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Digital Elevation Models (DEM), represent the topography of the bare Earth
and can be processed using computer software. These models are often uti-
lized in industries such as transportation and engineering for creating digital
twins and ensuring the efficient operation of machinery and infrastructure.
This paper discusses the methodology for generating Digital Terrain Models
(DTMs) within rail infrastructure using monocular video footage. DTMs
being DEMs that exclude man-made infrastructure and vegetation. The tech-
niques covered include GPS interpolation, feature matching and extraction,
triangulation, and computer vision models for converting DEMs into DTMs.
The generation and comparison of point clouds are demonstrated, showing
acceptable accuracy for given context. The results indicate that this technol-
ogy has potential for low to medium accuracy use cases, though it has certain
limitations that are discussed. The paper covers the technical challenges and
solutions associated with this approach and compares its characteristics to
the current standard, LIDAR. The main takeaway for future research is that
this method is a viable alternative to LIDAR, but achieving high accuracy
requires significant effort in setting up high-quality systems and using more
reliable object detection models with more training data.

Additional KeyWords and Phrases: Digital terrain model, Point Cloud, Video
topography extraction

1 INTRODUCTION
Rail transportation systems play an important role inmodern society,
facilitating efficient movement of goods and passengers across vast
distances. The reliability and safety of these systems are paramount,
necessitating robust modeling techniques to optimize maintenance.
Traditional methods of assessing rail infrastructure often rely on
labor-intensive surveys or costly LIDAR (Light Detection and Rang-
ing) technology. However, recent advancements in computer vision
and photogrammetry have opened up new avenues for capturing
detailed spatial information through video data.

This paper displays an approach to DTM (Digital Terrain model)
modeling in rail infrastructure by using video-derived point clouds.
By leveraging video footage captured from trains, the aim is to re-
construct detailed three-dimensional representations of rail assets
and their surrounding environments, creating a DEM (Digital Eleva-
tion model). Following successful generation of a DEM, this paper
presents solutions for converting a DEM into a DTM (see Figure
1), which entails removing the infrastructure and vegetation from
the feature extraction and matching. This approach offers several
advantages over conventional methods, including cost-effectiveness.

In this paper, we will first review existing literature on infrastruc-
ture modeling techniques, mentioning the limitations of current ap-
proaches and the potential benefits of utilizing video-derived point
clouds. We will then present a pipeline for generating point clouds
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from video data, highlighting key steps such as camera calibration,
feature tracking, and point cloud reconstruction. Additionally, re-
search in the direction of converting Digital Elevation models to
Digital Terrain Models will be explored.
Overall, this paper aims to demonstrate the potential of video-

derived point clouds as a valuable tool for enhancing service model-
ing in rail infrastructure by providing detailed and accurate spatial
information.

2 RESEARCH QUESTIONS
The main research question that will be tackled in this paper is the
following:How can video-generated point clouds be utilized as a
viable alternative to LIDAR scans for generating Digital Eleva-
tion models in the context of rail infrastructure? In addressing
the main question, the related sub-questions and adjacent topics
will be explored.

2.1 Sub-researchQuestion 1:
What are the limitations and constraints of using video-based meth-
ods for generation in comparison to LIDAR?

2.2 Sub-researchQuestion 2:
How do the precision characteristics of video-generated point clouds
compare to those of LIDAR, and are they sufficient for modeling
purposes within this specific context?

2.3 Sub-researchQuestion 3:
How can machine learning and computer vision algorithms be ap-
plied to automate the process of transforming the Digital Elevation
models to Digital Terrain models?

3 RELATED WORKS
In this section, the relevant literature pertaining to this topic of
interest will be reviewed. Photogrammetry is a well-researched
topic, particularly in fields like social engineering. While stereo
cameras are commonly used, research on depth estimation and
point cloud creation using monocular cameras is also substantial.
Below, the specific topics relevant to this project will be explored.

(1) In their paper, Wang et al.[6] provide a solution for mak-
ing DTMs with monocular cameras from aerial photos that
provide very satisfactory results. They investigate into more
specifics and technologies that they applied. Some of their
techniques could transfer in the use of videos made from
ground level.

(2) Ekström [2] shows that the validity of creating a system
that develops a depth estimation of road infrastructure is
possible with the use of monocular cameras and Structure
From Motion (SFM) approach on the condition that it is not
something to be used in real time.
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Fig. 1. Frame from the video

(3) The creation of point clouds from video has been a longstand-
ing topic of discussion, with existing datasets showcasing
well-researched methods for generating point clouds and
depth estimation. For instance, the KITTI validation dataset
[1] serves as a comprehensive resource in this regard.

(4) In 2019, Weng, X., and Kitani, K [5]. introduced a solution that
combines image recognition from 2D images with point cloud
object recognition from monocular images. This approach
offers a reliable and rapid object detection method, which
could prove to be an intriguing solution when contemplating
the transformation of DEM into DTM.

4 METHODOLOGIES
This part of the study details the foundational structure that this
research paper will follow. It begins by describing the setup and
datasets. Next, it explains the procedure for carrying out the experi-
ments and specifies the evaluation metrics used.

4.1 Datasets
4.1.1 Strukton Leonardo Video. Strukton possesses an old stomping
train equipped with multiple cameras that capture data from various
viewpoints. This setup forms the primary dataset for forthcoming
operations and testing. Each video is accompanied by GPS data for
the train and cameras, along with calibration details for all cameras.
In theory, this dataset contains all the necessary information to
perform photogrammetry. For this paper a sideways view will be
the main focus as seen in Figure 1.

4.1.2 LIDAR Point Clouds from SpoorInBeeld. As a benchmark,
LIDAR point clouds of regions will be utilized, sourced from the
ProRail Spoorbeeld open dataset. These LIDAR point clouds pro-
vide high-resolution, precise spatial data, serving as a standard for
evaluating the accuracy and performance of other datasets.

4.2 Procedure
This section introduces a pipeline for creating DSM point clouds and
transforming them into DTMs. Each step of the process is discussed
in detail. An overview of the pipeline is provided in Figure 2.

Fig. 2. Pipeline for DTM generation

4.2.1 GPS Data Interpolation. GPS coordinate interpolation and
matching with video involve the alignment and synchronization
of video frames with geographical locations. Interpolation, which
entails estimating values between recorded data points, facilitates
the precise determination of each video frame’s location. This tech-
nique is particularly beneficial in situations where GPS data points
are sparse or insufficiently frequent to accurately correspond with
the video frames. For instance, during the acceleration of a train,
minor speed variations can result in significant scale distortions.
Therefore, this method ensures higher-precision measurements and
accurate spatial representation.

4.2.2 Feature Extraction and Matching. Feature extraction plays a
pivotal role in image analysis by identifying distinctive points or
regions within an image. Subsequently, feature matching compares
these extracted features across multiple images to identify com-
monalities between them. Within this pipeline, feature matching
is a critical step as it facilitates the identification of shared features
across images. Initially, conventional SIFT algorithms were em-
ployed for feature detection and matching, but their efficacy proved
inadequate for the complexity of this use case. This primarily due
to a similar repeating environment. Consequently, a transition to
the DNN-based LightGlue[8] detection algorithm was undertaken
to ensure both accuracy and speed. In this use case, generating
dense point clouds is prioritized over the speed of feature matching-
extraction. Therefore, the parameters for limiting the number of
matches are turned off or set to the maximum possible value.

4.2.3 Terrain Detection Image Recognition Model. Within the exten-
sive array of computer vision tools, certain methods may facilitate
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Fig. 3. Difference between DEM and DTM. (Wiki du Master Géographies
Numériques, 2018).

Fig. 4. Horizon detection results

the conversion of a DEM to a DTM (Figure 3) without necessitat-
ing the standard compute intensive point cloud segmentation[12].
This discussion explores techniques that may prove effective in
accomplishing this task.

(1) Horizon Detection Algorithm - The most straightforward
yet susceptible to inaccuracies method involves employing a
horizon detection algorithm. This technique utilizes a basic
segmentation algorithm, leveraging an existing library[9].
While it yields helpful results, it is not entirely reliable as
it frequently includes infrastructure elements such as traffic
lights and trees as part of the horizon. Despite these limita-
tions, it serves as a rapid and lightweight preliminary step
towards generating a DTM. Additionally a correction was
made by pulling down the horizon line 5% of the image height,
due to the fact that the interest is of the area close to the rail
tracks not the actual horizon. The results of this be viewed in
Figure 4.

(2) YOLOv8n, pretrained on the OpenImagesV7[10] dataset - in-
cludes several labels relevant to our task. It will be used to
identify and eliminate vertical obstacles during the DTM gen-
eration process. Specifically, we will focus on labels such
as "Tree", "Street Light", "Street Sign", and "Traffic Light",
as they are the most likely to correspond to the trees and
poles obstructing the view. The model that will be used is
YOLOv8n(nano) because of its efficiency in terms of speed
and good accuracy.[13]

4.2.4 Triangulation. Triangulation is a technique utilized in com-
puter vision and photogrammetry to calculate the 3D coordinates of
a point in space by using two or more images taken from different
viewpoints. By extracting features from these images and triangu-
lating their coordinates, a dense collection of points known as a
point cloud is generated.

4.2.5 Camera Projection Matrix Calculation. To proceed with tri-
angulation, it is necessary to create projection matrices that incor-
porate both the intrinsic and extrinsic parameters of the camera.
The intrinsic parameters refer to the internal characteristics of the
camera, such as focal length and sensor size. The extrinsic parame-
ters include spatial data, such as the translation and rotation of the
camera. The intrinsic will be provided with the dataset while the
extrinsic are going to be calculated from the GPS data.

4.2.6 Visualisation, post processing. Given the likelihood of noise in
featurematching, post-processing, such as statistical outlier removal,
proves advantageous. Visualization serves as a valuable tool for
evaluating point cloud performance through visual examination.
As the focus is on dense point clouds that are situated in a close
proximity to each other the method of statistical post processing
here is radius outlier removal.

4.3 Evaluation
The video sequences will be split into manageable segments. Lever-
aging the publicly available LIDAR point clouds from SpoorInBeeld
for evaluation, both sets of point clouds, being in homogeneous
coordinates, necessitate manual alignment as a prerequisite for the
evaluation process. Consequently, preliminary manual alignment of
the samples will be conducted, followed by an automated matching
procedure. The evaluation criteria guiding the assessment comprise:

(1) Proportion of points within a specified threshold
(2) Minimum distance recorded
(3) Maximum distance recorded
(4) Point with the highest data density
(5) Mean absolute distance
(6) Standard deviation of absolute distance

4.4 Environment
In this paper, Python, leveraging multiple scientific libraries, serves
as the basis for developing the pipeline. Utilizing Jupyter Notebooks
for interactive development. CloudCompare is used for analysis of
generated point clouds and visualization of data.

5 COMPARASION TO LIDAR AND LIMITATIONS

5.1 Comparasion to LIDAR
This part will discuss the different aspects of characteristics and
ways of data collection both from video photogrammtery as well as
LIDAR scans. The comparasion can be seen in Table 1

5.1.1 Relevant takeaways. Photogrammetry is considerably cheaper
and, when LIDAR scanners are out of range price-wise, it becomes a
viable alternative that can produce appropriate results. However, LI-
DAR is superior for precise use cases, making photogrammetry not
suitable for all applications. In present context, a potential drawback
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of photogrammetry is its high sensitivity to light conditions, unlike
LIDAR, which remains unaffected. This makes LIDAR particularly
advantageous in environments such as tunnels, or footage taken in
the evenings.

One advantage of photogrammetry over LIDAR scanners is that
it immediately captures color values. This is beneficial for applica-
tions such as service modeling, where the models are viewed by
humans. Providing RGB values allows for clearer identification of
the environment.

Aspect Monocular Pho-
togrammetry

LIDAR Scanning

Accuracy High-resolution,
well calibrated im-
ages provide detailed
surface information

Highly accurate
point clouds

Precision Sensitive to image
quality and calibra-
tion

Direct distance mea-
surement

Range Limited by camera
lens and distance
from the object

Long-range scanning
capability

Data Density Highly dependent on
image resolution

Dense point cloud

Lighting Conditions Performance may de-
grade in poor light-
ing conditions

Unaffected by light-
ing conditions

Costs Lower cost due to
use of consumer-
grade cameras

Higher initial costs
due to specialized
equipment

Color Includes RGB values Does not include
RGB values

Table 1. Comparison of Monocular Photogrammetry and LIDAR Scanning
Point Cloud Results

5.2 Limitations of current setup
There are several limitation characteristics of this approach in its
current state, they are listed below and it is discussed how it can
change the accuracy:

(1) Inaccuracies in calibration - The cameras are used for nu-
merous different purposes, leading to frequent recalibration
with changes in focal lengths, recording modes, and auto
focus settings. As a result, achieving a highly accurate intrin-
sic calibration of the cameras is nearly impossible. In this
case, a default calibration from a separate camera is used,
introducing a certain margin of error.

(2) Vibrations on the train - The movement and vibrations of the
train introduce additional errors

Fig. 5. Histogram showing results

(3) Internal software stabilization - As previously mentioned, the
camera footage is used for various services by Strukton, mak-
ing it impossible to turn off the stabilization. In the context
of photogrammetry, this stabilization reduces precision and
generally degrades performance[11].

(4) The interpolation of GPS data - poses challenges in contexts
where the train accelerates or decelerates (Generally more
sensitive in at low speeds). This difficulty arises because scale
of the point clouds are dependent on the precise distance trav-
eled between frames. Consequently, any inaccuracies in the
interpolation process can result in operational malfunctions.

(5) Vegetation - around the points of interest poses a significant
challenge for accuracy, as the feature matching algorithms
can be disrupted by it. Additionally, reference point clouds
used to measure accuracy are created at different times of the
year or day, leading to discrepancies in grass levels growth
between the footage, which can introduce further errors.

6 RESULTS

6.1 Leonardo Videos
A point cloud compiled from 71 frames of a video was initially
manually aligned with the corresponding spot from a SpoorInBeeld
point cloud in CloudCompare. Following this, a tool for fine cloud-
to-cloud matching was used to accurately align the point clouds.
Subsequently, a cloud-to-cloud distance computation (C2C) was
performed. The histogram of point distances is shown in Figure 5,
and the statistics of this test are presented in Table 2. This figure 6
shows the relative point-to-point distances between the generated
point cloud and the reference point clouds. The colors used to indi-
cate these distances correspond to the colors of the histogram from
Figure 2. Further practical implications are detailed in the discussion
section.
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Table 2. Distance Statistics

Metric Value

80% of points within 0.5 m
Min distance 0.0 m
Max distance 3.3 m
Distance with most counts 0.04 m
Mean distance 0.32943 m
Standard deviation 0.33728 m

Fig. 6. Comparasion between generated point clouds and SpoorInBeeld
LIDAR Point Clouds

7 DISCUSSION

7.1 General Observations
In general, upon examining the generated point clouds and the re-
sults of comparison, it can be concluded that the reconstruction of
the terrain around the tracks was successful. The primary discrep-
ancies observed in the cloud-to-cloud comparison were mainly due
to changes in vegetation growth between the time of video capture
and the reference point clouds. Some mislabeling from the object
detection algorithm were also noted, contributing to a slight loss of
points. With discrepancies in mean distance and standard deviation
around 0.3 meters.

7.2 Practical Implications
To answer the main research question of this paper: How can video-
generated point clouds be utilized as a viable alternative to LIDAR
scans for generating Digital Terrain models in the context of rail
infrastructure? a pipeline and replicable methodology for generating
Digital Elevation Point Cloud models without relying on costly
LIDAR scanners is proposed. This approach being particularly useful
for businesses and researchers who lack the resources to invest in
expensive LIDAR technology.

The paper additionally discusses the differences and characteris-
tics of both technologies. Section 5 provides an analysis to determine
the environments and use cases where photogrammetry can serve
as an appropriate alternative to LIDAR, thereby addressing SQ1.

To answer SQ3, the paper introduces a unique method for convert-
ing DEM to DTM using 2D computer vision tools, such as horizon
detection algorithms and the YOLO object detection algorithm. The
YOLOv8n (nano) model [13], which is a model focused on efficiency
and speed, is employed to achieve a more computationally effi-
cient solution compared to the traditional point cloud segmentation,
which remains a computationally expensive process [12].

7.3 Usability for Service Modeling
The purpose of this study is to align collected data with a digital
twin of the rail infrastructure in the Netherlands. This involves accu-
rately placing various infrastructure elements such as lights, poles,
and service equipment in their correct coordinates, particularly in
challenging environments like stations, urban areas, and tunnels.
The primary objective is to provide a comprehensive overview of
the surroundings along the railway tracks, enabling efficient object
placement. While achieving very high precision is not critical in this
context, the inherent limitations of the chosen method are deemed
acceptable for the scope of this project which gives and answer to
SQ2.

7.4 Dataset Quality
As previously discussed, the data collected from the train serves
multiple purposes but requires frequent adjustments in settings,
posing a significant challenge for photogrammetry. Precise calibra-
tion is instrumental to ensure accurate results, and while efforts
were made to approximate optimal settings, precise calibration of
each camera would be preferred in an ideal scenario.

Overall, the dataset exhibits significant variability across various
dimensions such as time of day, lighting conditions, weather, varying
vegetation, and changes in infrastructure between different regions.
These variations present a considerable challenge for the object
detection algorithm to perform effectively and consistently.

7.5 Future Works
In future research, exploring multiple image triangulation could
be a promising approach. Triangulation, as a method capable of
integrating more than two images, offers the potential to achieve a
more precise and densely represented geometry. This avenue holds
promise for enhancing accuracy in the point clouds.
An alternative approach of using stereo vision can enhance the

accuracy of this study, leveraging multiple viewpoints from the train
that overlap and provide varying perspectives. This method could
offer a richer geometric dataset compared to monocular videos
alone, enabling more detailed and precise reconstruction of the
environment and infrastructure along the railway tracks.
The object detection algorithm for identifying traffic poles and

trees could be enhanced by transitioning to a segmentation algo-
rithm. This approach would minimize the loss of data points around
the infrastructure, thereby improving the accuracy and complete-
ness of the detection process.
Moreover, addressing the issue of inaccuracies in data collec-

tion setups is a big part of the process. Future experiments could
benefit significantly from a more precise setup incorporating error-
reduction methods. These methods might include the use of gimbals
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for stability, precise GPS data acquisition, and accelerometers to
minimize errors caused by setup instability. Implementing such im-
provements could lead to more reliable and robust experimental
results.

8 CONCLUSION
To address the research question of how video-generated point
clouds can serve as an alternative to LIDAR scans for generating
DTMs in the context of rail infrastructure, this paper has explored
the viability of monocular photogrammetry. While monocular pho-
togrammetry shows to be a feasible method for generating semi-
accurate point clouds and Digital Elevation models, it does come
with limitations from the technology used in this application. Par-
ticularly, its sensitivity to calibration and susceptibility to errors
caused by train vibrations, along with reduced precision due to
software stabilization.

It is essential to acknowledge that LIDAR technology, despite its
higher cost, remains superior for achieving accurate point cloud sur-
face reconstructions. However, monocular photogrammetry has rel-
evance in scenarios where high precision is not crucial. Nonetheless,
for applications demanding high accuracy, LIDAR should remain
the primary technology.
Regarding the transformation from DEM to DTM, employing

object recognition models such as YOLO presents a viable yet not
foolproof solution. The variability in infrastructure and vegetation
necessitates extensive training data and effort to develop a robust
model for reliable detection.

In summary, monocular photogrammetry for DTM reconstruction
using triangulation offers a viable solution. However, achieving high
utility and precision requires meticulous hardware preparation and
additional development efforts, as outlined in the future works
section.
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A APPENDIX

A.1 Ai Tool use
During the preparation of this work the author(s) used ChatGPT
to ensure coherence and correct scientific language. All content
provided to ChatGPT was original and created by the author(s).
ChatGPT was utilized purely for linguistic and coherence purposes.
After using this tool/service, the author(s) reviewed and edited the
content as needed and take(s) full responsibility for the content of
the work.
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