Idle Identification of Construction Machinery through a Deep
Learning-Based Algorithm Embedded in Surveillance Camera Systems

XANDER KUPERS, University of Twente, The Netherlands

This study proposes a lightweight deep learning-based algorithm for idle
identification of construction machinery, which can be embedded in surveil-
lance camera systems. The construction industry faces severe challenges.
Efficient utilization of construction machinery is crucial. Monitoring the
utilization rate of construction machinery can identify inefficiencies and idle
times, allowing for optimization of equipment use. The proposed algorithm
consists of an object detection model, tracking algorithm, and idle state
identification method. It is designed to run on a CPU and on the edge. The
embedding in the existing surveillance infrastructure has several advan-
tages, such as leveraging existing hardware to reduce costs and minimizing
bandwidth usage and latency by enabling edge deployment. Performance
findings indicate that the algorithm can effectively monitor idle states of
construction machinery, achieving high accuracy and a high harmonic mean
of precision and recall overall.

Additional Key Words and Phrases: construction site - edge computing -
object detection - idle identification - vision based - construction machinery

1 INTRODUCTION

In the Netherlands, the construction industry faces several severe
challenges, including a nitrogen crisis, a housing shortage, and high
housing prices. In 2021, there was a housing shortage of 279,000
houses, and an additional 900,000 houses need to be built by 2030
[20]. An effective construction industry is key to addressing these
challenges. A critical part of every construction project is the ef-
ficient utilization of construction machinery, such as excavators,
bulldozers, cement mixer trucks, and dump trucks. This machinery
is one of the constructor’s biggest expenditures [11].

Monitoring the utilization rate of construction machinery can
identify inefficiencies and idle times, allowing for optimization of
equipment use. This leads to improved productivity, which can re-
duce fuel consumption and CO2 emissions, thereby saving costs. A
study referenced in [25] shows that increasing the average opera-
tional efficiency of a dump truck from 40% to 50% by reducing idle
time by 6 minutes per hour can reduce hourly fuel consumption and
CO2 emissions by 10%. Manual monitoring is costly, tedious and
prone to errors [3]. There are however monitoring systems that are
used on construction sites that rely on Artificial Intelligence (AI),
which include telematics, IoT sensors, drones, RFID, and augmented
reality systems [18]. There are also case studies that use video for
monitoring the construction environment, but many of these sys-
tems require high computing power and have limited capabilities to
be deployed on the edge [3, 6, 12] High computing power require-
ments can necessitate the use of expensive hardware and may also

TScIT 41, July 5, 2024, Enschede, The Netherlands

© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

lead to increased energy consumption. Also, without edge deploy-
ment, there might be latency issues and bandwidth constraints as
there is a need to send data to a server and receive responses [22].

Many construction sites are monitored by mobile surveillance
camera systems to secure construction sites against theft, vandalism,
and unauthorized access. However, these surveillance cameras could
be useful for wider algorithms through embedding an Al algorithm
in the mobile surveillance system. This embedding in the existing
surveillance infrastructure has several advantages, such as leverag-
ing existing hardware to reduce costs and minimizing bandwidth
usage and latency by enabling edge deployment.

This study aims to develop a lightweight AT algorithm integrated
into mobile surveillance camera systems to monitor the idle status
of construction machinery to understand their utilization rates. It
will focus on supervised deep learning, tracking and logistic re-
gression. With this study, there is a potential for project-managers
and contractors to gain a deeper insight into the utilization rate of
construction machinery and can help in completing construction
projects under tight schedule and budget restrictions.

This study is structured as follows. First, a literature review ex-
plores the existing literature on computer object detection, tracking
algorithms, and idle identification methods. Second, the design and
implementation choices behind the proposed Al algorithm will be
explained. Third, a performance evaluation of the proposed algo-
rithm will be presented. Fourth, the conclusion will summarise the
findings, discuss the implications for practice, and highlight the
current limitations. Finally, potential future work will be outlined.

2 LITERATURE REVIEW

This literature review explores the existing literature of computer
object detection, tracking algorithms, and idle identification meth-
ods. This review provides an understanding of how this study builds
upon previous research and extends the field of construction site
monitoring. It also offers a foundational overview for the rest of
this study.

2.1 Computer Object Detection

Computer object detection involves detecting and localizing objects
that appear in images. The traditional approach for object detection
includes rule-based detectors and human-tuned feature descriptors
[15, 23]. Both studies address similar challenges that need to be over-
come to extend their applicability and enhance their effectiveness
in real-world settings. These directions include improved feature
extraction techniques, real-time processing capabilities, and better
handling of environmental variability.

Some of these challenges can be overcome with the help of deep
learning techniques. In recent years, there has been an increased
number of algorithms on construction sites that involve deep learn-
ing. Many of these techniques involve Convolutional Neural Net-
works (CNNs). In a study by Nath and Bezhdan [17], YOLOV2 and

TScIT 41, July 5, 2024, Enschede, The Netherlands

YOLOV3-based CNN models were employed for the detection of
construction objects. In another study by Kim et al. [12], a Faster
R-CNN-based model was used. Both types of CNN models are real-
time detection architectures. A comparison of YOLOV3 and Faster
R-CNN performances was conducted in a study on deep learning
[27]. The study concluded that both algorithms have their trade-offs:
compared to YOLOV3, Faster R-CNN’s average iterations of frame
images per second are slower. However, the mean average precision
over all classes is higher.

MobileNets is another CNN that is deployed in other industries
but, to our knowledge, not yet in construction domain. MobileNets
is a family of algorithms focused on mobile and embedded vision
algorithms, designed for resource-constrained devices [7]. However,
MobileNets has the same Frames Per Second (FPS) on a single-board
computer compared to YOLOV5, while YOLOVS5 has higher accuracy
[10].

As discussed in the literature, YOLO is a popular choice for real-
time object detection inference. The latest version, YOLOv8, was
released in May 2023. Although there are limited scientific papers
directly from the creators, several case studies and articles highlight
YOLOv8’s performance. For instance, a study reported improve-
ments in detection accuracy and processing speed when comparing
YOLOVS to previous versions such as YOLOv3 and YOLOv5 [14].
These findings suggest that YOLOvS8 could be a promising candidate
for this study, given its demonstrations and results in recent case
studies [4, 26].

2.2 Tracking Algorithms

Tracking in Al involves monitoring a detected object that potentially
moves. When the object moves, the tracking algorithm follows the
object in the correct direction. As discussed in the study of Kumar
and Rawal [13], there are three techniques for tracking: point based,
kernel based and silhouette based. Point based tracking is used for
tracking objects that are well-defined and have relatively easy distin-
guishable features. Kernel based tracking involves using a shape to
represent the object and see in iterative frames if there is movement
of the object. This is often used if objects do not have distinct points
but can be distinguished by their overall representation. Silhouette
based tracking is used for tracking objects with variable shapes and
sizes, where the outline can dynamically change.

Construction machinery can be seen as well-defined objects with
distinguishable features. Therefore, the focus will be on point-based
tracking algorithms. Simple Online and Realtime Tracking (SORT)
is a well-known easy-to-compute tracking algorithm that can track
multiple objects in a frame. It works by combining concepts of the
Kalman filters and Hungarian algorithm to track objects [5]. In a
case study about excavators, the SORT algorithm was utilized to
identify distinct excavators and ensure that their unique IDs were
maintained and tracked even if they moved. This contributed to the
accurate generation of statistics, preventing any confusion regarding
which excavator the statistics referred to [6].

After the creation of the SORT algorithm an enhanced algorithm
was created named called Deep SORT. It is the SORT algorithm with
a deep association metric. This makes it possible to track objects
through longer periods of occlusions, while still keeping a high

Xander Kiipers

performance for real-time usage. Another advantage of Deep SORT
compared to SORT is that Deep SORT performs well even if objects
that are tracked do collide or overlap [28]. A downside of Deep
SORT is that it needs more computing power and decreases the
speed of the algorithm significantly [16].

The last explored tracking algorithm is the ByteTrack tracking
algorithm. While not being used in construction industry until
now, ByteTrack has high potential in other fields. In a study about
vehicle tracking in highway videos, ByteTrack outperforms SORT
and DeepSORT significantly. It achieved the highest multiple object
tracking accuracy, highest multiple object tracking precision and
had the fewest ID switches. It also had the lowest false positives and
false negatives, with the fastest processing speed at 171 FPS [1].

2.3 Idle ldentification Methods

Idle identification on the construction site has extensively been
researched for productivity analysis of excavators. One proposed
approach involves identifying the idle state using data of the bound-
ing box [6]. After the centroid, height and width of the bounding
box is computed, a sliding window mechanism stores the data and
performs intensive computational tasks to compute statistics about
the bounding box. These statistics are used to predict if the status
of the object.

Another method for identifying idle states is via the frame dif-
ference method [9]. This method of idle identification works via
binarization of the pixels in the frame. If there is a certain amount of
white pixels that is beyond a certain threshold, motion is detected.
The threshold is adaptive in this study, meaning that it starts at 15%
and changes if needed to prevent threshold instability.

The last explored method for idle identification is a non-vision
based approach, but via an on-board system [31]. Via on-board
sensors, data can be gathered on vehicle speed, location changes,
fuel consumption rate, and power-take-off status. This data can
determine idle states. For instance, if the vehicle is stationary with
the ignition on for at least 5 minutes, the vehicle is idle. If during
these 5 minutes the steering wheel is turned or the location changes,
the timer resets and starts over.

While the second and third idle identification methods are promis-
ing in their use cases, they have challenges regarding implementa-
tion within the context of this study. The second method works via
determining the total difference in pixels, however if there is move-
ment in front of the machine from for example another machine or a
worker, the algorithm will detect movement, even if the movement
is not from the machine in frame. The third method will not be
utilized in this study, as the focus is on a vision-only approach for
idle identification. However, the heuristics about when a vehicle
is idle or not can still be applied. The first explored idle identifica-
tion method is promising, as it is already used in the construction
domain and tested on excavators. This method can be extended to
make it also work for other types of machinery and to make it less
computational intensive.

3 DESIGN AND IMPLEMENTATION

This section outlines the design and implementation choices behind
the AT algorithm for detecting, classifying, tracking, and identifying

Idle Identification of Construction Machinery through a Deep Learning-Based Algorithm Embedded in Surveillance Camera Syst&ald 41, July 5, 2024, Enschede, The Netherlands

idle states of construction machinery. The steps of the Al algorithm
are depicted in Figure 1. The methodology used for designing and
implementing the proposed Al algorithm is based on the machine
learning workflow, which consists of nine stages that can be encap-
sulated into four main stages: data collection, data preprocessing,
model development, and model evaluation [2].

Camera Feed Detection Model

|N Confidence score + bounding box

Idle Identification Tracking Algorithm
‘0
.

ID's + Bounding Boxes

y

rrri
rFrer|

Fig. 1. Simplified overview of proposed algorithm for this study

3.1 Data Collection

In this study, three stages require data. However, the data for the
second and third stages depends on the data from the first stage.
The first stage, which involves the detection model, requires an
image dataset for training purposes. Several public image datasets
for machine learning in construction are available. These machine
learning datasets do not only consists construction machinery, but
also involves images and labels about construction buildings, safety
equipment and construction material. Among these datasets, two
prominent and extensive ones are the Alberta Construction Image
Dataset (ACID) [30] and Moving Objects in Construction Sites (MOCS)
image dataset [29].

Both datasets contain images captured from various poses, view-
points, illumination conditions, weather conditions, and levels of
occlusion. This ensures that the models trained on these datasets
are robust and capable of performing effective under various real-
world circumstances. The ACID dataset consists of three types of
machinery: excavator, dump truck, and concrete mixer truck. The
MOCS dataset consists of thirteen categories, six of which are types
of machinery: roller, bulldozer, excavator, truck, loader, and concrete
mixer truck. Only three of these six machinery categories will be
used to keep it consistent with the ACID dataset. This means only
the excavator, dump truck and concrete mixer truck will be used.

For this study, a subset of the two mentioned datasets will be
extracted and combined into a single dataset. The final dataset
will include a randomized selection of images, while still ensuring
representation of the different types of construction machinery
and their various appearances. This combination will potentially

improve the performance metrics of the trained model and decrease
the false positive rate [21]. Another potential improvement from
using a subset of both datasets is enhanced generalization, due to
the different geographic locations of the images and the varied
appearances of construction machinery.

3.2 Data Preprocessing

The MOCS and ACID dataset are already labeled. However, pre-
processing is needed before the detection model can be trained.
The MOCS dataset contains thirteen categories, of which three are
used for this study. Therefore, preprocessing is necessary to exclude
images and labels that do not contain information about excava-
tors, dump trucks, or concrete mixer trucks. Additionally, the MOCS
dataset annotation file is formatted in the Common Objects in Con-
text (COCO) format. This COCO JSON file includes info, licenses,
images, annotations, categories, and segment info about the dataset.
However, the YOLOv8 annotation format only requires the class ID,
the coordinates of the bounding box center, and the width and height
of the bounding box. Through a conversion script, the required an-
notations can be extracted from the COCO format and reformatted
into the YOLOv8 format, ensuring that only the required categories
are included.

An other preprocessing step is image resizing. All the images in
the dataset have different dimensions. The YOLOv8 needs images
that have a width and height of 640 pixels. Nearest neighbor inter-
polation is used to resize, as it can achieve this in a relative fast and
computationally efficient way.

At this stage of the data preprocessing, the dataset contains labels
and images of excavators, dump trucks, and concrete mixer trucks,
all resized to the 640x640 dimensions required by the YOLOV38
model. Before splitting the data, it is needed to validate the bounding
boxes and labeled vehicles. This validation is performed using the
Computer Vision Annotation Tool (CVAI). By randomly reviewing
labels of the images in the CVAI software, efforts are made to ensure
the validation of the labels and depicted machinery.

The data set is randomly split into a training and test set according
to a 6:4 ratio. A larger training set compared to the test set prevents
overfitting [32]. Also, for every class in the data set, the same amount
of images is used (1508 for train set and 1005 for test set). This is to
prevent class inbalance.

3.3 YOLOVS Detection Model

As discussed in the Section 2.1, YOLOVS is a promising candidate
to be the detection model of this study. As a detection model, the
architecture of YOLOVS is capable of classifying and localizing
specific objects on which it has been trained, such as construction
machinery. YOLO is a single-stage detection model. The single-
stage detection model makes sure that data gets through the neural
network in a single forward pass. This is different compared to a
two-stage detection model, were multiple parts of the data gets
reused for further processing. This single-stage approach makes
YOLO better to use for real-time processing and low computational
resources, although the accuracy is lower compared to two-stage
detection models [8].

TScIT 41, July 5, 2024, Enschede, The Netherlands

In this study, YOLOv8 will not be modified or improved for the
construction machinery use case. Instead, YOLOv8 will be used as
a tool for real-time detection of construction machinery. In this
context, real-time detection refers to object identification and local-
ization within 150 ms on the CPU of a general-purpose computer.

The YOLOVS architecture comprises two CNNs for automatic fea-
ture extraction, bounding box, and object classification [26]. Based
on a study [19], the YOLO algorithm can be divided into the follow-
ing abstracted steps:

(1) Input gets divided into an S X S grid.
(2) Every cell in the S X S grid produces two outputs:

o The cell produces bounding boxes and an associated confi-
dence score for every bounding box that it actually contains
a class and has the correct bounding box dimensions.

o The cell produces a class probability map, giving every cell
in the S X S grid a color based on the class that has the
highest probability of being contained inside the cell. If the
probability is below a certain threshold, the cell can also
be colored to indicate that it contains no class.

(3) The bounding boxes, associated confidence scores, and the
class probability map into a final decision.

The YOLO model can be trained from scratch or using a pre-
trained model. The benefit of using a pre-trained model is that the
weights have already been defined based on a large dataset. This
approach is comparable to transfer learning, in which the model
already knows how to identify basic shapes such as edges and circles,
as well as other generalized properties, before the custom model
gets trained. Therefore, the YOLOv8n pre-trained model will be
used. This is the smallest available pre-trained model available.

Manual feature extraction is not necessary as it is a deep learning
model. However there are certain hyperparameters that can be
adjusted. These hyperparameters help to control the training process
of the YOLOV8 model. The used hyperparameters are shown in
Table 1. If a hyperparameter retains its default value as specified in
the YOLOvVS architecture, it is not shown in table.

Table 1. Custom Hyperparameters for YOLOV8 Model

Hyperparameter Value

epochs 100
batch size 16
image size 640
optimizer SGD
learning rate 0.01
momentum 0.937
weight decay 0.0005

The hyperparameters listed in Table 1 have been adjusted mul-
tiple times, with variations in epochs, batch sizes, optimizers, and
other parameters to achieve the best performance observed in this
study. After a trial-and-error approach of parameter tuning, which
involved testing multiple models, the hyperparameters shown above
yielded the best results. To improve the performance of the model, it
is beneficial to benchmark the model on multiple machine learning
frameworks. In Table 2, the benchmark results are shown.

Xander Kiipers

Table 2. YOLOV8 benchmark in machine learning frameworks

Format mAP50-95 FPS
PyTorch 0.5498 4.00
TorchScript 0.5510 4.78
ONNX 0.5523 15.12
OpenVINO 0.5550 33.14
NCNN 0.5510 14.78

During this benchmark, techniques such as half-precision infer-
ence and INT8 quantization were not used, as these could increase
speed but can potentially decrease mean average precision. The
benchmark revealed a significant winner: the OpenVINO model.
OpenVINO, an Intel-created toolkit, is designed to optimize infer-
ence on Intel hardware. Since the benchmark was run on an Intel
CPU, its performance is understandable. If the model is run on an
ARM CPU, NCNN might deliver the best performance, as it is a
neural network inference framework optimized for ARM CPUs.

3.4 ByteTrack Tracking Algorithm

As discussed in Section 2.2, ByteTrack has the potential to outper-
form state-of-the-art tracking algorithms. This, in combination with
its fast processing speed is the reason why this tracking algorithm is
chosen as the tool to use in this study. The purpose of the tracking
algorithm is to track and maintain distinct identifications of the de-
tected machinery, even in cases of occlusion or overlapping within
the frame. This aims to collect specific statistics about each object’s
idle time while minimizing any confusion if the focus has switched
to the wrong object.

ByteTrack operates via a track management system that processes
the detection output of the detection model per frame [33]. These de-
tections include the bounding boxes, confidence scores, class labels
and frame information. Detections are divided into two groups: high-
confidence detections (HCDs) above a high-confidence threshold
and low-confidence detections (LCDs) between the high-confidence
and minimal-confidence thresholds.

For each HCD, the Hungarian algorithm is used to find the best
match with existing tracks. If a match is found, the track gets updated
with the new detection information. If there is no match found, a
new track gets initialized with a unique track ID. For each LCD, a
cost matrix calculation is performed based on the features of the
LCD. The result of the cost matrix is compared with each track, and
the LCD gets added to the closest matching existing track.

There are several mechanism that are included for the track main-
tenance and termination. A track becomes active after it has been
detected in several consecutive frames. A track gets terminated af-
ter it is not updated for a predefined number of frames. However,
a re-identification mechanism allows objects that reappear after
occlusion to obtain their previous track ID if the features match
closely enough.

For the proposed algorithm of this study, no hyperparameters
are changed. This means that the default values for the thresholds,
buffers, and minimal box areas are based on the default YOLO tracker
settings for the ByteTrack tracker. The output does differ from the

Idle Identification of Construction Machinery through a Deep Learning-Based Algorithm Embedded in Surveillance Camera Syst&ald 41, July 5, 2024, Enschede, The Netherlands

standard output. The format of the used output is shown in Figure
2.

byte_track_output = {
“frame": 42,
“tracks": [

"
": 120, "y": 85,
idth": 220, "height": 135

“track_id": 2,
“class": "dump_truck”,
“confidence"
“bounding_box":

Fig. 2. ByteTrack output format

3.5 Idle Identification Algorithm

The final step of the algorithm is the idle identification of construc-
tion machinery. This idle identification algorithm takes as input
the bounding boxes and track IDs provided by the ByteTrack. The
idle identification algorithm processes frames. This means that a
hash map is provided to the idle identification algorithm per frame.
Each entry in the hash map contains a Track ID and metadata. An
overview of the idle algorithm is presented in the flowchart in Figure
3.

Gt the track ID and
bounding box

‘E

Exiract the area and
centroid of the
bounding box

empty arrays for the
track ID to hashmap

Add track ID and

arrays to hashmap

Initialize centroid and
area array

‘Add an entry with two

Track ID is in object
hashmap

Use logistic
regression to check if
idle

Calculate median
absolute deviation of

Retrieve centroid and
area array and
prepend new area
and centroid

distances and area
differences

‘ength of arrays equal to
frame buffer size

Calculate distances
and area differences

Fig. 3. Flow chart idle identification algorithm

Each entry in the hash map represents a distinct detected object,
identified by its tracking ID. The idle identification algorithm uses
only one statistic that can be derived from the metadata of each
hash map entry, the bounding box. The bounding box is composed
of 4 variables, which include the x and y coordinates of the top-left

corner, as well as the width and height of the bounding box. This
data is sufficient for the idle identification algorithm to function.

When an entry passes through the idle algorithm, the area and
centroid of the bounding box are calculated and stored in two sepa-
rate arrays associated with the tracking ID. There is a buffer mecha-
nism in the idle identification algorithm that monitors the number
of elements in the arrays. When the buffer is full, calculations can be
performed on the elements, after which the buffer clears itself and
becomes empty again. The number of elements refers to the frames
that can be kept in the buffer before calculations are performed. For
example, if the buffer has a size of 20 and the frame rate of the video
is 10, then the idle calculations are done over a period of 2 seconds.
This means that the algorithm will predict whether the machine
was idle or not during those 2 seconds.

The algorithm utilizes four formulas for its calculations, as defined
in Table 3.

Table 3. Formulas used in the algorithm

Formula

AD = |A; - Aj|

Calculation

Area Difference

Centroid Difference CD = /(xi+1 — xi)2 + (Yir1 — y;)?

Median Abs. Deviation MAD = M

1
—(Bo+P1-MAD_AD+S,-MAD_CD)

Logistic Regression p=
1+e

The area difference formula is used to determine the area differ-
ence between frame i and frame i + 1. The centroid difference is
the Euclidean distance formula, which is based on the difference
in centroid position between frame i and frame i + 1. The median
absolute deviation (MAD) is chosen as a measure of the variability
of the data. The MAD is chosen over the standard deviation due to
the non-normal distribution of the data. The distribution of the data
was tested through a Shapiro-Wilk Test and showed a p-value of
0.007 that is significantly less than 0.05, meaning that the data is not
normally distributed. MAD is a robust measure of data variability,
meaning that it can still be used if the distribution is unknown. With
the MAD, the variance in area difference and centroid distances can
be calculated. The last formula is the logistic regression formula.
Logistic regression is a supervised learning method for binary classi-
fication. It determines whether a machine is idle using a probability
ranging from 0 to 1. If p > 0.5, it means that the machine is not idle
and if p < 0.5, it means that the machine is idle. The further p is
from 0.5, the more confident the algorithm is in its prediction.

A logistic regression model is trained for determining if the ma-
chine is idle or not. The model is trained with 200 gathered data
points. These are trained with a buffer size of 15 with a FPS of 10,
meaning that each classification of being idle covers a duration of 1.5
seconds. The final logistic regression model outputs two coefficients
based on the predictors and one intercept. The following coefficients
and intercept have been computed by the model: fy = 2.4613463131,
p1 = —0.00136793, fa = —0.36581202.

TScIT 41, July 5, 2024, Enschede, The Netherlands

The frame buffer size and desired FPS are two parameters that can
be adjusted to customize the algorithm according to the specific goal.
A larger frame buffer size means that the idle status prediction is
based on alonger video recording. If the frame buffer size is too large,
small or rapid changes of the machine may not be detected. If the
frame buffer size is too small, the algorithm may be overly sensitive.
If the desired FPS is too high, too much computational resources
are needed, meaning that it is unable to predict the idle state. If the
desired FPS is low, it means that fewer frames are processed per
second. Meaning that the computational load gets reduced, but it
also lead to a less responsive video.

4 PERFORMANCE EVALUATION

The proposed Al application in this study can be integrated within
the existing surveillance camera infrastructure. Several experiments
and benchmarks are conducted to obtain results that will be shown
in the following subsections. These experiments and benchmarks
are performed on hardware similar to existing surveillance camera
infrastructures. The computer hardware configuration typically
includes an Intel i3 CPU, 8 or 16 GB of RAM, a SSD, and no dedicated
GPU. Their computer software environment usually consist of a
Docker environment running on Ubuntu or the Windows operating
system. In this section, several metrics will be used to examine the
performance.

4.1 Detection Model Evaluation

The performance of the detection model during the 100 training
epochs is shown in Figure 4. Table 4 presents the model’s perfor-
mance including the final precision, recall, F1 score, mAP50 and
mAP50-95.

train/box_loss train/cls_loss train/dfi_loss metrics/precision(B)

14
25 —— results
smooth | 13 o8
12 3 06
K 20

10 07
15 11 0s
08
10 10 0.6 04
06 0s 09
05

0 50 100 0 50 100 4 50 100 0 50 100 0 50 100

metrics/recall(B)

val/box_loss valcls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(8)
16

14 k 2.00 15 06
13 1 i s 04
2 150
. 13
11 04 03
125
10 12
02
R

o 0 0 50 100 4 50 100 0 50 100 0 50 100

Fig. 4. Detection model performance improvement during training

In Table 4, three different losses for both the train and test data
can be analyzed: the box loss, class loss and distribution focal loss.
The losses for the test data set is much higher compared to the train
data set. This may have to do with wrongly labeled objects in the
test set. Certain images lack object annotations, causing the model
to be penalized for detecting real objects that are not labeled and
thus seen as noise/background.

The overall performance of the detection model is promising, as
the F1 score shows a balance between precision and recall, meaning
that it correctly detects objects while minimizing false positives.

Xander Kiipers

The result of 70.44% mean Average Precision at 50% intersection
over union (mAP50) means that it can predict bounding boxes with
at least 50% overlap with the ground truth box in most situations.
However, the lower percentage for the mAP50-95 indicates that
there are still some fluctuations in the bounding boxes. This could
mean that if a machine is idle in the application, different bounding
boxes could still be inferred during sequential frames. This is why
the threshold values of the idle identification algorithm must be
taken into account, and the values should allow this randomness
within the interval.

4.2 Tracking Model Evaluation

ByteTrack can be evaluated using the following metrics: multiple
object tracking accuracy, multiple object tracking precision, ID
F1 score, ID precision, ID recall, false positives, false negatives,
ID switches and more. By using a benchmark that includes video
footage and annotations with bounding boxes, object IDs and class
labels, the evaluation of the metrics can be performed. Due to time
constraints, no video annotation has been executed. Therefore, no
evaluation of the tracking model can be done. However, it can be
suggested that the performance would be semi-consistent with the
results reported by the creators, given that no parameters have been
changed compared to the original.

4.3 Idle ldentification Evaluation

The idle identification algorithm can be evaluated using supervised
learning methods. First, 150 frames functioning as data points from
8 instances are gathered and labeled using CVAI This annotated
data includes the ground truth bounding box, attached class, and
track ID. This annotated data is used as the test set for the idle
identification algorithm. After running the algorithm, predictions
are made on the test set. The output labels (idle or not idle) are then
used to calculate the accuracy, precision, recall, F1 score. The results
are shown in Table 4.

The idle identification algorithm performs well based on the
results in Table 4. The algorithm identifies idle states of machinery
while avoiding false positives and accurately predicting actual idle
states. Another performance advantage of the idle identification
algorithm is its low computational overhead. Because it depends
solely on a logistic regression formula, it runs efficiently. However,
if the buffer size is increased, it will require more computational
resources. How much the buffer size depends on the computational
overhead has not been tested for the performance evaluation.

Table 4. Evaluation Metrics

Metric Detection Idle Identification
Precision 80.08% 73.33%

Recall 64.99% 79.66%

F1 Score 71.75% 76.42%

mAP50 70.44% N/A

mAP50-95 55.50% N/A

Accuracy N/A 78.99%

Idle Identification of Construction Machinery through a Deep Learning-Based Algorithm Embedded in Surveillance Camera Syst&ald 41, July 5, 2024, Enschede, The Netherlands

4.4 Overall Application Evaluation

The stages of the application (detection, tracking and idle identifi-
cation) have been tested on surveillance’s videos of a company in
construction surveillance. While the videos are not annotated, a pre-
liminary emperical evaluation of the application can be discussed.

The Al application was able to detect excavators and dump trucks,
while cement mixer trucks were not included in the surveillance
camera videos. The excavators operated most of the times on the
edge of the video, meaning that the bounding boxes were small. This
made detection of the idle status difficult as there was small variation
in the centroid and area of the bounding boxes. However, because
the bounding box was placed accurately around the excavator, idle
identification was possible.

The tracking of distinct dump trucks was doable for the applica-
tion, there were no unnecessary track ID switches and there was a
smooth transition of the bounding box across the frames. The track-
ing of the excavators was less accurate, track ID changes occurred
sometimes, even when it was still the same excavator. ByteTrack
was unable to re-identify excavators after occlusion occurred by
leaves of trees moved by the wind or if the excavator was behind a
pile of sand for more than about 10 seconds.

The idle detection system generally worked well and accurately,
even for small movements. However, there were times when motion
was not detected, causing the excavator to be considered idle for a
few seconds while it was actually active.

5 CONCLUSION
5.1 Summary of Findings

This study presented a potential algorithm for idle identification of
construction machinery on the edge via a lightweight deep learning
algorithm that can be embedded in surveillance camera systems.
The algorithm consists of object detection, tracking, and idle state
identification that can be used to monitor the utilization rates of
construction machinery.

The key findings of this study are as follows. The trained YOLOV8
detection model was selected for its balance between accuracy and
speed. The F1 score of the model was 71.75%, and the mAP50 was
70.44%. Both metrics indicate a reliable performance in detecting
construction machinery. ByteTrack effectively tracked the machin-
ery while maintaining high accuracy and fast processing speed.
The idle identification algorithm, based on logistic regression, ac-
curately predicted the idle states of machinery while having a low
computational overhead.

The Al algorithm, therefore, has the ability to perform idle identi-
fication of construction machinery and can be used to monitor the
utilization rate of construction machinery. This can all be done in
real-time, on the edge, and with only the use of a CPU.

5.2 Implications for Practice

There is a potential for project-managers and contractors with this
study to gain deeper insights in the utilization rate of construction
machinery. These insights can be captured in assessing if there is an
improvement of the Overall Equipment Effectiveness (OEE) of the
machine. OEE is a metric that measures how effective a production
process is utilized compared to its maximum potential [24]. It can

be split in the proportion of time the machine is running compared
to the scheduled operating time (availability), the speed and effi-
ciency of operations (performance) and the number of task that
meet the required standard (quality). The algorithm can contribute
in improving;:

o Availability: The algorithm can identify idle machines and
help reduce unplanned downtime of the machines. If there is
unplanned downtime, the algorithm could alert the project
manager or contractor, who can then take proactive measures
to address the downtime.

o Performance: The algorithm can track and detect machines,
and identify patterns or inefficiencies in the machine tasks.

e Quality: The algorithm can prevent overuse or misuse of
machinery.

The algorithm does not only have implications for the improve-
ment of OEE. There are also other implications for practice. This
includes: cost savings, as minimizing idle time could reduce fuel
consumption and labor costs if more tasks could be performed in
the same time; reduced carbon emissions, as idle times are reduced;
making informed decisions regarding machinery deployment.

5.3 Limitations

The proposed algorithm in this study contains several parts that
could potentially limit the effectiveness of the goal of the algorithm.

5.3.1 Surveillance Camera Systems Environment. One potential lim-
itation of the proposed algorithm is the lack of experiments con-
ducted in a Docker environment. A Docker environment runs sev-
eral containers, and one of these containers can be the algorithm.
However, this means that not all the CPU and RAM can be utilized
for the algorithm, which could potentially impact its performance.
This has not been tested. Another limitation is that only the most
light-weighted pretrained model of YOLOVS. This pretrained model
has a lower mAP compared to heavier pretrained models.

5.3.2 Tracking. The proposed algorithm assumes that the input
of the camera is static, while most surveillance cameras have the
capability to pan, tilt, and zoom. The effectiveness of the tracking
algorithm decreases significantly if any of these actions are per-
formed. This is due to the Kalman filters included in ByteTrack.
Kalman filters estimate the next position of the bounding box. How-
ever, if there is pan, tilt, or zoom, this estimate makes no sense
anymore. Even though the object remains the same, it obtains a
different track ID. The machine also obtains a different track ID if
it switches to another camera, as there is no re-identification over
multiple cameras is implemented.

5.3.3 Idle Identification Machine Learning. The idle identification
works via logistic regression. The logistic regression outputs a
bounding line on a Cartesian plane for determining the idle state. If
the coordinate is above the bounding line, it is idle, and if it is below
the bounding line it is not idle. However no other binary classifica-
tion algorithms have been tested to see if they perform better. Also,
only two variables of the metadata is used for determining idle state,
while more data could potentially result in better performance of
the idle identification.

TScIT 41, July 5, 2024, Enschede, The Netherlands

6 FUTURE WORK

There are still many challenges that needs to be researched in order
for making the AI algorithm robust and easy-to-use. Currently,
it has the potential to form the basis for many other algorithms.
For example, video action recognition could be the next step of
the algorithm, as this can easily interpret machine activities in real-
time. However, current implementations require expensive high-end
video cards [12, 18]. Research is needed to reduce computational
load to enable the deployment of video action recognition in the
portrayed surveillance camera environment.

Dynamic tracking capabilities with the pan, tilt and zoom prop-
erties of camera’s could also be a future research direction. This,
in combination with re-identification of machines over multiple
camera’s could enhance the current algorithm implementation sig-
nificantly. This could positively impact the accuracy of the machine
statistics, such as usage and location.

The last mentioned future work direction for this study is the
enabling of heuristics for the idle identification step. Currently the
algorithm only predicts if a machine is idle over the buffer size. With
adding heuristics such as a machine is definitely inactive if there is
an idle prediction for 5 minutes or more, gives potentially a better
overview about the utilization of machinery.

7 ACKNOWLEDGEMENTS

The author wishes to express gratitude to Rob Bemthuis for his
guidance and support throughout this research, and also thanks
Jeroen Klein Brinke for his helpful contribution.

During this research, the author utilized ChatGPT-4 for assistance
in debugging code, correcting grammatical errors, and structuring
the LaTeX file. All outputs of the prompts were thoroughly reviewed
and edited as needed. The author takes full responsibility for the final
outcome. This research is part of the ECOLOGIC project, which
was funded by the Dutch Ministry of Infrastructure and Water
Management and TKI Dinalog (case no. 31192090).

REFERENCES

[1] Mahmoud Abouelyazid. 2023. Comparative evaluation of SORT, DeepSORT, and
ByteTrack for multiple object tracking in highway videos. https://vectoral.org/
index.php/IJSICS/article/view/97

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. International
Conference on Software Engineering: Software Engineering in Practice (5 2019).
https://doi.org/10.1109/icse-seip.2019.00042

Ehsan Rezazadeh Azar, Sven Dickinson, and Brenda McCabe. 2013. Server-
Customer Interaction Tracker: Computer Vision-Based system to estimate Dirt-
Loading cycles. Journal of construction engineering and management 139, 7 (7
2013), 785-794. https://doi.org/10.1061/(asce)co.1943-7862.0000652

Murat Bakirci. 2024. Utilizing YOLOVS for enhanced traffic monitoring in Intelli-
gent Transportation Systems (ITS) applications. Digital signal processing (5 2024),
104594. https://doi.org/10.1016/j.dsp.2024.104594

Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. 2016.
Simple online and realtime tracking. International Conference on Image Processing
(9 2016). https://doi.org/10.1109/icip.2016.7533003

[6] Chen Chen, Zhenhua Zhu, and Amin Hammad. 2020. Automated excavators
activity recognition and productivity analysis from construction site surveillance
videos. Automation in construction 110 (2 2020), 103045. https://doi.org/10.1016/j.
autcon.2019.103045

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
efficient convolutional neural networks for mobile vision applications. https:
//arxiv.org/abs/1704.04861

[2

—

B3

=

[4

=

[5

[

4

—

Xander Kiipers

[8] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and
Kevin Murphy. 2016. Speed/accuracy trade-offs for modern convolutional object
detectors. https://arxiv.org/abs/1611.10012

[9] A M Husein, None Calvin, David Halim, Raymond Leo, and None William. 2019.

Motion detect application with frame difference method on a surveillance camera.

Journal of physics. Conference series 1230, 1 (7 2019), 012017. https://doi.org/10.

1088/1742-6596/1230/1/012017

Rakkshab Iyer, Kevin Prabhulal Bhensdadiya, and Priyansh Shashikant Ringe.

2021. Comparison of YOLOV3, YOLOV5s and MobileNet-SSD v2 for Real-Time

Mask Detection. ResearchGate (7 2021). https://www.researchgate.net/

publication/353211011_Comparison_of YOLOv3_YOLOv5s_and_MobileNet-

SSD_V2_for_Real-Time_Mask_Detection

Hyunsoo Kim, Changbum R. Ahn, David Engelhaupt, and SangHyun Lee. 2018.

Application of dynamic time warping to the recognition of mixed equipment

activities in cycle time measurement. Automation in construction 87 (3 2018),

225-234. https://doi.org/10.1016/j.autcon.2017.12.014

[12] In-Sup Kim, Kamran Latif, Jeonghwan Kim, Abubakar Sharafat, Dong-Eun Lee,

and Jongwon Seo. 2022. Vision-Based Activity Classification of excavators by

bidirectional LSTM. Applied sciences 13, 1 (12 2022), 272. https://doi.org/10.3390/
app13010272

Chinthakindi Kiran Kumar and Kirti Rawal. 2022. A brief study on object detection

and tracking. Journal of physics. Conference series 2327, 1 (8 2022), 012012. https:

//doi.org/10.1088/1742-6596/2327/1/012012

[14] Jun Ha Lee and Su Jeong You. 2024. Balancing Privacy and accuracy: Exploring

the impact of data anonymization on deep learning models in computer vision.
IEEE access 12 (1 2024), 8346-8358. https://doi.org/10.1109/access.2024.3352146

[15] Milad Memarzadeh, Mani Golparvar-Fard, and Juan Carlos Niebles. 2013. Au-

tomated 2D detection of construction equipment and workers from site video

streams using histograms of oriented gradients and colors. Automation in con-
struction 32 (7 2013), 24-37. https://doi.org/10.1016/j.autcon.2012.12.002

Mohammad Hossein Nasseri, Hadi Moradi, Reshad Hosseini, and Mohammadreza

Babaee. 2021. Simple online and real-time tracking with occlusion handling.

https://arxiv.org/abs/2103.04147

Nipun D. Nath and Amir H. Behzadan. 2020. Deep convolutional networks for

construction object detection under different visual conditions. Frontiers in built

environment 6 (8 2020). https://doi.org/10.3389/fbuil.2020.00097

Aravinda S. Rao, Marko Radanovic, Yuguang Liu, Songbo Hu, Yihai Fang, Kourosh

Khoshelham, Marimuthu Palaniswami, and Tuan Ngo. 2022. Real-time moni-

toring of construction sites: Sensors, methods, and applications. Automation in

construction 136 (4 2022), 104099. https://doi.org/10.1016/j.autcon.2021.104099

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2015. You only

look once: Unified, Real-Time Object Detection. https://arxiv.org/abs/1506.02640

Algemene Rekenkamer. 2022. Aanpak woningtekort. https://www.rekenkamer.

nl/publicaties/rapporten/2022/06/23/aanpak-woningtekort

Saleh Shahinfar, Paul Meek, and Greg Falzon. 2020. “How many images do I need?”

Understanding how sample size per class affects deep learning model performance

metrics for balanced designs in autonomous wildlife monitoring. Ecological

informatics 57 (5 2020), 101085. https://doi.org/10.1016/j.ecoinf.2020.101085

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge

computing: vision and challenges. IEEE Internet Of Things journal 3, 5 (10 2016),

637-646. https://doi.org/10.1109/ji0t.2016.2579198

Madhuri Siddula, Fei Dai, Yanfang Ye, and Jianping Fan. 2016. Unsupervised

feature learning for objects of interest detection in cluttered construction roof

site images. Procedia engineering 145 (1 2016), 428-435. https://doi.org/10.1016/j.
proeng.2016.04.010

Ranteshwar Singh, Dhaval B. Shah, Ashish M. Gohil, and Milesh H. Shah. 2013.

Overall Equipment Effectiveness (OEE) Calculation - Automation through Hard-

ware amp; Software Development. Procedia engineering 51 (1 2013), 579-584.

https://doi.org/10.1016/j.proeng.2013.01.082

Banu Sizirici, Yohanna Fseha, Chung-Suk Cho, Ibrahim Yildiz, and Young-Ji Byon.

2021. A Review of Carbon Footprint Reduction in Construction Industry, from

Design to Operation. Materials 14, 20 (10 2021), 6094. https://doi.org/10.3390/

mal4206094

Mupparaju Sohan, Thotakura Sai Ram, and Ch. Venkata Rami Reddy. 2024. A

review on YOLOVS and its advancements. Algorithms for intelligent systems (1

2024), 529-545. 39 https://doi.org/10.1007/978-981-99-7962-2\{_

[27] Shrey Srivastava, Amit Vishvas Divekar, Chandu Anilkumar, Ishika Naik, Ved

Kulkarni, and V. Pattabiraman. 2021. Comparative analysis of deep learning image

detection algorithms. Journal of big data 8, 1 (5 2021). https://doi.org/10.1186/

540537-021-00434-w

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. 2017. Simple Online and Realtime

Tracking with a Deep Association Metric. https://arxiv.org/abs/1703.07402

Bo Xiao and Shih-Chung Kang. 2021. Development of an image data set of

construction machines for deep learning object detection. Journal of computing in

civil engineering 35, 2 (3 2021). https://doi.org/10.1061/(asce)cp.1943-5487.0000945

[10

[11

=
&

[16

[17

oy
)

[19

[20

[21

[22

[23

[24

[25

[26

[28

[29

https://vectoral.org/index.php/IJSICS/article/view/97
https://vectoral.org/index.php/IJSICS/article/view/97
https://doi.org/10.1109/icse-seip.2019.00042
https://doi.org/10.1061/(asce)co.1943-7862.0000652
https://doi.org/10.1016/j.dsp.2024.104594
https://doi.org/10.1109/icip.2016.7533003
https://doi.org/10.1016/j.autcon.2019.103045
https://doi.org/10.1016/j.autcon.2019.103045
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1611.10012
https://doi.org/10.1088/1742-6596/1230/1/012017
https://doi.org/10.1088/1742-6596/1230/1/012017
https://www.researchgate.net/publication/353211011_Comparison_of_YOLOv3_YOLOv5s_and_MobileNet-SSD_V2_for_Real-Time_Mask_Detection
https://www.researchgate.net/publication/353211011_Comparison_of_YOLOv3_YOLOv5s_and_MobileNet-SSD_V2_for_Real-Time_Mask_Detection
https://www.researchgate.net/publication/353211011_Comparison_of_YOLOv3_YOLOv5s_and_MobileNet-SSD_V2_for_Real-Time_Mask_Detection
https://doi.org/10.1016/j.autcon.2017.12.014
https://doi.org/10.3390/app13010272
https://doi.org/10.3390/app13010272
https://doi.org/10.1088/1742-6596/2327/1/012012
https://doi.org/10.1088/1742-6596/2327/1/012012
https://doi.org/10.1109/access.2024.3352146
https://doi.org/10.1016/j.autcon.2012.12.002
https://arxiv.org/abs/2103.04147
https://doi.org/10.3389/fbuil.2020.00097
https://doi.org/10.1016/j.autcon.2021.104099
https://arxiv.org/abs/1506.02640
https://www.rekenkamer.nl/publicaties/rapporten/2022/06/23/aanpak-woningtekort
https://www.rekenkamer.nl/publicaties/rapporten/2022/06/23/aanpak-woningtekort
https://doi.org/10.1016/j.ecoinf.2020.101085
https://doi.org/10.1109/jiot.2016.2579198
https://doi.org/10.1016/j.proeng.2016.04.010
https://doi.org/10.1016/j.proeng.2016.04.010
https://doi.org/10.1016/j.proeng.2013.01.082
https://doi.org/10.3390/ma14206094
https://doi.org/10.3390/ma14206094
https://doi.org/10.1007/978-981-99-7962-2\{_
https://doi.org/10.1186/s40537-021-00434-w
https://doi.org/10.1186/s40537-021-00434-w
https://arxiv.org/abs/1703.07402
https://doi.org/10.1061/(asce)cp.1943-5487.0000945

Idle Identification of Construction Machinery through a Deep Learning-Based Algorithm Embedded in Surveillance Camera Syst&ald 41, July 5, 2024, Enschede, The Netherlands

[30] An Xuehui, Zhou Li, Liu Zuguang, Wang Chengzhi, Li Pengfei, and Li Zhiwei.
2021. Dataset and benchmark for detecting moving objects in construction sites.
Automation in construction 122 (2 2021), 103482. https://doi.org/10.1016/j.autcon.

(31]

2020.103482

Kin Yen, Travis Swanston, Vic Reveles, Bahram Ravani, and Ty A. Lasky. 2011.

Identifying excessive vehicle idling and opportunities for off-road fuel tax credits
for stationary operations in the Caltrans fleet, phase 1. https://rosap.ntl.bts.gov/

[32

[33

view/dot/27703

Xue Ying. 2019. An Overview of Overfitting and its Solutions. Journal of physics.
Conference series 1168 (2 2019), 022022. https://doi.org/10.1088/1742-6596/1168/2/
022022

Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping
Luo, Wenyu Liu, and Xinggang Wang. 2021. ByteTrack: Multi-Object tracking by
associating every detection box. https://arxiv.org/abs/2110.06864

https://doi.org/10.1016/j.autcon.2020.103482
https://doi.org/10.1016/j.autcon.2020.103482
https://rosap.ntl.bts.gov/view/dot/27703
https://rosap.ntl.bts.gov/view/dot/27703
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://arxiv.org/abs/2110.06864

	Abstract
	1 Introduction
	2 Literature Review
	2.1 Computer Object Detection
	2.2 Tracking Algorithms
	2.3 Idle Identification Methods

	3 Design and Implementation
	3.1 Data Collection
	3.2 Data Preprocessing
	3.3 YOLOV8 Detection Model
	3.4 ByteTrack Tracking Algorithm
	3.5 Idle Identification Algorithm

	4 Performance Evaluation
	4.1 Detection Model Evaluation
	4.2 Tracking Model Evaluation
	4.3 Idle Identification Evaluation
	4.4 Overall Application Evaluation

	5 Conclusion
	5.1 Summary of Findings
	5.2 Implications for Practice
	5.3 Limitations

	6 Future Work
	7 Acknowledgements
	References

