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Abstract 
Introduction. Risk stratification in patients with suspected chronic coronary syndromes is important to 

determine appropriate treatment. Decision making for expert readers is complex due to tens of 

variables to consider. Machine learning has demonstrated its suitability to achieve accurate diagnostic 

performance using a large number of features. The aim of this thesis is to develop and validate a 

machine learning-based model to diagnose obstructive coronary artery disease (oCAD) in patients 

without prior history of CAD using clinical data, medication, and imaging data from CACS and CCTA, 

and to compare the performance of this model to that of expert readers. 

Method. We retrospectively included 1254 patients without a prior history of CAD who underwent 

CACS and CCTA. The entire dataset was split 4:1 into a training and test dataset, respectively. An Extra 

Trees Classifier (ETC) was developed on the training set using ten-fold stratified cross-validation and 

gridsearch for hyperparameter tuning. Boruta feature selection was utilized to minimize the impact of 

noise. The test dataset was used to compare the diagnostic performance of the model to the 

performance of expert readers. The primary endpoint was oCAD on invasive coronary angiographies 

(ICA).  

Results. A total of 85 (6.8%) of the 1254 patients were diagnosed with oCAD. Imaging features were 

found to be most important to the predictive performance of the ETC model, with eight out of the nine 

selected features being derived from imaging. The ETC achieved a mean ROC-AUC of 0.94 on the 

training set and showed an ROC-AUC of 0.96 on the test set. The ETC model showed similar 

performance compared to the expert readers in accuracy (93% vs. 94%), precision (50% vs. 54%), and 

recall (94% vs 83%). McNemar Chi-Squared test indicated that there is no statistically significant 

difference between the performance of the model and that of the expert readers (p > 0.99). 

Conclusion. We have developed and validated a machine learning model to diagnose oCAD. Our 

findings demonstrate that the ETC model performs comparable to expert readers in predicting oCAD. 

The model can assist expert readers in their decision-making by serving as a risk stratification tool. This 

study highlights the potential of machine learning in oCAD diagnosis.  
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General introduction  
Cardiovascular disease (CVD) is the leading cause of death worldwide, with coronary artery disease 

(CAD) being a major contributor [1,2]. In the Netherlands, CAD accounts for one in five deaths and was 

the fifth most common cause of death in 2021 [3]. CAD develops from atherosclerotic plaque buildup 

in coronary arteries, eventually causing narrowing and obstruction, leading to myocardial ischemia [4–

6]. Symptoms include chest pain, fatigue, and shortness of breath [1,5,7]. 

Acute coronary syndrome (ACS) and chronic coronary syndrome (CCS) are CAD subgroups requiring 

different diagnostics [1,5]. ACS needs rapid assessment using electrocardiograms (ECGs), cardiac 

biomarkers, and invasive coronary angiography (ICA), while CCS involves risk stratification through 

non-invasive imaging. This research focuses on CCS diagnostics, specifically obstructive coronary artery 

disease (oCAD) diagnosis based on CT based calcium scoring (CACS) and coronary CT angiography 

(CCTA).  

At Isala, a diagnostic workflow allows general practitioners to refer patients for CACS and CCTA based 

cardiac screening, to determine appropriate treatment. Decision making for expert readers is complex 

due to the amount of available intercorrelated data. Artificial intelligence and machine learning (ML) 

models can handle this amount of data, integrating imaging and clinical data for accurate diagnosis 

[8,9]. The aim of this thesis is to develop and validate a machine learning-based model to diagnose 

obstructive CAD in patients without prior history of CAD using clinical data, medication, and imaging 

data from CACS and CCTA, and to compare the performance of this model to that of expert readers. 

The first chapter describes the clinical background of CAD and diagnostic pathway for oCAD diagnosis. 

The second chapter will serve as an introduction to machine learning and cover the three machine 

learning models that were used in this research. The third chapter, a standalone section designed as a 

setup for publication, covers the development and validation of the best performing machine learning 

model for predicting oCAD. The fourth and final chapter discusses future perspectives, clinical 

implementation, and recommendations for future research.  
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1. Clinical background 

1.1 Pathophysiology of CAD 
Coronary artery disease is characterized by the development of atherosclerotic plaque in the coronary 

arteries [10]. Atherosclerosis is a multifaceted pathological process characterized by the accumulation 

of lipids, inflammatory cells, and fibrous elements within arterial walls [11]. Atherosclerosis begins 

with endothelial dysfunction, allowing cholesterol infiltration and oxidation, triggering an 

inflammatory response and formation of fatty streaks [12]. Over time, smooth muscle cells migrate, 

proliferate, and form a fibrous cap over the fatty streak, initially preserving lumen size through vessel 

remodelling but eventually causing arterial narrowing, obstruction, and occlusion [4,5]. As the 

atherosclerotic plaque develops, it may undergo various changes, including calcification, lipid 

accumulation, and inflammation. Calcification involves the deposition of calcium salts within the 

plaque, rendering it harder and more brittle [13].  

Vulnerable plaques, characterized by a thin fibrous cap, large lipid cores, and increased inflammation, 

are prone to rupture. Plaque rupture exposes thrombogenic material within the plaque to the 

bloodstream, causing platelet aggregation and thrombus formation. Resulting in an acutely reduced 

blood flow and oxygen supply to the myocardium, causing myocardial ischaemia [6]. Symptoms of 

acute myocardial ischemia include severe chest pain or discomfort that may radiate to the arm, jaw, 

neck, or back. The pain is often described as crushing, pressure-like, or squeezing and may be 

associated with sweating, nausea, vomiting, and dyspnoea [1]. Patients who suffer from a plaque 

rupture are treated according to the acute coronary syndrome guideline [1]. 

While stable plaques are less prone to rupture, they can still obstruct blood flow and cause symptoms 

of stable angina pectoris. Patients may experience chest discomfort or pain that is typically described 

as pressure, heaviness, or tightness in the chest. The pain is predictable and reproducible, occurring 

with similar intensity and duration upon exertion and relieved with rest or medication. Patients with 

these kinds of symptoms are treated according to the chronic coronary syndrome guidelines [5]. This 

research will focus on patients who suffer from CCS. 

1.2 Chronic coronary syndromes guidelines and implementation in Isala 
The diagnostic management of CCS according to the 2019 European Society of Cardiology (ESC) 

guidelines typically involves a step-by-step approach. Starting with clinical assessment which includes 

evaluating patient history, symptoms, and cardiovascular risk factors, followed by risk stratification 

using validated scoring systems like the Heart Score [14]. Followed by non-invasive testing such as 

exercise electrocardiography, stress echocardiography, CT scans, or nuclear imaging is then performed 

for ischemia detection and risk stratification based on patient characteristics and test availability. 

Finally, ICA is indicated for patients with high-risk features, positive non-invasive tests, or persistent 

symptoms despite optimal medical therapy, to confirm the diagnosis.  

In the 2019 ESC CCS guidelines, CT calcium scoring, and coronary CT angiography play essential roles 

in risk stratification and assessment of coronary anatomy [5]. The recommendations of the ESC CCS 

guidelines from 2019 are well implemented in the clinical care in Isala. Special workflows have been 

developed to enhance the diagnostic accuracy of CAD. One of these workflows is focused on the 

diagnosis of oCAD for patients with CCS referred by general practitioners. The workflow is displayed in 

figure 1. Risk stratification is done based on age, CACS and CCTA. In the following paragraphs the basics 

of CACS and CCTA will be explained. 



3 
 

 

Figure 1 Diagnostic pathway for referral of patients with suspected CAD by general practitioners to the nuclear medicine 
department of Isala. 

1.3 Coronary artery calcification scoring 
Coronary artery calcification scoring, derived from an unenhanced low-dose CT scan, is vital for risk 

stratification in patients with suspected CCS, especially those lacking relevant medical history [15]. The 

severity of atherosclerosis is measured with CACS by calculating a weighted sum of lesions containing 

calcification, expressed in Agatston units (AU) [16]. The score's weighting depends on the density 

factor derived from the highest plaque attenuation in Hounsfield units. CACS is valuable due to its high 

negative predictive value, meaning a zero-score indicates a very low risk of oCAD [17]. This is why 

patients with a CACS score of 0 are referred back to their general practitioner, as can be seen in figure 

1. However, scores between 1 and 300 AU suggest further diagnostic tests to differentiate between 

oCAD and non-obstructive CAD. Due to the general absence of calcification in plaques in patients below 

45, CACS does not have predictive value in younger patients [18]. 

1.4 Coronary CT angiography 
In contrast to CACS, Coronary CT angiography is the diagnostic modality of choice to evaluate the 

coronary anatomy [19]. Prior to the scan, iodine-based contrast medium is administered intravenously, 

enhancing contrast between the coronary arteries and adjacent structures. The resultant CTA data 

produces a three-dimensional volume of the coronaries, enabling comprehensive anatomical 

assessment. Through advanced post-processing techniques, detailed examination of coronaries can be 

achieved [20].  

Heart rate management is crucial for CCTA scans to ensure high-quality images. Optimal heart rate, 

typically below 60 beats per minute, reduces motion artifacts and enhances image clarity [21]. Beta-

blockers are commonly administered before the scan to achieve heart rate reduction. Coronary 

calcium can cause overestimation of stenosis due to blooming artifacts. These artifacts, resulting from 

the high density of calcified plaques, exaggerate the apparent size of the lesions and can obscure the 

true lumen of the artery. This overestimation is the reason for exclusion of CACS > 300 scores for CCTA 

imaging within the Isala, as seen in figure 1. 
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The Coronary Artery Disease - Reporting and Data System (CAD-RADS) is a standardized reporting 

system to classify the degree of stenosis, helping to guide subsequent patient management [22]. In 

figure 2 the CAD-RADS categories are displayed with the maximum degree of stenosis found during 

CCTA and advice for further diagnostic investigations. CAD-RADS scores of 3 and 4a particularly draw 

attention due to their inconclusive nature. For both these categories, the certainty of oCAD remains 

questionable. As such, patients with CAD-RADS 3 and 4a necessitate further diagnostic evaluation to 

delineate the exact extent of obstruction and to determine the most appropriate therapeutic course 

[22]. 

 

Figure 2 CAD-RADS Reporting and data system for patients presenting with stable chest pain [22] 

1.5 Gold standard evaluation of oCAD 
Although CACS and CCTA are highly suitable for risk stratification, they are not capable of definitively 

confirming the presence of oCAD. Fractional Flow Reserve (FFR) guided invasive coronary angiography 

is the gold standard for the diagnostic evaluation of oCAD [23,24]. ICA offers direct visualization of the 

coronary vasculature, allowing for the precise delineation of luminal irregularities and stenosis. 

However, anatomical severity does not always correlate with functional significance. Consequently, 

FFR measured during ICA, assesses the hemodynamic relevance of stenosis by quantifying the pressure 

drop across it, thereby providing insights into its physiological impact [25]. An FFR value of ≤0.80 is 

considered indicative of a functionally significant stenosis [26].   
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2. Technical background 
In recent years, machine learning has transformed the landscape of data analysis, enabling researchers 

and practitioners to extract valuable insights and make accurate predictions from complex datasets. 

This section will introduce machine learning models and methodology to optimize their predictive 

performance. Before delving into specific models, it is important to understand the fundamental 

principles upon which the methods that will be covered later are based, decision trees. Decision trees 

have an intuitive approach which mimics the human decision-making process, whereby decisions are 

recursively made by evaluating a series of binary choices based on feature values [27].  

At each node of a decision tree, the algorithm selects the optimal feature and corresponding split point 

that maximizes the purity of the resulting subsets, typically measured by metrics such as Gini impurity 

or information gain [28]. This process continues until a stopping criterion is met, such as reaching a 

maximum tree depth or achieving minimum node purity. The resulting model is an advanced 

flowchart, which can be used to predict the classification of a new, unseen input. 

Decision trees provide transparent insights into the decision-making process, allowing users to 

understand the underlying patterns and relationships within the data. Additionally, decision trees can 

handle both numerical and categorical features without requiring extensive preprocessing, making 

them well-suited for tabular data. However, decision trees are prone to overfitting, particularly on 

noisy datasets or datasets with many features, where they may exhibit poor generalization 

performance [29]. Decision trees can serve as the basis for more advanced algorithms which harness 

the collective predictive power of multiple trees to improve performance and generalizability. 

2.1 Advanced machine learning models 
The dataset used to train and validate the machine learning model in this study comprises data from 

1,254 retrospectively included patients. The data is tabular and includes a mix of personal data (age, 

gender, BMI), clinical data (medication usage, Creatinine values), risk factors (family history, diabetes, 

etc), and imaging features from CACS and CCTA. This results in a comprehensive, highly intercorrelated, 

dataset with 33 features for each patient, containing dichotomous, categorical, and continuous 

variables. Selecting the appropriate machine learning model tailored for the dataset is crucial as it 

directly impacts the accuracy and reliability of the predictions [30]. A model that aligns well with the 

characteristics of the dataset maximizes its ability to extract patterns and relationships. This section 

introduces three models that are capable of handling this type of data. 

2.1.1 Chosen Classifiers 
Extreme Gradient Boosting (XGBoost) uses decision trees as its primary classifiers [31]. XGBoost 

repetitively improves the performance of multiple decision trees by focusing on instances where they 

misclassify data points, this process is called gradient boosting. It also involves training additional trees 

to address the differences between the actual and predicted outcomes, identified by the previous 

trees. Evaluation of the training set and prevention of overfitting are combined in the objective 

function. By minimizing the objective function, XGBoost optimizes the parameters of these decision 

trees. XGBoost is specifically designed for structured or tabular data, which makes it highly suited for 

the data at hand [32–34]. XGBoost is also designed to handle highly intercorrelated data, by selecting 

the most informative features for each split based on information gain, reducing the impact of noise. 

Furthermore, techniques to enhance generalizability are incorporated in XGBoost, such as tree pruning 

and shrinkage. These are essential in dataset with many features like our dataset. Finally, XGBoost is 

praised for its learning efficiency, due to parallel processing capabilities, reducing optimization and 

prediction times on large datasets. 
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Random Forest Classifiers (RFC) are ensemble learning techniques used for handling structured or 

tabular data with numerous features [35–38]. An RFC model operates by constructing numerous 

decision trees during training. Each tree is build independently using a random selection of features 

and data samples, the diversity among trees is increased by utilizing bootstrapping. The randomness 

that is build into the construction of the decision trees ensures that the impact of feature 

intercorrelation is limited and diverse patterns are recognised. The classification is predicted using a 

majority vote of all decision trees, reducing the impact of biases of individual trees. Random Forest 

Classifiers are less prone to overfitting as a result of the majority vote, thereby enhancing their 

generalizability. This approach reduces the influence of any single feature on the classification process, 

making them well-suited for handling intercorrelated features often found in tabular data [38]. 

Furthermore, Random Forest Classifiers excel in handling noisy or missing data, as well as categorical 

variables, without requiring extensive preprocessing. These characteristics ensure that an RFC model 

is well-suited for our dataset. 

The Extra Trees Classifier (ETC), also known as Extremely Randomized Trees, is an extension of the 

Random Forest Classifier that introduces additional randomness during tree construction [39,40]. 

Unlike Random Forest, which selects the best split at each node based on a random subset of features, 

Extra Trees randomly selects splitting thresholds for each feature, without evaluating their optimality. 

This elevated level of randomness enhances diversity among the trees in the ensemble, making Extra 

Trees Classifier even less prone to overfitting. Additionally, like RFCs, ETC models provide insights into 

feature importance, helping to identify predictive features even when features are highly 

intercorrelated. Extra Trees Classifiers stand out in handling noisy or redundant features, as well as 

datasets with imbalanced class distributions, by averaging predictions from multiple trees to avoid bias 

and variance [41]. Their training process is less resource-intensive compared to other ensemble 

methods since they require less computational effort to find the optimal splitting thresholds. 

2.1.2 Method of optimizing the model 
To be able to achieve the best predictive performance of the chosen models it is imperative that the 

models are optimized for the inputted data. Proper optimization prevents overfitting and ensures that 

the models can reliably make predictions on unseen data. The dataset is pre-processed using Pandas 

to ensure the data is clean and ready for analysis. In the following paragraph a method is described 

that is used to optimize the chosen models. The resulting performance evaluation of the three models 

can be found in appendix A. 

The first step in model development is to divide the dataset into training and test sets to assess model 

performance. A stratified split method ensures that class proportions are maintained in both sets, 

especially crucial for imbalanced datasets, like the dataset at hand. This approach prevents a bias in 

model evaluation and ensures representative samples for training and testing. The dataset is split in a 

4:1 ratio between the training and test set [42]. Since the training set is split again, for cross validation, 

the test set is referred to as the validation set. 
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Figure 3 Visualization of the cross-validation procedure used to develop the models. The entire dataset is initially split in a 
4:1 ratio between the training and validation set. The training set it used to optimize hyperparameters using cross-

validation. The validation set is used to evaluate the performance in an unseen population. 

To optimize model hyperparameters and avoid overfitting, a 10-fold cross-validation strategy is 

employed in combination with GridsearchCV (sci-kit learn, v1.5.0), which searches a specified 

hyperparameter grid to find the best model configuration [43,44]. The stratified shuffle split creates 

the opportunity to split the training set into infinite folds, while maintaining the wished proportion of 

test set, compared to the x-fold stratified split. The proportion of the test set is set to 20% each split. 

Figure 3 provides a complete overview of the splitting process. 

A combination of four performance metrics is used to gain a broad understanding of the performance 

of the model. Accuracy measures the proportion of correctly classified instances, while precision 

quantifies the proportion of true positives among all predicted positives. Recall, also known as 

sensitivity, measures the proportion of true positives correctly identified by the model. Receiver 

operating characteristic area under the curve (ROC-AUC) evaluates the model's classification ability 

across different threshold values, providing a comprehensive assessment of the classifier’s 

performance. The combination of these four metrics gains insight about probability, positive and 

negative predictive performance. Hyperparameters are chosen that scored best on the combination 

of these four metrics. 

Finally, feature selection is crucial for identifying relevant features and reducing model complexity, by 

reducing noise. Boruta is a feature selection algorithm that evaluates the importance of each feature 

by comparing it with randomly generated shadow features [45]. Features are considered important if 

their importance scores significantly exceed those of shadow features. Features that are ranked less 

important than the highest scoring shadow feature are discarded. The Boruta algorithm are executed 

on five folds of the training set, to reduce bias of a singular fold. Features that are ranked important 

in three or more folds are included in the final selection. 
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3. Applying machine learning to diagnose obstructive coronary artery 

disease 

3.1 Introduction 
Worldwide cardiovascular disease (CVD) is the most common cause of death [1]. In the Netherlands 

one of every five deaths is related to CVD, with coronary artery disease (CAD) being the largest 

contributor to CVD mortality [2]. CAD is the fifth most common cause of death in the Netherlands in 

2021. CAD is characterized by the development of atherosclerotic plaque in the coronary arteries [3,4]. 

In early stages of plaque development, lumen size tends to be preserved by vessel remodelling. 

Eventually, the continuous build-up of plaque within the intima of the vessel causes narrowing, 

obstruction, and occlusion in the arteries [5]. Resulting in a reduced blood flow and oxygen supply, 

causing myocardial ischemia [6]. Symptoms of myocardial ischemia include chest pain radiating to the 

jaw, shoulder blades and arms, fatigue, and shortness of breath [1,5,7]. 

Acute coronary syndrome (ACS) and chronic coronary syndrome (CCS) represent distinct subgroups 

within the spectrum of CAD, necessitating different diagnostic approaches [1,5]. In the context of 

suspected ACS, rapid assessment to determine the presence of myocardial ischemia or infarction is 

needed. Cardiac biomarkers and electrocardiograms (ECG) play a central role in the initial evaluation 

[1]. Patients with suspected CCS are primarily directed towards non-pharmacological interventions, 

emphasizing modifiable risk factor optimization. Concurrently, pharmacotherapy may be employed to 

not only mitigate risk factor intensification but also limit disease progression. For symptomatic patients 

with suspected CCS, the diagnostic focus shifts towards risk stratification using non-invasive cardiac 

imaging to evaluate the functional significance of coronary lesions [5]. 

Within the Isala, a diagnostic workflow is created for risk stratification of symptomatic CCS patients, 

without prior history of CAD. Risk stratification consists of CT based calcium scoring (CACS) and 

coronary CT angiography (CCTA) scans. The goal of the diagnostic workflow is to either refer a patient 

back to their general practitioner with minimal chance of obstructive CAD (oCAD) or refer them to a 

cardiologist for management of CAD, as can be seen in figure 4. Decision making for expert readers is 

complex due to tens of variables to consider, imaging data, risk factors, medication usage and clinical 

data, which are interrelated via complicated nonlinear relationships.  

 

Figure 4 Diagnostic pathway for referral of patients with suspected CAD by general practitioners to the nuclear medicine 
department of Isala. 
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Artificial intelligence, in particular machine learning (ML) models, have been shown suitable to assess 

many features and are capable of modelling complex non-linear relations between these features, to 

finally result in an accurate diagnosis [8,9]. Previous studies have shown the potential of integrating 

imaging derived features with clinical data in ML-based risk prediction models, within the field of 

nuclear cardiology [46–48]. The aim of this thesis is to develop and validate a machine learning-based 

model to diagnose oCAD in patients without prior history of CAD using clinical data, medication, and 

imaging data from CACS and CCTA, and to compare the performance of this model to that of expert 

readers. 
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3.2 Method 

3.2.1 Study design  
We retrospectively included a cohort of 1254 patients, who were referred by general practitioners and 

underwent CACS and CCTA between January 1, 2018, and November 1, 2022. None of the patients had 

prior history of CAD, which was defined as previous myocardial infarction, percutaneous coronary 

intervention (PCI), or coronary artery bypass grafting (CABG). Patient history, characteristics, and 

clinical data were collected through a review of medical records. As this study was retrospective in 

nature, approval from the medical ethics committee was not required in accordance with Dutch law. 

Nonetheless, all patients provided written informed consent for utilization of their data for research 

purposes. 

3.2.2. CACS and CCTA acquisition 
CACS scans were performed using either a 64-slice CT scanner (Light-Speed VCT XT, GE Healthcare) or 

a 256-slice CT scanner (Revolution Apex, GE Healthcare). An unenhanced ECG-gated scan, triggered at 

75% of the R-R interval, was obtained with the following parameters: 2.5 mm slice thickness, 120 kV 

tube voltage, and 125-250 mA tube current based on patient size. Dedicated software (SmartScore, GE 

Healthcare) calculated the CAC score per vessel using the Agatston criteria, with calcifications manually 

assigned to vessels by experienced operators. 

Beta blockers were used for heart rate management in preparation for CCTA scan, maintaining rates 

under 60 for the 64-slice scanner and under 70 for the 256-slice scanner, with 0.4 mg nitroglycerin 

sublingual for vasodilation. CCTA scans were performed using either a 64-slice CT scanner (Light-Speed 

VCT XT, GE Healthcare) or a 256-slice CT scanner (Revolution Apex, GE Healthcare). Coronary arteries 

were prospectively scanned with ECG-triggering, using the kV-assist technique to automatically select 

tube voltage (80, 100, or 120 kV) based on patient size. Scanning parameters included a rotation time 

of 0.28s, collimation of 64 or 256 x 0.625 mm, a 512 x 512 reconstruction matrix, and detector coverage 

of 12 to 16 cm, employing bolus tracking. A low osmotic, non-ionic contrast medium (350 mg/ml 

Optiray or Iomeron) was administered based on patient size, followed by a 20 ml saline flush. The 

Advances Workstation (AW, GE Healthcare), with integrated Smart Phase for optimal phase selection, 

was used for image reconstruction and optimization. 

3.2.3 Machine learning  
Data preparation, model development and comparison to expert readers were implemented using 

Python (Python, v3.12, Python Software Foundation). The Extra Trees Classifier (ETC) from the scikit 

Learn library (v1.5.0) was utilized for the prediction of the presence of oCAD [46]. The dataset was 

randomly split into a training and test set with a 4:1 ratio, stratified by the occurrence of obstructive 

CAD. Each patient was characterized by an array of features, including CCTA measurements, CACS, and 

various other clinical features, shown in table 1. The list of features consists of dichotomous, 

categorical, and continuous variables. Normalization of the continuous variables was not performed, 

to prevent possible information loss. 
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The ETC was optimized on the training set, using hyperparameter optimization via gridsearch in 

combination with a 10-fold stratified shuffle split, as can be seen in figure 5. The performance of the 

classifier was evaluated using accuracy, precision, recall, and receiver operating characteristic area 

under the curve (ROC-AUC) [47]. For ROC-AUC analysis, a five-fold stratified split was introduced to 

show the performance of the model on different splits of the model. The hyperparameters were 

optimized for best average score of these performance metrics. Next, features were ranked for their 

importance. With Boruta feature selection, features were removed that were less important than 

noise, reducing noise and the complexity of the model. The Boruta algorithm was run on five stratified 

folds of the training set, to decrease the impact of the split and enhance the generalizability of the 

model after feature selection. Features selected by the Boruta algorithm in three or more folds were 

included in the final feature selection. The model with the highest average score of the performance 

metrics was evaluated on the test set. 

 

Figure 5 Visualization of the cross-validation procedure used to develop the models. The entire dataset is initially split in a 
4:1 ratio between the training and validation set. The training set it used to optimize hyperparameters using cross-

validation. The validation set is used to evaluate the performance in an unseen population. 

The prediction of the model on the test set was compared to the performance of the expert readers. 

The expert readers, a cardiologist, and a nuclear medicine physician, assessed each patient after CACS 

and CCTA and categorized patients as having or not having oCAD. The predictive performance of the 

ETC was compared to the assessment of the expert readers. The performance of expert readers was 

assessed using a threshold of 120 days after CCTA examination. Diagnosis of oCAD after 120 days was 

noted as false negative prediction for the expert readers, due to late revascularization [48,49]. A 

reference standard was utilized to evaluate the diagnostic accuracy of an ML-based model in 

diagnosing oCAD. Patients were categorized as having oCAD if their follow-up included a conclusive 

ICA revealing oCAD, defined by a stenosis with a FFR ≤ 0.8 or underwent PCI or CABG procedures.  

3.2.4 Statistical Analysis 
Statistical analysis was performed using IBM SPSS (IBM SPSS Statistics for Windows, Version 28.0.1.0, 

Armonk, NY, IBM Corp). Differences in patient characteristics between the training and test set were 

evaluated with the Chi-squared test or Mann-Whitney U test. A statistical significance was set to 0.05. 

DeLong’s test was used to compare ROC curves [50]. The performance of the ETC was compared to 

the assessment of the expert readers using McNemars Chi-squared test, the statistical significance was 

set to 0.05. 
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3.3 Results 

3.3.1. Study population. 
1254 patient were included from a large nuclear cardiology databases, the inclusion flowchart is 

displayed in figure 6. Of these patients, 163 underwent ICA interventions. 85 (6.8%) patients were 

diagnosed with obstructive CAD. 130 of the 163 ICAs were performed withing 120 days after the CCTA 

scan. 33 (20%) interventions were performed after 120 days, of which 13 patients were diagnosed with 

oCAD. 11 deaths were reported during follow-up, non with a confirmed cardiac cause. The median 

follow-up was 2.9 years (IQR 1.6 – 3.4 years). No significant differences were found between the 

characteristics of the patients in the training set compared to the patients in the test set, as can be 

seen in table 1. 

 

 

Figure 6 Inclusion flowchart. 45 patients were removed from the initial search due to failed or non diagnostic CCTA and one 
duplicate was removed from the second database. 

3.3.2 Model development 
The best performance of the ETC model was achieved using a set of eight hyperparameters. The 

hyperparameters were set as follows: class weights to balanced subsample, maximum depth to 10, 

maximum features to 'sqrt', minimum samples per split to 10, minimum samples per leaf to 1, number 

of estimators to 200, bootstrapping to true, and the criterion to Gini impurity. After hyperparameter 

optimization a mean-AUC of 0.92 was achieved using five-fold cross validation on the training set. The 

resulting ROC curves for the five-fold stratified split on the training set is displayed in figure 7. Features 

were ranked in order of importance on a single fold of the training set. The input of imaging features 

was most important to the predictive performance of the model. The top four features were acquired 

from CCTA. Most medication features, except aspirin prescription, were ranked as least predictive. The 

ranked feature importance of the model before feature selection can be seen in figure 8.  
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Table 1 Comparison of patient characteristics and all features between the training and validation set. Continuous features 
are characterized by the mean values and standard deviations. Dichotomous and categorical features are characterized by 

the percentage of occurrence. 

Variable Training set (1003 patients) Test set (251 patients) p-value 
Male 54% 53% 0,809 
Age 59.0 ± 10.16 59.5 ± 9.85 0,505 
Weight 83.7 ± 16.28 84.2 ± 15.49 0,586 
Height 173.8 ± 9.64 174.3 ± 10.20 0,421 
BMI 27.2 ± 4.59 27.1 ± 4.09 0,994 
Total Calciumscore 67.8 ± 95.13 73.2 ± 92.17 0,367 
Calciumscore LM 4.6 ± 16.51 5.6 ± 18.68 0,335 
Calciumscore LAD 40.5 ± 58.58 44.1 ± 54.45 0,346 
Calciumscore CX 8.2 ± 22.50 8.2 ± 25.10 0,423 
Calciumscore RCA 13.9 ± 33.82 15.1 ± 36.55 0,810 
Degree of stenosis LM CTA 0,411 

 0% stenosis 86% 87%  
 1 - 49% stenosis 13% 13%  
 50 - 69% stenosis 1% 0%  
 >70% stenosis 0% 0%  
Degree of stenosis LAD CTA 0,317 

 0% stenosis 24% 24%  
 1 - 49% stenosis 65% 62%  
 50 - 69% stenosis 8% 11%  
 >70% stenosis 3% 2%  
Degree of stenosis CX CTA 0,482 

 0% stenosis 70% 69%  
 1 - 49% stenosis 28% 28%  
 50 - 69% stenosis 2% 2%  
 >70% stenosis 0% 1%  
Degree of stenosis RCA CTA 0,551 

 0% stenosis 61% 59%  
 1 - 49% stenosis 35% 37%  
 50 - 69% stenosis 2% 3%  
 >70% stenosis 1% 0%  
CAD-RADS 0,394 

 CAD-RADS 0 11% 15%  
 CAD-RADS 1 49% 43%  
 CAD-RADS 2 22% 27%  
 CAD-RADS 3 9% 10%  
 CAD-RADS 4a 5% 5%  
 CAD-RADS 4b 1% 0%  
 CAD-RADS 5 0% 0%  
Creatinine 79.4 ± 16.65 79.7 ± 14.04 0,450 
Clopidogrel 4% 5% 0,472 
Aspirin 12% 12% 0,763 
Acenocoumarol 1% 1% 0,868 
DOACs 4% 4% 0,998 
Beta-blocker 39% 36% 0,393 
Ace inhibitor 11% 10% 0,620 
Ca-channel blocker 13% 12% 0,639 
Statin 19% 20% 0,808 
Diuretics 2% 2% 0,772 
Ezetimibe 1% 2% 0,261 
Family history 48% 47% 0,789 
Hypertension 44% 40% 0,261 
Smoking 41% 38% 0,309 
Hyperlipidaemia 38% 35% 0,359 
Diabetes Mellitus 8% 9% 0,568 
COPD 7% 8% 0,510 
ICA 12% 10% 0,404 
Obstructive CAD 7% 7% 0,997 
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Figure 7 ROC curves of the ETC model for detection of oCAD on five stratified folds of the training set, before (A) and after 
(B) feature selection. 

 

 

Figure 8 Ranked feature importance of the ETC model before feature selection. 

 

 
Figure 9 Ranked feature importance of the ETC model after Boruta feature selection. 
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Nine features were selected using Boruta feature elimination in three or more of the folds and were 

included in the feature selection. Degree of stenosis in the LAD, followed by CAD-RADS score, and 

degree of stenosis in the RCA and CX were ranked the most predictive features. Again, showing that 

CCTA features are most important to the predictive performance of the ETC model. Left main 

calciumscore outranks LAD, CX and total calciumscores. The final feature that is selected is gender. 

These features and their respective ranked feature importance can be seen in figure 9. Three features 

were selected in two or less folds, which were degree of stenosis in the LM, aspirin usage and 

hyperlipidaemia. This shows that they were informative in some folds. A more comprehensive dataset 

is needed to conclude their significance to information gain. The performance on the training set of 

the model after feature selection can be seen in figure 7. The mean ROC-AUC after feature selection 

was 0.94, which was not significantly improved compared to 0.92 before feature selection (p = 0.57). 

However, the performance of the model after feature selection achieved a lower standard deviation, 

suggesting that the model suffered less from the impact of noise. 

3.3.3 Model evaluation and comparison to expert readers on the test set 
The model achieved an accuracy of 0.93, precision of 0.50, recall of 0.94 and an ROC-AUC of 0.96 using 

the validation set as shown in figure 10, which was not significantly different compared to the 

performance on the training set (p = 0.53). The expert readers achieved an accuracy of 0.94, precision 

of 0.54 and recall 0.83. The performance of the expert readers has been plotted into the ROC curve of 

the Extra Trees Classifier, including 95% confidence intervals for sensitivity and specificity. McNemar 

Chi-Squared test indicated that there is no statistically significant difference between the performance 

of the model and that of the expert readers (p = >0.99).  

 

Figure 10 Performance of the ETC model after feature selection on the test set. The performance of the expert readers is 
plotted in black, with corresponding 95% confidence intervals for sensitivity and specificity. 
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3.4 Discussion 
In this study we have developed and validated a machine learning model to diagnose obstructive CAD 

in patients without prior history of CAD, based on clinical data, medication usage, and imaging data 

from CACS and CCTA. Our results indicate that the Extra Trees Classifier (ETC) achieves an ROC-AUC of 

0.96, showing a comparable performance with expert readers in predicting oCAD (p > 0.99). The impact 

of most non-imaging features on the model's predictive capacity is shown to be limited, except gender. 

This study highlights the potential of machine learning in oCAD diagnosis.  

To our knowledge, this is the first paper to combine CACS and CCTA features in the prediction of oCAD 

using machine learning. Mohamed et al. have shown the added value of the combination of CACS and 

CCTA for the diagnosis of CAD using a statistical model, which achieved an AUC of 0.87 [51]. Motwani 

et al. combined CACS and CCTA features in a ML model in their prediction of 5-year all cause mortality 

for patients with suspected CAD, AUC 0.79 [52]. Even though, the focus of Motwani et al. is different 

compared to this study, they have also found imaging features to be the most important (17 out of top 

20 features).  

Baskaran et al. used CCTA features and patient characteristics to predict revascularization within 1 year 

using an XGBoost model [33]. They achieved an AUC of 0.941, which is comparable to the 0.96 found 

in this paper. However, the percentage of oCAD in their study was almost twice as high compared to 

our study, 13% vs 6.8%, respectively. This might have boosted their positive prediction; however, no 

information was provided about their achieved precision. 

Multiple papers have used clinical data combined with CACS features to predict oCAD with machine 

learning. Aref et al., Ren et al., and Glowacki et al. achieved high negative predictive values, ranging 

from 94 to 100% which is to be expected since a low CACS is known to be an excellent negative 

predictor of oCAD [17,53–55]. However, they struggled with their precision with precision values 

ranging from 38 to 43%. This study achieved a precision of 50% with an oCAD percentage of just 6.8%, 

compared to the 16 to 18% found in these studies, which shows the added value of combining CCTA 

and CACS as Mohamed et al. have shown as well [51]. Similar to what was found in our study, they all 

found that imaging features were most important in the prediction of their models. Interestingly, Aref 

et al., Ren et al., Glowacki et al., and Baskaran et al. found that age was also a high-ranking predictor, 

which was not found in our study [33,53–55]. 

This study has several limitations. First, we analysed data from a single centre, which makes 

generalizability to other hospitals not straight forward. The inclusion of this study was quite unique, 

since only patients referred by general practitioners were included. However, because most features 

are standardized, it is possible for other centres to retrain and validate this machine learning model on 

their data. Centre- and population-specific optimized hyperparameters will yield the best predictive 

performance for other centres. 

Secondly, it is important to address the characteristics of our dataset. Because general practitioners 

referred the patients, they can be classified as relatively low-risk patients. This results in an imbalance 

in the dataset, as the number of patients who were classified as having oCAD was only 6.8%. 

Furthermore, even after extensive scrutiny our dataset might still contain some imperfections. Risk-

factors were attained through input of the patient, which are prone to misunderstandings about for 

instance family history of cardiovascular disease. Also, the dataset contains possible confounders with 

the outcome. Since pharmacological management is the primary treatment for suspected CAD, some 

medication prescriptions can be seen as confounders to oCAD [56]. Because the expert readers also 

have access to these variables, it was chosen to keep them in the model. The effect of these 
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imperfections and possible confounders is limited since these features were removed during feature 

elimination. 

Thirdly, it was chosen not to normalize the data, as not to suffer from information loss as a result of 

loss of range of variables. Given that the goal of this study is to incorporate the developed model into 

a tool to support physicians' decision-making, it was decided to keep data input as simple as possible. 

This approach aims to simplify the development of the tool. However, the predictive performance of 

mainly CACS features might have been enhanced if they were normalized with log scaling, since the 

distribution appears to confirm to the power law [57]. Normalization of these features might have 

improved the predictive performance of the model slightly. 

Fourthly, the performance of the model was evaluated using a combination of precision, recall, 

accuracy, and ROC-AUC. The model achieved high recall, accuracy, and AUC, but a precision of 0.50. 

This can be explained by the imbalance of the data and the study's focus. The dataset contained few 

cases from which to learn positive predictions, requiring more data to improve positive predictive 

performance. The model was deliberately trained to favour false positives over false negatives, as a 

false negative can have severe negative consequences for the patient. Although a precision of 50% 

may seem like a 'coin flip,' it is comparable to the precision of our expert readers, who achieved a 

precision of 54% on the same data. In comparison to the diagnostic yield of 37,6% of oCAD in elective 

ICA procedures observed in large multi-center study, with over 35000 patients, our achieved precision 

is distinctly higher [53]. 

Finally, we classified patients as having oCAD if follow-up included a conclusive ICA for oCAD. For the 

assessment of performance of the expert readers a conclusive ICA procedure within 120 days after 

CCTA was seen as a correct prediction. The period was altered from the standard 90 days, since the 

inclusion of the data covered the COVID period [49,52]. This resulted in three more correctly predicted 

patients for the expert readers and a slightly increased reference for the model’s performance. For 

further research, not covering the COVID period, 90 days should be sufficient. Using a conclusive ICA 

as definition for oCAD, means we might have missed patients who were not referred for ICA. This bias 

might lead to underestimation of patients with oCAD. Two falsely positive predicted patients by the 

model were not referred for ICA but have confirmed ischemia with perfusion imaging. This indicates 

that the dataset contains additional oCAD cases that have already been accurately predicted by the 

model, without ICA confirmed oCAD diagnosis. This suggest that the precision of the model might 

actually be 5 to 10% higher. 

 

3.5 Conclusion 

We have developed and validated a machine learning model to diagnose obstructive CAD in patients 

without prior history of CAD, based on clinical data, medication usage, and imaging data from CACS 

and CCTA. Our findings demonstrate that the Extra Trees Classifier performs comparable to expert 

readers in predicting oCAD. The impact of most non-imaging features on the model's predictive 

capacity is shown to be limited, except gender. The model can assist expert readers in their decision-

making by serving as a risk stratification tool. This study highlights the potential of machine learning in 

oCAD diagnosis.   



18 
 

4. Future perspectives 
The model can serve as a risk stratification tool to assist expert readers in their decision-making. It will 

be interesting to identify the shared predictive performance of model assisted decision-making by 

expert readers. The model has shown to predict cases differently, offering new insights to expert 

readers. Utilizing the model might reduce the number of false positives. Expert readers recorded 13 

false positives, while the model recorded 16. If decision-making were based solely on cases that both 

predicted positive this number could be reduced to just 6, more than halving the amount of false 

positive predictions. However, this method would also reduce the number of true positives from 16 to 

14 (expert readers 14, model 16 out of 17). Future research into the added value of model assisted 

decision-making will determine the predictive performance.  

Testing the model on a new validation set is a next step to validate the model’s predictive performance. 

New data is already available, as new patients have been scanned through the diagnostic pathway 

following the closure of the inclusion of our study. Although there is not much long-term follow-up, 

however most interventions occur within a short follow-up period. Comparing the model's 

performance to that of expert readers might be challenging due to the short follow-up, as there is not 

enough time for false negatives to develop. Additionally, it would be interesting to test the model on 

a different group of patients, such as those with higher risk (e.g., patients referred by cardiologists who 

inherently have more risk). There is plenty of local data available to validate the model on similar or 

slightly different populations, which will provide further insights into the model’s performance. 

Furthermore, better documentation of symptoms is crucial. Symptoms have not been included in this 

research due to poor documentation. The type of symptoms has shown significance in predictive 

performance for oCAD [33]. Accurate documentation of risk factors is equally important. Currently, this 

is mostly done by patients and is prone to errors. It would be beneficial for cardiologists and general 

practitioners to document this information to ensure precision and reliability. Better documentation 

might increase the prognostic value of risk factors. 

Additionally, developing separate models for males and females could lead to even better predictive 

performance. Since gender is a variable that can be easily split, creating gender-specific models might 

enhance the prediction of oCAD. This approach acknowledges that women often present with different 

symptoms, and thus, a tailored model might further improve predictive performance for each gender 

[58]. 

Finally, the future of CCTA in risk stratification for oCAD looks promising. The implementation of plaque 

characterization and the identification of high-risk plaques will enhance diagnostics [59]. These 

advancements are expected to be included in CAD-RADS 3.0 guidelines and subsequently 

implemented in hospitals such as Isala. Looking further ahead, computer vision, if properly validated 

and implemented, could boost CCTA’s diagnostic performance [60]. For instance, radiomics could add 

value through additions of quantitative information about plaques that goes beyond pure visual 

assessment, providing deeper insights into plaque characteristics [61]. 
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Appendix A 

Model selection 
This section will cover the process of selecting one classifier to eventually compare to the expert 

readers in its performance on the validation set. Three classifiers have been evaluated on the training 

set: XGBoost, RFC and ETC. All three classifiers have been developed and evaluated similarly. Random 

state one has been used to split the training and validation set. The hyperparameters resulting from 

Gridsearch and cross-validation are shown in table A-1. 

Table A-1 Hyperparameters of the XGBoost, RFC, and ETC models 

Hyperparameters XGBoost Hyperparameters RFC Hyperparameters ETC 
scale_pos_weight = 13,7 class_weight = 

'balanced_subsample' 
class_weight = 
'balanced_subsample' 

colsample_bytree = 0.8 max_depth = 10 max_depth = 10 
gamma= 0.5 max_features = 'log2' max_features = 'sqrt' 
L_lambda= 0.001 min_samples_split = 20 min_samples_split = 10 
learning_rate= 0.1 min_samples_leaf = 2 min_samples_leaf = 1 
max_depth= 8 n_estimators = 50 n_estimators = 200 
subsample= 0.4 bootstrap = False bootstrap = True 
min_child_weight = 1  criterion = 'gini' 

 

 

Figure A-1 ROC curves of the XGBoost model for detection of oCAD on five stratified folds of the training set. Mean ROC-AUC 
= 0.90 
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Figure A-2 ROC curves of the RFC model for detection of oCAD on five stratified folds of the training set. Mean ROC-AUC = 
0.91 

 

Figure A-3 ROC curves of the ETC model for detection of oCAD on five stratified folds of the training set. Mean ROC-AUC = 
0.92 

 

  

Table A-2 Performance metrics of the XGBoost, RFC, and ETC models on the training set without feature selection 

 

 Accuracy Precision Recall Mean ROC-AUC 

XGBoost 0.9353 0.5385 0.5000 0.90 ± 0.03 

RFC 0.9154 0.4400 0.7857 0.91 ± 0.04 

ETC 0.9402 0.5500 0.7857 0.92 ± 0.04 
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The precision of the Random Forest and Extra Trees were better than the precision of the XGBoost 

model, as can be seen in table A-2. The XGBoost model produced a similar number of True positives, 

False positives, and False Negatives, where the others predicted more True positives compared to False 

negatives. The Extra Trees Classifier was preferred over the Random Forest Classifier because of its 

higher accuracy, precision, and ROC-AUC scores. The ROC-curves, shown in figure A-1 to A-3, show that 

the ETC achieved the highest mean ROC-AUC. However, since the standard deviations of the models 

overlap, the differences in mean ROC-curve were not expected to be significant. However, because the 

performance on all four performance metric was best for the Extra Trees Classifier, this classifier has 

been selected for further analysis. In chapter three of this thesis the ETC is further developed with 

feature selection, evaluated on the test set, and compared to the performance of expert readers. 
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Appendix B  

Abstract for ICNC-CT 2024 
Authors. JG Valk1,2, PH Hiemstra3, JD van Dijk2, JA van Dalen4, RHJA Slart5, CO Tan6, M Mouden7, BN 

Vendel2  

1 Technical Medicine, University of Twente, Enschede, The Netherlands  

2 Department of Nuclear Medicine, Isala hospital, Zwolle, The Netherlands  

3 Research group IT-innovation in healthcare, Windesheim University of Applied Sciences, Zwolle, 

The Netherlands  

4 Department of Medical Physics, Isala hospital, Zwolle, The Netherlands  

5 Faculty of Science and Technology, University of Twente, Enschede, The Netherlands  

6 Faculty of Electrical Engineering, Mathematics and Computer science, University of Twente, 

Enschede, The Netherlands  

7 Department of Cardiology, Isala hospital, Zwolle, The Netherlands  

Title. Applying machine learning to diagnose obstructive coronary artery disease using calcium scoring, 

coronary CT angiography, and clinical data.  

Introduction. Traditional diagnostic risk assessment in patients undergoing CT-based calcium scoring 

(CACS) and coronary CT angiography (CCTA) is based on a limited number of clinical and imaging 

findings. Machine learning has demonstrated its suitability to use a greater number of features to 

model complex non-linear relations leading to a more accurate diagnostic performance. Our aim was 

to develop and validate a machine learning model to diagnose obstructive coronary artery disease 

(oCAD) in patients without prior history of CAD, using CACS, CCTA and clinical data.  

Method. We retrospectively included 1254 patients without a prior history of CAD who underwent 

CACS and CCTA. Cardiac risk factors; smoking, hypertension, hypercholesterolemia, diabetes, family 

history of CAD; age; gender; body mass index; creatinine serum values; CCTA-outcomes, CACS and 

medication usage were registered at time of the scan. The entire dataset was split 4:1 into a training 

and test dataset, respectively. A XGBboost model was developed on the training set using fivefold 

stratified cross-validation and hyperparameter tuning. The test dataset was used to compare the 

diagnostic performance of the model to the performance of expert readers, looking at specificity, 

sensitivity, and ROC-analysis. The primary endpoint was oCAD on invasive coronary angiographies 

(ICA). Patients who were not referred for ICA were presumed not to have oCAD.  

Results. A total of 85 (6.8%) of the 1254 patients (46% male, 60 ± 8 years of age) were diagnosed with 

oCAD. Age, total calcium score, body mass index, left anterior descending artery calcium score, and 

creatinine serum level were the highest-ranking features to predict oCAD. The performance of the 

XGBoost model did not differ from expert readers in predicting oCAD (p=0.84). The model and expert 

readers achieved a specificity of 0.97 vs 0.95, sensitivity of 0.71 vs 1.00, and an AUC of 0.96 vs 0.97, 

respectively.  

Conclusion. The XGBoost model demonstrated a diagnostic performance comparable to that of expert 

readers. Features with negative predictive value in the diagnosis of oCAD were most valuable to the 

model such as high CACS. Currently, the model cannot replace expert readers, but it can contribute to 

the consistency of oCAD diagnoses and can be used to assist physician experts. 


