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Abstract

This paper examines the impact of applying mixture distributions to surgery
scheduling while addressing uncertainty in surgery durations. Slack time is intro-
duced as an additional backup time, beyond the expected sum of surgery durations
for each operating room (OR), making schedules more robust. We compare two dif-
ferent methods to calculate slack time: one, where surgery durations are assumed to
follow a normal distribution, and another where surgeries follow a mixture distribu-
tion of normal random variables. We apply these models to three different scheduling
methods to analyze their performance.

Simulations have been conducted to test the implementation of the different sched-
ules produced, utilizing a generated waiting list from real data. We find that the
schedules produced using mixture distributions generally reduce total overtime, but
may lead to a less efficient OR utilization. The regret-based random sampling method
applied to the mixture distribution model effectively minimizes overtime and improves
scheduling outcomes in terms of overtime. However, it highlights a trade-off between
operating room availability and overtime.

Keywords: surgery durations, scheduling, mixture distributions, heuristics
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1 Introduction

In many healthcare systems, waiting lists have become a main issue resulting in prolonged
waiting times and delayed patient access to healthcare. Additionally, there is a global
ageing population, leading to an increased demand for surgical interventions [12]. For
hospitals, these surgeries are of large importance, as they generate a large proportion of
the profit made[13]. All these factors highlight the importance of running operating rooms
efficiently.

Applications of operations research techniques have led to significant improvements
in the efficiency of healthcare organizations. Many models have been developed that ap-
proximate surgery durations using unimodal distributions, most commonly, normal or log-
normal distributions [1] [10]. Uncertainty in the procedure that the surgeon will follow to
perform a specific surgery can make estimated surgery durations inaccurate. To address
this uncertainty, the planned surgery duration can be represented by a mixture distribution
of several possible procedures for a specified surgery.

Many scientific papers explore the benefits of applying a log-normal distribution [10],
while others make a comparison between normal and log-normal distributions for surgery
durations[1] [14]. Additionally, other factors have been investigated, such as adding more
variability to the models (staff and surgery room availabilities) [2], or even addressing the
uncertainty that surgery durations involve, including slack times [7].

Much focus is given to how different factors affect surgery scheduling, making com-
parisons of the normal and log-normal distribution, and testing how different scheduling
methods can improve results. Studies have not yet explored how to model surgery du-
rations using mixture distributions, namely, addressing the uncertainty of which surgical
procedure will be chosen once the patient has been examined. We will therefore investigate
whether this is a significant factor that can influence the surgery scheduling problem.

By exploring the application of mixture distributions in surgery scheduling, the main
goal is to develop more robust and adaptable scheduling models that exhibit the reality of
surgery procedures. This, therefore, leads us to the question, Can better surgery schedules
be produced and become more realistic when surgery durations are modelled using mixture
distributions?

2 Literature research

Several approaches have been proposed in literature addressing the surgery scheduling
problem:

The authors of the literature review "Operating room planning and surgical case
scheduling: a review of literature" [15] analyze advance scheduling; where a specific date is
assigned for each operation in advance, allocation scheduling; determining the exact start
time of operations and the allocation of operating room resources, the block scheduling
strategy; which involves assigning OR time blocks to specialities and scheduling subsets
of patients within each time block, and other heuristic methods that are used to solve the
OR scheduling problem.
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In the paper "Operational research in the management of the operating theatre: a
survey", a structured literature review is conducted, analyzing several approaches to the
surgery scheduling problem [6]. They highlight the generalization of the bin-packing prob-
lem, in addition to the portfolio effect used to minimize slack time from the paper by Hans
et. al [7].

Hans et. al. [7] consider the problem of assigning surgeries with sufficient planned slack
time to each operating room per day. Various constructive heuristics and local search meth-
ods are proposed, and statistical information on surgery durations is used to exploit the
portfolio effect, which minimizes the required slack. This paper concludes that their ap-
proaches free a lot of operating room capacity, liberating space for additional surgeries.
This paper, unlike others, claims that randomness and uncertainty have been recognized,
but never addressed explicitly, as they do.

M. A. Kamran et. al. [8] propose an advanced method of surgery scheduling for pa-
tients from a patient’s waiting list, taking into account several constraints. This paper
considers uncertainty via stochastic surgery durations, formulating a two-stage stochastic
programming, and a two-stage chance-constrained stochastic programming. In addition,
it demonstrates how there is a clear variation between the deterministic and stochastic
solutions when the chance-constrained approach is used.

The paper "New heuristics for planning operating rooms" [11] also addresses the de-
cision problem of assigning an intervention date and operating room to a set of patients
from a waiting list. The main goal is to minimize access time for patients with diverse
clinical priority values. The authors propose a set of 83 heuristics (81 constructive heuris-
tics, a compos- ite heuristic, and a meta-heuristic), where they compare the methods
against existing heuristics. Finally, they conclude that the proposed meta-heuristic is the
best for the problem under consideration, showing significant improvements in several key
performance indicators. This meta-heuristic consists of the Random Extraction-Insertion
algorithm (REI), involving two main steps; the destruction step, where a specified number
of elements are removed from the current solution, and a construction step, where the al-
gorithm constructs a new solution by inserting the removed elements back into the solution
in a way that optimizes the objective function.

After a brief literature review, it is possible to conclude that there are many interesting
approaches to solving the surgery loading problem. But, as Hans et. al. [7] describes,
randomness and uncertainty are normally not addressed. Even in the aforementioned
paper, we can see how the randomness within individual surgeries is not addressed, as no
distinct procedures are considered. Therefore, we observe there is a gap in literature for
this idea to be explored. We will make use of several proposed heuristic methods, and
adapt these to an innovative way of modelling surgery durations, where uncertainty plays
a central role.
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3 Problem description

The general problem set-up can be described as follows: we consider a planning horizon
of T days (t = 1, ..., T ). Every day, K parallel identical operating rooms are available for
use (k = 1, ...,K). From here, it follows that every operating room (OR) k on day t has a
certain capacity, defined by ckt. We define the pair (k, t) as the OR-plan for OR k on day t.

For this model, we assume that all ORs start operating simultaneously and have an
equal capacity on each OR-plan. In addition, we consider k operating rooms to be avail-
able for only one specialty. At all times, so for each OR-plan, we assume to have sufficient
personnel, including a sufficient number of surgeons and support teams; implying that each
day, there are at least as many surgeons as ORs available.

We consider a list of n elective surgeries, belonging to a waiting list N of surgeries
that must be scheduled (|N | = n). For simplicity, we do not consider emergency patients
or patients that must be planned on certain days for a medical reason. Each surgery i
(i = 1, ..., n) has Ji procedures that are possible to complete the surgery. This means that
for each surgery i, it is uncertain which procedure j (j = 1, ..., Ji}) will be selected by the
surgeon. For this reason, we model the duration of surgery i using mixture distributions,
each with an expected duration µi and expected variance σ2

i , which will be described in
further detail in Section 4.1 Each OR-plan will therefore have a set of surgeries assigned,
we refer to it as Nkt.

To make surgery schedules more robust against overtime, a planned slack time δkt will
be assigned to each OR-plan, minimizing the total overtime and preventing surgery cancel-
lations. The amount of slack time will be influenced by the probability of overtime, chosen
by management, in addition to the expected variances and durations of each surgery in
the OR-plan. The probability of overtime chosen will therefore determine the total OR
utilization, as a higher probability of overtime will maximize OR utilization, and a lower
probability will make less usage of the ORs, but ensure a smaller risk of running into over-
time.

Given a surgery allocation Nkt for OR k on day t, the OR-plan capacity constraint can
therefore be defined as:∑

i∈Nkt

µi + δkt ≤ ckt +Okt (1)

where Okt(Okt ≥ 0) represents the overtime occurring in OR-plan (k, t). With this con-
straint, we assume that surgeries may be planned on any OR-plan. In addition, we consider
the best solution to this constraint the one that generates less overtime, therefore, where∑

k,tOkt is minimized.

The situation can be analyzed as a general bin-packing problem. This is illustrated in
the following figure:
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Figure 1: Illustration of surgeries assigned to ORs with corresponding slack times

As illustrated in Figure 1, surgeries will be scheduled into different ORs following three
different scheduling methods. The following section will analyse surgery durations, slack
times, and the aforementioned scheduling methods in further detail.

4 Methods

4.1 Modelling surgery durations

As described in the previous section, we will define the uncertainty of surgery durations,
which enclose different procedures, using mixture distributions.

Let Xi represent the duration of surgery i, with corresponding possible procedures Ji.
Assume procedures j = 1, ..., Ji follow the same distribution, with parameters (µij , σ

2
ij).

Then let Xi follow a mixture distribution of random variables, with probability density
function defined by:

fi(x) =

J∑
j=1

wijfij(x), (2)

where wij represent the weight/probability of following procedure j in surgery i, under
the constraints of

∑J
j=1wij = 1, 0 ≤ wij ≤ 1. Furthermore, fij(x) represents the proba-

bility density function of the individual random variables. [4]

As each surgery procedure j is independent of others, we can define the expected
duration of the mixture distributed duration of surgery i as a weighted sum of the individual
expected durations of procedures j = 1, ..., J .

E(Xi) =
J∑

j=1

wijµij = µi, (3)

Consequently, the variance of surgery i can be derived by:

var(Xi) = E(X2
i )− µ2

i

=

Ji∑
j=1

wijE(X2
ij)− µ2

i .
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Then,

Ji∑
j=1

wijE(X2
ij) = var(Xij) = σ2

ij ,

σ2
ij = E(X2

ij)− (E(Xij))
2

= E(X2
ij)− µ2

ij .

So variance of surgery i is defined as:

var(Xi) =

J∑
j=1

wij(σ
2
ij + µ2

ij)− µ2
i = σ2

i . (4)

Specifically, we can define surgery durations following a mixture of normal random
variables. In which case, we can define the probability density function fij(x) in equation
2 as the probability density function of a normal random variable

fij(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

We will compare the performance of surgery scheduling using the mixture distribution
described in addition to single distributions of individual procedures. This will provide
insights into the best way to model surgeries.

4.2 Defining slack time

As described in the previous section, the planned slack time will be determined by the
probability of overtime, chosen by management, and by the expected durations and vari-
ances of the surgeries in each OR.

To simplify the derivation of the planned slack time δkt, consider any two surgeries, each
with, for example, two procedures possible. This means we have X1, X2, each following a
mixture distribution with parameters (µ1, σ

2
1), (µ2, σ

2
2) respectively. Following equation 3,

we have for i = 1, 2,
µi = wi1µi1 + wi2µi2,

σ2
i = wi1(σ

2
i1 + µ2

i1) + wi2(σ
2
i2 + µ2

i2)− µ2
i .

The next step is to define the probability of overtime for OR k on day t. Note that, for
modelling, we assume that overtime occurs when the total surgery durations exceed the
expected surgery durations plus the slack time generated. This is defined as

P (X > µkt + δkt) = p,

where X = X1 +X2 and µkt = µ1 + µ2

As the cumulative distribution function of a mixture distribution is a weighted sum
over the individual distributions, we can extend the expression above to:
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P (X1 +X2 > µkt + δkt) = 1− P (X1 +X2 ≤ µkt + δkt)

= 1−

[
w11w21P (X11 +X21 ≤ µkt + δkt) + w11w22P (X11 +X22 ≤ µkt + δkt)

+ w12w21P (X12 +X21 ≤ µkt + δkt) + w12w22P (X12 +X22 ≤ µkt + δkt)

]

= 1−
2∑

i=1

2∑
j=1

w1iw2jP (X1i +X2j ≤ µkt + δkt) (5)

From here, we conclude that the unique, minimal δkt can be found by solving the equa-
tion P (X > µkt+δkt) = p. Note that this is a generalization of the case where we represent
surgery durations with exactly one procedure possible, as presented by Hans et. al. with
normally distributed random variables [7].

In the case where we define Xi as a random variable which follows a mixture of normally
distributed random variables, we then know that

Xij ∼ N (µij , σ
2
ij),

and as the sum of normal random variables is also a normal variable, then for each i, j =
1, 2, we know that

X1j +X2j ∼ N (µ1i + µ2j , σ
2
1i + σ2

2j).

This means that equation 5 can be expressed further as

P (X1 +X2 > µkt + δkt) = 1−
2∑

i=1

2∑
j=1

w1iw2jΦ

(
µkt + δkt − (µ1i + µ2j)

σ1i + σ2j

)
= p (6)

where Φ(.) represents the cumulative distribution function of the standard normal distri-
bution.

So, for I surgeries, each with Ji possible procedures, equation (6) can be generalized
to:

P (
∑
i=1

Xi > µkt+δkt) = 1−
J1∑

j1=1

...

JI∑
jI=1

wij1 ...wIjIΦ

(
µkt + δkt − (µij1 + ...+ µIjI )

σij1 + ...+ σIj1

)
= p

(7)

An approximation for δkt can be derived using the Taylor series expansion of Φ(.)

around a =
µkt−(µ1i+µ2j)

σ1i+σ2j up to second order terms. Define b = 1
σ1i+σ2j

. Then the Taylor

expansion of Φ(a+ δkt
b ) around a (up to second order terms) is
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Φ(a+
δkt
b
) = Φ(a) + Φ(1)(a)(a+

δkt
b

− a) +
Φ(2)(a)

2!
(a+

δkt
b

− a)2

= Φ(a) + ϕ(a)(
δkt
b
) +

ϕ(1)(a)

2!
(
δkt
b
)2

=
ϕ(1)(a)

2b2
δ2kt +

ϕ(a)

b
δkt +Φ(a)

= αδ2kt + βδkt + γ (8)

This means that equation 6 can be approximated by

2∑
i=1

2∑
j=1

w1iw2j

(
α1i,2jδ

2
kt + β1i,2jδkt + γ1i,2j

)
= 1− p

It is now possible to solve the quadratic equation, where we choose

δkt = min{δ1, δ2|δi > 0} (9)

When performing simulations using real data, δkt will be solved using numerical meth-
ods. This will ensure that we obtain precise values while reducing computation time. The
method that will be employed is the Newton-Raphson method.

The fsolve method in Python, part of the SciPy library, is used for solving systems of
nonlinear equations [3]. The method relies on the underlying mathematics of the Newton-
Raphson algorithm and other related techniques.

The Newton-Raphson algorithm [5] iteratively refines guesses to solve a set of nonlinear
equations. In this case, we have a single nonlinear equation to solve. Therefore the general
algorithm for a single nonlinear equation is as follows:

For the equation f(x) = 0, we start with an initial guess x0 for the root of the equation.
The algorithm then calculates the derivative of the function f(x) with respect to x, and
updates the next approximation by x1 = x0 − f(x0)

f ′(x0)
. This process is then repeated and

updates the estimated values iteratively by

xn+1 = xn − f(xn)

f ′(xn)
.

This iteration continues until the difference between the successive approximations is below
a specified tolerance level. Then, the final value obtained is an approximation of the root
of the equation f(x) = 0.

Specifically, for this problem we let

f(x) = 1−
J1∑

j1=1

...

JI∑
jI=1

wij1 ...wIjIΦ

(
µkt + δkt − (µij1 + ...+ µIjI )

σij1 + ...+ σIj1

)
− p = 0
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4.3 Scheduling methods

The following scheduling methods have been derived from the paper by Hans et. al. [7]:

4.3.1 First Fit

The First Fit scheduling method is a straightforward approach to scheduling surgeries. As
its name suggests, surgery i from a generated waiting list will be assigned to the OR where
it first fits, as long as no overtime is generated, according to constraint (1). If there are no
ORs where the surgery fits without generating overtime, then surgery i is scheduled into the
OR where the minimum overtime is produced. This method is a standard scheduling system
in several healthcare institutions, which does not take into account statistical information,
such as the standard deviation of surgeries. For this reason, different heuristic methods have
been proposed to analyze whether the use of this information can bring further benefits.

4.3.2 LPT

The Longest Processing Time (LPT) dispatching rule is a variant of the list-scheduling
algorithm. The first step of this method is to order the tasks in non-increasing order. In
this situation, the waiting list is ordered in a non-increasing order of expected durations.
This approach addressed the longer surgeries early, thereby reducing potential delays that
shorter surgeries might encounter if scheduled first. Once surgeries are sorted, a similar
approach to the First Fit scheduling method is used. It will consider the surgeries from the
beginning of the list and try to schedule them in some OR where no overtime is generated.
If there are no ORs where this is possible, it will similarly aim to find the one where the
least overtime is produced.

4.3.3 Regret-based random sampling method

The regret-based random sampling method is a particular sampling procedure that de-
pends on a priority calculation and a "regret" of scheduling a certain surgery. Sampling
procedures first orders surgeries in non-increasing order. From here, Z surgeries are se-
lected for dispatching from the beginning of the list. Out of these Z surgeries, we check
whether each surgery i fits a certain OR, without generating overtime, as defined in con-
straint (1). If this is the case, a priority vi for surgery i is computed, and a best OR is
selected from the possible options. If there are no ORs where surgery i would fit without
generating overtime, we select the OR where the minimum overtime is generated, and
schedule surgery i in this OR immediately.

Priorities, in this case, are based on the slack time assigned to ORs. If some OR has
already had surgeries assigned to it, then it contains a slack time δkt, defined in equation
(9). If surgery i was to be assigned to this OR, then the slack time would be defined as
δkt+i. Define

∆kt = δkt+i − δkt

as the difference in slack times in OR-plan (k, t) if surgery i was to be included. Then, the
benefit of not planning surgery i into an empty OR, but into a filled OR is defined as

Ωikt = δi − δkt,

where δi is defined as the slack generated for surgery i only.
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Using these values, we define the priority of surgery i as

vi = max
kt

{Ωikt}.

If there are remaining surgeries from the selected Z surgeries, we proceed as follows.
Each surgery i has now an associated priority vi and a best OR selected. Now, regret-based
random sampling is applied, as this method defines how the drawing probabilities Pi are
calculated for each surgery i. As its name suggests, a regret is calculated based on the
priorities. The regret of surgery i can be described as the difference between its priority,
and the worst of all surgery priorities:

wi = vi −min
j

{vj}.

From here, we define the probability of surgery i being selected as

Pi = C · (1 + wi)
α,

where C is the normalization constant defined as 1/
∑

j(1+wi)
α, and α being a bias factor.

Then, based on these drawing probabilities, a surgery is drawn and scheduled in its best
OR selected previously.

The list of Z surgeries is then replenished and the algorithm repeats until the whole
sorted waiting list has been scheduled. This procedure is carried out for several samples,
from which, the best schedule based on overtime is then selected as the output.

5 Results

5.1 Data handling

We can run the derived surgery scheduling model on real data to test the effects of ap-
proximating surgery durations using mixture distributions. For this, we will make use of
"Surgical case mixes and distributions of perioperative surgical process durations for Ger-
man hospitals" [9]. This data set assigns a particular distribution, with its corresponding
parameters, to each of the standard processes in a surgery, namely, anesthesia induction
time, anesthesia emergence time, surgical lead-in, incision-to-closure time, surgical lead-
out, and closure-to-incision time.

These steps contribute to a specific procedure that must be followed to perform a
surgery. These procedures are described with OPS codes (Operation and Procedure Code)
in the data of German hospitals. Each OPS code contains at most 6 characters, represent-
ing the most detailed level of procedure description. We get the surgical category on the
right-hand side of the code, for example, 5-916. From here, the complete OPS code speci-
fies some procedure/intervention for that specific surgery, for example, 5-916.a0, 5-916.a1,
etc. These OPS codes are usually identified and assigned post-surgery and are mainly used
for reimbursement purposes [9]. The reason for this is, as mentioned previously, surgeons
cannot guarantee which procedure will be selected for the surgery planned.

For this problem, we are interested in the distribution of the surgery duration as a
whole, as, we want to obtain the distribution of different OPS codes, that will eventually
contribute to the mixture distribution of a general surgery. The way to do this is by run-
ning simulations, such that we can add up all the individual processes per surgery and then
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approximate some distribution for this simulated data. This procedure is done as follows:

First, we generate random samples for each process (per surgery), according to its des-
ignated distribution. In this case, we run 1000 samples for each process and surgery. Then,
we can add the 5 processes per simulated data, leading to 1000 total surgery duration sam-
ples. From here, we fit this data into some distribution. For convenience of calculations,
we choose surgery durations to follow a normal distribution. Using the Maximum Likeli-
hood Estimation (MLE), it is possible to find the parameters that best fit this distribution.

In figure 2 we can see how the data of a specific surgery (surgery 5-916) with 6 possible
procedures is approximated by a normal distribution:

Figure 2: Example of mixture distribution showing unimodal curve

5.2 Data manipulation

In the dataset applied to this study, surgeries with several possible procedures have similar
expected durations. For this reason, the mixture distributions of surgery durations show
unimodal distributions. The data provided has been manipulated to test the effects of
multimodal distributions in modelling. As seen in figure 2, surgery 5-916 generates a
unimodal distribution due to the mixture of the six possible procedures. To modify this
data such that a multimodal distribution become visible, we let µij = µij + j · σij . So, we
add the standard deviation of the generated data by a factor j, representing the index of
procedure j for surgery i. The result of this operation can be observed in figure 3:
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Figure 3: Multimodal mixture distribution as a consequence of manipulated data

As we can see, surgery 5-916 now resembles a multimodal distribution, in contrast to
the unimodal distribution shown in Figure 2. The simulations in the following sections are
therefore based on this processed data.

5.3 Test approach

5.3.1 Producing surgery schedules

We can test the performance of surgery scheduling using mixture distributions against
single, normal distributions. For this, a waiting list will be randomly generated containing
400 surgeries, each with a corresponding expected duration and standard deviation derived
from the mixture distribution of normal variables. Two methods for calculating slack time
will be then tested.

The first method to calculate slack time will resemble a single normally distributed
variable. This means that the parameters obtained from the mixture distribution will be
used as the parameters of a normal distribution. This will lead us to a slack time that can
be derived from equation (6), where there is a single contributing procedure. This means
that slack time produced by surgeries 1, ..., n, scheduled in OR-plan (k, t), will become of
the form:

P (X1 + ...+Xn > µkt + δkt) = 1− Φ(
δkt
σkt

) = p,

where µkt = µ1+ ...+µn and σkt =
√

σ2
1 + ...+ σ2

n. Solving this further we can derive the
expression defined by Hans et. al.[7], namely,

δkt = β

√√√√ n∑
j=1

σ2
j , (10)

where β represents the parameter that influences the probability of overtime, defined by

β = Φ−1(1− p).
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The second method that we will test to produce schedules is based on the mixture
distribution of the generated surgeries. This will lead to the slack time defined in equa-
tion (6). As equation (8) represents an approximation for the slack time, we can apply
numerical methods to derive a precise value for slack times in the different OR-plans, as
described in section 4.2.

We will test these two methods, applying the three different scheduling methods de-
scribed in section 4.3. In addition, the attempt is to schedule the generated waiting list
during a time span of 4 months, with 5 working days per week (with 7.5 working hours
per day) Therefore, the question is, how can 1395 hours of surgeries be scheduled in a time
span of 1800 hours in the most efficient way?

In addition, the probability of overtime chosen will influence the slack time assigned to
ORs. We let this probability of overtime p = 0.3.

5.3.2 Testing surgery schedules produced

Once surgery schedules have been produced using the two different methods for slack time
calculations, and the three different scheduling methods, they can be tested on a simulated
data instance.

To perform these tests, we first use the generated waiting list of 400 surgeries to gen-
erate a random duration for each surgery in the list. For each surgery, a certain procedure
will be selected based on the probabilities/weights of the procedures, as described in Sec-
tion 4.1, which will therefore define the simulated surgery duration. Schedules produced
will be tested on a simulation, representing the average values over 500 replications of the
generated waiting list.

5.4 Parameter settings

For the regret-based random sampling method, several parameters have to be set. Namely,
the bias factor α, the number of samples, and the surgeries Z to process in each iteration.

We have tested different combinations of α, number of samples, and Z. For this,
we attempt α ∈ {2, 5, 10, 25, 50, 100}, samples ∈ {5, 10, 15, 25, 35, 50, 100, 150}, and Z ∈
{2, 7, 10, 15, 25, 50, 75, 100}. The results obtained for these combinations can be seen in
section A.3.

A summary of the selected parameters and settings to produce schedules can be seen
in Table 1:
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Parameter Value
Surgical specialty General
Initial guess (Newton-Raphson) 20
Number of ORs 3
Working hours 7,5 hours
Working days 80 (4 months)
Total working hours 1800 hours
Total surgery time
(generated waiting list) 1395 hours

Probability of overtime (p) 0.3
α (regret-based) 100
Z (regret-based) 100
Number of samples (regret-based) 10

Table 1: Parameter settings to produce schedules

5.5 Comparison of two different methods for slack time calculations

5.5.1 Applying First Fit scheduling method

The First Fit method described in section 4.3.1 uses a simple approach to schedule surgeries.
Table 2 shows the different results obtained when applying the schedules produced by First
Fit scheduling when the different approaches for slack time calculations are applied:

Using original slack Using slack for mixture distr.
Total overtime (hours) 175.49 168.32
OR-plans with overtime 50 51
Overtime frequency in
non-empty OR-plans (%) 25.77 25.89

Total free time (hours) 592.96 585.80
Total free OR-plans 46 43
Total free time in non-empty
OR-plans (hours) 247.96 263.30

Table 2: Results of simulated data using FF

As we can see, total overtime is reduced by 7 hours when slack time for mixture dis-
tributions is applied. In addition, we see that only one extra OR-plan generates overtime.
This means that, not only there is a reduction in overtime, but we also have less overtime
in the OR-plans that do experience this. If we observe the free time generated, we see
that the slack generated with mixture distributions has reduced the total free time, also
reducing the number of free OR-plans. More meaningfully, we see that the total free time
in non-empty ORs has increased. This means that the schedule was less efficient when
the slack for mixture distributions was considered, as there are larger gaps in the filled
OR-plans than when the original slack time model was applied.

To test the effect of the two methods applied to calculate slack time, when producing
schedules using the First Fit method in a fair manner, we deviate the probability of overtime
p, such that we can equate the number of free OR-plans in both models.
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Using original slack (p = 0.25) Using slack for mixture distr. (p = 0.3)
Total overtime (hours) 142.71 168.32
OR-plans with overtime 55 51
Overtime frequency in
non-empty OR-plans (%) 27.78 25.89

Total free time (hours) 628.18 585.80
Total free OR-plans 42 43
Total free time in non-empty
OR-plans (hours) 313.18 263.30

Table 3: Results of simulated data with adjusted p (FF)

As we can observe in Table 3, we set p = 0.25, in order to bring the number of free
OR-plans as close as possible. Here, we can better observe the effects of the two applied
models. First of all, we notice that the total overtime is larger for the slack generated
by mixture distributions, but, on the contrary, it occurs in less OR-plans than when the
original slack is applied. Additionally, notice that the overtime frequency when using the
original slack is of 25.77 %, meaning that is is surpassing the bound set by management.
We observe there are also less free OR-plans for the mixture model, but, the bigger benefit
is that the total free time in non-empty OR-plans reduces significantly, namely, by almost
50 hours.

5.5.2 Applying LPT scheduling method

The LPT scheduling method first orders the waiting list in non-increasing order. From
here, surgeries are scheduled as described in section 4.3.2. Table 4 shows how the two
methods of slack time calculations influence results.

Using original slack Using slack for mixture distr.
Total overtime (hours) 175.65 172.31
OR-plans with overtime 56 50
Overtime frequency in
non-empty OR-plans (%) 29.47 25.91

Total free time (hours) 593.13 589.78
Total free OR-plans 50 47
Total free time in non-empty
OR-plans (hours) 218.13 237.28

Table 4: Results of simulated data using LPT

The total overtime generated for both models is approximately equal, although there is
a larger number of OR-plans with overtime when the original slack is applied. In addition,
the overtime frequency is smaller when the mixture model is applied. We also notice that
the total free time in non-empty OR-plans is larger when the original slack is used.
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Using original slack (p = 0.25) Using slack for mixture distr. (p = 0.3)
Total overtime (hours) 162.79 172.31
OR-plans with overtime 57 50
Overtime frequency in
non-empty OR-plans (%) 29.53 25.91

Total free time (hours) 602.67 589.78
Total free OR-plans 47 47
Total free time in non-empty
OR-plans (hours) 250.17 237.28

Table 5: Results of simulated data with adjusted p (LPT)

When we equate the number of free OR-plans by adjusting the probability of overtime
in the model using original slack to p = 0.25, we can better draw conclusions from these
results. As we observe, the total overtime generated is greater when we apply the mixture
model, although we see that this is spread over 7 fewer OR-plans than in the original slack.
In addition, the total free time is reduced in the mixture model, but this also leads to a
decrease in free time in non-empty OR-plans, which is desired, as we want to fill up the
OR-plans as much as possible, without generating overtime.

5.5.3 Applying regret-based random sampling scheduling method

Table 17 presents the application of regret-based random sampling, with the parameter
setting described in section 5.4.

Using original slack Using slack for mixture distr.
Total overtime (hours) 198.94 139.94
OR-plans with overtime 69 48
Overtime frequency in
non-empty OR-plans (%) 36.32 20.25

Total free time (hours) 591.40 599.26
Total free OR-plans 50 3
Total free time in non-empty
OR-plans (hours) 216.40 576.76

Table 6: Results of simulated data using regret-based random sampling

When using the regret-based random sampling method to schedule surgeries, the two
methods of calculating slack time have the most significant impact. On one hand, the
original model generates more overtime than the mixture model, also spread over more
OR-plans, namely, 21 more OR-plans experience overtime. In addition, the original model
makes the overtime frequency in non-empty OR-plans go above the established 30% bound.
There is a drastic change in the number of free OR-plans when the slack for mixture
distributions is applied, showing a reduction of 47 OR-plans in comparison to the original
model. This can be a consequence of the reduction of overtime. As this is the main focus,
then surgeries are scheduled in such a way that we obtain the least overtime, meaning that
the number of free OR-plans is consequently reduced.
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Using original slack (p = 0.014) Using slack for mixture distr. (p = 0.3)
Total overtime (hours) 128.17 139.94
OR-plans with overtime 35 48
Overtime frequency in
non-empty OR-plans (%) 14.77 20.25

Total free time (hours) 587.79 599.26
Total free OR-plans 3 3
Total free time in non-empty
OR-plans (hours) 565.29 576.76

Table 7: Results of simulated data with adjusted p (regret-based)

When equating the number of free OR-plans by setting the overtime probability to
p = 0.014 for the original model, we observe how the original model actually produces
less overtime, spread over fewer OR-plans than the mixture model. What we also see is
that the overtime frequency does not satisfy the desired boundary for the original slack,
which should not surpass the bound of 1.4%, and in this case, it reaches almost 15%. On
the contrary, the mixture model actually produces an overtime frequency of 20%, 10% less
than the established bound.

5.6 Comparison of different scheduling methods

After observing how different slack time calculations can influence results, we can now
focus on the influence that different scheduling methods have on surgery scheduling, using
the new, derived method for the slack time assigned.

We observe in Table 8 the three scheduling methods described previously, when the
mixture model is applied to generate schedules.

First Fit LPT Regret-based
Total overtime (hours) 168.32 172.31 139.94
OR-plans with overtime 51 50 48
Overtime frequency in
non-empty OR-plans (%) 25.89 25.91 20.25

Total free time (hours) 585.80 589.78 599.26
Total free OR-plans 43 47 3
Total free time in non-empty
OR-plans (hours) 263.30 237.28 576.76

Table 8: Comparison of different scheduling methods (simulated data, 500 sam-
ples)

As we can observe, is it clear that the regret-based random sampling method generates
the least overtime, in comparison to the First Fit method, and the LPT scheduling rule.
In addition, this overtime is spread over the least number of OR-plans, namely, regret-
based random sampling generates overtime in 48 OR-plans. None of the schedule methods
goes over the bound of OR-plans with overtime of 30%, but we notice that for regret-
based random sampling, this proportion is significantly reduced, namely, by 10%. One
disadvantage that the regret-based random sampling method shows is that it generates a
small number of free OR-plans, in comparison to the other two scheduling methods tested.
Only three OR-plans are free, and we also see it consequently produces about double the
amount of free time in non-empty OR-plans. This is not desirable, as we want to fill
OR-plans most efficiently without generating overtime.

18



First Fit (p = 0.06) LPT (p = 0.05) Regret-based (p = 0.3)
Total overtime (hours) 195.07 157.96 139.94
OR-plans with overtime 41 33 48
Overtime frequency in
non-empty OR-plans (%) 17.30 13.98 20.25

Total free time (hours) 595.38 554.08 599.26
Total free OR-plans 3 4 3
Total free time in non-empty
OR-plans (hours) 572.88 524.08 576.76

Table 9: Comparison of scheduling methods with adjusted p

Table 9 shows a fair comparison between the three scheduling methods described. By
setting p = 0.06 for the First Fit method and p = 0.05 for the LPT scheduling rule, we
equate the number of free OR-plans to be able to draw conclusions on the other parameters.
We see that again, the regret-based random sampling method generates the least overtime,
although this occurs in more OR-plans than for the other two methods. We also notice
that the overtime frequency is below the bound of 30% overtime for regret-based. The
other two scheduling methods have more OR-plans with overtime than the desired amount
based on the probabilities p.

6 Conclusions and further research

The experiments performed reveal insights into the effectiveness of different scheduling
methods and slack time calculation models in surgical scheduling.

Comparing slack time calculation models, the use of mixture distributions generally
leads to a reduction in total overtime across all scheduling methods. Consequently, it also
leads to less efficient scheduling with larger gaps in filled OR-plans. This inefficiency arises
as a consequence of the mixture distribution model assigning larger slack times to OR-
plans. Therefore, this is an effective method for reducing overtime, although it may not
fill operating rooms as compactly as the original model does.

The regret-based random sampling method in combination with slack time calcula-
tions using mixture distributions outperforms the First Fit and LPT methods in terms of
minimizing overtime and the number of OR-plans with overtime. Specifically, it achieves
the lowest total overtime and reduces the overtime frequency below the specified bound.
However, this method also results in a considerably lower number of free OR-plans and an
increase in free time within non-empty OR-plans. This indicates that there is a trade-off
between reducing overtime and optimizing OR-plan utilization.

For future research, the parameter settings for the regret-based random sampling
method could be optimized separately for the original model, as the experiments in this
study applied the optimal settings for the mixture model to all schedules, including the
original model. Also, further investigation of the initial guess for the Newton-Raphson
algorithm could improve the resulting slack time calculations. The mixture model could
also be expanded to incorporate lognormal distributions, aiming to better reflect the dis-
tribution of surgery durations [1]. Currently, this model only considers outpatients and
surgeries from a static waiting list. Future studies could ideally include emergency patients
and surgeries, as well as account for staff limitations.
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A Appendix

A.1 QR code to source code

Figure 4: QR-code to python files

A.2 Pseudocodes scheduling methods

Algorithm 1 First Fit Scheduling
Initialization: generate waiting list
for surgery in waiting list do

if surgery fits without generating overtime then
assign surgery to first OR found

else
find OR where the least overtime is generated
assign surgery to OR found

end if
end for
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Algorithm 2 LPT dispatching rule for scheduling
Initialization: generate waiting list
Sort waiting list in non-increasing order
for surgery in sorted waiting list do

if surgery fits without generating overtime then
assign surgery to first OR found

else
find OR where the least overtime is generated
assign surgery to OR found

end if
end for

Algorithm 3 Regret-based random sampling procedure
Initialization: generate waiting list
Sort waiting list in non-increasing order
for number of samples do

select Z surgeries for dispatching,
for surgery in Z surgeries do

if surgery fits without generating overtime then
calculate priority vi for surgery i
select the best OR for surgery i

else
find OR where the least overtime is generated
assign surgery to OR found

end if
end for
if some surgeries were not scheduled from Z surgeries then

calculate the regret for each surgery
calculate drawing probabilities
draw a surgery
assign the drawn surgery to its best OR selected

end if
end for

A.3 Parameter setting for regret-based random sampling

(Z,α) (5,2) (5,5) (5,10) (5,25) (5,50) (5,100)
Total overtime (hours) 262.99 262.99 262.99 262.99 262.99 262.99
OR-plans with overtime 52 52 52 52 52 52
Overtime frequency (%) 21.67 21.67 21.67 21.67 21.67 21.67
Total free time (hours) 392.93 392.85 392.87 392.88 392.87 392.88
Total slack time (hours) 274.87 274.94 274.92 274.92 274.92 274.92
Total free OR-plans 3 4 5 4 3 6
Total running time (minutes) 5.83 5.72 5.67 5.45 5.52 5.53

Table 10: Comparison of results with varying α, Z = 5 (slack for mixtures)
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(Z,α) (2,100) (7,100) (10,100) (15,100) (25,100) (50,100) (75,100) (100,100)
Total overtime (hours) 262.99 262.99 262.99 262.99 262.99 262.99 262.99 262.99
OR-plans with overtime 52 52 52 52 52 52 52 52
Overtime frequency (%) 21.67 21.67 21.67 21.67 21.67 21.67 21.67 21.67
Total free time (hours) 392.89 392.79 392.84 392.77 392.81 392.68 392.60 392.39
Total slack time (hours) 274.91 274.99 274.95 275.03 274.98 275.12 275.20 275.40
Total free OR-plans (days) 4 4 4 6 4 6 8 10
Total running time (minutes) 9.19 10.68 11.63 13.09 15.67 20.28 25.31 28.41

Table 11: Comparison of results with varying Z, α = 100 (slack for mixtures)

Samples 5 10 15 25 35 50 100 150
Total overtime (hours) 262.99 262.99 262.99 262.99 262.99 262.99 262.99 262.99
OR-plans with overtime 52 52 52 52 52 52 52 52
Overtime frequency (%) 21.67 21.67 21.67 21.67 21.67 21.67 21.67 21.67
Total free time (hours) 392.49 392.32 392.51 392.40 392.39 392.54 392.59 392.58
Total planned slack (hours) 275.30 275.47 275.28 275.39 275.40 275.26 275.20 275.22
Total free OR-plans (days) 6 10 3 7 6 5 6 6
Total running time (minutes) 15.90 37.82 55.10 84.22 106.38 132.32 343.15 412.13

Table 12: Comparison of results with varying number of samples, (Z, α) =
(100,100) (slack for mixtures)

A.4 Comparisons of different schedules produced

A.4.1 First Fit Schedules

Using original slack Using slack for mixture distr.
Total overtime (hours) 220.13 262.99
OR-plans with overtime 37 52
Overtime frequency (%) 15.42 21.67
Total free time (hours) 425.09 390.46
Total running time (minutes) 0.11 2.97
Total planned slack (hours) 199.84 277.33
Total free OR-plans 46 43

Table 13: Comparison of schedules produced for the two methods for slack time

Using original slack Using slack for mixture distr.
Total overtime (hours) 44.64 94.67
OR-plans with overtime -13 1
Overtime frequency (%) -5.41 0.42
Total free time (hours) -167.87 -195.34
Total free OR-plans (days) 0 0

Table 14: Difference between plan and simulated data using FF
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A.4.2 LPT schedules

Using original slack Using slack for mixture distr.
Total overtime (hours) 220.13 262.99
OR-plans with overtime 37 52
Overtime frequency (%) 15.42 21.67
Total free time (hours) 426.52 391.08
Total running time (minutes) 0.13 2.56
Total planned slack (hours) 198.42 276.72
Total free OR-plans 51 47

Table 15: Comparison of two methods for slack using LPT scheduling method

Difference (Original Slack) Difference (Mixture Slack)
Total overtime (hours) 44.48 90.68
OR-plans with overtime -19 2
Overtime frequency (%) 7.91 0.84
Total free time (hours) -166.61 -198.7
Total free OR-plans (days) 1 0

Table 16: Difference between plan and simulated data using LPT

A.4.3 Regret-based random sampling schedules

Using original slack Using slack for mixture distr.
Total overtime (hours) 220.13 262.99
OR-plans with overtime 37 52
Overtime frequency (%) 15.42 21.67
Total free time (hours) 426.58 392.55
Total running time (minutes) 3.52 20.29
Total planned slack (hours) 198.35 275.25
Total free OR-plans 50 days 3 days

Table 17: Comparison of two methods for slack using regret-based random sam-
pling scheduling method

Difference (Original Slack) Difference (Mixture Slack)
Total overtime (hours) 44.48 91.03
OR-plans with overtime -19 2
Overtime frequency (%) -7.91 0.84
Total free time (hours) -166.55 -196.89
Total free OR-plans (days) 0 0

Table 18: Difference between plan and simulated data using regret-based random
sampling
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A.5 Comparison of different scheduling methods

First Fit LPT Regret-based
Total overtime (hours) 262.99 262.99 262.99
OR-plans with overtime 52 52 52
Overtime frequency (%) 21.67 21.67 21.67
Total free time (hours) 390.46 391.08 392.55
Total slack time (hours) 277.33 276.72 275.25
Total free OR-plans (days) 43 47 3
Total running time (minutes) 2.97 2.56 20.29

Table 19: Comparison of different scheduling methods using slack defined for
mixtures

First Fit LPT Regret-based
Total overtime (hours) 94.67 90.68 91.03
OR-plans with overtime 1 2 2
Overtime frequency (%) 0.42 0.84 0.84
Total free time (hours) -195.38 -314.86 -314.52
Total free OR-plans (days) 0 0 0

Table 20: Difference between plan and simulated data for mixture slack (3 schedul-
ing methods)
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