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ABSTRACT 

This study evaluates the reliability and performance of the Water Productivity Open-access 

portal (WaPOR) version 3 dataset for its application in precision agriculture across various 

European countries. Given the increasing importance of optimizing water usage in 

agriculture to ensure sustainable practices, the focus is on the accuracy of WaPOR v3 in 

estimating Net Primary Productivity (NPP) and Actual Evapotranspiration and Interception 

(AETI). The study employs remote sensing methods to compute gross biomass water 

productivity (GBWP) and assesses water use efficiency by utilizing eddy covariance data. 

The results provide valuable insights into the reliability of the dataset and offer information 

on its applicability for precision and sustainable agriculture. This assessment underscores 

the dataset's potential to support effective agricultural planning and water resource 

management. 
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1. INTRODUCTION 

 

 

1.1 Motivation and Importance 

The importance of crop water productivity lies in producing more food with less water, 

which helps ensure sustainable agriculture. The idea of improving farming by using water 

more wisely is captured by the concept that proposes the possibility of increased production 

of rainfed crops per unit of water used. This idea is commonly stated as the goal of “more 

crop per drop” (Blum, 2009). Scientists’ definition of 'crop per drop' varies, but we can 

define it as 'more production per unit of evapotranspiration (ET). This term has become 

important for sustainable agriculture(Molden et al., 2003). By 2050, the global population 

will approach 10 billion, significantly increasing the demand for vital resources such as 

food, feed, fiber, and biofuels. Agriculture plays a critical role in meeting these needs 

sustainably and efficiently. It stands as a cornerstone for meeting these escalating 

demands in a manner that is not only economically viable but also environmentally 

sustainable and socially beneficial (Nations et al., 2019). 

Agriculture currently consumes the most water worldwide and uses one-third of the Earth's 

land area. With increasing competition for these resources, optimizing their use becomes 

imperative (FAO. 2020.). The increasing demand for food and the limited availability of 

water resources have increased the urgency for implementing sustainable agricultural 

practices that enhance crop water productivity (GBWP) (Blatchford et al., 2019). 

Optimizing both inputs and outputs is essential for sustainability. Simply achieving high 

yields does not ensure sustainability; rather, it is the efficient management of resources 

that leads to sustainable agricultural practices. (Tilman et al., 2011). Therefore, Farmers 

strive to optimize their agricultural practices to achieve higher crop yields while minimizing 

water consumption (Water for Sustainable Food and Agriculture A Report Produced for the 

G20 Presidency of Germany, n.d.). It is essential to increase water productivity to maintain 

long-term food security due to the growing demand for water resources and continued 

demand for food and fiber (Bossio et al., 2010). Achieving global food security has emerged 

as one of the biggest challenges in the 21st century, largely due to the detrimental effects 

of climate change on agricultural systems (Zhang et al., 2023). Although high efficiency 

is very important in agricultural production, it does not cover the entire sustainable 

agriculture. Sustainable practices involve rational management and optimization of 

resources (Cassman, 1999). 

Although this study uses water as the input, precision agriculture technologies enable the 

measurement and optimization of various agricultural inputs and outputs, such as 

fertilizers, pesticides, and machinery, to achieve an optimal balance in farming practices 

(Balafoutis et al., 2017). 

Smart sensors and IoT devices provide real-time data on soil moisture, crop health, and 

environmental conditions, enabling precise application of water, fertilizers, and pesticides. 

This reduces waste and minimizes the environmental impact of farming practices (Soussi 

et al., 2024). Additionally, advancements in agricultural machinery, such as GPS-guided 

tractors and drones, support precise field operations, from planting to harvesting. The 

integration of these technologies supports the development of a sustainable and smart 

agriculture system, ensuring efficient use of resources and optimized agricultural outputs 

(Karunathilake et al., 2023). 

Monitoring and forecasting local crop production are critical steps in addressing food 

security problems at a global scale (Huang et al., 2019). In the context of this study, the 
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focus is on computing water productivity (WP) through the utilization of remote sensing 

methods and the assessment of water use efficiency in agriculture. 

Owing to time-series remote sensing data, we have the opportunity to produce maps of 

water productivity (kg/m3) over large areas (Bastiaanssen & Bos, 1999). This research 

aims to contribute to sustainable agricultural practices by addressing the issue of water 

scarcity in agriculture and examining the relationship between water use and crop 

productivity. By exploring and evaluating the crop water productivity dataset provided by 

the Food and Agriculture Organization's Water Productivity Open-access portal (WaPOR), 

this study assesses the dataset's accuracy and usefulness for decision-makers involved in 

water resource management and agricultural planning. 

 

 

1.2 Background and Related Work 

Researchers and policymakers alike have focused on developing and implementing 

strategies to maximize crop yields while minimizing water usage. Additionally, some studies 

have been done to determine the best irrigation methods. 

A notable contribution to the field is the study by (Hellegers et al., 2009). This article 

demonstrates the effectiveness of using remote sensing combined with socio-economic 

analysis to model changes in water productivity. It is claimed that by understanding the 

benefits of allocating water in a more optimal way rather than a more productive one, a 

basis for arguments on water transfer can be significantly strengthened and made more 

objective. The study's findings show that remote sensing can be used to validate historical 

water consumption rates and evaluate spatial and temporal variations in crop water 

productivity analysis. 

Furthermore, (Blatchford et al., 2019) evaluated the accuracy of WP products that were 

both satellite-driven and in-situ measured. The study evaluated the relative error range of 

the WP using remote sensing under the best-case scenario. The results showed that remote 

sensing could predict WP with a similar error range to in situ techniques. However, further 

research is needed to close the gap between remote sensing estimates of gross primary 

productivity (GPP) and crop production because there is a lot of uncertainty in the 

intermediates that convert GPP into yield. 

A recent study by (Safi et al., 2022) introduces a standardized approach using open-source 

remote sensing data to diagnose crop water productivity (WP) variations. Applied to the 

Bekaa Valley in Lebanon, the study examines wheat, potato, and table grapes, identifying 

six key factors influencing WP and yield: crop water stress, irrigation uniformity, soil 

salinity, nitrogen application, crop rotation, and soil type. It finds that wheat and potato 

growth suffers from water stress during critical growth stages, non-uniform irrigation, and 

nitrogen stress. Additionally, potatoes on clay-loam soil perform better in WP and yield 

than those on loam soil. This framework helps identify priority areas and actions for 

improving WP at the crop field level, despite the inherent uncertainties in remote sensing 

data. 
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1.3 Problem Identification 

The WaPOR 2.1 portal, which was the comprehensive data set consisting of estimates of 

Net Primary Productivity (NPP) and actual evapotranspiration and interception (AETI) in 

near real-time for the African continent, covering the period from 2009 to the present(FAO 

and IHE Delft, 2020b). The newly developed WaPOR version 3 provides these data globally. 

It is important to address the validation of WaPOR v3 to ensure the accuracy and reliability 

of this dataset, particularly for agriculture monitoring. Therefore, it is essential to 

thoroughly validate WaPOR v3 to evaluate the quality of the dataset and establish its 

credibility for precise GBWP calculations. 
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2. OBJECTIVES AND RESEARCH QUESTIONS 

 

2.1. Overall objective 

The main aim of this study is to evaluate and compare the reliability and performance of 

the WaPOR v3 dataset in the context of the European countries. The primary focus is to 

conduct a comprehensive evaluation of WaPOR v3 compared to field data, aiming to provide 

information on its accuracy and suitability for data application. 

 

 

2.2. Sub-objectives 

SO.1) Evaluate the quality of WaPOR data for estimating Net Primary Productivity (NPP) 

and Actual Evapotranspiration and interception (AETI) 

SO. 2)Retrieve SOS and EOS to produce seasonally aggregated values 

SO. 3)Validate seasonally aggregated values of total biomass and water consumption 

SO. 4)Calculate and validate gross biomass water productivity (GBWP) 

2.3 Research questions 

RQ1: How well do dekadal NPP Data in WaPOR v3 agree with in-situ measurements? 

RQ2: How well do dekadal AETI Data in WaPOR v3 agree with in-situ measurements? 

RQ3: How much does the uncertainty in SOS and EOS affect the agreement of seasonally 

aggregated values? 

RQ4: Is the quality of WaPOR v3 sufficient to calculate gross biomass water productivity 

(GBWP)? 
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3. STUDY AREA 

Eddy covariance data from seven cropland fields from the Integrated Carbon Observation 

System (ICOS) Warm Winter 2020 dataset (https://doi.org/10.18160/2G60-ZHAK) were 

used in the study. These fields are located in Belgium, Germany, France Czech Republic 

(Figure 1). A detailed description of each station is given below in Table 1. The information 

regarding the stations in this study was obtained from the Integrated Carbon Observation 

System website (https://www.icos-cp.eu/data-products/2G60-ZHAK). There were two 

more cropland stations in the dataset in Switzerland (CH_Oe2), and Finland (FI_Qvd), 

which did not have NPP or ET flux values thus were excluded from the analysis. 

 

 
Table 1.Study Area 

 

Code Country Coordinates Area Crop Type 

BE_Lon Belgium 50.55° N, 4.74° E 11.8 ha 

(300x400 m2) 

Sugar beet, winter 

wheat,  potato, and 
winter wheat 

CZ_KrP Czech 

Republic 
49.57° N, 15.07° E 

  

DE_Geb Germany 51.09° N, 10.91° E 33.75 ha 

(500x675 m2) 

Winter wheat, potato, 

rape, peppermint, 

winter barley, sugar 

beet,  durum  wheat, 
and spring wheat 

DE_Kli Germany 50.89° N, 13.52° E 29.7 ha 

(990x300 m2) 

Winter wheat, forage 

maize, spring barley, 
winter barley, and 
catch crop 

DE_Rus Germany 50.86° N, 6.44° E 8 ha 

(350x 230 m2) 

Rapeseed, potatoes, 

maize oats, and white 

mustard. 

FR_Aur France 43.54° N, 1.10° E 23.5 ha Wheat, rapeseed, 

winter wheat, 

sunflower, and winter 
cover crops 

FR_Lam France 43.49° N, 1.23° E 22.5 ha 

(480x470 m2) 

Maize and winter 

wheat 

https://doi.org/10.18160/2G60-ZHAK
https://www.icos-cp.eu/data-products/2G60-ZHAK
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Figure 1. Study Area Map 
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4. METHODOLOGY 

This section outlines the methodology used to evaluate and compare the potential of 

WaPOR datasets for analysis. The workflow for dekadal data is shown in Figure 2, for 

seasonally aggregated data shown in Figure 3. 

 

Figure 2 Dekadal data workflow 
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Figure 3. Seasonal value workflow 
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4.1 Eddy Covariance Method 

The eddy covariance method computes net ecosystem exchange (NEE) and fluxes of latent 

and sensible heat flux and momentum by co-varying high-frequency (10-20 times per 

second) measurements of concentrations of CO2 and water and air temperature with the 

vertical component of the wind speed.An ecosystem may be as either source or absorber 

of CO2 in the atmosphere, depending on whether photosynthesis or respiration is 

prevailing. This exchange of CO2 between an ecosystem and the atmosphere is commonly 

considered as the net ecosystem exchange (NEE) and measured by eddy covariance tower 

(Baldocchi, 2003; Eugster & Merbold, 2015). Information obtained from the eddy 

covariance tower offers valuable metrics for ecosystem health and performance. It allows 

us to know the mass balance of vegetation and soils, as well as how the physiological 

dynamics of ecosystems react to environmental challenges (Baldocchi, 2014). 

However, GPP and ET are not measured directly by EC towers (Álvarez-Taboada et al., 

2015). Therefore, some processes have to be applied to obtain these data. Firstly, Net 

Ecosystem Exchange (NEE), measuring from EC towers, is converted to GPP by using 

assumptions (Lasslop et al., 2009). The purpose of the assumptions is to separate NEE into 

GPP and ecosystem respiration (Reco). The GPP data used in this study was separated from 

NEE using the night-time partitioning method, in which nighttime NEE, representing 

respiration, is subtracted from total NEE measurements to isolate GPP during the 

day(Pastorello et al., 2020). This method was explained in more detail by (Reichstein et 

al., 2005). Finally, GPP was converted to NPP using the generally accepted ratio of 50% 

(Sierra et al., 2022) and then from μmol CO2 m-2 s-1 to g C day-1 for compatibility with 

the WaPOR dataset (Eq. 1). 

 

 

𝑔 𝐶 𝑑𝑎𝑦−1 = μ𝑚𝑜𝑙 𝐶𝑂2 𝑚−2 𝑠−1 𝑥 𝑀𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑥 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑎𝑦 𝑥 0.5   (Eq. 1) 

 
On the other hand, ET data were obtained using latent heat flux and air temperature, and 

were later converted to mm/day for compatibility with WaPOR ET data (Eq. 2). 

 

 

Where 

𝐸𝑇 = 
𝜆𝐸

 
2.501−(2.361 𝑥 10−3)∗𝑇 

𝑥 106 𝑥 𝑆𝑒𝑐𝑜𝑛𝑑 𝑖𝑛 𝑎 𝑑𝑎𝑦 (Eq. 2) 

 

 

ET: Evapotranspiration 

λE: Latent heat flux [W m-2] 

T: Air temperature [ °C] 
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The eddy covariance tower daily data used in this study are described in detail below. The 

data was obtained from the data portal of the Integrated Carbon Observation System 

(ICOS) project (https://www.icos-cp.eu/data-services/about-data-portal). Additionally, 

description of dataset was done by (Pastorello et al., 2020) 

• GPP_NT_VUT_USTAR50:This data refers to Gross Primary Productivity (GPP) and 

indicates the 50th percentile (USTAR50) of the Variable USTAR Threshold (VUT) 

determined by the Night Time Partitioning Method (NT). 

• LE_CORR: This data stands for Latent Heat Flux corrected (CORR) using the Bowen 

Ratio method. 

• TA_F: This data indicates air temperature in degrees Celsius, gap-filled using 

Marginal Distribution Sampling, a statistical method fills in missing data by 

estimating values based on the patterns observed in the existing data for that 

specific variable. 

 

 

4.2 WaPOR 

The WaPOR dataset was created as part of the 'Using Remote Sensing in Support of 

Solutions to Reduce Agricultural Water Productivity Gaps' project, which is funded by the 

Dutch government. The FAO is leading the project along with partners IHE Delft, IWMI, 

and the FRAME consortium. The project's objectives are to track water productivity, define 

deficiencies, offer improvements, and support sustainable agricultural production. Remote 

sensing data is provided by the FRAME consortium, consisting of the WaterWatch 

Foundation, VITO, ITC and eLEAF. The WaPOR portal underwent two independent quality 

assessments by ITC and IHE Delft before being released in beta form in April 2017 (FAO 

and IHE Delft, 2019). The evolution of the WaPOR model includes Version 2.1 and the latest 

global-scale version, WaPOR v3 (https://data.apps.fao.org/wapor/?lang=en). The 

underlying model is called ETLook and its description is provided in 

https://www.fao.org/aquastat/py-wapor/_etlook.html and in the following sections. 

We used two WaPOR v3 dataset in this study 

• Actual evapotranspiration and interception (Global – Dekadal - 300m): This dataset 

provides important information on actual water consumption and how much rainfall 

is intercepted by leaves before reaching the grounds. 

• NPP (Global – Dekadal): NPP is an important feature of the ecosystem, representing 

the conversion of carbon dioxide into plant biomass through photosynthesis. 

 

 

4.2.1 Actual Evapotranspiration and Interception (AETI) 

Evapotranspiration (ET) is a process where liquid water from various sources, such as soil 

moisture, water intercepted by plants, surface water, etc., transforms into vapor and enters 

the atmosphere (Tanner, 2015). This exchange allows us to understand Earth's water cycle 

and climate system. Remote sensing plays a critical role in monitoring this phenomenon 

over large areas. 

However, direct measurement of AETI by satellites is not possible, it is derived from other 

components of the surface energy balance. These components are calculated using physical 

variables observable from space. Consequently, numerous remote sensing algorithms have 

been developed to estimate AETI (FAO and IHE Delft, 2019). The WaPOR calculates E and 

T is based on ETLook model which uses Penman-Monteith method. The Penman-Monteith 

equation uses common weather measurements to predict rate of total evaporation (E), and 

transpiration (T). Estimating evaporation, transpiration, and interception involves several 

https://www.icos-cp.eu/data-services/about-data-portal
https://data.apps.fao.org/wapor/?lang=enht
https://www.fao.org/aquastat/py-wapor/_etlook.html
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 𝑟 

data components. Solar radiation, weather data are needed daily. Soil moisture stress, 

NDVI, and surface albedo are every ten days (WaPOR Database Methodology, 2020). The 

formula for the ETLook model, which solves the Penman-Monteith equation into two 

versions for soil (Eq. 3) and for vegetation (Eq.4). 

 

 
𝜆𝐸 = 

Δ(𝑅𝑛,𝑠𝑜𝑖𝑙−𝐺)+ 𝑝𝑎𝑐𝑝 
(𝑒𝑠−𝑒𝑎)

 
𝑟𝑎,𝑠𝑜𝑖𝑙 

Δ+ɣ(1+
𝑟𝑠,𝑠𝑜𝑖𝑙 

) 
𝑟𝑎.𝑠𝑜𝑖𝑙 

 

 
(Eq. 3) 

 

 

And 

 

 
𝜆𝑇 = 

Δ(𝑅𝑛,𝑐𝑎𝑛𝑜𝑝𝑦−𝐺)+ 𝑝𝑎𝑐𝑝 
  (𝑒𝑠−𝑒𝑎) 

 
𝑎,𝑐𝑎𝑛𝑜𝑝𝑦 

Δ+ɣ(1+
𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦 

)
 

𝑟𝑎.𝑐𝑎𝑛𝑜𝑝𝑦 

 

 
(Eq. 4) 

 

 

Where: 

 

 

Λ: Latent heat of evaporation [J kg-1] 

E: Evaporation [kg m-2 s-1] 

T: Transpiration [kg m-2 s-1] 

Rn: Net radiation [W m-2] 

G: Soil heat flux [W m-2] 

Pa: Air density [kg m-3] 

Cp: Specific heat of dry air [J kg-1 K-1] 

ea: Actual vapour pressure of the air [Pa] 

es: Actual vapour pressure [Pa] which is a function of the air temperature 

Δ: Slope of the saturation vapour pressure vs. Temperature curve [Pa K-1] 

Γ: Psychrometric constant [Pa K-1] 

ra: Aerodynamic resistance [s m-1] 

rs: Bulk surface resistance [s m-1] 

 

4.2.2 Net Primary Productivity (NPP) 

The importance of terrestrial net primary production (NPP) in ecosystem science has 

increased significantly. This is because NPP plays a vital role in the carbon cycles of 

terrestrial environments and the dynamics of ecosystems. NPP refers to the amount of 

carbon captured by plants through photosynthesis within a specific time period (Pan et al., 

2014). Additionally, it represents the amount of carbon that terrestrial ecosystems 

sequester after the assimilation process through photosynthesis (gross primary production 
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(GPP)), taking into account the losses caused by autotrophic respiration (Clark et al., 2001) 
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Both ground based and satellite based NPP models can be used to assess net primary 

production. However, the application of ground-based models is not operable in all areas. 

Consequently, satellite-based estimates of terrestrial primary production provide a regular 

and consistent assessment across the broad temporal and spatial dimensions (Pan et al., 

2014) 

Satellite-based estimates, such as those from WaPOR, provide a powerful tool for 

assessing NPP across large areas. Net Primary Productivity is derived from remote sensing 

and meteorological data. A significant enhancement was the incorporation of biome- 

specific light use efficiencies (LUEs). WaPOR employs this enhanced methodology. 

Additionally, two further refinements were made based on a review of the method. These 

refinements include: 

• A factor that reduces the impact of short-term water deficiencies on soil moisture 

stress. 

• The application of light use efficiencies (LUEs) that are specific to the kind of natural 

vegetation and crops identified by WaPOR. 

Estimating Net Primary Production (NPP) relies on the following key components: daily 

weather data, solar radiation, dekadal fAPAR, and soil moisture stress (WaPOR Database 

Methodology, 2020). The equation is given below (Eq. 5) 

𝑁𝑃𝑃 = 𝑆𝑐 𝑥 𝑅𝑠 𝑥 𝜀𝑝 𝑥 𝑓𝐴𝑃𝐴𝑅 𝑥 𝑆𝑀 𝑥 𝜀𝑙𝑢𝑒 𝑥 𝜀𝑇 𝑥 𝜀𝐶𝑂2 𝑥 𝜀𝐴𝑅 𝑥 [𝜀𝑅𝐸𝑆] (Eq.5) 

Where: 

Sc: Scaling factor from DMP to NPP [-] 

Rs: Total shortwave incoming radiation [GJT/ha/day] 

𝜀p: Fraction of PAR in total shortwave 0.48 [JP/JT] 

fAPAR: PAR-fraction absorbed by green vegetation [JPA/JP] 

SM: Soil moisture stress reduction factor 

𝜀lue: Light use efficiency at optimum [kgDM/GJPA] 

𝜀T: Normalized temperature effect [-] 

𝜀CO2: Normalized CO2 fertilization effect [-] 

𝜀AR: Fraction kept after autotrophic respiration [-] 

𝜀RES: Fraction kept after residual effects [-] 

 

 

 

4.3 Phenology 

The study of cyclical natural phenomena, known as phenology, can be effectively assessed 

using the Normalized Difference Vegetation Index (NDVI)or net primary productivity (NPP). 

NDVI, derived from satellite imagery, serves as a valuable indicator for evaluating the 

health and growth of vegetation by analyzing the difference in absorption of red and near- 

infrared light. 
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NDVI Time Series Analysis involves monitoring the progression of the growing season by 

tracking changes in NDVI values over time. Similarly, time series analysis of NPP can be 

used to track changes in plant productivity and water use throughout the growing season. 

While traditionally used for assessing vegetation health, in this study, a threshold method 

was employed for the NPP data product. Specifically, phenology will be determined based 

on NPP values reaching a certain threshold. The start of the growing season (SOS) will be 

identified when each data set rises above this threshold, and the end of the season (EOS) 

will be considered when each data set falls below it (Gessesse & Melesse, 2019). This 

approach is crucial for monitoring the onset of the growing season, assessing crop health, 

and studying phenological stages of various plant species. 

A 10-window size smoothing technique was employed for the NPP datasets (both EC and 

WaPOR) before phenological metrics extraction. The window size of 10 means that values 

of 100 days (10 decadal periods) within the window were averaged. The choice of a window 

size of 10 was based on the several attempts. This approach is aligned with the temporal 

granularity of our data, allowing us to preserve the inherent patterns and fluctuations 

present in the original datasets while reducing noise. 

We compared SOS and EOS derived from eddy-covariance and WaPOR NPP. 

 

 

 

4.4 Seasonal Aggregation 

Understanding phenology, in conjunction with Net Primary Productivity (NPP), allows for 

determining Total Biomass Production (TBP). TBP is calculated by summing the NPP 

converted to Dry Matter Productivity (DMP) units (kgDM/ha) from the start of the season 

(SOS) to the end of the season (EOS) using a formula provided by FAO and IHE Delft, 

(2020a) (Eq. 6). 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = ∑𝐸𝑂𝑆 𝑁𝑑 × 𝐷𝑀𝑃 (Eq. 6) 

 

 

DMP, which stands for dry biomass production, is expressed as 1 gC/m²/day (NPP) = 

22.222 kgDM/ha/day (DMP) equivalence, derived from Net Primary Productivity (NPP). 

Additionally, "Nd" represents the number of days. 

The aggregation of ET to seasonal water consumption was done in a similar manner. 

Two sets of seasonally aggregated values were computed, on dates derived from the 

measured NPP flux, further referred to as “flux dates” and from WaPOR NPP, “wapor dates” 

 

 

4.5 Gross Biomass Water Productivity (GBWP) Calculation 

The ratio of grain yield to crop water use, or water use efficiency, offers a quick way to 

determine whether the yield is restricted by water availability or by other factors and is 

calculated using the formula below (Eq. 7) (Angus & van Herwaarden, 2001): 

 

𝐺𝐵𝑊𝑃 = 
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 

 
 

𝑊𝑎𝑡𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

 

(Eq. 7) 

𝑖=𝑆𝑂𝑆 
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4.6 Accuracy Assessment 

Several comparison metrics will be used to comprehensively assess the reliability of WaPOR 

v3 net primary productivity and evapotranspiration for calculating GBWP. These evaluations 

ensure a comprehensive assessment of the WaPOR's predictive accuracy, providing a 

holistic understanding of its performance across key variables. 

 

 

Correlation (r), as defined by Eq. 8, measures the strength and direction of the linear 

relationship between two variables. It ranges between -1 to 1. A positive value indicates a 

positive correlation, meaning both variables increase proportionally. Conversely, a negative 

correlation indicates that as one variable increases, the other decreases proportionally. 

 

 

 

Where 

𝑟 = 
𝑛(∑ 𝑋𝑌)−(∑ 𝑋)(∑ 𝑌) 

√[𝑛 ∑ 𝑋2(∑ 𝑋)2] [𝑛 ∑ 𝑌2(∑ 𝑌)2] 
(Eq. 8) 

X= Observed (EC) values, 

Y= Model (WaPOR) values. 

 

Another metric used in this study is Root Mean Squared Error (RMSE), measuring the 

average magnitude of the error between observed and field values. As the RMSE value 

approaches zero, it shows a better fit. RMSE equation is given below (Eq. 9). 
 

 

𝑅𝑀𝑆𝐸 = √ ∑𝑁 
(
𝑋𝑖−𝑌𝑖 (Eq. 9) 

 

 

Where 

X= Observed (EC) values, 

Y= Model (WaPOR) values. 

𝑖=1 𝑁  
) 

Normalized Root Mean Square Error (nRMSE) is a measure used to evaluate the accuracy 

of a model's predictions by comparing them to actual observed values. It is calculated by 

dividing the Root Mean Square Error (RMSE) by the range of observed values. The equation 

is given below (Eq. 10). 

 

 

Where 

𝑛𝑅𝑀𝑆𝐸 = 
𝑅𝑀𝑆𝐸

 
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛 

(Eq. 10) 

Xmax = the maximum value of the field variable, 

Xmin = the minimum value of the field variable. 

 

Bias is calculated by determining the mean difference between estimates and observed 

values for both NPP and ET (Eq. 11). 

𝐵𝑖𝑎𝑠 =  
1 
∑𝑛  (𝑌 − 𝑋) 

 

(Eq. 11) 

 Where 

2 
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X= Observed (EC) values, 

Y= Model (WaPOR) values. 

𝑛 𝑖=1 
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   2 

 

 
Percentage Bias Error (PBE) is a statistical measure used to evaluate the accuracy of a 

predictive model by expressing the average bias between predicted and observed values 

as a percentage of the mean observed values. A positive PBE indicates that the model, on 

average, overestimates the observed values, while a negative PBE indicates an 

underestimation. The equation is given below (Eq. 12). 

 

 

 

Where 

𝐵𝑖𝑎𝑠 
𝑃𝐵𝐸 = ( 

𝑋 
) 𝑥 100 (Eq. 12) 

 
 

𝑋 = The mean of observed (actual) value. 

 

 

 

The Nash-Sutcliffe Efficiency (NSE) is a statistical metric used to assess the predictive 

accuracy of a model by comparing its output to observed data. NSE values range from -∞ 

to 1 (Eq. 13). 

 

 

 

 

Where 

X = Observed value, 

Y =Model (WaPOR) value, 
 

𝑋 =mean of the observed value. 

𝑁𝑆𝐸 = 1 − 
∑ 𝑖(𝑋𝑖−𝑌𝑖)

2

 

∑ 𝑖(𝑋𝑖−𝑋𝑖) 
(Eq. 13) 

 

Kling-Gupta Efficiency (KGE) evaluates the overall goodness-of-fit between simulated and 

observed values, considering three components: correlation, variability, and bias. Higher 

values of KGE indicate better agreement between simulated and observed values, with 1 

representing a perfect match. KGE equation is given below (Eq. 14) 

 

 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝑎 − 1)2 + (𝛽 − 1)2 (Eq. 14) 

Where 

r = correlation coefficient, 

α = term representing the variability of prediction errors (αY/αX), 

β = bias term. 

These measurements collectively provide a detailed assessment of the model's 

performance, providing a robust framework for evaluating the agreement, correlation, and 

bias between the WaPOR v3 NPP and actual field efficiency. 
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5. RESULTS 

The average nRMSE of Net Primary Productivity (NPP) values across seven stations was 

18%, while the average nRMSE of Evapotranspiration (ET) values were 16%. Additionally, 

when comparing the Start of Season (SOS) and End of Season (EOS) from WaPOR data 

with measurements from EC towers, the R-squared values were found to be 0.27 and 0.01, 

respectively. The result of the study was detailed in the following section. 

5.1 Dekadal Data 

In this study, WaPOR v3 dataset with 10-day temporal resolution was compared and 

valıdated with measurements obtained from Eddy covariance towers. The 10-day 

resolution of the WaPOR dataset entails aggregating measurements taken within each 10- 

day period (WaPOR Database Methodology, 2020). For instance, if measurements are 

available on the 1st and 11th day of a month, the data collected from the 1st to the 10th 

day are averaged and attributed to the 1st day of the month. This method was applied to 

direct measurement to ensure the reliability of the comparison made. 

 

 

5.1.1 Pixel Position Uncertainty 

In this study, Net Primary Productivity (NPP) and Evapotranspiration (ET) were downloaded 

for seven cropland areas in Europe at a spatial resolution of 300 meters. Each cropland 

area is larger than 300 meters, ensuring that each area was covered by multiple pixels in 

our dataset (Figures 4-10). 

To validate the WaPOR measurements, we compared them with in-situ data collected from 

an eddy covariance (EC) tower located within one of the cropland areas. The EC tower 

footprint, approximately 250 meters in radius (Chu et al., 2021) closely matches the 

resolution of our remote sensing data, making it a suitable reference for our study. 

There were no significant differences in the annual accumulated total biomass values 

between the pixels. This homogeneity in pixel values supports the reliability of using a 

single representative measurement point for each area. 

 

 

Figure 4. Pixel position map for BE_Lon 
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Figure 5.Pixel position map for CZ_KrP 

 

 

 

 

Figure 6. Pixel position map for DE_Geb 

 

 
Figure 7. Pixel position map for DE_Kli 
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Figure 8. Pixel position map for DE_Rus 

 

Figure 9. Pixel position map for FR_Aur 

 

 

Figure 10. Pixel position map for FR_Lam 
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5.1.2 Dekadal Patterns 

Overall, WaPOR estimations show the same seasonal pattern as field measurements. 

However, deviations in values are observed. The WaPOR ET values (Figure 11, right) for 

the BE_Lon station agree better with the observed values compared to the NPP (Figure 11, 

left), as indicated by the normalized Root Mean Square Error (nRMSE) values of 13% for 

ET and 16% for NPP. Among the seven observed fields, the nRMSE values of NPP for DE_Kli 

(Figures 14), FR_Lam (Figures 17), show higher consistency compared to the other stations 

with 11% and 14%, respectively. Additionally, the other German stations, DE_Geb (Figure 

13) and DE_RuS (Figure 15), do not show a good fit for NPP, with nRMSE values of 18% 

and 22%. Due to WaPOR's overestimation in 2020, the FR_Aur station has the worst nRMSE 

value for ET at 20%. 
 

Figure 11. Comparison of NPP (left) and ET (right) between WaPOR and EC tower measurements for 

BE_Lon 

 

Figure 12. Comparison of NPP (left) and ET (right) between WaPOR and EC tower measurements for 

CZ_KrP 
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Figure 13. Comparison of NPP (left) and ET (right) between WaPOR and EC tower measurements for 

DE_Geb 

 

 

Figure 14. Comparison of NPP (left) and ET (right) between WaPOR and EC tower measurements for 

DE_Kli 

 

 

Figure 15. Comparison of NPP (left) and ET (right) between WaPOR and EC tower measurements for 

DE_RuS 
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Figure 16. Comparison of NPP (left) and ET (right) between WaPOR and EC tower measurements for 

FR_Aur 

 

Figure 17. Comparison of NPP (left) and ET (right) between WaPOR and EC tower measurements for 

FR_Lam 

5.1.3 Special case: Station FR_Aur 

For the FR_Aur station, the most notable issue is the shifted seasons between the WaPOR 

and field data. Another difference lies in the number of seasons. While four seasons were 

observed in the EC tower measurements between 2018 and 2020, the WaPOR estimation 

shows three seasons. Therefore, two separate external data sources were used for this 

station: NDVI values obtained from Sentinel-2 and data from field studies conducted by 

Ganeva et al., (2023). In Figure 18, which includes NDVI values, there is a high correlation 

between the EC towers and NDVI, both indicating four seasons. Ganeva’s research findings 

confirm that there were four seasons between 2018 and 2020. 



24  

 

Figure 18. NPP WaPOR and NPP Flux with NDVI for FR_Aur 
 

 

5.1.4 Accuracy Metrics 

The accuracy tests performed to assess the comparability between the WaPOR and field 

measurements are presented below. Table 2 shows the accuracy metrics for NPP. Table 3 

provides the accuracy metrics for ET. 

Table 2. Accuracy Metrics for NPP 

 

Accuracy Metrics for NPP 

Station RMSE [ 

g C m-2 

day-1] 

Bias [ g 
C m-2 

day-1] 

PBE nRMSE Correlation NSE KGE 

BE_Lon 1.51 -0.23 -12% 16% 0.81 0.63 0.68 

CZ_KrP 1.39 0.14 6% 18% 0.79 0.59 0.74 

DE_Geb 1.02 0.02 1% 11% 0.87 0.76 0.80 

DE_Kli 1.87 0.16 9% 22% 0.60 0.31 0.51 

DE_RuS 1.46 -0.21 -11% 15% 0.88 0.70 0.65 

FR_Aur 1.70 0.73 48% 22% 0.60 0.08 0.27 

FR_Lam 2.31 0.28 15% 20% 0.49 0.22 0.27 

Average 1.6 0.13 8% 18% 0.72 0.47 0.56 

 

 

Overall, the RMSE of NPP is around 1.5 g C m-2 day-1. With NPP values varying from 0.5 to 6 

g C m-2 day-1, the nRMSE results range from 11% to 23%. In addition, high correlation 

values obtained except for DE_Kli and FR_Aur and FR_Lam stations are indicative of a 
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positive result. However, it is not possible to determine whether the WaPORunderestimates 

or overestimates NPP values over all sites when bias values are taken into account. The 

correlation value for NPP values was found to be 0.72 on average, indicating a medium- 

strong relationship with field measurements. It was also observed that the model slightly 

overestimated (0.13 g C m-2 day-1). 

On the other hand, WaPOR demonstrated better performance in estimating ET with a lower 

RMSE of 0.83 mm/day. Additionally, the average KGE value was found to be 0.69, indicating 

acceptable performance with good correlation and acceptable bias. However, WaPOR 

slightly underestimated the ET values by –0.068 mm/day. 

 

 

 

 

 
Table 3. Accuracy Metrics for ET 

 

Accuracy Metrics for ET 

Station RMSE[mm/day] Bias 

[mm/day] 

PBE nRMSE Correlation NSE KGE 

BE_Lon 0.859 -0.383 -27% 13% 0.811 0.571 0.662 

CZ_KrP 0.705 -0.049 -3% 14% 0.868 0.654 0.741 

DE_Geb 0.516 0.146 15% 14% 0.927 0.709 0.795 

DE_Kli 0.838 -0.122 -8% 15% 0.809 0.619 0.782 

DE_RuS 1.020 -0.590 -33% 19% 0.787 0.428 0.581 

FR_Aur 0.962 0.470 35% 20% 0.791 0.308 0.564 

FR_Lam 0.916 0.052 3% 15% 0.723 0.433 0.721 

Average 0.83 -0.068 -1.87% 16% 0.817 0.532 0.692 

 

 

5.2 Seasonal Aggregation 

In this study, the threshold method based on an empirical approach was used to determine 

SOS and EOS (see Appendix A for dekadal patterns with threshold lines). NPP and water 

consumption values were aggregated in the determined seasons. It is detailed in the 

following sections. 

 

 

5.2.1 Start of the season and end of the season uncertainty 

SOS and EOS dates determined from smoothed Net Primary Productivity values are shown 

in the scatter plot Figure 19. According to the graph, the Start of Season (SOS) and End 

of Season (EOS) derived from WaPOR NPP values show poor agreement with those derived 

from field data. The SOS demonstrates slightly better alignment with an R-squared value 

of 0.27, while the R-squared value for EOS is extremely low at 0.01, indicating almost no 

correlation between WaPOR and field data. Generally, WaPOR predicts the start of the 

season 10 days earlier and the end of the season 66 days later compared to the field data, 

which is a significant discrepancy. This uncertainty may be attributed to factors such as the 

location of the fields, the specific years considered, and the types of crops planted. 
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Figure 19. The start of the season (left) and end of the season (right) of NPP WaPOR and NPP Flux 
 

 

However, Table 4, which shows the day difference between the WaPOR's SOS dates and 

the field data's SOS dates, provides a more detailed analysis. Negative values in the 

table indicate that WaPOR seasons start earlier than the field data. For instance, the first 

season at the BE_Lon station starts 41 days later in the field data compared to the 

WaPOR data. 

Table 4. The day difference for SOS between Flux and WaPOR 
 

Day Difference for SOS in NPP 
 BE_Lon CZ_KrP DE_Geb DE_Kli DE_RuS FR_Aur FR_Lam 

2018 41 -31 0 -51 0 0 8 

2019 -18 -10 0 -20 -72 10 -110 

2020  0 -30 60 19 41 10 

 

 

On the other hand, when examining the end-of-season (EOS), larger date differences are 

observed compared to SOS, a phenomenon supported by Table 5. More positive values for 

EOS indicate that the WaPOR overestimated season endings compared to field data. 

 

 
Table 5. The day difference for EOS between Flux and WaPOR 

 

Day Difference for EOS in NPP 
 BE_Lon CZ_KrP DE_Geb DE_Kli DE_RuS FR_Aur FR_Lam 

Season 1st 92 -21 61 61 31 92 51 

Season 2nd 103 0 20 72 41 123 51 

Season 3rd  -31 51 30 113 214 163 
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5.2.2 Total biomass 

The scatter plots of Total Biomass (TB) values obtained by summing the NPP values over 

the season and then multiplying by the DMP constant and the number of days in the 

decade are provided below. (Figure 20). Three different scenarios were applied for Total 

biomass, water consumption, and GBWP: i) WaPOR and Flux values aggregated with Flux 

season dates, ii) WaPOR and Flux values aggregated with WaPOR dates, and iii) WaPOR 

and Flux values aggregated with their respective season dates. For a proper evaluation of 

the WaPOR, the comparison of both values within their respective dates should be 

considered. The other two scenarios were made to separate the uncertainty sources of 

dates and values. 

 

 

The left graph, based on EC dates, demonstrates better performance with a moderate 

correlation and higher R-square value (r2=0.39) compared to the right graph. However, 

the model underestimates biomass when using EC dates, as indicated by a negative bias 

(-1.45 t DM ha⁻¹ season⁻¹), while WaPOR overestimates biomass when using WaPOR 

dates, shown by a positive bias (1.34 t DM ha⁻¹ season⁻¹). Despite these differences in 

bias direction, the root mean square error (RMSE) and bias as a percentage are relatively 

similar between the two scenarios. 

 

 

 
Figure 20. Comparison of Total Biomass Distrubution: EC Days (Left) vs. WaPOR Days (Right) 

The scatter plot compares gross biomass estimates derived from respective NPP flux 

(Figure 21). This case combines both uncertainty sources: in the aggregation dates and in 

the values. The graph shows a low correlation between the two datasets, with an r-square 

value of 0.08, indicating weak agreement. The performance metrics include KGE of 0.18, 

suggesting poor model performance. The RMSE is 4.9 t DM ha⁻¹ season⁻¹ (33%), reflecting 

the relatively high prediction error, and the bias is 2.01 t DM ha⁻¹ season⁻¹ (13%), 

indicating that WaPOR generally overestimates biomass compared to EC. 
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Figure 21. Comparison of Total Biomass with respective dates 
 

 

5.2.3 Water consumption 

The scatter plots representing water consumption values, which are the denominator for 

calculating Gross Biomass Water Productivity (GBWP), are given below (Figure 22). When 

aggregation was performed using the dates derived from the EC values the correlation was 

much stronger (r2 0.66) compared to the aggregation with WaPOR-derived dates (r2 0.17). 
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Figure 22. Distrubition of WC values of WaPOR and Flux with EC days (Left) and WaPOR days 

(Right) 

 
 
 

 

However, the weakest agreement is shown in the graph with the respective dates, where 

the correlation is very low (0.04) (Figure 23). The data points on the chart appear scattered 

randomly without any clear pattern. Additionally, in this scenario, the maximum RMSE 

value observed is 188.4 mm/season. 

 

 
Figure 23. Distribution of WC values of WaPOR and Flux with Flux dates 
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5.3 Gross Biomass Water Productivity 

The three graphs compare the Gross Biomass Water Productivity (GBWP) values obtained 

from WaPOR and Flux data, with each graph representing comparisons based on different 

dates. In these graphs, the horizontal axis represents the GBWP values measured by EC, 

while the vertical axis represents the GBWP values estimated by WaPOR. 

On the right graph (Figure 24), the comparison based on WaPOR dates results in an R² 

value of 0.16, indicating a weak linear relationship between the model and field data. The 

left graph (Figure 24), which compares data based on Flux dates, shows an even weaker 

correlation with an R² value of 0.10. The graph evaluated with their respective dates 

(Figure 25) results in an R² value of 0.1327, still indicating a weak relationship. 

Overall, the three graphs collectively suggest that the WaPOR model does not 

consistently align with the Flux measurements across different dates and areas. The 

scatter of data points indicates that the WaPOR's predictions do not always match the 

field data and that discrepancies exist in certain areas. 

Detailed comparisons for each station are provided in Table A.1-A.21 in the appendix. 

 

 

 

 

 
Figure 24. GBWP Flux vs WaPOR with EC towers dates (left) and WaPOR dates (right) 
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Figure 25. GBWP Flux vs WaPOR with respective dates 

 

Overall, the RMSE and bias values are similar in all three graphs, indicating an 

underestimation of the model compared to field observations. 
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6. DISCUSSION 

In this study, we evaluated the WaPOR v3 dataset for its effectiveness and reliability in 

estimating Net Primary Productivity (NPP) and evapotranspiration (ET) to calculate GBWP 

across multiple European sites. By comparing WaPOR v3 data with in-situ measurements, 

we aimed to determine the accuracy and applicability of WaPOR v3 for precision agriculture 

and water resource management. The findings highlight the potential of WaPOR v3 to 

provide accurate and useful data for agricultural planning while also revealing some 

limitations and areas for improvement. 

In general, it can be said that the WaPOR model is comparable with field measurements of 

ET and NPP, and shows a consistent pattern in the dekadal graphs (Figure 11-17). The 

match of seasonally aggregated values depended on the flux. When aggregated based on 

EC-derived dates, water consumption showed a higher performance with an R-squared of 

0.66 and an RMSE of 81.1 (16%) mm/season, compared to total biomass which showed 

an R-squared of 0.39 and an RMSE of 3.9 (26%) t DM ha-1 season -1. Using WaPOR- 

derived dates to determine the season, water consumption had an R-squared of 0.17 and 

an RMSE of 32%, while total biomass had values of 0.11 and 28%, respectively. Lastly, 

when examined on their respective dates, water consumption achieved an R-squared of 

0.04, whereas total biomass was 0.08. Overall, the WaPOR model demonstrated a higher 

ability to capture seasonal variations in water consumption compared to total biomass. 

Both variables performed best when aggregated using EC-derived dates.While the WaPOR 

model demonstrates strong performance in predicting ET (average correlation of 0.82) and 

NPP (correlation of 0.72), its ability to determine Start of Season (SOS) and End of Season 

(EOS) is notably weaker, as indicated by an R-squared value of 0.27 for SOS and only 0.01 

for EOS. Several factors contribute to this uncertainty in accurately predicting the 

phenology such as climatic variability, crop rotation etc. As a result of these difficulties in 

accurately estimating SOS and EOS, there is less consistency in estimating water 

consumption, total biomass, and consequently, Gross Biomass Water Productivity (GBWP) 

values. 

To better understand the performance of the WaPOR model, the accuracy metrics were 

compared with the performance of other models. 

In a study by Zhu et al., (2016), the MODIS17A2 dataset's GPP product was evaluated 

across 8-day, and annual scales in China from 2003 to 2005. While the annual R-squared 

value of 0.76 indicated strong performance, the 8-day measurement yielded a lower R-

squared value of 0.55. In contrast, in our study better performance was achieved on 

dekadal, rather than seasonal values. In our study, the average R-squared value was found 

to be 0.47. However, when excluding the special case of the FR_Aur station, which showed 

an unusual difference, the R-squared value increases to 0.52. This indicates a slightly worse 

performance of WaPOR compared to MODIS17A2 at a similar temporal resolution. 

Another evaluation by Ramoelo et al., (2014) in Skukuza, South Africa, from 2008 to 2010, 

investigated the MODIS17A2 ET product. This study reported RMSE values of 7.40, 7.39, 

and 4.30 mm/8-day and bias values of -9.43, -6.46, and 2.57 mm/8-day for ET 

measurements in 2008, 2009 and 2010, respectively. Considering the potentially higher 

range of ET values in the Skukuza study, comparison of PBias values between the two 

studies provides a more meaningful insight. PBias values in Skukuza vary between -16% 

and -51%, while WaPOR v3 PBias values range between -27% and 35%. In particular, 

stations CZ_KrP, DE_Kli, and FR_Lam performed well, with PBias values of -3%, 8%, and 

3%, respectively. 

In a study conducted by Velpuri et al., (2013), the MOD16 and SSEBop datasets were 

evaluated between 2001 and 2007 in United States. The evaluation found R-squared values 
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of 0.7 for MOD16 and 0.66 for SSEBop from 50 observations in cropland areas. In our 

study, WaPOR v3 showed lower NSE values except for the DE_Geb station. However, it is 

important to note that the RMSE values for MOD16 and SSEBop were relatively high, at 31 

mm/month for MOD16 and 30 mm/month for SSEBop. Additionally, MOD16 and SSEBop 

underestimated ET values, with biases of -10 mm/month and -15 mm/month, respectively. 

In contrast, WaPOR v3 demonstrated better performance in terms of both RMSE and bias 

values, indicating a more accurate estimation of ET. 

It is important to note that the time resolution of the data sets used in other compared 

studies was 8 days or months. In order to make a fair comparison, 8-day or monthly data 

must be converted to daily values. The high differences observed in RMSE and bias values 

may be due to not performing this transformation. 
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7. CONCLUSION 

In this study, the WaPOR v3 dataset was evaluated by comparing its values with field 

measurements. The study aimed to assess the alignment of WaPOR v3’s NPP and AETI 

data with field observations, understand how uncertainty in SOS and EOS affects the 

consistency of seasonally aggregated values, and determine whether WaPOR v3 is 

adequate for calculating GBWP. 

The comparison revealed that WaPOR v3 showed strong performance in predicting NPP and 

AETI, with average correlation coefficients of 0.72 and 0.82, respectively. The R-square 

value was found to be 0.47 for NPP and 0.53 for ET, indicating a moderate alignment of 

WaPOR v3 data with field observations. However, the model exhibited lower accuracy in 

predicting SOS and EOS, resulting in variability in the seasonal aggregation of data. These 

findings suggest that while WaPOR v3 is generally reliable for estimating key variables such 

as NPP and AETI, the identified uncertainties in SOS and EOS affect its performance. 

Therefore, the model's success in calculating GBWP is low and open to debate. 

Future research should focus on validating WaPOR v3 across a wider range of ecosystem 

and climate conditions to ensure broader applicability of the findings. It is recommended 

to use external datasets to accurately identify seasons. 
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Appendix A 

 

 

A.1 Dekadal Pattern for Phenology Retrieval 

 

 

In the threshold method, 10% of the amplitude of the relevant data has been used, as 

seen in Equation A.1. Additionally, minor fluctuations in the graphs (Figure A 1-7) have 

been ignored when determining the start and end dates of the season. 

 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = ((𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) × 0.1) + 𝑋𝑚𝑖𝑛 (Eq. A.1) 

 

 

Figure A 1.Comparison of NPP (WaPOR vs. Flux) on the left and ET (WaPOR vs. Flux) on the right, with thresholds for BE_Lon 

 

 

Figure A 2. Comparison of NPP (WaPOR vs. Flux) on the left and ET (WaPOR vs. Flux) on the right, with thresholds for CZ_KrP 



36  

 
 

Figure A 3.Comparison of NPP (WaPOR vs. Flux) on the left and ET (WaPOR vs. Flux) on the right, with thresholds for DE_Geb 

 

 

 

Figure A 4.Comparison of NPP (WaPOR vs. Flux) on the left and ET (WaPOR vs. Flux) on the right, with thresholds for DE_Kli 

 

 

Figure A 5.Comparison of NPP (WaPOR vs. Flux) on the left and ET (WaPOR vs. Flux) on the right, with thresholds for DE_RuS 
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Figure A 6.Comparison of NPP (WaPOR vs. Flux) on the left and ET (WaPOR vs. Flux) on the right, with thresholds for FR_Aur 

 

 

Figure A 7.Comparison of NPP (WaPOR vs. Flux) on the left and ET (WaPOR vs. Flux) on the right, with thresholds for FR_Lam 
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A.2 Gross Biomass Water Productivity 

The results of the tables (Table A.1-21) created with GBWP values calculated using both 

field measurements and WaPOR data for each station do not show as much inconsistency 

as the results in the scatter plots in Figures 24, and 25. However, there is a disagreement 

both between stations and across different years. 

 

 
Table A 1.GBWP values with Flux dates for BE_Lon 

 

GBWP calculation (Flux dates) for BE_Lon Season 1st Season 2nd 

Biomass_WaPOR (kgDM/ha/season) 6645 9150 

Biomass_Flux (kgDM/ha/season) 5589 18518 

Water_Consumption_WaPOR (mm/season) 190 262 

Water_Consumption_Flux (mm/season) 192 374 

   

GBWP_WaPOR (kgDM/m3 H2O) 34.97 34.92 

GBWP_Flux (kgDM/m3 H2O) 29.11 49.51 
 
 
 

 

Table A 2.GBWP values with WaPOR dates for BE_Lon 
 

GBWP calculation ( WaPOR dates) for 

BE_Lon 
 

Season 1st 
 

Season 2nd 

Biomass_WaPOR (kgDM/ha /season) 10919 13045 

Biomass_Flux (kgDM/ha /season) 5805 20773 

Water_Consumption_WaPOR (mm/season) 322 382 

Water_Consumption_Flux (mm/season) 370 535 

   

GBWP_WaPOR (kgDM/m3 H2O) 33.90 34.15 

GBWP_Flux (kgDM/m3 H2O) 15.69 38.82 
 

 

Table A 3.GBWP values with their respective dates for BE_Lon 
 

GBWP calculation for BE_Lon Season 1st Season 2nd 

Biomass_WaPOR (kgDM/ha /season) 10919 13045 

Biomass_Flux (kgDM/ha /season) 5589 18518 

Water_Consumption_WaPOR (mm/season) 322 382 

Water_Consumption_Flux (mm/season) 192 374 

   

GBWP_WaPOR (kgDM/m3 H2O) 33.90 34.15 

GBWP_Flux (kgDM/m3 H2O) 29.11 49.5 
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Table A 4 .GBWP values with Flux dates for CZ_KrP 
 

GBWP calculation (Flux dates) for 

CZ_KrP 
 

Season 1st 
 

Season 2nd 
 

Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 14835 18591 15425 

Biomass_Flux (kgDM/ha /season) 11502 17817 17724 

Water_Consumption_WaPOR (mm/season) 487 561 476 

Water_Consumption_Flux (mm/season) 404 524 518 

    

GBWP_WaPOR (kgDM/m3 H2O) 30.46 33.14 32.41 

GBWP_Flux (kgDM/m3 H2O) 28.47 34.00 34.22 
 
 
 

 
Table A 5. GBWP values with WaPOR dates for CZ_KrP 

 

GBWP calculation ( WaPOR dates) for 

CZ_KrP 
 

Season 1st 
 

Season 2nd 
 

Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 15830 18775 15105 

Biomass_Flux (kgDM/ha /season) 11187 17956 16989 

Water_Consumption_WaPOR (mm/season) 500 565 466 

Water_Consumption_Flux (mm/season) 436 537 507 

    

GBWP_WaPOR (kgDM/m3 H2O) 31.66 33.23 32.42 

GBWP_Flux (kgDM/m3 H2O) 25.66 33.44 33.51 
 

 
 

 
Table A 6 .GBWP values with their respective for CZ_KrP 

 

GBWP calculation for CZ_KrP Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 15830 18775 15105 

Biomass_Flux (kgDM/ha /season) 11502 17817 17724 

Water_Consumption_WaPOR (mm/season) 500 565 466 

Water_Consumption_Flux (mm/season) 404 524 518 

    

GBWP_WaPOR (kgDM/m3 H2O) 31.66 33.23 32.42 

GBWP_Flux (kgDM/m3 H2O) 28.47 34.00 34.22 
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Table A 7.GBWP values with Flux dates for DE_Geb 
 

GBWP calculation (Flux dates) for DE_Geb Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 14103 9969 6783 

Biomass_Flux (kgDM/ha /season) 13236 12984 5050 

Water_Consumption_WaPOR (mm/season) 435 295 222 

Water_Consumption_Flux (mm/season) 373 215 184 

    

GBWP_WaPOR (kgDM/m3 H2O) 32.42 33.79 30.56 

GBWP_Flux (kgDM/m3 H2O) 35.49 60.39 27.45 
 
 

 
 
 

 
Table A 8.GBWP values with WaPOR dates for DE_Geb 

 

GBWP calculation ( WaPOR dates) for 

DE_Geb 
 

Season 1st 
 

Season 2nd 
 

Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 15644 10549 9099 

Biomass_Flux (kgDM/ha /season) 14552 13194 5843 

Water_Consumption_WaPOR (mm/season) 485 316 294 

Water_Consumption_Flux (mm/season) 404 233 256 

    

GBWP_WaPOR (kgDM/m3 H2O) 32.26 33.38 30.95 

GBWP_Flux (kgDM/m3 H2O) 36.02 56.63 22.83 
 
 
 

 
Table A 9.GBWP values with their respective for DE_Geb 

 

GBWP calculation for DE_Geb Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 15644 10549 9099 

Biomass_Flux (kgDM/ha /season) 13236 12984 5050 

Water_Consumption_WaPOR (mm/season) 485 316 294 

Water_Consumption_Flux (mm/season) 404 233 256 

    

GBWP_WaPOR (kgDM/m3 H2O) 32.26 33.38 30.95 

GBWP_Flux (kgDM/m3 H2O) 32.76 55.73 19.73 



41  

Table A 10.GBWP values with Flux dates for DE_Kli 
 

GBWP calculation (Flux dates) for DE_Kli Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 10670 11395 13394 

Biomass_Flux (kgDM/ha /season) 9051 9251 19504 

Water_Consumption_WaPOR (mm/season) 351 375 420 

Water_Consumption_Flux (mm/season) 288 385 553 

    

GBWP_WaPOR (kgDM/m3 H2O) 30.40 30.39 31.89 

GBWP_Flux (kgDM/m3 H2O) 31.43 24.03 35.27 
 
 

 

 
Table A 11.GBWP values with WaPOR dates for DE_Kli 

 

GBWP calculation ( WaPOR dates) for 

DE_Kli 
 

Season 1st 
 

Season 2nd 
 

Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 15574 14557 13910 

Biomass_Flux (kgDM/ha /season) 9554 11060 17809 

Water_Consumption_WaPOR (mm/season) 505 471 438 

Water_Consumption_Flux (mm/season) 400 529 555 

    

GBWP_WaPOR (kgDM/m3 H2O) 30.84 30.91 31.76 

GBWP_Flux (kgDM/m3 H2O) 23.89 20.91 32.09 
 
 
 

 
Table A 12.GBWP values with respective dates for DE_Kli 

 

GBWP calculation for DE_Kli Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 15574 14557 13910 

Biomass_Flux (kgDM/ha /season) 9051 9251 19504 

Water_Consumption_WaPOR (mm/season) 505 471 438 

Water_Consumption_Flux (mm/season) 400 529 555 

    

GBWP_WaPOR (kgDM/m3 H2O) 30.84 30.91 31.76 

GBWP_Flux (kgDM/m3 H2O) 22.63 17.49 35.14 
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Table A 13.GBWP values with Flux dates for DE_RuS 
 

GBWP calculation (Flux dates) for DE_RuS Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 9737 8664 10949 

Biomass_Flux (kgDM/ha /season) 13464 10098 16851 

Water_Consumption_WaPOR (mm/season) 264 257 297 

Water_Consumption_Flux (mm/season) 384 398 472 

    

GBWP_WaPOR (kgDM/m3 H2O) 36.88 33.71 36.87 

GBWP_Flux (kgDM/m3 H2O) 35.06 25.37 35.70 
 
 

 

 
Table A 14.GBWP values with WaPOR dates for DE_RuS 

 

GBWP calculation ( WaPOR dates) for 

DE_RuS 
 

Season 1st 
 

Season 2nd 
 

Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 10697 11687 13650 

Biomass_Flux (kgDM/ha /season) 13428 10816 17827 

Water_Consumption_WaPOR (mm/season) 320 394 407 

Water_Consumption_Flux (mm/season) 407 590 598 

    

GBWP_WaPOR (kgDM/m3 H2O) 33.37 29.66 33.54 

GBWP_Flux (kgDM/m3 H2O) 32.99 18.33 29.81 
 

 
 

 
Table A 15. GBWP values with respective dates for DE_RuS 

 

GBWP calculation for DE_RuS Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 10697 11687 13650 

Biomass_Flux (kgDM/ha /season) 13464 10098 16851 

Water_Consumption_WaPOR (mm/season) 320 394 407 

Water_Consumption_Flux (mm/season) 407 590 598 

    

GBWP_WaPOR (kgDM/m3 H2O) 33.37 29.66 33.54 

GBWP_Flux (kgDM/m3 H2O) 33.08 17.12 28.18 
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Table A 16.GBWP values with Flux dates for FR_Aur 

 

GBWP calculation (Flux dates) for 

FR_Aur 
 

Season 1st 
 

Season 2nd 
 

Season 3rd 
 

Season 4th 

Biomass_WaPOR (kgDM/ha /season) 14088 11443 2667  

Biomass_Flux (kgDM/ha /season) 10736 12521 4455 5687 

Water_Consumption_WaPOR (mm/season) 487 385 90  

Water_Consumption_Flux (mm/season) 442 388 51 212 

     

GBWP_WaPOR (kgDM/m3 H2O) 28.93 29.72 29.64  

GBWP_Flux (kgDM/m3 H2O) 24.29 32.27 87.36 26.83 
 

 
 

 
Table A 17.GBWP values with WaPOR dates for FR_Aur 

 

GBWP calculation ( WaPOR dates) for FR_Aur Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 15736 18842 16313 

Biomass_Flux (kgDM/ha /season) 10916 12770 9375 

Water_Consumption_WaPOR (mm/season) 547 694 628 

Water_Consumption_Flux (mm/season) 478 524 347 

    

GBWP_WaPOR (kgDM/m3 H2O) 28.77 27.15 25.98 

GBWP_Flux (kgDM/m3 H2O) 22.84 24.37 27.02 
 
 
 

 
Table A 18.GBWP values with respective dates for FR_Aur 

 

GBWP calculation for FR_Aur Season 2nd Season 3rd Season 4th 

Biomass_WaPOR (kgDM/ha /season) 11690 3321 10921 

Biomass_Flux (kgDM/ha /season) 12508 4511 5880 

Water_Consumption_WaPOR (mm/season) 394 114 422 

Water_Consumption_Flux (mm/season) 395 62 268 

    

GBWP_WaPOR (kgDM/m3 H2O) 29.67 29.14 25.88 

GBWP_Flux (kgDM/m3 H2O) 31.67 72.76 21.94 
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Table A 19.GBWP values with Flux dates for FR_Lam 
 

GBWP calculation (Flux dates) for 

FR_Lam 
 

Season 1st 
 

Season 2nd 
 

Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 17027 8982 7956 

Biomass_Flux (kgDM/ha /season) 15223 16599 11220 

Water_Consumption_WaPOR (mm/season) 565 345 239 

Water_Consumption_Flux (mm/season) 556 412 289 

    

GBWP_WaPOR (kgDM/m3 H2O) 30.14 26.04 33.29 

GBWP_Flux (kgDM/m3 H2O) 27.38 40.29 38.82 
 
 
 

 
Table A 20.GBWP values with WaPOR dates for FR_Lam 

 

GBWP calculation ( WaPOR dates) for FR_Lam Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 18622 16269 16780 

Biomass_Flux (kgDM/ha /season) 15327 17060 12612 

Water_Consumption_WaPOR (mm/season) 609 586 602 

Water_Consumption_Flux (mm/season) 604 590 474 

    

GBWP_WaPOR (kgDM/m3 H2O) 30.58 27.76 27.87 

GBWP_Flux (kgDM/m3 H2O) 25.38 28.92 26.61 
 

 
 

 
Table A 21.GBWP values with respective dates for FR_Lam 

 

GBWP calculation for FR_Lam Season 1st Season 2nd Season 3rd 

Biomass_WaPOR (kgDM/ha /season) 18622 11389 9824 

Biomass_Flux (kgDM/ha /season) 15223 16488 11554 

Water_Consumption_WaPOR (mm/season) 609 586 602 

Water_Consumption_Flux (mm/season) 556 412 289 

    

GBWP_WaPOR (kgDM/m3 H2O) 30.58 19.43 16.31 

GBWP_Flux (kgDM/m3 H2O) 27.38 40.02 39.98 
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