistical Com-
puting, 11(3):503–518, 1990. ISSN 0196-5204. doi: 10.1137/0911028.

[5] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise re-
moval algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992. ISSN 0167-2789.
doi: https://doi.org/10.1016/0167-2789(92)90242-F. URL https://www.sciencedirect.com/
science/article/pii/016727899290242F.

[6] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. Numerical Methods
for the Solution of Ill-Posed Problems. Springer Netherlands, Dordrecht, 1 edition, 1995. ISBN
978-90-481-4583-6. doi: 10.1007/978-94-015-8480-7.

[7] Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh Shafieezadeh-Abadeh.
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning.
In Operations research & management science in the age of analytics, pages 130–166. Informs,
2019.

[8] Marcello Carioni, Subhadip Mukherjee, Hong Ye Tan, and Junqi Tang. Unsupervised approaches
based on optimal transport and convex analysis for inverse problems in imaging. arXiv preprint,
2023.

[9] Andreas Hauptmann, Subhadip Mukherjee, Carola-Bibiane Schönlieb, and Ferdia Sherry. Con-
vergent regularization in inverse problems and linear plug-and-play denoisers. arXiv preprint,
2023.

[10] Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexandros G Dimakis,
and Rebecca Willett. Deep Learning Techniques for Inverse Problems in Imaging. IEEE Journal
on Selected Areas in Information Theory, 1(1):38–56, 2020. doi: 10.1109/JSAIT.2020.2991563.
URL http://www.ieee.org/publications.

[11] Markus Haltmeier and Linh Nguyen. Regularization of Inverse Problems by Neural Networks. In
Ke Chen, Carola-Bibiane Schönlieb, Xue-Cheng Tai, and Laurent Younes, editors, Handbook of
Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging
and Vision, pages 1065–1093. Springer International Publishing, Cham, 2023. ISBN 978-3-030-
98661-2. URL https://doi.org/10.1007/978-3-030-98661-2_81.

[12] Peijie Qiu. Data-Driven Approaches to Solve Inverse Problems. Master of Science (MSc) Thesis,
Washington University, St. Louis, 2021. doi: 10.7936/vsqs-hc87.

[13] Sebastian Lunz, Ozan Öktem, and Carola-Bibiane Schönlieb. Adversarial Regularizers in Inverse
Problems. arXiv preprint, 2019.

[14] M A G Duff, N D F Campbell, and M J Ehrhardt. Regularising Inverse Problems with Gen-
erative Machine Learning Models. Journal of Mathematical Imaging and Vision, 66(1):37–56,
2024. ISSN 1573-7683. doi: 10.1007/s10851-023-01162-x. URL https://doi.org/10.1007/
s10851-023-01162-x.

65

https://doi.org/10.1155/2013/976837
https://www.cambridge.org/core/product/CE5B3725869AEAF46E04874115B0AB15
https://www.cambridge.org/core/product/CE5B3725869AEAF46E04874115B0AB15
https://www.sciencedirect.com/science/article/pii/016727899290242F
https://www.sciencedirect.com/science/article/pii/016727899290242F
http://www.ieee.org/publications
https://doi.org/10.1007/978-3-030-98661-2_81
https://doi.org/10.1007/s10851-023-01162-x
https://doi.org/10.1007/s10851-023-01162-x

[15] Subhadip Mukherjee, Marcello Carioni, Ozan Öktem, and Carola-Bibiane Schönlieb. End-to-end
reconstruction meets data-driven regularization for inverse problems. arXiv preprint, 2021.

[16] Subhadip Mukherjee, Sören Dittmer, Zakhar Shumaylov, Sebastian Lunz, Ozan Öktem, and
Carola-Bibiane Schönlieb. Learned convex regularizers for inverse problems. 2021.

[17] Giovanni S. Alberti, Ernesto De Vito, Matti Lassas, Luca Ratti, and Matteo Santacesaria. Learn-
ing the optimal Tikhonov regularizer for inverse problems. Advances in Neural Information Pro-
cessing Systems, 34:25205–25216, 2021.

[18] Erich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. Total Deep Variation: A
Stable Regularization Method for Inverse Problems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(12):9163–9180, 2022. ISSN 19393539. doi: 10.1109/TPAMI.2021.
3124086.

[19] Babak Maboudi Afkham, Julianne Chung, and Matthias Chung. Learning regularization param-
eters of inverse problems via deep neural networks. Inverse Problems, 37(10):105017, 2021. ISSN
0266-5611. doi: 10.1088/1361-6420/ac245d. URL https://iopscience.iop.org/article/10.
1088/1361-6420/ac245d.

[20] Ankit Raj, Yoram Bresler, and Bo Li. Improving Robustness of Deep-Learning-Based Image
Reconstruction. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
7932–7942. PMLR, 2020. URL https://proceedings.mlr.press/v119/raj20a.html.

[21] Julianne Chung and Matthias Chung. An efficient approach for computing optimal low-
rank regularized inverse matrices. Inverse Problems, 30(11):114009, 2014. ISSN 0266-5611.
doi: 10.1088/0266-5611/30/11/114009. URL https://iopscience.iop.org/article/10.1088/
0266-5611/30/11/114009.

[22] Yoeri E. Boink and Christoph Brune. Learned SVD: solving inverse problems via hybrid autoen-
coding. 2019. URL https://arxiv.org/abs/1912.10840v3.

[23] Hamed Rahimian and Sanjay Mehrotra. Distributionally Robust Optimization: A Review. arXiv
preprint, 2019. doi: 10.5802/ojmo.15.

[24] John Duchi and Hongseok Namkoong. Learning Models with Uniform Performance via Distribu-
tionally Robust Optimization. 2020.

[25] Viet Anh Nguyen, Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, and Peyman Mohajerin Esfahani.
Bridging Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally
Robust Optimization. arXiv preprint, 2021.

[26] Xuhui Zhang, Jose Blanchet, Youssef Marzouk, Viet Anh Nguyen, and Sven Wang. Distribu-
tionally Robust Gaussian Process Regression and Bayesian Inverse Problems. arXiv preprint,
2022.

[27] Yiming Gao. A Wasserstein distance and total variation regularized model for image recon-
struction problems. Inverse Problems and Imaging, 0(0):0–0, 2023. ISSN 1930-8337. doi:
10.3934/ipi.2023045.

[28] Kristian Bredies, Marcello Carioni, Silvio Fanzon, and Francisco Romero. A Generalized Con-
ditional Gradient Method for Dynamic Inverse Problems with Optimal Transport Regulariza-
tion. Foundations of Computational Mathematics, 23(3):833–898, 2023. ISSN 1615-3383. doi:
10.1007/s10208-022-09561-z. URL https://doi.org/10.1007/s10208-022-09561-z.

[29] Howard Heaton, Samy Wu Fung, Alex Tong Lin, Stanley Osher, and Wotao Yin. Wasserstein-
Based Projections with Applications to Inverse Problems. SIAM Journal on Mathematics of Data
Science, 4(2):581–603, 2022. ISSN 2577-0187. doi: 10.1137/20M1376790.

[30] Jonas Adler, Axel Ringh, Ozan Öktem, and Johan Karlsson. Learning to solve inverse problems
using Wasserstein loss. 2017.

66

https://iopscience.iop.org/article/10.1088/1361-6420/ac245d
https://iopscience.iop.org/article/10.1088/1361-6420/ac245d
https://proceedings.mlr.press/v119/raj20a.html
https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114009
https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114009
https://arxiv.org/abs/1912.10840v3
https://doi.org/10.1007/s10208-022-09561-z

[31] Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, and Peyman Mohajerin Esfahani. Regularization
via Mass Transportation. Journal of Machine Learning Research, 20(103), 2019.

[32] Laurent El Ghaoui and Hervé Lebret. Robust Solutions to Least-Squares Problems with Uncertain
Data. Society for Industrial and Applied Mathematics, 18(4):15, 1997. URL http://www.siam.
org/journals/simax/18-4/29813.html.

[33] Dimitris Bertsimas and Martin S. Copenhaver. Characterization of the equivalence of robustifica-
tion and regularization in linear and matrix regression. European Journal of Operational Research,
270(3):931–942, 2018. ISSN 0377-2217. doi: 10.1016/J.EJOR.2017.03.051.

[34] Rui Gao, Xi Chen, and Anton J Kleywegt. Wasserstein Distributionally Robust Optimization
and Variation Regularization. Operations Research, 2022. ISSN 0030-364X. doi: 10.1287/opre.
2022.2383. URL https://doi.org/10.1287/opre.2022.2383.

[35] Jose Blanchet, Yang Kang, and Karthyek Murthy. Robust Wasserstein Profile Inference and
Applications to Machine Learning. 2020. doi: 10.1017/jpr.2019.49.

[36] Terrence Tao. An Introduction To Measure Theory. 2011. URL https://api.semanticscholar.
org/CorpusID:117492913.

[37] Cédric Villani. Optimal Transport, volume 338 of Grundlehren der mathematischen Wis-
senschaften. Springer, Berlin, Heidelberg, 2009. ISBN 978-3-540-71049-3. doi: 10.1007/
978-3-540-71050-9. URL http://link.springer.com/10.1007/978-3-540-71050-9.

[38] Cédric Villani. Optimal transport, old and new. Springer, Berlin Heidelberg New York Hong Kong
London Milan Paris Tokyo, 2008.

[39] Tristan van Leeuwen and Christoph Brune. 10 Lectures on Inverse Problems and Imaging, 2023.
URL https://tristanvanleeuwen.github.io/IP_and_Im_Lectures/intro.html.

[40] Adi Ben-Israel and Thomas N.E. Greville. Generalized inverses: theory and applications, vol-
ume 15. Springer Science & Business Media, 2003.

[41] M. P. Drazin. Pseudo-Inverses in Associative Rings and Semigroups. The American Mathematical
Monthly, 65(7):506–514, 1958. ISSN 00029890. doi: 10.2307/2308576.

[42] E.H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathe-
matical Society, 26(9):394–395, 1920.

[43] Roger Penrose. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical
Society, 51(3):406–413, 1955.

[44] Jose Blanchet and Karthyek Murthy. Quantifying Distributional Model Risk via Optimal Trans-
port. https://doi.org/10.1287/moor.2018.0936, 44(2):565–600, 2019. ISSN 15265471. doi:
10.1287/MOOR.2018.0936. URL https://pubsonline.informs.org/doi/abs/10.1287/moor.
2018.0936.

[45] David G. Luenberger. Optimization by vector space methods. page 326, 1968. URL https:
//www.wiley.com/en-us/Optimization+by+Vector+Space+Methods-p-9780471181170.

[46] Lieve Vandenberghe. Proximal Mapping Lecture Notes University of California, Los Angeles
Spring, 2022.

[47] Ruidi Chen and Ioannis Ch. Paschalidis. Distributionally Robust Learning. Foundations and
Trends in Optimization, 4(1-2):1–243, 2020. ISSN 2167-3888. doi: 10.1561/2400000026.

[48] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization
using the Wasserstein metric: performance guarantees and tractable reformulations. Mathematical
Programming, 171(1-2):115–166, 2018. ISSN 0025-5610. doi: 10.1007/s10107-017-1172-1.

[49] Charalambos D. Aliprantis and Owen Burkinshaw. Principles of Real Analysis. Academic Press,
3rd edition, 1998.

67

http://www.siam.org/journals/simax/18-4/29813.html
http://www.siam.org/journals/simax/18-4/29813.html
https://doi.org/10.1287/opre.2022.2383
https://api.semanticscholar.org/CorpusID:117492913
https://api.semanticscholar.org/CorpusID:117492913
http://link.springer.com/10.1007/978-3-540-71050-9
https://tristanvanleeuwen.github.io/IP_and_Im_Lectures/intro.html
https://pubsonline.informs.org/doi/abs/10.1287/moor.2018.0936
https://pubsonline.informs.org/doi/abs/10.1287/moor.2018.0936
https://www.wiley.com/en-us/Optimization+by+Vector+Space+Methods-p-9780471181170
https://www.wiley.com/en-us/Optimization+by+Vector+Space+Methods-p-9780471181170

[50] Alexander Shapiro. On Duality Theory of Conic Linear Problems. In Semi-Infinite Programming:
Recent Advances, pages 135–165. Springer US, Boston, MA, 2001. ISBN 978-1-4757-3403-4. URL
https://doi.org/10.1007/978-1-4757-3403-4_7.

[51] Marco Cuturi. Sinkhorn distances: lightspeed computation of optimal transport. In Proceedings of
the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13,
pages 2292–2300, Red Hook, NY, USA, 2013. Curran Associates Inc.

68

https://doi.org/10.1007/978-1-4757-3403-4_7

A Appendix

A.1 Python code for constrained Wasserstein-DRO
This appendix contains the code used to implement the Wasserstein-DRO from section 8.

1 import numpy as np
2 from scipy.integrate import quad , nquad
3 import matplotlib.pyplot as plt
4 import os
5 from multiprocessing import Pool
6

7 ###
8 # This code implements the Constrained Wasserstein -DRO problem for matrix inversion
9 # with Gaussian additive noise as introduced in the Master Thesis

10 # "Learning Distributionally Robust Solutions for Inverse Problems using the
Wasserstein Distance"

11 # by Floor van Maarschalkerwaart.
12 ###
13

14

15 def vector_norm(vector):
16 ##### Calulcates 2-norm of a vector
17 return np.linalg.norm(vector)
18

19

20 def loss(xi, y, g):
21 ##### Calculates the loss function as squared 2-norm for
22 # xi: x-value
23 # y: y-value
24 # g: candidate inverse
25

26 global n
27 g = np.squeeze(g)
28

29 if measurement == ’matrix ’:
30 y = y.reshape ((n, n))
31

32 xhat = g @ y
33

34 if not np.isscalar(y):
35 xi = xi.ravel()
36 xhat = xhat.ravel()
37

38 return np.linalg.norm(xi - xhat)**2
39

40

41 def seperate_integrals(xi , integrand , lamb , sig , g, H):
42 #### Calculates a single integrand
43 # xi: x-value
44 # integrand: integrand to be evaluated
45 # lamb: lambda -value
46 # sig: sigma -value
47 # g: candidate inverse
48 # H: forward map
49

50 global measurement , nn , ab
51 if measurement == ’scalar ’:
52 si = quad(integrand , -np.inf , np.inf , args=xi)[0]
53 else:
54 integrand_fixed_xi = lambda *y: integrand (*y, xi=xi , lamb=lamb , sig=sig , g=g,

H=H)
55 lower_bounds = np.ones(nn) * (-ab)
56 upper_bounds = np.ones(nn) * ab
57 bounds = [(lower_bounds[i], upper_bounds[i]) for i in range(nn)]
58

59 si = nquad(integrand_fixed_xi , bounds)[0]
60 return si
61

62

63 def integrate_sum(integrand , lamb , sig , g, H):

69

64 #### Calculates four integrals in parallel
65 # integrand: integrand to be evaluated
66 # lamb: lambda -value
67 # sig: sigma -value
68 # g: candidate inverse
69 # H: forward map
70

71 global eps , n, nn , N, x, measurement , ab
72 frac = (1 / (N * np.power (2 * np.pi * (sig **2), 1/nn))) # fraction before

integral
73

74 pool_args = [(xi , integrand , lamb , sig , g, H) for xi in x]
75 with Pool() as pool:
76 results = pool.starmap(seperate_integrals , pool_args)
77 pool.close()
78 pool.join()
79

80 s = sum(results)
81 funcval = frac * s
82

83 return funcval
84

85

86 def compute_common_terms(y, xi, sig , H):
87 #### Separately compute common terms for efficiency
88 # y: y-value
89 # xi: x-value
90 # sig: sigma -value
91 # H: forward operator
92

93 if measurement != ’scalar ’:
94 y = np.array(y).ravel()
95

96 yi = (H @ xi).ravel() if measurement != ’scalar ’ else H @ xi
97

98 norm_yi_y = np.linalg.norm(yi - y) # norm of Hx - y
99 exponent = np.exp(-norm_yi_y **2 / (2 * sig **2)) # exponent in beginning of

integrand
100

101 return yi, norm_yi_y , exponent
102

103

104 def integrand_G (*y, xi, lamb , sig , g, H):
105 #### Integrand in G(lambda , sigma; g)
106 yi, norm_yi_y , exponent = compute_common_terms(y, xi, sig , H)
107

108 term = loss(xi , y, g) - lamb*norm_yi_y **2
109 funcval = exponent * term
110

111 return funcval
112

113

114 def integrand_lamb (*y, xi, lamb , sig , g, H):
115 #### Integrand in dG/dlambda (sigma; g)
116 yi, norm_yi_y , exponent = compute_common_terms(y, xi, sig , H)
117 funcval = exponent * norm_yi_y **2
118

119 return funcval
120

121

122 def integrand_sig (*y, xi , lamb , sig , g, H):
123 #### Integrand in dG/dsigma (lambda , sigma; g)
124 global nn
125 yi, norm_yi_y , exponent = compute_common_terms(y, xi, sig , H)
126 term = (loss(xi, y, g) - lamb*norm_yi_y **2)*(sig**(-3)*norm_yi_y **2 - 2/(nn*sig))
127 funcval = exponent * term
128 return funcval
129

130

131 def G(lamb , sig , g):
132 global eps , H

70

133 funcval = lamb * eps + integrate_sum(integrand_G , lamb , sig , g, H)
134 return funcval
135

136

137 def dGdlamb(lamb , sig , g):
138 global eps , H
139 funcval = eps - integrate_sum(integrand_lamb , lamb , sig , g, H)
140 return funcval
141

142

143 def dGdsig(lamb , sig , g):
144 global H
145 funcval = integrate_sum(integrand_sig , lamb , sig , g, H)
146 return funcval
147

148

149 def gradient_descent(lamb0 , sig0 , g):
150 #### Gradient descent algorithm for lambda
151 # lamb0: starting value of lambda
152 # sig0: starting value of sigma
153 # g: candidate inverse
154 # Returns: lambda
155

156 global lr1 , sub_iterations , lambs , H
157 lamb = lamb0
158 sig = sig0
159

160 for i in range(sub_iterations):
161 # make sure lambda >= 0
162 new_lamb = max(lamb - lr1*dGdlamb(lamb , sig , g), 0)
163 if abs(new_lamb - lamb) > 50:
164 # if jump in lambda is too large , adapt to a smaller learning rate
165 new_lamb = lamb - (lr1*1e-3) * dGdlamb(lamb , sig , g)
166 lamb = new_lamb
167 return lamb
168

169

170 def gradient_ascent(lamb0 , sig0 , g):
171 #### Gradient ascent algorithm for sigma
172 # lamb0: starting value of lambda
173 # sig0: starting value of sigma
174 # g: candidate inverse
175 # Returns: sigma
176

177 global lr2 , sub_iterations , sigs , H
178 lamb = lamb0
179 sig = sig0
180

181 for i in range(sub_iterations):
182 new_sig = sig + lr2 * dGdsig(lamb , sig , g)
183 if abs(new_sig - sig) > 50:
184 # if jump in sigma is too large , adapt to a smaller learning rate
185 new_sig = sig + (lr2*1e-4) * dGdsig(lamb , sig , g)
186 if new_sig < 0:
187 # if sigma < 0, adapt to a smaller learning rate
188 new_sig = sig + (lr2*1e-4) * dGdsig(lamb , sig , g)
189 if new_sig > 0:
190 # make sure sigma > 0
191 sig = new_sig
192 else:
193 print(’sigma below zero so unchanged ’)
194

195 return sig
196

197

198 def alternating_grad(lamb0 , sig0 , g):
199 #### Alternating gradient descent/ascent algorithm for lambda/sigma
200 # lamb0: starting value of lambda
201 # sig0: starting value of sigma
202 # g: candidate inverse
203 # Returns: optimal lambda , sigma and objective

71

204 global total_iterations , sub_iterations , lr1 , lr2 , err , lambs , sigs , H, sigs ,
lambs

205

206 lamb = lamb0
207 sig = sig0
208

209 sigs = []
210 lambs = []
211 opts = []
212

213 for i in range(total_iterations):
214 lamb = gradient_descent(lamb , sig , g)
215 lambs.append(lamb)
216

217 sig = gradient_ascent(lamb , sig , g)
218 sigs.append(sig)
219

220 opt = G(lamb , sig , g)
221 opts.append(opt)
222

223 # Print information every 10 iterations
224 if i % 10 == 0:
225 print(f’iteration {i}’)
226 print(f’current lambda = {lamb}’)
227 print(f’current sigma = {sig}’)
228 if i > 1:
229 # Quit algorithm if parameters have converged
230 if abs(sigs[i] - sigs[i - 1]) < err and abs(sigs[i - 1] - sigs[i - 2]) <

err and abs(lambs[i] - lambs[i - 1]) < err and abs(lambs[i - 1] - lambs[i - 2]) <
err:

231 print(f’converged parameters at it = {i}’)
232 break
233 # Quit algorithm if objective has converged
234 if abs(opts[i] - opts[i - 1]) < err and abs(opts[i - 1] - opts[i - 2]) <

err:
235 print(f’converged objective at it = {i}’)
236 break
237 return lamb , sig , opts
238

239

240 def minmax(g):
241 #### Calculates the worst -case value for a particular candidate inverse ’g’
242 # Returns: optimal value , optimal lambda , optimal sigma
243 # and a vector ’opts’ containing the objective value for each iteration
244

245 global total_iterations , sub_iterations , lr1 , lr2 , lamb_start , sig_start , H
246

247 lamb0 = lamb_start
248 sig0 = sig_start
249

250 lamb_opt , sig_opt , opts = alternating_grad(lamb0 , sig0 , g)
251 opt = G(lamb_opt , sig_opt , g)
252

253 return opt , lamb_opt , sig_opt , opts
254

255

256 def worstcase(g, i):
257 #### Plots the vector containing the objective value for each iteration
258 # against sigma and lambda and saves it to a file
259 # g: candidate inverse
260 # i: index of candidate inverse
261 # Returns: optimal values of lambda , sigma and the objective function
262

263 global basepath , total_iterations , lamb0 , sig0 , sub_iterations , lr1 , lr2 , lambs ,
sigs , H

264

265 opt , lamb_opt , sig_opt , opts = minmax(g)
266 print(f’Total risk = {opt}’)
267 print(f’Optimal lambda = {lamb_opt}’)
268 print(f’Optimal sigma = {sig_opt}’)
269

72

270 fig , ax1 = plt.subplots ()
271

272 # Plot worst cases against sigs
273 color = ’tab:blue’
274 ax1.set_xlabel(’Risk’)
275 ax1.set_ylabel(r’σ ’, color=color)
276 ax1.plot(opts , sigs , ’o-’, color=color , markersize =3)
277 ax1.tick_params(axis=’y’, labelcolor=color)
278

279 # Create a secondary y-axis to plot lambs
280 ax2 = ax1.twinx()
281 color = ’tab:red’
282 ax2.set_ylabel(r’λ ’, color=color)
283 ax2.plot(opts , lambs , ’s--’, color=color , markersize =3)
284 ax2.tick_params(axis=’y’, labelcolor=color)
285

286 plt.title(fr’Risk against σ and λ , map index {i}’)
287 plt.plot()
288 # plt.show()
289

290 # Save file
291 file_path = os.path.join(basepath , f’optimization_map_{i}.png’)
292 plt.savefig(file_path)
293 plt.close()
294

295 return opt , lamb_opt , sig_opt
296

297

298 def best_worstcase(gs):
299 #### Calculates the best -worst case g and the corresponding objective value and

plots the worst -case for each g
300 # and saves plot to a file as well as a .txt file containing the results and some

initial values
301 # gs: list of candidate inverses to optimize over
302

303 global basepath , total_iterations , H, lamb_start , sig_start
304

305 worstcases = []
306 lamb_opts = []
307 sig_opts = []
308

309 # For each candidate inverse (or ’map ’), calculate the worst -case lambda , sigma
and objective

310 for i, g in enumerate(gs):
311 print(f’testing map index {i}’)
312 opt , lamb_opt , sig_opt = worstcase(g, i)
313 worstcases.append(opt)
314 lamb_opts.append(lamb_opt)
315 sig_opts.append(sig_opt)
316

317 # Plot worst -case for each g
318 x_values = list(range(0, len(worstcases)))
319 plt.plot(x_values , worstcases , marker=’o’, linestyle=’-’, color=’b’, markersize =3)
320 plt.title(’Worst Case for Each Map’)
321 plt.xlabel(’Map Index ’)
322 plt.ylabel(’Worst Case Risk Value ’)
323 plt.grid(True)
324 plt.xticks(x_values)
325 # plt.show()
326

327 # Save file
328 path = os.path.join(basepath , ’best_worstcase ’+’.png’)
329 plt.savefig(path)
330

331 # Find best -worst case and corresponding lambda , sigma , g
332 funcval = min(worstcases)
333 best_worstcase_idx = worstcases.index(funcval)
334 best_worstcase_lamb = lamb_opts[best_worstcase_idx]
335 best_worstcase_sig = sig_opts[best_worstcase_idx]
336 best_worstcase_g = gs[best_worstcase_idx]
337

73

338 # Save results to a .txt file
339 output = [
340 f’Best worst case g = {best_worstcase_g}, idx = {best_worstcase_idx }\n’,
341 f’Best worst case lambda = {best_worstcase_lamb }\n’,
342 f’Best worst case sigma = {best_worstcase_sig }\n’,
343 f’Best worst case risk = {funcval }\n’,
344 f’Sigma = {gs}\n’,
345 f’forward map H = {H}\n’,
346 f’starting value lamb = {lamb_start}, sig = {sig_start}’
347]
348

349 result_filename = os.path.join(basepath , ’results.txt’)
350

351 with open(result_filename , ’w’) as f:
352 f.writelines(output)
353

354 print(f’Results saved to {result_filename}’)
355

356

357 def generate_data(measurement , nr_gs , n, N, matrix):
358 #### Generate data
359 # measurement: ’scalar ’, ’vector ’ or ’matrix ’, decides what type of problem we are

considering (shape of y)
360 # nr_gs: number of ’candidate inverses ’ to consider
361 # n: data -dimension
362 # N: number of data -points
363 # matrix: ’wellposed ’, ’illposed ’, ’singular1 ’ or ’singular2 ’, decides the type of

forward operator
364

365 # Returns:
366 # x: list of x datapoints
367 # y: list of y datapoitns
368 # H: forward operator
369 # gs: list of candidate inverses
370

371 global pm
372

373 if measurement not in [’scalar ’, ’vector ’, ’matrix ’]:
374 print(’Wrong problem type’)
375 return
376

377 # Generate forward operator
378 a = 2
379 if matrix == ’wellposed ’:
380 D = np.ones(n)*a
381 H = D if measurement == ’scalar ’ else np.diag(D)
382 elif matrix == ’illposed ’:
383 D = np.ones(n)
384 D[n-1] = 1e-5
385 H = D if measurement == ’scalar ’ else np.diag(D)
386 elif matrix == ’singular1 ’:
387 H = np.array ([[1, 0], [1, 0]])
388 elif matrix == ’singular2 ’:
389 H = np.array ([[1, 1], [1, 1]])
390 else:
391 print(’Wrong forward operator type!’)
392 return
393

394 x = []
395 y = []
396 gs = []
397

398 # Generate data x, y
399 for _ in range(N):
400 xi_shape = (n, n) if measurement == ’matrix ’ else (n, 1)
401 xi = np.squeeze(np.random.uniform (1e-19, 10, size=xi_shape))
402 x.append(xi)
403 y.append(H @ xi)
404

405 # Generate list of candidate inverses
406 if matrix == ’wellposed ’:

74

407 # Include the real inverse and perturbations of it
408 diag = np.ones(n) * (1 / a)
409 inv = diag if measurement == ’scalar ’ else np.diag(diag)
410

411 for _ in range(nr_gs):
412 g_shape = (n, 1) if measurement == ’scalar ’ else n
413 g = np.random.uniform(-pm, pm, size=g_shape)
414 g = g + np.ones(g_shape)*(1/a)
415 g = np.diag(g) if measurement != ’scalar ’ else g
416 gs.append(g)
417 gs.append(inv)
418

419 elif matrix == ’illposed ’:
420 # Include the real inverse and perturbations of it
421 diag = np.ones(n)
422 diag[n-1] = 1e5
423 inv = diag if measurement == ’scalar ’ else np.diag(diag)
424

425 for _ in range(nr_gs):
426 if pm == ’custom ’:
427 g = np.array ([np.random.uniform(0, 2), np.random.uniform (1e3 , 1e7)])
428 g = np.diag(g)
429 gs.append(g)
430 else:
431 g = np.array ([np.random.uniform(-pm*1, pm*1), np.random.uniform(-pm*1

e5, pm*1e5)])
432 g = np.diag(g) + inv
433 gs.append(g)
434 gs.append(inv)
435

436 elif matrix == ’singular1 ’:
437 # Include Moore -Penrose , Drazin inverse and two random generalized inverses
438 MP = np.array ([[0.5 , 0.5], [0, 0]])
439 gs.append(MP)
440

441 Drazin = H
442 gs.append(Drazin)
443

444 # Two generalized inverses
445 alpha = np.random.uniform(0, 1)
446 g = np.array ([[alpha , 1 - alpha], [0, 0]]) # with 0’s on second row
447 gs.append(g)
448 beta = np.random.uniform(0, 1)
449 g = np.array ([[beta , 1 - beta], [np.random.uniform(-1, 1), np.random.uniform

(-1, 1)]]) # anything on second row
450 gs.append(g)
451

452 elif matrix == ’singular2 ’:
453 # Include Moore -Penrose = Drazin inverse and two random generalized inverses
454 MP = np.array ([[0.25 , 0.25] , [0.25 , 0.25]])
455 gs.append(MP)
456

457 # Two generalized inverses
458 g = np.random.rand(2, 2)
459 g = g / np.sum(g)
460 gs.append(g)
461 g = np.random.rand(2, 2)
462 g = g / np.sum(g)
463 gs.append(g)
464

465 return x, H, y, gs
466

467

468 # Initialize global lists
469 lambs = []
470 sigs = []
471

472 # Initial values
473 eps = 0.001 # epsilon
474 lamb_start = 0.4 # starting value lambda
475 sig_start = 1.7 # starting value sigma

75

476 lr1 = 0.001 # learning rate lambda
477 lr2 = 0.001 # learning rate sigma
478 err = 0.0001 # convergence tolerance (when we consider parameters or objective ’

converged ’)
479 nr_gs = 3 # number of candidate inverses in Sigma
480 sub_iterations = 3 # number of iterations for gradient descent/ascent on lambda/sigma
481 total_iterations = 800 # total number of iterations of alternating gradient descent/

ascent
482 N = 12 # nr of datapoints
483 n = 2 # data -dimension
484 pm = 0.2 # perturbation of real inverse
485 # pm = ’custom ’
486

487 # Set type of measurement (shape of y)
488 # measurement = ’scalar ’
489 measurement = ’vector ’
490 # measurement = ’matrix ’
491

492 # Set type of forward operator
493 matrix = ’wellposed ’
494 # matrix = ’illposed ’
495 # matrix= ’singular1 ’
496 # matrix = ’singular2 ’
497

498 # Set right dimensions
499 if measurement == ’matrix ’:
500 nn = n*n
501 else:
502 nn = n
503

504 # Set random seed for reproducibility
505 rs = 348
506 np.random.seed(rs)
507

508 # Bounds for integrals
509 ab = 30
510

511 # Include important information in folder name
512 info = fr’H={ matrix} ab={ab}_it={ total_iterations} pm={pm} lr1={lr1} lr2={lr2}’
513 basepath = os.path.join(fr’C:\ Users\floor\Documents\TW\Master\Afstuderen\Figures ’,

measurement , info)
514

515 # Create folder
516 if not os.path.exists(basepath):
517 os.makedirs(basepath)
518

519 if __name__ == "__main__":
520 # Generate data
521 x, H, y, gs = generate_data(measurement , nr_gs , n, N, matrix)
522

523 # Find best -worstcase g
524 best_worstcase(gs)

A.2 Python code for Picard condition
This appendix contains the code used to compute the Picard condition in section 8.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 ###
5 # Calculates Picard condition for ill -posed and two singular matrices
6 # and plots reconstruction error of different pseudo -inverses for the singular

matrices
7 ###
8

9 n = 2
10 ii = [0, 1]
11

12 # Construct forward operator

76

13 # Hilbert matrix
14 # n = 100
15 # ii = np.linspace(0, 100, n)
16 # H = hilbert(n)
17

18 # ill -posed
19 # D = np.ones(n)
20 # D[n - 1] = 1e-5
21 # H = np.diag(D)
22

23 # singular
24 # H = np.array ([[1, 0], [1, 0]]) # s1
25 H = np.array ([[1, 1], [1, 1]]) # s2
26

27 # Calculate SVD
28 U, s, Vh = np.linalg.svd(H, full_matrices=True)
29

30 N = 12 # nr of datapoints
31 sigma = 1e-2 # variance of noise
32

33 # Random seed for reproducibility
34 rs = 348
35 np.random.seed(rs)
36

37 x = []
38 y = []
39 y_delta = []
40

41 # Generate data
42 for _ in range(N):
43 xi_shape = (n, 1)
44 xi = np.squeeze(np.random.uniform (1e-19, 10, size=xi_shape))
45 x.append(xi)
46 y.append(H @ xi)
47

48 # Choose pseudo -inverses to include
49 # for s1
50 # gs = []
51 # MP = np.array ([[0.5 , 0.5], [0, 0]])
52 # gs.append(MP)
53 # Drazin = H
54 # gs.append(Drazin)
55 # alpha = np.random.uniform(0, 1)
56 # g1 = np.array ([[alpha , 1 - alpha], [0, 0]])
57 # gs.append(g1)
58 # beta = np.random.uniform(0, 1)
59 # g2 = np.array ([[beta , 1 - beta], [np.random.uniform(-1, 1), np.random.uniform(-1, 1)

]])
60 # gs.append(g2)
61

62 # for s2
63 gs = []
64 MP = np.ones((n, n))*0.25
65 gs.append(MP)
66 g = np.random.rand(2, 2)
67 g1 = g / np.sum(g)
68 gs.append(g1)
69 g = np.random.rand(2, 2)
70 g2 = g / np.sum(g)
71 gs.append(g2)
72

73 # Add noise to data
74 for i in range(N):
75 noise = np.random.rand(n)
76 y_delta.append(y[i] + sigma * noise)
77

78 idx = 0 # which datapoint to consider
79

80 # Add elements from null -space of singular operators (if wanted)
81 # xi = np.array ([1, -1]) # s2
82 # xi = np.array ([0, -1]) # s1

77

83 # yi = H @ xi
84 # yi_delta = yi + sigma*np.random.rand(n)
85 # x.append(xi)
86 # y.append(yi)
87 # y_delta.append(yi_delta)
88 # idx = N
89

90 # Calculate projections of data with singular values
91 projections_f = np.abs(U.T @ y[idx])
92 projections_f_delta = np.abs(U.T @ y_delta[idx])
93

94 # For singular matrices , replace 0-singular values with a very small value
95 small_value = 1e-10 # Small value to replace zeros
96 s_with_small_value = np.where(s == 0, small_value , s)
97

98 # Calculate picard ratio
99 picard_ratios_f = projections_f / s_with_small_value

100 picard_ratios_f_delta = projections_f_delta / s_with_small_value
101

102 # Plot projections and singular values to inspect Picard condition
103 font = {’size’ : 22}
104 plt.rc(’font’, **font)
105 fig1 , ax = plt.subplots(1, 1, figsize =(12, 8))
106 ax.semilogy(s + small_value , ’*-.’, label=r’σ_i ’, ms=8, color=’black’)
107 ax.semilogy(projections_f + small_value , ’o--’, label=r’$|\ langle u_i , y\rangle|$’)
108 ax.semilogy(projections_f_delta + small_value , ’o--’, label=r’$|\ langle u_i , y^{\ delta

}\ rangle|$’)
109 ax.semilogy(projections_f + np.sqrt (2/np.pi)*sigma ,’k--’, label=r’upper bound $|\

langle u_i , f^{\ delta}\ rangle|$’)
110 ax.set_xticks(ii)
111 ax.set_xlabel(r’i’)
112 ax.set_ylabel(’Value’)
113 ax.set_title(’Picard condition ’)
114 ax.legend ()
115 plt.show()
116 plt.close()
117

118 # Plot Picard ratio
119 fig2 , ax = plt.subplots(1, 1, figsize =(12, 8))
120 ax.semilogy(picard_ratios_f + small_value , ’s:’, label=r’Picard ratio y’)
121 ax.semilogy(picard_ratios_f_delta + small_value , ’s:’, label=r’Picard ratio $y^{\ delta

}$’)
122 ax.set_xticks(ii)
123 ax.set_xlabel(r’i’)
124 ax.set_ylabel(’Value’)
125 ax.set_title(’Picard Ratio ’)
126 ax.legend ()
127 plt.show()
128 plt.close()
129

130

131 # Below , calculate reconstruction error for each pseudo -inverse
132

133

134 def reconstruction_error(H_pseudo , f, x):
135 # Calculate reconstruction error
136 # H_pseudo: pseudo -inverse to consider
137 # f: measurement
138 # x: ground -truth
139 x_reconstructed = H_pseudo @ f
140 error = np.linalg.norm(x_reconstructed - x)
141 return error
142

143

144 N = 100 # nr of data -points to consider
145 x = []
146 y = []
147 y_delta = []
148

149 # Generate new data
150 for _ in range(N):

78

151 xi_shape = (n, 1)
152 xi = np.squeeze(np.random.uniform(-10, 10, size=xi_shape))
153 # xi = np.array ([np.random.uniform(0, 10), np.random.uniform(0, 0.05)])
154 x.append(xi)
155 y.append(H @ xi)
156

157 sigma = 0.1 # variance of noise
158 for i in range(N):
159 noise = np.random.rand(n)
160 y_delta.append(y[i] + sigma * noise)
161 y = y_delta
162

163 # Calculate errors for each test vector and each pseudo -inverse
164 errors1 = [reconstruction_error(MP , f, u) for f, u in zip(y, x)]
165 # errorsD = [reconstruction_error(Drazin , f, u) for f, u in zip(y, x)]
166 errors2 = [reconstruction_error(g1 , f, u) for f, u in zip(y, x)]
167 errors3 = [reconstruction_error(g2 , f, u) for f, u in zip(y, x)]
168

169 # Aggregate errors
170 avg_error1 = np.mean(errors1)
171 # avg_errorD = np.mean(errorsD)
172 avg_error2 = np.mean(errors2)
173 avg_error3 = np.mean(errors3)
174

175 print(f"Average reconstruction error for MP: {avg_error1}")
176 # print(f"Average reconstruction error for Drazin: {avg_errorD }")
177 print(f"Average reconstruction error for g1: {avg_error2}")
178 print(f"Average reconstruction error for g2: {avg_error3}")
179

180 # Plot errors for visual comparison
181 plt.figure(figsize =(12, 8))
182 plt.plot(errors1 , ’o--’, label=’MP’, markersize =8, color=’black’)
183 # plt.plot(errorsD , ’d--’, label=’D’, color=’red ’)
184 plt.plot(errors2 , ’s--’, label=’G1’, color=’orange ’)
185 plt.plot(errors3 , ’^--’, label=’G2’, color=’green ’)
186 plt.xlabel(’Test Vector Index ’)
187 plt.ylabel(’Reconstruction Error’)
188 plt.title(’Reconstruction Errors for Different Inverses ’)
189 plt.legend(loc =2)
190 plt.show()
191 plt.close()

79

	Notation and definitions
	Introduction
	Related works
	Approach and main contributions

	Theoretical framework
	Measure theory
	Probability measures
	Distributionally Robust Optimization (DRO)
	Wasserstein distance and optimal transport
	DRO problem

	Inverse problems

	Fundamental theorems
	Dual representation
	Proof of Proposition 4.1
	The primal problem
	The dual problem and weak duality
	Strong duality
	Dual optimizer

	Evaluation of dual representation using the proximal operator
	Quadratic loss function
	Norm loss

	Fenchel duality theorem
	Alternative proof for strong duality
	Strong duality

	Convex reduction of Wasserstein-DRO problem

	Wasserstein robustness for Bayesian estimation
	Problem variants
	Inverse problems
	Other problem variants

	Dual representation
	Primal problem
	Dual problem and weak duality
	Strong duality
	Finite-dimensional reduction of dual

	Inverse problem with Guassian noise in measurement space
	Dual representation
	Finite-dimensional reduction

	Numerical examples
	Picard condition for a high-dimensional operator
	Inverse problem with measurement in `3́9`42`"̇613A``45`47`"603ARn and Gaussian noise
	Non-singular, stable forward operator
	Non-singular, unstable forward operator
	Singular forward operator 1
	Singular forward operator 2

	Conclusions on numerical results

	Conclusion and outlook
	Bibliography
	Appendix
	Python code for constrained Wasserstein-DRO
	Python code for Picard condition

