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Limiting Kinetic Energy through Control Barrier
Functions: Analysis and Experimental Validation

Daniël Logmans

Abstract—An energy-based Control Barrier Function (CBF)
is used to limit kinetic energy of torque-controlled robots.
The proposed CBF produces a safety-critical control action
that bounds the kinetic energy of the manipulator by purely
injecting damping in the underlying closed-loop system, not
compromising its passivity and stability properties. We present an
extensive experimental validation of the approach on a 7-Degree
of Freedom (DoF) Franka Emika Panda robot.

I. INTRODUCTION

OPERATOR safety is the most critical control objective
when humans and robots start sharing the same space.

The recent rise of learning based controllers, which often only
provide probabilistic safety guarantees, has underscored the
need for safety-critical approaches to robot operation [1].

This need has led to various ISO standards and is ad-
dressed in many published works [2]. Some prevent interaction
by enforcing a speed-dependent separation distance between
the robot and operator, assuming reliable detection methods
[3], where other works limit long-duration interaction power
and force by implementing e.g. impedance control [4], [5].
Haddadin et al. explore various dynamic human-robot impact
scenarios and relate the impact velocity to the risk of injury
[6].

In this work, safety is addressed by constraining the kinetic
energy that could potentially be transferred to a human opera-
tor, to prevent injury in collision scenarios. This takes the form
of a safety filter that enforces this constraint while minimally
altering the desired control input. We make use of Control
Barrier Functions (CBFs), which constrain the robot to a ’safe’
subset of the state space [7]. Many CBF implementations
only demonstrate kinematic control and rely on lower-level
controllers to handle system dynamics [8], [9], [10]. Instead,
we investigate the use of energy-based CBFs and, different
from previous works like [11] and [12], utilize them to limit
the kinetic energy of a torque-controlled robot.

Recent work by Michel et al. presents a control scheme that
also limits the kinetic energy. This is achieved by augment-
ing the dynamics of an energy tank and integrating higher-
order CBF schemes. Passivity is enforced by the energy tank
architecture [13]. Our work presents a different approach,
for which we show that our proposed safety-critical CBF
only injects damping into the system. As a result, the safety-
critical control action structurally preserves the passivity of the
nominal closed-loop system without the need for additional
frameworks. We experimentally validate the performance of
our proposed safety filter on a 7-DoF robotic manipulator.

The main contributions of this paper are as follows:
1) A kinetic energy-limiting CBF-based safety filter and

analysis of its energetic properties and disturbance re-
jection.

2) Extensive experimental validation of the proposed
safety-critical control system.

To the best of the author’s knowledge, this is the first time that
this form of control is validated experimentally on a robotic
manipulator.

The remainder of this paper is outlined as follows. Sec. II
of this work describes the mathematical background of this
control approach. We validate the control system for three
different scenarios in Sec. III.

II. METHODS

In this section, we present a brief mathematical description
of the CBF control approach. The general form of CBFs
is described first, after which we present our energy-based
approach.

A. Control Barrier Function background

Control Barrier Functions allow us to keep a system within
a given safe set while minimally altering the desired control
input. This section introduces the general concept of CBFs [7].
Given a nonlinear control-affine system

ẋ = f(x) + g(x)u (1)

with system state x ∈ D ⊂ Rn and control input u ∈ U ⊂
Rm. f(x) and g(x) are assumed to be locally Lipschitz. We
define a safe set S ⊂ D which contains all allowed (safe)
states. More specifically, it is defined as the superlevel set of
a continuously differentiable function h(x) : D → R, i.e. all
states for which h(x) is positive:

S = {x ∈ D ⊂ Rn : h(x) ≥ 0} . (2)

The relative degree of h is the number of times that h needs
to be differentiated with respect to time before the input u
appears explicitly in the expression.
h is a CBF if it has a relative degree of 1 and there exists

a u in the set of feasible control inputs U such that for all
x ∈ S,

sup
u∈U

[
∂h

∂x
f(x) +

∂h

∂x
g(x)u

]
︸ ︷︷ ︸

ḣ(x,u)

≥ −α(h(x)). (3)
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Here, α is an extended class K∞ function.1 For our purposes,
α(h) ≡ γh, with γ a positive real number, suffices.

Theorem 1 (Ames et al. [7]). Let Eq. (3) be true for the
control affine system (1). If the system starts in S, it will never
leave it. S is therefore forward-invariant:

x(0) ∈ S → x(t) ∈ S for all t ≥ 0. (4)

Moreover, if Eq. (3) holds for all x ∈ D, the requirement
not only makes S invariant, but also asymptotically stable: a
system outside the safe set will be driven towards it.

CBFs are typically implemented as a safety filter to modify
the input of a primary (’nominal’) controller udes as little as
possible to make it satisfy the safety condition:

u = argminu∗ ||u∗ − udes||2

subject to Ψ(x,u) ≥ 0,
(5)

where

Ψ(x,u) = ḣ(x,u) + α(h(x)). (6)

Note that multiple CBFs may have to be satisfied congruently
instead of just the one shown here. This optimization problem
can be rewritten to a standard-form Quadratic Program (QP)
and solved numerically, or, in the case of a single CBF, an
analytic solution can be derived.

B. Main contribution: Kinetic energy as safe set

We present a type of CBF that has the primary objective
of limiting kinetic energy. We consider a system configuration
vector q and the system’s Euler-Lagrange dynamic equation:2

D(q)q̈ +C(q, q̇)q̇ +G(q) = Bu, (7)

with D(q) the inertial matrix, C(q, q̇) the Coriolis matrix,
G(q) the gravity vector and B the actuation matrix. Note that
friction is neglected here. The energy-based CBF proposed in
this work is given by the kinetic energy limit Kmax minus the
kinetic energy K:

h(q, q̇) = Kmax −K(q, q̇) = Kmax −
1

2
q̇⊤D(q)q̇. (8)

This yields the safety constraint K̇ ≤ α(Kmax−K), or, given
a fully actuated system:

−q̇⊤Bu+ q̇⊤G(q)︸ ︷︷ ︸
ḣ(q,q̇,u)

≥ −α

(
Kmax −

1

2
q̇⊤D(q)q̇

)
. (9)

The two power terms on the left imply that the CBF safety
layer will only intervene when the mechanical power input to
the system would be too high, dissipating energy to keep it
within safe limits.

1A strictly increasing continuous function α : R → R with α(0) = 0.
2Note that this expression can easily be rewritten as an affine control system

(Eq. (1)) if x contains q and q̇.

Theorem 2. Let (8) be the CBF acting on control system (7)
where the control input is given by Eq. (5) and let usafe =
(u − udes) be the safety filter control input. Then the total
power injected by the safety filter is always negative, that is,

Psafe = q̇⊤Busafe ≤ 0. (10)

Proof. If Ψ(q, q̇,udes) ≥ 0, the safety constraint of Eq. (5) is
already satisfied and u = udes. The power input by the safety
later is then 0. Therefore, we only consider Ψ(q, q̇,udes) < 0.

Eq. (10) is equivalent to

q̇⊤Bu ≤ q̇⊤Budes. (11)

The CBF enforces the following safety constraint on the
control power (Eq. (9)):

q̇⊤Bu ≤ α(h(q, q̇)) + q̇⊤G(q). (12)

If we can show that Eq. (12) always ensures Eq. (11), we
prove the theorem. This means we have to prove the following
relation:

α(h(q, q̇)) + q̇⊤G(q) ≤ q̇⊤Budes, (13)

which can be rewritten as

ḣ(q, q̇,udes) + α(h(q, q̇)) = Ψ(q, q̇,udes) ≤ 0. (14)

This proves that the theorem also holds under the condition
Ψ(q, q̇,udes) < 0.

Califano shows in [14] that the damping property in The-
orem 2 ensures preservation of passivity if the nominal con-
troller is passive.

Theorem 3. Let (8) be the CBF acting on a fully actuated
control system (7) where the control input is given by Eq. (5).
Then the closed-form solution for the control input is given
by:

u =

{
B⊤q̇

||B⊤q̇||2
(
q̇⊤G(q) + α(h(q, q̇))

)
if Ψ(q, q̇,udes) < 0

udes otherwise.
(15)

Proof. We start from the analytical solution from [12], Eq.
(15):

u = udes +

{
B⊤q̇

||B⊤q̇||2Ψ(q, q̇,udes) if Ψ(q, q̇,udes) < 0

0 otherwise.
(16)

For Ψ(q, q̇,udes) < 0, substituting our CBF yields

u = udes +
B⊤q̇

||B⊤q̇||2
(
−q̇⊤Budes + q̇⊤G(q) + α(h(q, q̇))

)
(17)

which simplifies to an expression that does not depend on
udes:

u =
B⊤q̇

||B⊤q̇||2
(
q̇⊤G(q) + α(h(q, q̇))

)
. (18)

Although not immediately obvious, the closed-form solution
shown in Theorem 3 depends on the cube of the joint velocity
when the CBF is ‘active’.
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Remark 1 (Relative degree problem). Sec. II-A mentions that
the relative degree of the CBF has to be 1, implying that
ḣ should depend directly on u. Many examples in literature
demonstrate CBFs with, e.g., position-based obstacle avoid-
ance and can only apply velocity inputs, since velocities are
the first temporal derivative of position. The underlying torque
controller is assumed to handle the dynamics and track the
desired velocity input perfectly. The kinetic energy term in our
CBF is velocity-dependent and can therefore be used for direct
torque control. Singletary et al. use this property to extend
higher-degree CBFs, solving the relative degree problem while
still fulfilling the original CBF requirements [12]. For the CBF
presented here, the kinetic energy safe set in and of itself is
the primary objective. Like their work, our safety constraint is
independent of the Coriolis matrix C(q, q̇), reducing model
dependence and computational complexity.

C. External interaction forces

The dynamic system presented in Eq. (7) does not include
external torques caused by disturbances or interaction. For a
known external torque τext, one can extend Eq. (7):

D(q)q̈ +C(q, q̇)q̇ +G(q) = Bu+ τext. (19)

If these torques are not taken into account, system invariance
cannot be guaranteed.

Theorem 4. Given an external positive power input Pext =
q̇⊤τext, the maximum kinetic energy overshoot K −Kmax is
proportional to this power:

K −Kmax ≤ Pext

γ
. (20)

Proof. The steady-state kinetic energy overshoot is reached
when the total power flow into the system is zero. This power
is delivered by the control input, gravity and the external
torque. Using the analytic solution (Eq. (15)) to find the control
power, we have the following power balance:

q̇⊤G(q) + α(Kmax −K)︸ ︷︷ ︸
q̇⊤Bu

−q̇⊤G(q) + Pext = 0, (21)

from which follows the error in kinetic energy:

K −Kmax = α−1(Pext). (22)

One can see that for α(h) = γh, we obtain Eq. (20).

Theorem 4 leads to a conflicting requirement: increasing
γ leads to a more conservative system, but also to poorer
disturbance rejection. One can circumvent this by estimating
the external interaction power and actively compensating for
it. This leads to the following interaction-aware control re-
quirement:

q̇⊤(−Bu− τext +G(q))︸ ︷︷ ︸
ḣ(q,q̇,u)

≥ −α

(
Kmax −

1

2
q̇⊤D(q)q̇

)
.

(23)
The challenge lies in predicting τext, or, in practice, finding
a good estimate τ̂ext. If accurately estimated, this control
scheme will keep the kinetic energy below the desired limit.

Fig. 1: The Franka Emika Panda robot used for the experiments.

However, note that this may not always lead to a safer
situation: the safety filter is designed to provide minimal
damping, also when the external power is negative. We observe
four cases:

1) Interaction-agnostic, Pext > 0: K ≤ Kmax +
Pext

γ .
2) Interaction-agnostic, Pext ≤ 0: K ≤ Kmax.
3) Interaction-aware, Pext > 0: Pext fully dissipated, K ≤

Kmax.
4) Interaction-aware, Pext ≤ 0: Pext fully utilized for

damping, K ≤ Kmax.
So if an operator provides power, the interaction-aware con-
troller will dissipate it. However, it will also leverage negative
power provided by the external interaction (e.g. a human). This
effectively means that the operator is exposed to the full power
of the base controller if it stands in the way.

III. EXPERIMENTAL RESULTS

A. Overview of experiments

We present three different experiments to validate the effec-
tiveness of our approach:

1) A Cartesian step response.
2) A sudden loss of contact with the environment.
3) An external power input with and without external

torque estimation and compensation.
The nominal control action for the first two experiments

is an underdamped Cartesian impedance controller with a
stiffness of 200 N/m and a damping ratio of 0.2. For the third
experiment, the nominal controller is deactivated.3

For these experiments, we choose α(h) = γh. By decreas-
ing γ, we expect increasingly conservative behavior.

B. Experimental Setup

The experimental validation is performed on the Franka
Emika Panda 7-DoF fully actuated robotic arm displayed in

3Note that gravity compensation is still present.
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Panda robot
Friction and gravity compensated

Franka Control Interface
(FCI)

Cartesian Impedance
Control

Energy-based safety layer
(CBF)

M(q),
G(q),
q, q

u

udes

Fig. 2: Control architecture of the experimental setup.

Fig. 1. The Franka Control Interface (FCI) provides a ROS-
interface for joint level torque commands at 1000 Hz, with
built-in gravity and friction compensation. As a result, we
set G(q) ≡ 0 in Eq. (7). At each interval, the interface
provides the dynamics matrices D(q), G(q), B, external
torque estimation τ̂ext and state information q, q̇. A schematic
representation of the controller configuration is provided in
Fig. 2.

To reduce the effect of sensor noise on the velocity esti-
mates, a discrete joint acceleration rate limiter is implemented:

q̇k = q̇k−1 +min(max(q̇k − q̇k−1,−∆tq̈max),∆tq̈max) (24)

where the maximum joint acceleration q̈max is set to the robot’s
documented limits plus a 20% margin. ∆t is the time interval
between consecutive measurements qk and qk+1. The benefit
of an acceleration saturation filter is that it does not introduce
any lag and enforces an upper bound on the noise amplitude
without attenuating the signal itself.

Despite the existence of an analytical solution (15) to the
QP (5), our implementation leverages the OSQP quadratic
program solver [15]. The reason is that the analytical solution
does not allow including input saturation limits or stacking
of additional (CBF) constraints. The solver operates on an
Intel® CoreTM i7-7700 processor and sufficient convergence to
the analytical solution is reached well within the 1 ms control
loop constraint.

C. Step response

In this experiment, the equilibrium setpoint is moved by
40 cm in the (horizontal) y-direction by a square wave signal.
When the safety filter is active, the kinetic energy limit
Kmax = 1 J. We repeat the experiment for γ ∈ {1, 2, 10, 50},
as well as with the CBF disabled.

The end-effector trajectories (y-position) are shown in
Fig. 3, with the corresponding kinetic energy in Fig. 4. The
latter shows that the CBF layer effectively limits the kinetic
energy, becoming more conservative with lower values of γ. In
contrast, for the case without CBF, the kinetic energy reaches
up to 2.3 J.

Fig. 5 shows the power input of the CBF for each of these
experiments, given by q̇⊤(udes−u). For all experiments, total
CBF power can be observed to be non-positive, demonstrating

that the safety filter only applies damping to the system. Notice
that on a joint level the injected power may indeed be positive,
however the total power input is always non-positive. Fig. 6
shows the associated joint control torques for the experiment
where γ = 50. The commanded input u closely follows
the desired input udes and only intervenes when necessary,
demonstrating that the safety filter is minimally invasive.
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Fig. 3: Step response experiment: End-effector horizontal position.
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Fig. 4: Step response experiment: Total kinetic energy.
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Fig. 5: Step response experiment: Safety filter power injection.

D. Contact loss
In this experiment, a string is attached to the end-effector

and brought under 50 N of tension by lifting the equilibrium
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Fig. 6: Step response experiment: Nominal desired control action
compared to the filtered control action (γ = 50).

setpoint of the Cartesian impedance controller, resulting in
approximately 6 J of stored energy in the virtual spring. Upon
release of the string, this energy is released and the end-
effector rapidly moves up towards the equilibrium, as shown
in Fig. 7. This is similar to the robot slipping off a surface
it is pushing against in a sudden loss-of-contact scenario. The
experiment is again repeated for γ ∈ {1, 2, 10, 50} and without
the CBF filter.

The total kinetic energy is shown in Fig. 8 and the CBF
power injection in can be seen in Fig. 9. The former shows
that approx. 1.7 J of kinetic energy is released by the nominal
controller, and that this release is effectively compensated
when the safety filter is activated. For γ = 50 the energy
limit is momentarily exceeded, which we contribute to limited
torque tracking capability of the robot actuators. However, this
breach is small, and cases with more conservative values of
γ remain far from the boundary. The plots in Fig. 9 show the
total CBF power input, which is negative for all experiments.

This confirms that the CBF only injected damping.
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Fig. 7: Contact loss experiment: End-effector z-position.
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Fig. 8: Contact loss experiment: Total kinetic energy.
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Fig. 9: Contact loss experiment: Safety filter power.

E. External interaction

In the final interaction experiments, we disable the nominal
controller (udes = 0) and subject the robot to an unmodeled
external power input.

In the first interaction experiment, we set Kmax = 0 J and
inject external power by applying a virtual horizontal force to
the end-effector. The force is regulated to provide a constant
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power input. The kinetic energy is measured at steady-state,
which occurs when the external input power and CBF damping
are at equilibrium. This experiment is repeated for various
power input values and γ ∈ {5, 10, 20, 30, 40, 50}.

Fig. 10 displays the steady-state kinetic energy (error) as
function of the input power for different values of γ. One can
see that unmodelled power inputs cause the robot to break the
kinetic energy limit, and that the extent is lower for higher
values of γ. Linear least-squares fitting (dashed lines) closely
matches the the relation predicted by Eq. (20), as the slope of
each curve is approx. γ−1.
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Fig. 10: Interaction experiment: Kinetic energy error versus
external unmodelled power input, with fitted linear curves.

In the second interaction experiment, we physically push
the end-effector for three different control cases: one without
an active safety filter, one with the interaction-agnostic filter
(Eq. (9)) and one which estimates and compensates for ex-
ternal torques (Eq. (23)). The kinetic energy limit is set to
0.3 J.

The kinetic energy after each push can be observed in
Fig. 11. Three relevant power flows are shown in Fig. 12:
The total power injected by the operator, the safety filter
power injection, which is the only control power injection
for this experiment, and the sum of both, which is the total
power input into the system. Although the three experiments
are not identical, the maximum power input is of similar
magnitude. The red zones in this figure indicate when the robot
is exceeding the energy limit.

We observe that both the interaction-agnostic and
interaction-aware safety filters decrease the kinetic energy
overshoot compared to the experiment without safety filter.
The interaction-agnostic filter keeps the energy error below
0.5 J, which is the predicted limit given Eq. (20) and the 25 W
peak external power input of Fig. 12. The damping in this
experiment never exceeds the power input, as the combined
power is always positive. The interaction-aware controller
was expected to stay below the energy limit, but the limit
is exceeded, which we attribute to imperfect estimation of
the external interaction torques. However, the damping does
exceed the input power when the kinetic energy limit is broken,
demonstrating the additional damping the estimator provides.
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Fig. 11: Interaction experiment: Total kinetic energy.
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Fig. 12: Interaction experiment: Internal and external power
injection for γ = 50. The red zone indicates where the robot

exceeds its kinetic energy limit.

IV. CONCLUSIONS AND FUTURE WORK

In this work we presented a new energy-based CBF control
method that limits the kinetic energy of a robotic system and
preserves passivity of the underlying nominal controller. The
effect of unmodelled external forces was quantified and an
extension to this method was made to counteract them.

The experimental results demonstrate that the presented
control method effectively limits kinetic energy under a variety
of scenarios by imposing a damping action on a nominal
control task. Kinetic energy errors due to unmodelled power
inputs are shown to be bounded by the safety layer, and can
be reduced even further using external torque estimation. To
the best of the author’s knowledge, it is the first time that
this form of control is verified experimentally on a torque-
controlled robotic manipulator.

Future improvements include testing the algorithm on a
system without built-in friction and gravity compensation.
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For the experiments presented here, the control algorithm
cannot account for potential errors in these control inputs,
possibly reducing effectiveness. Another issue to be addressed
is the system’s sensitivity to noise. As previously stated, the
control input scales with the third power of the joint velocity
measurement, which for this setup is a discrete derivative of
the joint position for this manipulator. Therefore, improved
state estimation may be beneficial.

An extension to this research would be to not only limit
the kinetic energy, but also the power and force transferred
to the environment. This would cover all collision hazards as
described by [6] and is also a requirement for safe, deliberate,
long-term operator interaction. As discussed, accounting for
external torques does not necessarily lead to safer interaction,
as it could lead to more energy being transferred to the
environment. Additionally, limiting the kinetic energy does
not limit the total interaction force, which may still do harm
in slow, forceful interactions. This extension may take the
form of a secondary CBF that has to be satisfied concurrently.
However, interaction power is not readily defined in the robot’s
state, which is how the CBF is defined. Therefore, such an
extension is not trivial.

A second, more complex extension addresses the fact that
kinetic energy is non-directional. Regardless of where the
operator is, the robot will always limit its kinetic energy.
Preferably, the robot would be allowed to move freely when
moving away from the operator but limit its energy during
approach. Because energy is scalar, this type of constraint
lends itself more to a momentum-based CBF. The inherent
necessity to define this problem in the task space makes
derivation of the CBF function and, especially, its temporal
derivative mathematically convoluted.
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