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Abstract—The fields of direction of arrival (DOA) estimation
and localisation comprise of determining the position of a
signal source, such as a radio frequency emitter or wireless
communication device. These sources are measured, and their
DOAs are determined by analysing properties such as phase
differences. The location of the signal sources is then deduced
using the DOAs at various observation points. Furthermore, these
measurements are conducted using antenna arrays that record
noise, necessitating that the problems of angle estimation and
localisation be approached as statistical estimation problems.
These statistical estimation problems can be analysed using
theoretical performance metrics such as the Cramér-Rao lower
bound (CRLB) and by formulating maximum likelihood estimation
procedures.
It is often advantageous to consider quantisation of the measured
signal, as it offers practical benefits such as reduced data
storage and processing requirements. However, quantisation makes
the estimation problem more complex. This thesis presents a
comprehensive derivation of the CRLB for the sub-problem of
DOA estimation and, through this, the CRLB for localisation
for both the non-quantised and 1-bit quantised cases. Key
findings confirm that the CRLB in the 1-bit quantised case
is lower bounded by the CRLB of the non-quantised case. Finally,
maximum likelihood schemes are implemented and validate the
attained lower bounds.

Index Terms—DOA estimation, localisation, Cramér-Rao lower
bound (CRLB), maximum likelihood, quantisation.

I. INTRODUCTION

Localisation [1] involves determining the location of some
signal source within a defined spatial environment. Examples
include identifying the position of cellular phone signals, GPS
transmitters, radio frequency identification (RFID) tags, or
radar sources. One of the standard methods of localisation
involves determining the position of the source by utilising the
angles formed between the signal source and predetermined
positions, such as antenna arrays, within the environment [1].
Such an angle, also known as the direction of arrival (DOA),
can be inferred by measuring the signal at the antenna array
and recording the signal phase differences at their elements
[2]. In a realistic setting, these antenna arrays also capture
noise, which introduces some variance into the deduced
angle, thereby making the deduction of the DOA a statistical
estimation problem. Given this, the precision of estimating the
DOA is bounded by the Cramér-Rao lower bound (CRLB)
[3]. Here, the CRLB serves as a performance benchmark for
estimation schemes of the DOA.
Localisation of the source signal is now achieved through

DOA estimates, enabling the establishment of a CRLB for
localisation precision as done in [1].

Implementing signal quantisation offers several advantages in
practical applications, e.g., it reduces the amount of data that
needs to be stored and processed, leading to more efficient use
of computational resources. When applied to DOA estimation
and localisation, quantisation is particularly feasible as it
pertains directly to the received signal rather than any encoded
data within the signal.

Previous studies, such as [4], extensively explore quantisation
in parametric estimation, while works such as [2], [5]
specifically focus on 1-bit quantisation for DOA estimation.
Although [1] delves into localisation using DOA estimates
and establishes a CRLB, it does not address the aspect of
quantisation. This study aims to fill this gap by investigating
the performance of estimation schemes for localisation using
1-bit quantised signal samples.

The report begins with establishing the sub-problem of
DOA estimation and derives the CRLB for the cases of
receiving a full-precision and 1-bit quantised source signal.
Here, a comparison between the two CRLBs highlight the
effect of quantisation on DOA estimation. Furthermore, the
report uses the derived DOA CRLBs as the variance of DOA
estimates in [1] to establish a more practical bound when
compared to the one in [1]. Lastly, the report directly derives
localisation CRLBs using non-quantised and quantised source
signal samples as opposed to using DOA estimates, resulting
in a true precision lower bound in a practical setting.

Note, several statistical terms used in this investigation
are defined in explained in Appendix A.

II. DOA ESTIMATION WITHOUT QUANTISATION

A. Antenna Array Model

This investigation considers a uniform linear array (ULA)
antenna model. This model consists of M uniformly spaced
antenna elements, each capable of receiving an RF signal.
The source is assumed to be a real cosine signal of constant
amplitude and frequency defined as follows,

s(t) = A0 cos(ωt).
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Fig. 1. Uniform linear array (ULA) model for direction of arrival estimation.

Here, A0 is the signal amplitude and ω is the angular frequency.
The ULA model operates under the far-field assumption that
the distance between the source and the array is significantly
greater than the spacing between the elements. As a result,
the source travels an additional distance of d sin θ at each
successive antenna element, with θ representing the DOA, as
evidenced by Fig. 1. Hence, the phase difference in the source
observed between two successive elements is given by

∆ϕ =
2π

λ
d sin θ. (1)

Here, λ represents the source signal’s wavelength. On choosing
d = λ/2, the phase difference at any element m with respect
to signal observed at the first element (m = 1) is given by

ϕm(θ) = (m− 1)π sin θ. (2)

Therefore, if the signal observed at m = 1 is s(t), the signal
observed at m = k is s(t+ ϕk(θ)). Here, the parameter θ is
encoded within the phase of the received signal.

It should be noted that a drawback of the ULA model
is its limitation in differentiating only within an angular range
of π, specifically (−π/2, π/2). For example, −π would be
indistinguishable from 0.

B. Received Signal Model

The antenna elements ‘spatially’ sample the time-dependent
source signal. One could choose to observe a single temporal
sample at each element; however, for practicality (and poten-
tially better estimation), this investigation assumes the signal
has been observed over a specific duration. Therefore, the
received deterministic signal model is given by

x[n] = s(ωnTs) = A0 cos(ωnTs) = A0 cos(Ωn)

Here, Ω = ωTs is the discrete angular frequency and n
represents the temporal sample number. Thus, the deterministic
array output is given by

x[n] =

 A0 cos(Ωn)
...

A0 cos(Ωn+ ϕM (θ))

 ∈ RM , n = 1, . . . , N. (3)

The model is completed with the signal polluted with additive
random noise at each antenna element and each time sample,

resulting in the complete observed random sample. Therefore,
the observed samples are given by

Y [n] = x[n] + e[n] ∈ RM , n = 1, 2, . . . , N. (4)

This investigation assumes e[n] to be AWGN ∼N (0,Σ), Σ =
σ21 with a known σ2, implying e is a spatially independent
Gaussian random vector. Furthermore, e[n] are N i.i.d. random
vectors. Therefore,

Y [n]∼ N (x[n],Σ) (5)

so that Y [n] are independent but non-identical Gaussian
random vectors. The expression in Eq. (4) can be interpreted
as observing N random vectors in RM . Equivalently, one can
concatenate each time sample into a tall vector and interpret
it as observing one sample in RNM . By extension, it is valid
to interpret the expression as observing N ·M scalar samples
with an underlying joint distribution.

C. Likelihood & Log-likelihood Functions

The probability density function (PDF) of Y [n] for a single
time sample is given by,

f(y[n]; θ) = det(2πΣ)
− 1

2

exp

(
−1

2
⟨y[n]− x[n],Σ−1(y[n]− x[n])⟩

)
.

(6)

Considering N temporal samples, the likelihood function is
the joint density of all N independent random vectors (see
Appendix A).

L((Y [n])Nn=1; θ) =

N∏
n=1

det(2πΣ)
− 1

2

exp

(
−1

2
⟨Y [n]− x[n],Σ−1(Y [n]− x[n])⟩

)
The log-likelihood function (see Appendix A) is obtained by
taking ln(·) on both sides, converting the product term into a
sum term.

l((Y [n])Nn=1; θ) = N ln
(
det(2πΣ)

− 1
2

)
+

N∑
n=1

−1

2
⟨Y [n]− x[n],Σ−1(Y [n]− x[n])⟩.

(7)

The expression above can be further simplified by recognising
that Σ−1 is a diagonal matrix with each element on the
diagonal being 1/σ2. Pulling the noise variance term outside
the inner product results in term ∥Y [n]− x[n]∥2 remaining in
the summation, where ∥·∥ is the norm on RM . Expressing this
term element-wise results in the following final expression

l((Y [n])Nn=1; θ) = −N

2
ln (det(2πΣ))

− 1

2σ2

N∑
n=1

M∑
m=1

(Ym[n]−A0 cos(Ωn+ ϕm(θ)))
2
.

(8)
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D. Fisher Information & CRLB

The Fisher information, as defined in Appendix A, quantifies
the amount of information that an observed sample carries about
the unknown parameter. It is given by

J (θ) = E

[(
∂

∂θ
l
(
(Y [n])Nn=1; θ

))2
]
.

It can be proven that

E
[(

∂

∂θ
l
(
(Y [n])Nn=1; θ

))]
= 0. (9)

Therefore, the Fisher information simplifies to

J (θ) = Var

[(
∂

∂θ
l
(
(Y [n])Nn=1; θ

))]
. (10)

Recall the noise e is both spatially and temporally indepen-
dent, implying that the Var(·) produces no covariance terms.
Therefore,

J (θ) =

N∑
n=1

M∑
m=1

Var

(
−Ym[n](m− 1)π

A0

σ2

sin(Ωn+ (m− 1)π sin θ) cos θ

+ (m− 1)π
A2

0

σ2
cos(Ωn+ (m− 1)π sin θ)

sin(Ωn+ (m− 1)π sin θ) cos θ

)
.

(11)

Evaluating the Var(·) operator results in the following expres-
sion for the Fisher information,

J (θ) =

N∑
n=1

M∑
m=1

π2A
2
0

σ2
(m− 1)2

sin2(Ωn+ (m− 1)π sin θ)cos2 θ.
(12)

Finally, the CRLB (see Appendix A) given by

CRLB(θ) =
1

J (θ)
, (13)

serves as both a performance metric and a theoretical per-
formance limit for all unbiased estimators of the parameter
θ.

E. Results & Discussion

The plot in Fig. 2 shows the obtained CRLB as a function
of the parameter θ for different noise variances (noise powers).
Fig. 2 shows two prominent features:

1) The CRLB increases with the noise power.
2) Singularities are observed at θ = ±π/2.

The first feature is intuitive, it states that the theoretical
minimum spread of any unbiased estimate worsens as noise
power increases. Equivalently, more (Fisher) information is lost
as noise power increases. The singularities are a consequence
of the ‘cos2 θ’ term in Eq. (12). They can be justified by
observing the encoding structure of the parameter. Recall that

ϕm = (m− 1)π sin θ =⇒ θ = sin−1

(
ϕm

(m− 1)π

)
.

Fig. 2. CRLB as a function of θ for different noise variances (A0 = 1,
N = 10, M = 10, ω = 2π × 106, Ts = 1× 10−7).

The gradient of the function above approaches ∞ as the
source angle approaches ±π/2. Therefore, slight variances
caused by noise when the observed phase is ±(m− 1)π (at
each element m), would cause large variances in the resultant
θ — as observed in Fig. 2 and Eq. (12).

Note, the constants used to obtain the plots in Fig. 2
are used for all of the following plots unless stated otherwise.

III. DOA ESTIMATION WITH SINGLE-BIT QUANTISATION

A. Quantised Vector Probability Mass Function

The following section develops the CRLB for case of
receiving samples with extreme clipping. The signal model
is modified such that each observed sample at each antenna
element is quantised as follows,

Zm[n] =

{
1, Ym[n] > 0

−1, Ym[n] ≤ 0
. (14)

Practically, this is equivalent to implementing 1-bit ADCs at
each receiving element. Therefore, the N obtained M -variate
random vectors are defined as,

Z[n] = Q(Y [n]) ∈ ZM
{−1,1}, Z{−1,1} = {−1, 1}. (15)

Notice that the Z[n] is now a discrete random vector, and
therefore has a probability mass function (PMF). Furthermore,
the quantiser is defined element-wise, i.e., per sensor. Therefore,
the PMF of Z[n] for a singular n is given by the following
joint PMF,

p(z[n], θ) = P[Z[n] = z[n]]

= P[Z1[n] = z1[n], . . . , ZM [n] = zM [n]].
(16)

Note, the underlying noise model remains unchanged, implying

Zi[n] ⊥⊥ Zj [n], ∀i ̸= j.

Hence,

p(z[n], θ) =

M∏
m=1

P[Zm[n] = zm[n]]. (17)
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Recall, the support for the PMFs in the product term of Eq. (17)
is the set Z{−1,1}. Thus, Zm[n] can have the value of 1 with
some probability pm,n and −1 with probability qm,n = 1 −
pm,n. Therefore, each random variable Zm[n] is a function of
a Bernoulli random variable X ∼ Ber(pm,n), i.e.,

Zm[n] = 2X − 1. (18)

Hence, each PMF in the product term in Eq. (17) can be written
as,

P[Zm[n] = zm[m]] = p
( zm[n]+1

2 )
m,n q

(1− zm[n]+1
2 )

m,n . (19)

Lastly, the probabilities can be obtained from the following
relation between the quantised and non-quantised random
variables,

pm,n = P[Zm[n] = 1] = P[Ym[n] > 0]

qm,n = P[Zm[n] = −1] = P[Ym[n] ≤ 0].
(20)

The completed PMF is then given by,

p(z[n]; θ) =

M∏
m=1

(
1− φ

(
−xm[n]

σ

))( zm[n]+1
2 )

φ

(
−xm[m]

σ

)(1− zmn]+1
2 )

.

(21)

Here, φ(·) represents the standard normal CDF.

B. Log-likelihood Derivation For Quantised Samples

Recall that all N discrete random vectors are independent,
with their PMFs given in Eq. (21). Therefore, the likelihood
function is the joint PMF of all N random vectors.

L((Z[n])Nn=1; θ) =

N∏
n=1

p(Z[n]; θ)

=

N∏
n=1

M∏
m=1

(
1− φ

(
−xm[n]

σ

))( zm[n]+1
2 )

φ

(
−xm[m]

σ

)(1− zm[n]+1
2 )

.

(22)

The log-likelihood function is obtained by taking ln(·) on both
sides.

l((Z[n])Nn=1; θ) =

N∑
n=1

M∑
m=1

(
Zm[n] + 1

2

)
[
ln

(
1− φ

(
−xm[n]

σ

))
− ln

(
φ

(
−xm[n]

σ

))]
+ ln

(
φ

(
−xm[n]

σ

))
.

(23)

C. Fisher Information & CRLB

The Fisher information is given by,

J (θ) = Var

[(
∂

∂θ
l
(
(Z[n])Nn=1; θ

))]
.

Fig. 3. QCRLB as a function of θ for different noise variances.

As before, each sample Zm[n] is independent. Therefore, using
compact notation, the Fisher information is given by,

J (θ) =

N∑
n=1

M∑
m=1

1

(pm,nqm,n)(
g

(
−xm[n]

σ

)
∂

∂θ

(
−xm[n]

σ

))2

.

(24)

Here, g(·) denotes the standard normal PDF and

∂

∂θ

(
−xm[n]

σ

)
=

A0

σ
(m− 1)π

sin(Ωn+ (m− 1)π sin θ) cos θ.

(25)

Subsequently, the CRLB is given by,

CRLB(θ) =
1

J (θ)
. (26)

D. Results & Discussion

The plot in Fig. 3 shows the obtained ‘Quantised’ CRLB
(henceforth referred to as QCRLB) as a function of the
parameter θ for different noise variances (noise powers). One
can observe that the structure of the plots in Fig. 3 is the
same as the ‘Non-quantised’ CRLB (henceforth referred to as
NCRLB). Again, two key difference between the NCRLB and
the QCRLB are observed.

1) The QCRLB curves are valued greater than their respective
NCRLB curves for all θ, implying a worse theoretical
minimum spread of any unbiased estimate.

2) The ‘spacing’ of the curves for different variances is not as
uniform as the NCRLB case, i.e., the separation between
the plotted lines increases. This is specifically apparent
when observing the curves for σ2 = 1 and σ2 = 10.

The first observation suggests that quantisation of samples
in the presence of noise leads to a greater loss in (Fisher)
information, which is intuitive.
To verify the second observation, the NCRLB and QCRLB
are plot as functions of decreasing noise variance, i.e., as
functions of increasing SNR for a randomly chosen source
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Fig. 4. NCRLB vs. QCRLB as a function of σ2.

angle. As seen from Fig. 4, the separation between the
NCRLB and QCRLB increases as the SNR increases. This
is an interesting result, suggesting that there is significant
loss of information due to quantisation even in the presence
of no additive noise. The stated loss of information can
be explained by recalling that the signal model temporally
samples a continuous cosine signal at each antenna element.
Two or more sampled cosine signals can produce the
same sampled signal when quantised in the manner defined
in Eq. (14). Leading to phase ambiguity and loss of information.

It may be the case that such an increase in separation
is not observed when considering a fully continuous signal
model. This is attributed to the fact that the amplitude and
frequency of the cosine signal are known. Therefore, observing
the zero crossings of the quantised continuous wave, one
can easily reconstruct the unique cosine source signal. In
this scenario, quantisation causes no loss of information in a
no-noise environment.

E. Implementing the MLE

A grid-search based MLE was constructed in MATLAB.
Fig. 5 compares the resultant empirical variance of the MLE
with the QCRLB. As seen from the plot, the MLE variance
is bounded by the QCRLB and worse when compared to the
non-quantised case. Furthermore, several peaks are observed
in Fig. 5 due to a lower angle resolution and the number of
conducted trials being limited to 200 in MATLAB to decrease
computation time.

IV. LOCALISATION

A. The Localisation Problem

The localisation problem involves determining the position
of a signal source within a given space by analysing signals
received at multiple observation points. The primary goal is
to estimate the spatial coordinates of the signal source. Fig. 6

Fig. 5. MLE (Quantised) empirical variance, 200 trials.

Fig. 6. Model for 2-dimensional localisation.

depicts a scenario in which a signal generated by a source
located at (xu, yu) is measured at antenna arrays positioned at
various locations. To estimate this position in R2, the following
sections outline distinct cases.

B. Two Step Location Estimation

1) Conventional Model: Prior work [1] presents a conven-
tional localisation model that consists of directly receiving
angle of arrival estimates. These are defined in [1] as,

rk = φk + nk ∼ N (φk, σ
2
k). (27)

Here, k indexes the antenna arrays defined in Section IV-A.
Each array receives an angle φ, polluted with zero-mean
Gaussian noise n, forming the variance of the angle estimate.
These received angles originate from (xu, yu). Therefore, [1]
defines φk as,

φm = tan−1

(
yu − yk
xu − xk

)
(28)
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On defining ξ = (xu, yu), the PDF of each of the observed
estimate k is given by,

f(x; ξ) =
1

σm

√
2π

exp

−1

2

x− tan−1
(

yu−yk

xu−xk

)
σk

2
 .

(29)
Assuming independent noise at each array, [1] derives the
Fisher information matrix (FIM) (As defined in Appendix A)
to be

J (ξ) =

K∑
k=1

1

σ2
k

1

((yu − yk)2 + (xu − xk)2)
2[

(yu − yk)
2 −(yu − yk)(xu − xk)

−(yu − yk)(xu − xk) (xu − xk)
2

]
.

(30)

Therefore, the CRLB is evaluated by inverting the obtained
FIM as defined in Eq. (68) in Appendix A. However, Eq. (68)
establishes a CRLB for xu and yu separately. Therefore,
this investigation makes use of the definition in Eq. (72) in
Appendix A which provides the CRLB as a function of the
complete parameter ξ. Therefore,

CRLB(ξ) = tr(J (ξ)−1). (31)

Fig. 7a shows the evaluated ‘conventional non-quantised’ CRLB
(CNCRLB). Note, the parameter being restricted to that square
in not a requirement, the CRLB can be calculated for any
(xu, yu) ∈ R2.

2) Using DOA CRLB as Variance of the Estimate: This
investigation now derives the localisation CRLB using the
obtained DOA estimates in Sections II and III as opposed to
assuming angle estimates with an arbitrary variance, received
at ambiguous sensors. This shall result in a more practical
lower bound for location estimation.

Therefore, the incoming angle of arrival random variables at
each array are replaced by DOA estimates of an MLE. As a
matter of fact, this choice of estimator proves to be the most
convenient. As stated in Appendix A, the MLE possesses
an important property of convergence in distribution to a
Gaussian. Thus, the PDF of the MLE converges to

N (θk,J (θk)
−1) = N (θk,CRLB(θk)). (32)

This is particularly convenient as it allows for the use of the
existing expression for the FIM.
Eq. (32) implies that the variance of the received estimates is
no longer an arbitrary noise variance, but the CRLB of the
DOA estimate. Therefore,

σ2
k = CRLBDOA(θk) (33)

As seen from Eq. (32), the variance of the MLE converges to
the DOA CRLB. Therefore, the variance of estimates from the
non-quantised scenario converges to the DOA NCRLB and the
variance of estimates from the quantised scenario converges to
the DOA QCRLB. Figs. 7b and 7c plot the CRLB evaluated
in Eq. (31) with σ2

k = NCRLBDOA and σ2
k = QCRLBDOA

respectively. It shall be noted that the original angle of arrival
model posed no restriction on the received angle sample,

however, as defined in Section II, the ULA antenna geometry
can only distinguish angles in the range of (−π/2, π/2). This
implies that the positioning of the array shall be chosen in
a manner that aligns with the limitations of the ULA. The
position conditions for the bounds in Fig. 7 ensure that this
angle limitation is never violated. It is important to note
that this limitation arises from the chosen array layout in
Section II, and is not a general limitation. A different choice
in array layout can void this limitation.

On comparing Fig. 7a with Figs. 7b and 7c, two differences
can be clearly observed.

1) The bound in Figs. 7b and 7c is significantly higher than
that in Fig. 7a for all values of ξ.

2) The shape of the surface of the bound in Fig. 7a is
considerably different from that in Figs. 7b and 7c.

The first observation is of no true importance. These bounds
cannot be numerically compared in a meaningful way. The
numerical differences arise only from the difference in variance
values of the angle of arrival samples. Fig. 7a has a constant
variance from the noise model, and Figs. 7b and 7c have
angle dependent variances dependent on the properties of the
source signal and the noise affecting it. As seen from Figs. 7b
and 7c, a low SNR was used to obtain the DOA CRLB. The
differences in the actual shapes of the surfaces imply that the
use of practical angle of arrival estimates with their respective
variances significantly affect the localisation CRLB.

Proving that this two-step method, using the DOA CRLB
to derive the localisation CRLB, yields a true variance
lower bound for location estimation using DOA samples,
is challenging. Therefore, the following subsection takes
inspiration from Section II and [1], to derive the CRLB for
direct location estimation from the measured signals and their
phase difference.

C. Direct Location Estimation

Consider K distinct antenna arrays with locations (xk, yk),
as defined in Section IV-A, where each antenna array is a
ULA. Theoretically, each ULA may have a different number
of elements, however, for simplicity, each ULA is assumed
to have M elements. Furthermore, the source signal and the
phase function are both adopted from Section II. On comparing
with Section II, the central difference is the parameter being
the location ξ instead of the angle θ. One can rewrite the angle
of arrival at the kth array using insights from [1] as

θk = fk(ξ) = tan−1

(
xu − xk

yu − yk

)
. (34)

For simplicity, let each array k take an equal number of
temporal samples N of the incident source. Therefore, each
array k receives N M -variate samples.



BACHELOR THESIS, JUNE 2024 7

(a) Conventional CRLB, σk = 0.00872665 (b) NCRLB with σ2
k = NCRLBDOA(θk). (c) QCRLB with σ2

k = QCRLBDOA(θk).

Fig. 7. Conventional CRLB and two-step CRLBs evaluated for a 10× 10 parameter grid.

1) Non-Quantised: The deterministic signal model for each
n and each k is given by,

xk[n] =


Ak cos(Ωn+ ϕ1(fk(ξ)))
Ak cos(Ωn+ ϕ2(fk(ξ)))

...
Ak cos(Ωn+ ϕM (fk(ξ)))

 . (35)

In order to use the same method of derivation as in Section II,
each M -variate sample observed at array k is concatenated into
a single tall vector in RKM . Therefore, the revised deterministic
signal model for each time sample n is given by

X [n] =


x1[n]
x2[n]

...
xK [n]

 ∈ RKM . (36)

As before, the model is completed with the signal polluted
with additive random noise. Therefore, the observed samples
are given by

Y [n] = X [n] + E[n] ∈ RKM . (37)

Again, E (AWGN) is assumed to be independent at each
element m of each array k. Therefore,

Y [n]∼ N (X [n],Σ), Σ = σ21 ∈ RKM×KM . (38)

The PDF of Y for a single n is given by,

f(y[n]; ξ) = det(2πΣ)
− 1

2

exp

(
−1

2
⟨y[n]−X [n],Σ−1(y[n]−X [n])⟩

)
.

(39)

Considering N independent temporal samples, the likelihood
function is given by

L((Y [n])Nn=1; ξ) =

N∏
n=1

det(2πΣ)
− 1

2

exp

(
−1

2
⟨Y [n]−X [n],Σ−1(Y [n]−X [n])⟩

)
.

(40)

Taking ln(·) on both sides to obtain the log-likelihood function,

l((Y [n])Nn=1; ξ) = N ln
(
det(2πΣ)

− 1
2

)
+

N∑
n=1

−1

2
⟨Y [n]−X [n],Σ−1(Y [n]−X [n])⟩.

(41)

As done in Section II, the log-likelihood can be simplified to
the following.

l((Y [n])Nn=1; ξ) = −N

2
ln (det(2πΣ))

− 1

2σ2

N,M,K∑
n,m,k

(
Y k
m[n]−Ak cos(Ωn+ ϕm(fk(ξ)))

)2
.

(42)

Recall, the FIM is given by

R2×2 ∋ [J (ξ)]i,j

= E
[

∂

∂ξi
l((Y [n])Nn=1; ξ)

∂

∂ξj
l((Y [n])Nn=1; ξ)

]
.

Computing each component (keeping in mind each Y k
m[n] is

independent),

[J (ξ)]1,1 =

N,M,K∑
n,m,k

(Ak)
2

σ2
sin2

(
Ωn+ (m− 1)π

sin

(
tan−1

(
xu − xk

yu − yk

)))
(m− 1)2π2

cos2
(
tan−1

(
xu − xk

yu − yk

))
·
[

(yu − yk)
2

[(yu − yk)2 + (xu − xk)2]2

]
.

(43)

[J (ξ)]2,2 =

N,M,K∑
n,m,k

(Ak)
2

σ2
sin2

(
Ωn+ (m− 1)π

sin

(
tan−1

(
xu − xk

yu − yk

)))
(m− 1)2π2

cos2
(
tan−1

(
xu − xk

yu − yk

))
·
[

(xu − xk)
2

[(yu − yk)2 + (xu − xk)2]2

]
.

(44)
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Fig. 8. NCRLB for the parameter restricted to a 10× 10 grid.

[J (ξ)]1,2 = [J (ξ)]2,1 =

N,M,K∑
n,m,k

(Ak)
2

σ2
sin2

(
Ωn+ (m− 1)π

sin

(
tan−1

(
xu − xk

yu − yk

)))
(m− 1)2π2

cos2
(
tan−1

(
xu − xk

yu − yk

))
·
[

−(xu − xk)(yu − yk)

[(yu − yk)2 + (xu − xk)2]2

]
.

(45)

Consequently, NCRLB is obtained using Eq. (72).

The setup used in the prior subsection and seen in
Fig. 6 was used for array positioning, i.e., K = 4 and
positioned at (0, 0), (10, 0), (10, 10), and (0, 10). Fig. 8
presents the obtained NCRLB As seen from Fig. 8, the
obtained CRLB for direct location estimation from DOA
samples is remarkably similar to the one presented in Fig. 7b.
A relative error of the Frobenius norms of the matrices
representing the respective CRLBs was computed to be in
the orders of magnitude of 10−15. Therefore, the obtained
localisation CRLB is essentially the same as the one obtained
using the ‘two step’ method. However, the direct case by
definition is the true lower bound on the variance of unbiased
estimators of ξ.

2) 1-bit Quantisation: The derivation for the bound for
quantised samples follows the same approach as in Section III.
Assuming an element-wise quantiser for each element of each
array, the observed ‘tall’ discrete random vector is given by:

Z[n] =


Z1[n]
Z2[n]

...
ZK [n]

 =


Q(Y 1[n])
Q(Y 2[n])

...
Q(Y K [n])

 . (46)

Therefore, let the PMF be given by:

p(z[n]) = P[Z[n] = z[n]]

= P[Z1
1 [n] = z11 [n], . . . , Z

1
M [n] = z1M [n], . . . ,

ZK
1 [n] = zK1 [n], . . . , ZK

M [n] = zKM [n]].

As noise remains entirely independent at each array and
element, every random variable in the expression above is
independent.

∴ P[Z[n] = z[n]] =

K∏
k=1

M∏
m=1

P[Zk
m[n] = zkm[n]]. (47)

As seen from Eq. (47), the structure of the ‘quantised’ PMF
remains the same. Each Zk

m[n] is quantised to ±1 as done in
Section II. Therefore, the complete PMF of the quantised tall
vector for any n is given by,

P[Z[n] = z[n]] =

K∏
k=1

M∏
m=1

p

(
zkm[n]+1

2

)
n,k,m q

(
1− zkm[n]+1

2

)
n,k,m . (48)

with the support of the PMF being Z{−1,1}.
Lastly,

pn,k,m = P[Zk
m[n] = 1] = P[Y k

m[n] > 0]

qn,k,m = P[Zk
m[n] = −1] = P[Y k

m[n] ≤ 0].
(49)

Recall all N observed random vectors are independent. There-
fore, the likelihood function is constructed using the joint PMF
of all N random vectors.

L((Z[n])Nn=1; θ) =

N∏
n=1

p(Z[n]; θ)

=

N,K,M∏
n,k,m

(
1− φ

(
−xk

m[n]

σ

))(
zkm[n]+1

2

)

φ

(
−xk

m[m]

σ

)(
1− zkm[n]+1

2

)
.

(50)

Here, φ(·) represents the standard normal CDF. The log-
likelihood function is attained on taking ln(·) on both sides,

l((Z[n])Nn=1; θ) =

N,K,M∑
n,k,m

(
Zk
m[n] + 1

2

)
[
ln

(
1− φ

(
−xk

m[n]

σ

))
− ln

(
φ

(
−xk

m[n]

σ

))]
+ ln

(
φ

(
−xk

m[n]

σ

))
.

(51)

Each component of the ‘quantised’ FIM is computed in a
manner similar to the ‘non-quantised’ FIM:

[J (ξ)]1,1 =

N,K,M∑
n,k,m

1

(pn,k,mqn,k,m)(
g

(
−xk

m[n]

σ

)
∂

∂xu

(
−xk

m[n]

σ

))2

.

(52)

[J (ξ)]2,2 =

N,K,M∑
n,k,m

1

(pn,k,mqn,k,m)(
g

(
−xk

m[n]

σ

)
∂

∂yu

(
−xk

m[n]

σ

))2

.

(53)
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Fig. 9. QCRLB for the parameter restricted to a 10× 10 grid.

[J (ξ)]1,2 = [J (ξ)]2,1 =

N,K,M∑
n,k,m

1

(pn,k,mqn,k,m)
g2
(
−xk

m[n]

σ

)
∂

∂xu

(
−xk

m[n]

σ

)
∂

∂yu

(
−xk

m[n]

σ

)
.

(54)

Here, g(·) denotes the standard normal PDF, and the derivatives
are given by

∂

∂xu

(
−xk

m[n]

σ

)
=

Ak

σ
sin

(
Ωn+ (m− 1)π

sin

(
tan−1

(
xu − xk

yu − yk

)))
(m− 1)π cos

(
tan−1

(
xu − xk

yu − yk

))
·
[

yu − yk
(yu − yk)2 + (xu − xk)2

]
.

(55)

and

∂

∂yu

(
−xk

m[n]

σ

)
=

Ak

σ
sin

(
Ωn+ (m− 1)π

sin

(
tan−1

(
xu − xk

yu − yk

)))
(m− 1)π cos

(
tan−1

(
xu − xk

yu − yk

))
·
[

−(xu − xk)

(yu − yk)2 + (xu − xk)2

]
.

(56)

The QCRLB is evaluated using Eq. (72).
Using the same setup as the non-quantised case, Fig. 9
shows the obtained QCRLB. The QCRLB exhibits anticipated
behaviour. The obtained lower bound is greater than the
NCRLB variant for all parameters ξ. This behaviour is made
apparent in Fig. 10. In line with the NCRLB, the obtained
QCRLB is identical to the one presented in Fig. 7c, with a
relative error in the order of magnitude of 10−15. Fig. 10
also shows a familiar observation. The separation between the
NCRLB and the QCRLB increases as noise variance decreases
(SNR increases). This observation is confirmed in Fig. 11 by

Fig. 10. QCRLB vs. NCRLB for distinct values of noise variance.

Fig. 11. QCRLB vs. NCRLB for (xu, yu) = (5, 5) as a function of
(decreasing) noise variance.

plotting the NCRLB and QCRLB as functions of decreasing
noise variance for some ξ. This increase in separation observed
in Fig. 11 is attributed to the deterministic loss of phase
information due to quantisation and sampling as discussed in
Section II. In addition, the speculation of no loss of information
on considering a fully continuous signal model can also be
made here.

V. CONCLUSION

This thesis began with deriving the CRLB for DOA es-
timation considering a quantised and non quantised source
signal. Here, the two derived bounds were compared and
an MLE scheme for the quantised case was implemented.
Furthermore, the derived CRLBs were used as variance values
of DOA estimates in order to yield more practical,“array
aware,” localisation CRLBs. The resultant localisation CRLBs
were compared to the conventional localisation CRLB that
considered zero-mean Gaussian noise added to deterministic
DOAs to construct the DOA estimates. Finally, a CRLB for
direct location estimation from the measured signals and their
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phase differences was derived for the cases of quantised and
non-quantised measured signals. A comparison between the
bounds was made.
Key results included:

1) The QCRLB for DOA was greater than the NCRLB
for DOA for all parameter values. This held true for
the ‘two-step’ localisation bounds as well as the direct
localisation bounds, confirming the loss of information
due to quantisation in the presence of noise.

2) The CRLB obtained using the ‘two-step’ approach was
identical to the ‘direct’ derived CRLB for both the
quantised and non-quantised case. Implying that the ‘two-
step’ approach is also the true lower bound.

3) As the (SNR increased, the gap between the bounds for
quantised and non-quantised scenarios widened for both
localisation and DOA estimation. This trend indicates a
loss of information even under conditions where no noise
is present.

Lastly, there are two applicable improvements in the derivations
outlined in Section IV-C that would result in a more practically
useful performance bound.

1) Using an ‘L’-shaped array instead of a ULA would allow
for a complete angular range of [0, 2π]. This would then
allow for unrestricted placement of the antenna arrays in
the defined environment. Furthermore, one would be able
to freely optimise over array positioning.

2) The model presented in Section IV-C assumes an entirely
known signal amplitude for any parameter ξ. Furthermore,
the derivations and the plots from Section IV-C do not
account for the path loss of the signal. As a result, scaling
the 10× 10 grid has no effect on the bound, rendering it
impractical. Instead, allowing for a known initial signal
amplitude that varies with the parameter would yield a
much more practical bound. This can be achieved with
something such as

Ak(ξ) =
A0

1 + d(ξ)
. (57)

Here, d(ξ) =
√
(xu − xk)2 + (yu − yk)2

APPENDIX A
BACKGROUND

The foundation of statistical parameter estimation [3] is to
obtain information about an underlying population by observing
a sample from it. The distribution of this population is assumed
to be parameterised by a parameter θ, and thus belongs to a
family of distributions defined as

P = {Pθ : θ ∈ Θ}. (58)

Here, θ belongs to some subset Θ of a d-dimensional
Euclidean space (e.g. Rd). Therefore, the aim of statistical
parameter estimation is to observe X ∼ Pθ and estimate θ.

Furthermore, one can interpret observing X ∈ RN as
observing N scalar samples (X[n] ∈ R)Nn=1, with Pθ being
the joint distribution of the samples. This interpretation allows
for the observed sample to be modelled as a received random
signal.

A. Estimator Functions

Assuming N random samples ∈ R, i.e., (X[n])Nn=1, with
(x[n])Nn=1 being the observed realisations of the random
samples, one can define an estimator function T as

(x[1], x[2], . . . , x[N ]) 7→ T (x[1], x[2], . . . , x[N ]) ∈ Rd. (59)

Generally, T can be any function from R to Rd (in this
example), however, the remainder of this investigation only
considers unbiased estimators. An estimator T is unbiased if
and only if

E [T (X[1], X[2], . . . , X[N ])] = θ. (60)

1) Maximum Likelihood Estimator (MLE): The MLE is
one such function that estimates the parameter by maximising
a likelihood function, making the observed sample(s) the most
probable with respect to the assumed underlying distribution.

Assuming the same N random samples with the joint
density or mass function given by fN (x[1], . . . , x[N ]; θ), the
likelihood function is defined as

L(X[1], . . . , X[N ]; θ) = fN (X[1], . . . , X[N ]; θ). (61)

Evaluating the likelihood function at the received sample results
in a real-valued function of the parameter θ. Maximising the
likelihood function with respect to the parameter essentially
maximises the density or mass function at the observed sample
point, intuitively implying that the observed sample is most
probable under the density or mass parameterised by the
maximiser. Therefore, one can define the MLE as

θ̂ = argmax
θ∈Θ

L(X[1], . . . , X[N ]; θ). (62)

Due to convenient properties of the ln(·) function, this
investigation opts to maximise the log-likelihood function
defined as

l(X[1], . . . , X[N ]; θ) = ln (LN (X[1], . . . , X[N ]; θ)) (63)

instead. The resultant MLE,

θ̂ = argmax
θ∈Θ

l(X[1], . . . , X[N ]; θ). (64)

is indifferent from the one described in Eq. (62) due to the
monotonic nature of the ln(·) function. The MLE can therefore
be obtained by solving the following set of equations,

∂

∂θi
l(X[1], . . . , X[N ]; θ) = 0, ∀i ∈ {1, . . . , d}. (65)

B. Fisher Information & CRLB

Multiple unbiased estimators can be constructed to estimate
the same parameter. Therefore, a benchmark is necessary
to serve as both a performance metric and a theoretical
performance limit for all unbiased estimators of that parameter.
The Fisher information provides one such performance limit.

The Fisher information quantifies the amount of information
that an observed sample carries about the unknown parameter.
It provides a measure of the precision with which the
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parameter can be estimated. The Fisher information (matrix)
is formally defined as

[J (θ)]i,j = E
[

∂

∂θi
l
(
(X[n])Nn=1; θ

) ∂

∂θj
l
(
(X[n])Nn=1; θ

)]
,

(66)
or simply

J (θ) = E

[(
∂

∂θ
l
(
(X[n])Nn=1; θ

))2
]

(67)

for a scalar parameter.
Using the definition above, a performance limit can be
established in the form of an absolute lower bound on the
variance of unbiased estimators of θ. This lower bound, known
as the CRLB, is stated as follows,

[Cov
(
T ((X[n])Nn=1)

)
]k,k ≥ [J (θ)

−1
]k,k

=⇒ Var
(
Tk((X[n])Nn=1)

)
≥ [J (θ)

−1
]k,k.

(68)

or simply

Var
(
T ((X[n])Nn=1)

)
≥ 1

J (θ)
(69)

for a scalar parameter. Note, that Eq. (68) is a component-
wise definition, establishing a CRLB for the estimation of all
θi separately. This definition of the CRLB can be modified
as follows to obtain an expression that is a function of all
components of θ. Define v = T ((X[n])Nn=1)− θ. Therefore,

E[v] = 0 (70)

Furthermore,

E[vT v] = E[∥v∥2]
= E[tr(vT v)]
= E[tr(vvT ]
= tr(E[vvT ])
= tr(Cov(v)), due to Eq. (70)

= tr(Cov(T ((X[n])Nn=1)))

(71)

On comparing with Eq. (68),

tr(Cov(T ((X[n])Nn=1))) ≥ tr(J (θ)−1) (72)

Lastly, revisiting the discussion on the MLE, an important
property to highlight is that the MLE converges in distribution
to a Gaussian as N → ∞, i.e.,

√
N(θ̂ − θ)

d−→ N
(
0,J (θ)−1

)
, (73)

implying that the MLE attains the CRLB as the sample size
N grows.

APPENDIX B
CODE FOR PLOTS

Please find the code to generate all plots within this thesis
here https://github.com/shaunakkubal/Localisation-CRLB
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