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This	 study	 compares	 the	 performance	 and	 computational	 cost	 of	
various	state-of-the-art	deep	 learning	models	 for	 fine-grained	bird	
classification.	 We	 evaluate	 ResNet-50,	 VGG-16,	 Inception-v3,	
EfficientNet-B3,	MobileNetv3,	ViT,	DeiT,	and	ConvNeXt	on	the	CUB-
200-2011	dataset.	Each	model	was	trained	using	the	PyTorch	library	
on	 a	 high-performance	 server,	 with	 early	 stopping	 employed	 to	
prevent	 overfitting.	 Our	 results	 indicate	 that	 DeiT	 achieves	 the	
highest	accuracy	(85.6%)	and	F1	score	(85.6%),	while	MobileNetv3	
shows	 the	 best	 computational	 efficiency.	 These	 findings	 offer	
valuable	insights	into	selecting	appropriate	models	for	fine-grained	
classification	tasks	based	on	specific	application	requirements.	

Additional	Key	Words	and	Phrases:	deep-learning	architecture,	fine-
grained	bird	classification.		

1 INTRODUCTION 
Fine-grained	 bird	 classification	 refers	 to	 distinguishing	
between	 bird	 species	 based	 on	 minor	 differences.	 Bird	
classification	 is	 relevant	 to	 various	 domains	 such	 as	
ornithology,	 ecology,	 and	 biology,	 as	 birds	 are	 commonly	
used	to	assess	an	environment's	status	and	diversity	due	to	
the	 bird	 population	 being	 very	 susceptible	 to	 ecological	
changes	and	more	accessible	to	observe	than	other	species	
[17].		

In	computer	vision,	there	is	an	essential	distinction	between	
fine-grained	 and	 general	 classification	 tasks.	 General	
classification	 involves	 distinguishing	 significantly	 different	
categories,	the	differences	between	which	are	usually	evident	
and	 easy	 to	 identify.	 On	 the	 other	 hand,	 fine-grained	
classification	 requires	 distinguishing	 between	 visually	
similar	classes	that	belong	to	the	same	broader	category.	

Bird	classification	 is	also	a	significant	 task	 in	the	computer	
vision	field	because	of	the	major	technical	challenges	implied	
in	identifying	the	species	of	a	bird.	These	challenges	include	
high	intraclass	variance,	which	refers	to	images	of	birds	of	the	
same	 species	 usually	 presenting	 different	 postures	 or	
perspectives;	low	interclass	variance,	which	means	birds	of	
different	 species	 have	 very	 similar	 characteristics;	 and	
finally,	data	biases	due	to	the	limited	data	there	is	for	some	
rare	bird	species,	making	the	datasets	to	be	unbalanced	[17].	

To	 address	 the	 first	 two	 challenges,	 focusing	 on	 subtle	
differences	in	key	features	of	birds,	such	as	the	head,	tail,	and	
wings,	is	needed	for	successful	classification.	Therefore,	the	
fine-grained	bird	 classification	 task	usually	 consists	 of	 two	

stages	[16].	The	first	is	to	localize	those	key	feature	regions	
on	 the	 image	 just	 mentioned	 and	 avoid	 irrelevant	
information	 as	 the	 background.	 The	 second	 stage	 is	 to	
perform	label	prediction	based	on	the	features	extracted	in	
the	first	stage.	

Deep	learning	architectures	have	been	widely	used	for	image	
classification	 in	 recent	 years,	 outperforming	 other	
alternatives	such	as	machine	 learning	 [12]	and	eliminating	
manual	 feature	 extraction,	 making	 the	 classification	 more	
efficient	 [10].	 These	 architectures	 have	 been	 trained	 on	
immense	 datasets	 and,	 therefore,	 have	 already	 learned	
relevant	 image	 features	 and	 model	 weights	 that	 can	 be	
transferred	 for	 training	 a	 new	 classification	 model,	
decreasing	the	learning	time	and	improving	the	accuracy	of	
this	 new	 model	 [1],	 this	 is	 called	 transfer	 learning	 which	
along	 with	 fine	 tuning	 are	 necessary	 techniques	 for	 fine-
grained	 classification	 to	 extract	 the	detailed	 features.	Also,	
for	 general	 classification,	 deep	 learning	models	 work	 well	
alone.	 As	 a	 result,	 substantial	 research	 has	 been	 done	 to	
improve	 the	 performance	 of	 such	 models	 or	 develop	 new	
ones.	

However,	 the	 increase	 in	 the	 diversity	 of	 deep	 learning	
architectures	introduces	the	question	of	which	architecture	
performs	best	for	our	specific	task:	bird	image	classification.	
Consequently,	 this	 research	 aims	 to	 evaluate	 and	 compare	
various	available	deep-learning	architectures	using	the	CUB-
200-211	 as	 a	 benchmark	 dataset.	 The	 approach	 involves	
assessing	 the	models'	 performance	 using	 standard	metrics	
and	analyzing	their	computational	costs.	By	comparing	these	
aspects,	 the	aim	is	 to	 identify	a	relation	and	trade-offs	 that	
can	 guide	 the	 selection	 of	 appropriate	 models	 based	 on	
specific	requirements	and	constraints.	

The	problem	statement	leads	to	the	following	three	research	
questions:	

1. How	do	various	deep	learning	architectures	perform	in	
fine-grained	 bird	 classification	 in	 terms	 of	 relevant	
performance	metrics	as	accuracy	and	f1-score?	

2. What	 are	 the	 computational	 requirements	 of	 these	
models,	including	training	duration,	inference	time	and	
resource	utilization?		

3. What	is	the	relationship	between	the	computational	cost	
of	different	deep	learning	models	and	their	performance	
metrics?		

The	paper	 structure	 is	as	 follows:	 the	next	 section	 reviews	
related	 work	 in	 deep-learning	 architecture	 comparison.	
Section	 3	 provides	 information	 on	 different	 deep-learning	
architectures.	 The	 next	 section	 describes	 the	 research	
method,	 including	 the	dataset,	 its	preprocessing	 steps,	 and	
the	 training	and	evaluation	process.	Section	5	presents	 the	
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classification	 results	 of	 each	 model's	 performance	 metrics	
and	 computational	 cost	 followed	 by	 detailed	 discussion	 in	
Section	 6.	 Finally,	 a	 summary	 and	 suggestions	 for	 future	
research	are	given	as	a	conclusion	to	this	paper.	

2 LITERATURE REVIEW 
Fine-grained	 image	 classification	 has	 been	 challenging	 in	
computer	 vision	 in	 recent	 years.	 Numerous	 studies	 have	
explored	using	deep	learning	models	to	tackle	this	problem,	
evaluating	 different	 architectures	 to	 determine	 their	
effectiveness	 and	 precision.	 This	 section	 reviews	 prior	
research	 comparing	 deep	 learning	 architectures	 in	 fine-
grained	image	classification.	

2.1    Deep Learning Model in Fine-Grained Image 
Classification 

[8]	 evaluated	 the	 performance	 of	 several	 deep	 learning	
architectures	 on	 the	 CUB-	 200-2011	 dataset,	 highlighting	
the	strengths	of	models	like	AlexNet	and	VGG	in	capturing	
precise	 visual	 features	 helpful	 for	 distinguishing	 between	
bird	 species.	 However,	 their	 analysis	 was	 limited	 by	 the	
architectures	 available	 at	 the	 time,	which	more	 advanced	
models	have	outperformed.	

[5]	conducted	a	comprehensive	study	on	fine-grained	image	
classification,	 comparing	 various	 CNN	 architectures,	
including	 ResNet	 and	 DenseNet.	 They	 found	 that	 deeper	
networks	 with	 residual	 connections	 performed	 better	 as	
they	could	learn	more	complex	representations	without	the	
disadvantage	of	the	vanishing	gradient	problem.	Their	work	
emphasized	 the	 importance	 of	 architectural	 innovation	 in	
improving	classification	accuracy.	

2.2    Transfer Learning and Fine-Tuning 
Another	 line	 of	 research	 has	 focused	 on	 using	 transfer	
learning	and	fine-tuning	pre-trained	models	for	fine-grained	
classification.	 [2]	proposed	using	a	considerable	amount	of	
data	 from	 related	 domains	 to	 pre-train	 models	 and	 fine-
tuning	 them	 later	 on	 smaller	 fine-grained	 datasets.	 This	
approach	significantly	improved	the	performance	of	models	
like	Inception-v3	and	ResNet-50.	

Similarly,	 [13]	 investigated	 the	effectiveness	of	 fine-tuning.	
Their	research	demonstrates	that	when	pre-trained	on	large	
datasets	 like	 ImageNet	 and	 fine-tuned	 on	 specific	 fine-
grained	 datasets,	 models	 such	 as	 EfficientNet	 and	
MobileNetv3	 achieved	 great	 accuracy	 with	 reduced	
computational	costs.	

3      DEEP-LEARNING ARCHITECTURES 
The	 comparison	 base	 for	 this	 research	 consists	 of	 eight	
different	deep-learning	architectures.	This	section	overviews	
the	 ResNet-50,	 VGG-16,	 Inception-v3,	 EfficientNet-B3,	
MobileNetv3,	Vision	Transformer	(ViT),	Data-efficient	Image	
Transformer	 (DeiT),	 and	 ConvNeXt.	 Each	 model	 depicts	 a	
distinctive	 approach	 to	 image	 classification,	 with	 different	
architectural	 designs,	 strengths,	 and	 trade-offs	 in	
performance	 and	 computational	 cost.	 These	 models	 are	
broadly	classified	into	four	categories:	Convolutional	Neural	
Networks	 (CNNs),	 Modern	 CNNs	 and	 variants,	 Vision	
Transformers,	and	Hybrid	models.	

3.1    Convolutional Neural Networks (CNNs) 
CNN	 architecture	 is	 composed	 of	 different	 layers	 which	
follow	this	structure	[12]:	

• In	the	input	layer,	the	format	is	usually	a	tensor.	
• The	 convolutional	 layer	 consists	 of	 filters	used	 to	

find	the	features	in	the	image,	which	are	later	used	
for	classification.	

• The	 non-linearity	 layer	 applies	 an	 activation	
function	to	model	a	response	variable	non-linearly	
with	its	explanatory	variables.	

• The	 pooling	 layer	 reduces	 the	 images	 and	
parameters	by	taking	the	maximum,	minimum,	or	
average	value	to	preserve	the	relevant	information.	

• The	 fully	 connected	 layer	 translates	 images	 into	
labels	with	categories.	

• Finally,	the	output	layer	presents	the	classification	
decision.	

	

Figure	1.	CNN	architecture.	(Krishna	&	Kalluri,	2019)	

3.1.1 ResNet-50.	 ResNet-50,	 a	 50-layer	 deep	 convolutional	
neural	network,	 is	part	of	 the	Residual	Networks	 (ResNet)	
family	 introduced	 by	 He	 et	 al.	 in	 2015.	 ResNet's	 key	
innovation	 is	 the	 addition	 of	 residual	 blocks	 to	 its	
convolutional	 layers	 that	 can	 skip	 connections	 and	 be	
directly	added	to	the	output	of	the	last	convolutional	layer.	
These	 blocks	make	 it	 easier	 to	 train	 deeper	 networks	 and	
avoid	vanishing	learning	effects	[6].	ResNet-50	is	known	for	
balancing	 depth	 and	 computational	 efficiency,	 making	 it	 a	
popular	choice	for	image	classification	tasks.	

3.1.2. VGG-16.	VGG-16	is	a	deep	convolutional	network	that	
uses	16	weight	layers,	consisting	of	13	convolutional	layers	
and	 three	 fully	 connected	 layers,	 developed	 by	 the	 Visual	
Geometry	Group	at	the	University	of	Oxford	to	measure	the	
influence	 of	 network	 depth	 on	 classification	 results	 [13].	
VGG-16	 is	 characterized	 by	 its	 simplicity	 and	 uniform	
architecture,	 utilizing	 small	 3x3	 convolutional	 filters	
throughout	 the	 network,	 making	 it	 possible	 to	 extract	
multiple	 complex	 features	 at	 low	 cost	 [9].	 As	 a	 result,	 this	
model	has	achieved	high	performance	on	image	classification	
tasks.	However,	 its	 large	number	of	 parameters	 and	depth	
makes	it	computationally	expensive.	

3.1.3. Inception-v3.	 Inception-v3,	 introduced	 by	 [14],	
incorporates	several	advanced	techniques,	such	as	factorized	
convolutions,	batch	normalization,	and	auxiliary	classifiers.	
The	 Inception	 architecture	 can	 capture	 various	 spatial	
hierarchies	 in	 the	 input	 image	 by	 employing	 multiple	
convolutional	 filter	 sizes	 at	 each	 layer.	 It	 was	 designed	 to	
perform	well	under	strict	memory	and	computational	budget	
constraints.	Therefore,	it	is	known	for	its	high	accuracy	and	
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efficiency,	as	its	computational	cost	is	much	lower	than	that	
of	previous	higher-performing	models	[14].	

3.2     Moder CNNs and variants 
3.2.1 EfficientNet-B3.	EfficientNet-B3,	proposed	by	Tan	and	Le	
(2019),	 evenly	 scales	 up	 the	 network	 dimensions	 (depth,	
width,	 resolution)	 to	 achieve	 a	 good	 trade-off	 between	
accuracy	 and	 computational	 efficiency	 [4].	 It	 uses	 mobile	
inverted	 bottleneck	 convolutions	 and	 squeeze-and-
excitation	 optimization,	 making	 it	 highly	 efficient	 in	
parameter	 count	 and	 FLOPs	 (floating-point	 operations	 per	
second).	

3.2.2 MobileNetv3.	 MobileNetv3,	 developed	 by	 [7],	 is	
designed	 for	 mobile	 and	 embedded	 vision	 applications.	 It	
combines	depthwise	separable	convolutions	with	a	modern	
architecture	 search	 method	 to	 optimize	 accuracy	 and	
efficiency.	Depthwise	separable	convolutions	are	made	up	of	
two	layers:	depthwise	to	apply	a	single	filter	per	each	input	
channel,	 and	 then	 pointwise	 is	 used	 to	 create	 a	 linear	
combination	 of	 the	 output	 of	 the	 depthwise	 layer	 [7].	 The	
model's	 small	 size	 and	 low	 latency	 make	 it	 an	 excellent	
alternative	where	resources	are	limited.			

3.3 Vision Transformers 
3.3.1 Vision Transformer (ViT). ViT,	introduced	by	[3],	is	based	
on	 the	 transformer	 architecture,	 which	 has	 been	 broadly	
used	 successfully	 in	 natural	 language	 processing	 tasks.	 It	
treats	 an	 image	 as	 a	 sequence	 of	 patches	 and	 applies	 a	
standard	transformer	encoder	to	process	this	sequence.	ViT	
has	shown	competitive	performance	on	image	classification	
tasks	when	pre-trained	on	large	amounts	of	data.	It	attains	
excellent	 results	 compared	 to	 CNNs,	 requiring	 fewer	
computational	resources	to	train	[3].	

3.3.2 Data-efficient Image Transformer (DeiT).	DeiT,	proposed	
by	[15],	is	a	ViT	variant	designed	to	be	more	data	efficient.	It	
incorporates	 knowledge	 distillation	 to	 enhance	 training	
efficiency	and	performance	on	smaller	datasets,	making	it	a	
compelling	choice	for	scenarios	with	limited	training	data.	

3.4    Hybrid models 
3.4.1 ConvNeXt.	Introduced	by	Liu	et	al.,	ConvNeXt	combines	
elements	 from	 traditional	 CNNs	 and	 modern	 transformer	
models,	 offering	 strong	 performance	 and	 improved	
computational	efficiency.	It	features	the	Swin	transformer's	
layer	 structure,	 downsample	 method,	 activation	 function,	
data-processing	method,	inverted	bottleneck,	and	depthwise	
convolution.	 ConvNeXt-Tiny	 has	 low	 computational	
requirements	 for	 training	 and	 excellent	 feature	 extraction	
abilities	with	few	parameters	[10].	

4 METHOD 
4.1   Data preparation 
The	Caltech-UCSD	Birds-200-2011	(CUB-200-2011)	dataset	
is	 a	 widely	 used	 benchmark	 for	 fine-grained	 image	
classification	 tasks.	 This	 dataset	 comprises	 11,788	 images	
across	200	bird	species,	each	with	approximately	60	images.	
The	images	are	annotated	with	one	bounding	box,	312	Binary	
Attributes,	 and	 15-part	 locations,	 providing	 a	 broad	 set	 of	
features	for	model	training	and	evaluation.	For	this	research,	

the	 data	was	 divided	 into	 train	 and	 test	 sets	 based	 on	 the	
train_test_split.txt	file	provided	within	the	dataset	to	ensure	
consistency	 and	 comparability	 with	 existing	 studies.	 The	
train	set	has	5994	images,	and	the	test	set	has	5794.	

We	apply	several	data	augmentation	techniques	to	enhance	
the	 model's	 generalization	 ability.	 These	 techniques	
manipulate	the	training	images	to	differ	to	some	degree	on	
each	 training	 iteration	 (epoch),	 preventing	 overfitting	 and	
improving	 the	model's	efficiency.	The	augmentation	differs	
slightly	between	 the	 training	and	 testing	 sets	 to	align	with	
best	practices	in	deep	learning.	

Training	Data	Augmentation:		
• RandomResizedCrop:	 crops	 a	 random	 portion	 of	

the	image	and	resizes	it	to	the	target	size	of	pixels,	
which	varies	depending	on	the	model.		

• RandomHorizontalFlip:	 The	 image	 is	 horizontally	
flipped	with	a	probability	of	0.5.		

• ToTensor:	 Converts	 the	 image	 to	 a	 tensor,	 the	
required	format	for	PyTorch	models.	

• Normalize:	 It	 normalizes	 the	 image	 tensor	 by	
subtracting	the	mean	and	dividing	by	the	standard	
deviation	 based	 on	 the	 statistics	 of	 the	 ImageNet	
dataset,	a	common	practice	for	models	pre-trained	
on	ImageNet.	

Test	Data	Augmentation:		
• Resize:	It	resizes	the	shorter	side	of	the	image	

while	maintaining	the	aspect	ratio.		
• CenterCrop:	It	crops	the	central	part	of	the	image	

to	the	required	size,	keeping	the	most	relevant	
part	of	the	image	for	evaluation.	

• ToTensor	
• Normalize	

These	 data	 augmentation	 techniques	 are	 applied	 evenly	
across	 all	 models	 in	 the	 study,	 to	 ensure	 differences	 in	
performance	 can	 be	 attributed	 to	 the	 model	 architectures	
rather	than	variations	in	the	preprocessing.	

4.1.1 Data Loading.	The	DataLoader	utility	from	PyTorch	was	
used	to	load	the	images	from	the	dataset	and	provide	them	to	
the	model	during	the	training	and	evaluation	processes.	Data	
loaders	 iterate	 over	 the	 dataset,	 splitting	 it	 into	 smaller	
batches	of	a	specified	batch	size,	randomizing	the	order	of	the	
data,	 and	 using	 the	 specified	 number	 of	 worker	
(num_workers)	processes	to	load	the	data	in	parallel.		

For	training,	data	loaders	were	configured	with	a	batch	size	
of	 16.	 The	 num_workers	 parameter	 was	 set	 to	 2	 or	 1	
depending	 on	 the	 specific	 model's	 GPU	 memory	 and	
computation	requirements.	

For	 evaluation,	 data	 loaders	 used	 a	 batch	 size	 of	 4,	 and	 4	
workers	 in	 all	 models	 to	 facilitate	 faster	 evaluation	 while	
considering	memory	constraints.	

4.2   Model Training 
All	 eight	 deep	 learning	 architectures	 were	 trained	 on	 the	
CUB-200-2011	 dataset	 using	 the	 Python	 programming	
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language	 with	 the	 PyTorch	 library	 on	 Jupyter	 Notebook,	
leveraging	a	server	equipped	with	an	Nvidia	Tesla	T4	GPU,	
48-core/96-thread	CPU,	and	256	GB	of	memory.	

4.2.1 Training Procedure.	 Each	 model	 was	 trained	 for	 a	
maximum	of	20	epochs	(iterations).	However,	early	stopping	
was	employed	 to	prevent	overfitting	and	optimize	 training	
time.	Training	was	terminated	if	the	validation	loss	did	not	
improve	for	five	consecutive	epochs.	

4.2.2 Loss Function and Optimization.	All	models	were	trained	
using	the	cross-entropy	loss	function,	which	is	well-suited	for	
classification	tasks.	The	loss	function	measures	the	model's	
performance	by	comparing	the	predicted	class	probabilities	
with	the	actual	class	labels.	

The	 Stochastic	 Gradient	 Descent	 (SGD)	 optimizer	 was	
utilized	 for	 training,	 with	 momentum	 to	 accelerate	
convergence	and	improve	stability.	

A	 learning	 rate	 scheduler	 was	 employed	 to	 enhance	 the	
training	process	further,	decreasing	the	learning	rate	by	0.1	
every	 seven	 epochs	 which	 helps	 fine-tune	 the	 model	 by	
reducing	 the	 learning	 rate	 as	 training	progresses,	 allowing	
the	 model	 to	 converge	 more	 smoothly	 and	 avoid	
overshooting	the	optimal	solution.	

The	learning	rate	controls	the	step	size	at	each	epoch	while	
the	 training	 process	moves	 toward	 a	minimum	of	 the	 loss	
function.	

4.2.3 Hyperparameters.	 The	 learning	 rate	 and	 number	 of	
workers	 were	 the	 only	 parameters	 used	 in	 the	 training	
process	that	varied	among	the	models	due	to	differences	in	
their	 architectural	 complexity	 and	 the	 amount	 of	 GPU	
memory	 required.	 Table	 1	 shows	 each	 model's	
hyperparameters.		

Table	1.	Model's	training	hyperparameters	

	

The	training	function	included	a	validation	step	at	the	end	of	
each	epoch	to	monitor	the	validation	loss.	The	model	with	the	
lowest	validation	loss	was	saved	as	the	best	model	for	each	
architecture.	

This	standardized	training	setup	allows	a	fair	comparison	of	
the	different	deep-learning	models.	

4.3    Evaluation 
The	models	saved	during	the	training	process	were	evaluated	
on	 the	 test	 set	 for	 testing.	 Performance	 metrics	 were	
computed	 for	 each	 model	 to	 assess	 its	 classification	
capabilities,	 and	 computational	 profiling	 was	 monitored	
during	each	model's	training	process.	
The	performance	metrics	used	in	this	study	are:	

• Accuracy:	Measures	the	proportion	of	correctly	
classified	images	out	of	the	total	number	of	images.		

• Precision:	 Calculates	 the	 ratio	 of	 true	 positive	
predictions	 to	 the	 total	 number	 of	 positive	
predictions.	

• Recall:	Measures	the	ratio	of	true	positive	
predictions	to	the	total	number	of	actual	positive	
instances.	

• 	F1-Score:	 The	 weighted	 harmonic	 mean	 of	
precision	and	recall.	

For	 evaluating	 the	 computational	 cost,	 the	 following	
information	was	measured:	

• Training	Time:	The	total	time	to	train	each	model,	
including	all	epochs.		

• Inference	Time:	The	average	time	it	takes	for	each	
model	to	predict	the	 label	of	a	single	 image	in	the	
test	set.		

• Memory	 Usage:	 The	 amount	 of	 allocated	 GPU	
memory	consumed	by	each	model	during	training.		

5 RESULTS 
This	 section	 presents	 the	 results	 of	 our	 experiments,	
comparing	the	performance	and	computational	cost	of	eight	
different	 deep	 learning	 architectures—ResNet-50,	 VGG-16,	
Inception-v3,	 EfficientNet-B3,	 MobileNetv3,	 ViT,	 DeiT,	 and	
ConvNeXt—on	 the	 CUB-200-2011	 fine-grained	 bird	
classification	task.	

5.1   Performance metrics 
Table	2	summarizes	the	accuracy,	precision,	recall,	and	F1-
score	for	each	model	on	the	test	set.	

Table	2.	Model's	performance	metrics	

	

ViT	 and	 DeiT	 achieved	 the	 highest	 performance	 metrics,	
outperforming	ResNet-50,	 the	 third-best	model,	 by	 around	
5%	in	all	metrics.	VGG-16	and	MobileNetv3	also	had	strong	
performance,	 while	 EfficientNet-B3	 and	 Inceptionv3	 had	
lower	but	still	competitive	results.	
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5.2   Computational Cost 
Table	 3	 details	 the	 computational	 costs,	 including	 training	
time,	inference	time	per	image,	model	size,	memory	usage	for	
each	model.	

Table	3.	Model's	computational	cost	

 

MobileNetv3	 and	 ResNet-50	 exhibited	 the	 lowest	 training	
and	 inference	 times.	 	 However,	 MobileNetv3	 also	 had	 the	
smallest	 memory	 usage	 (52	 MB),	 making	 it	 the	 most	
computationally	efficient	model.	 	 In	 contrast,	DeiT	and	ViT	
both	had	 the	 longest	 training	and	 inference	 times,	over	80	
minutes	and	11	milliseconds	per	images	and	VGG-16	has	the	
highest	memory	usage.	

6	 	DISCUSSIONS	

This	section	analyzes	and	compares	the	results	shown	in	the	
previous	 section.	 The	 discussion	 focuses	 on	 explaining	 the	
technical	 aspects	 that	might	be	behind	 the	performance	of	
each	model	and	providing	a	way	to	rank	the	models	based	on	
all	 the	metrics	measured:	 performance	 and	 computational	
cost.	

6.1   Analysis of Results per Architecture 
6.1.1 ResNet-50.	 In	 the	 experiment,	 ResNet-50	 achieved	
outstanding	 results	 in	 terms	 of	 performance	 metrics	 and	
computational	 costs.	 The	 residual	 blocks	 part	 of	 its	
architecture	helps	make	the	training	process	more	efficient	
and	shorten	the	inference	time	while	achieving	high	accuracy	
as	 residua	 blocks	 avoid	 the	 vanishing	 gradient	 problem	
common	on	deep	networks.	

6.1.2 VGG-16.	The	uniform	architecture	of	VGG-16,	consisting	
of	small	3x3	convolutional	networks,	makes	it	a	good	model	
for	 capturing	 detailed	 features	 at	 a	 relatively	 low	
computational	 cost,	 as	 demonstrated	 in	 the	 experiment	
results	where	the	training	and	inference	times	were	the	third	
fastest,	 and	 the	 accuracy	was	 just	 below	 the	 one	 obtained	
with	 the	 ResNet	model.	 However,	 the	 results	 also	 showed	
that	it	is	the	model	with	the	largest	size	and	memory	usage	
due	 to	 its	 architecture;	 therefore,	 it	 is	 not	 ideal	 for	
environments	with	resource	constraints.	

6.1.3 Inception-v3.	Inception-v3	was	designed	to	be	efficient	
under	 memory	 and	 computational	 budget	 constraints,	
resulting	in	the	smallest	size	and	memory	usage	of	all	CNN	
architectures	 in	 this	 study.	 However,	 as	 it	 incorporates	
advanced	 techniques	 to	 capture	 features	 effectively,	 its	

training	and	inference	times	were	higher	than	the	other	CNN	
models.	Regarding	performance	metrics,	the	results	achieved	
were	 not	 as	 good	 as	 the	 other	models,	 being	 between	 the	
bottom	two	models.		

6.1.4 EfficientNet-B3.	EfficientNet-B3 evenly scales up network 
dimensions to balance accuracy and computational efficiency by 
optimizing parameter count and floating-point operations per 
second (FLOPs). This approach contributes to EfficientNet-B3, 
showing an accuracy similar to the one obtained with Inception-
v3 but with just half its memory usage and half its size. However, 
this also contributes to its higher training and inference times 
than the other CNN architectures. 

6.1.5 MobileNetv3.	 MobileNetv3 is designed for mobile and 
embedded vision applications, as shown in the results; it 
exhibited the lowest training and inference times, memory 
usage, and model size, highlighting its computational efficiency 
in fine-grained bird classification. This model combines depth-
wise separable convolutions with an architecture that aims to 
optimize its accuracy, making MobileNet the second-highest 
CNN model regarding performance metrics. 

6.1.6 ViT and DeiT.  Based on the transformer architecture, 
both ViT and DeiT treat images as sequences of patches, and ViT 
applies transformers for processing, while DeiT incorporates 
knowledge distillation. DeiT is a ViT variant explicitly designed 
to achieve good efficiency on small datasets. However, both 
models perform likewise in all metrics, probably due to the large 
dataset size used. Both models showed outstanding 
performance metrics in this study, outperforming all other 
models. Nonetheless, as a result of using the transformer 
architecture, both models' computational efficiency was 
inferior, as the training and inference times were significantly 
longer than the ones of any other model; besides, their memory 
usage and size were extensive, only smaller than VGG-16. 

6.1.7 ConvNext.   ConvNeXt balances computational 
requirements and feature extraction abilities by utilizing the 
Swin transformer's structure. This structure combines elements 
from traditional CNNs and transformer models. As a result, this 
model achieved higher performance metrics and lower training 
time than some CNN architectures (Inception and EfficientNet) 
while requiring around three times less memory and size than 
the transformer models evaluated (ViT and DeiT).	

6.2   Composite Score 
While	accuracy	and	f1-score	are	fundamental	measures	of	a	
model's	 predictive	 capability	 in	 fine-grained	 bird	
classification,	 they	 do	 not	 account	 for	 real-world	
applications'	 functional	 constraints	 and	 requirements.	
Training	and	inference	times,	memory	usage,	and	model	size	
are	also	crucial	for	determining	the	suitability	of	a	particular	
model	 in	 environments	 with	 different	 computational	
resources,	such	as	mobile	devices	with	limited	resources.	We	
integrated	 these	 metrics	 into	 a	 single	 composite	 score	
through	 a	weighted	 sum	approach	 to	 assess	 the	 trade-offs	
between	performance	metrics,	computational	efficiency,	and	
resource	usage.	This	evaluation	facilitates	a	more	balanced	
comparison	of	models,	which	helps	guide	the	selection	of	the	
most	 appropriate	 model	 that	 meets	 performance	 and	
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efficiency	criteria	in	a	particular	deployment	context	or	for	a	
specific	task.	

For	 creating	 the	 composite	 score,	 each	 metric	 was	
normalized	to	a	scale	of	0	to	1	using	min-max	normalization.	
The	normalization	of	metric	measuring	computational	was	
inverted,	 as	 these	 should	be	minimized.	 Then,	 each	metric	
was	assigned	a	weight	based	on	its	relative	importance.	The	
total	 weight	 was	 distributed	 evenly	 between	 performance	
and	computational	cost	metrics,	resulting	in	accuracy	and	f1-
score	 getting	 25%	 each,	 and	 training	 time,	 inference	 time,	
mode	size,	and	memory	usage	were	given	a	weight	of	12.5%	
each.	 Finally,	 the	 composite	 score	 is	 calculated	 as	 the	
weighted	sum	of	the	normalized	metrics.		

Table	4.		Composite	Score

	

Table	4	shows	the	model's	ranking	based	on	their	composite	
score,	 arranged	 in	 descending	 order.	 The	 table	 shows	
ResNet-50	and	MobileNetv3	as	the	top	2	models	that	balance	
performance	metrics	and	computational	cost.	

7    CONCLUSIONS 
In	 this	 research,	 a	 thorough	 comparison	was	 conducted	 of	
eight	 deep	 learning	 architectures—ResNet-50,	 VGG-16,	
Inception-v3,	 EfficientNet-B3,	 MobileNetv3,	 Vision	
Transformer	(ViT),	Data-efficient	Image	Transformer	(DeiT),	
and	ConvNeXt—on	 the	 fine-grained	bird	 classification	 task	
using	the	CUB-200-2011	dataset	as	a	benchmark.	This	study	
aimed	to	evaluate	these	models	in	terms	of	their	performance	
metrics	 and	 computational	 costs	 and	 to	 understand	 the	
relationship	between	these	two	aspects.	

The	 results	 of	 the	 comparison	performed	provide	 valuable	
insights	 into	 the	 research	 questions	 formulated	 in	 the	
introduction	of	this	paper	that	can	be	summarized	as	follows:	
1. Performance	Metrics:	Among	the	models,	ViT	and	DeiT	

achieved	the	highest	accuracy,	precision,	recall,	and	F1	
scores,	demonstrating	a	superior	ability	of	transformers	
to	capture	subtle	features	in	bird	images.	ResNet-50	and	
MobileNetv3	also	performed	exceptionally	well	in	these	
metrics.		

2. Computational	 Cost:	 The	 computational	 cost	 analysis	
revealed	 substantial	 differences	 among	 the	 models.	
MobileNetv3	 was	 the	 most	 efficient,	 with	 the	 lowest	
training	and	inference	times	and	memory	usage,	making	
it	ideal	for	resource-constrained	environments.	ResNet-
50	also	had	low	computational	costs.	On	the	other	hand,	
DeiT	and	ViT	required	significantly	more	computational	
resources.		

3. Relation	Between	Computational	Cost	and	Performance	
Metrics:	This	study	highlighted	a	clear	trade-off	between	
computational	cost	and	performance	metrics	in	models	
with	 a	 transformer	 architecture.	 DeiT	 and	 ViT,	 which	
have	 the	 highest	 computational	 costs,	 delivered	

superior	 performance,	 whereas	 the	 ConvNext	 model,	
with	lower	computational	costs,	still	provided	adequate	
but	lower	performance.	However,	based	on	the	results	
obtained	for	CNN	architectures,	there	is	no	trade-off,	as	
the	 top-performing	 models,	 ResNet-50	 and	
MobileNetv3,	also	had	 the	 lowest	computational	costs.	
The	 only	 exception	 is	 VGG-16,	 which	 delivers	 high	
performance	with	reasonable	computational	costs	but	at	
the	cost	of	high	resource	usage.	

Future	 research	 directions	 could	 focus	 on	 the	 following	
aspects:	

• Extending	 the	 comparison	 to	 other	 fine-grained	
image	 classification	 datasets	 to	 generalize	 the	
findings	 and	 confirm	 the	 robustness	 of	 the	
conclusions	

• Applying	 advanced	 optimization	 techniques	 and	
regularization	 methods	 to	 reduce	 the	
computational	 cost	 of	 the	 models	 without	
compromising	their	performance	

• Investigating	 advanced	 data	 augmentation	
strategies	 to	 enhance	 the	 generalization	 ability	 of	
deep	 learning	 models	 and	 mitigate	 overfitting	
challenges	in	fine-grained	image	classification	
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