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From fitness trackers to Google maps, positioning is important in a variety of
contexts. Many technologies are used for this such as GPS, WiFi or camera-
based tracking. GPS and WiFi are however power hungry and all three
depend on environmental factors such as lighting and signal availability.
Inertial measurements provide a universally applicable alternative to this,
their biggest drawback however is a lack of accuracy. A solution for improved
accuracy is introduced in the RoNIN-paper. This paper aims to evaluate
variations of the RoNIN-architecture for energy efficiency.

Additional Key Words and Phrases: Inertial Navigation, Trajectory, Smart-
phones, RoNIN

1 INTRODUCTION
Many popular mobile applications such as Google Maps or Pokemon
Go rely on position tracking. The same technologies are further used
in drones, smaller fitness trackers or autonomous vehicles. Under
a clear sky, the accuracy of a smartphone using GPS is typically
within 4.9m [14]. This accuracy however degrades with obstacles in
the way. WiFi, which has gained notoriety as a tracking solution in
recent years, suffers from similar issues of signal availability. Since
both solutions depend on radio-communications they also tend to
drain battery life. Visual tracking meanwhile raises privacy con-
cerns and is dependent on lighting conditions.

The inertial measurement unit of a smartphone presents in the-
ory an ideal solution to these problems. Smartphone-IMUs are low
power and can be used anywhere. The errors in their measurements
however accumulate over time degrading positioning quality. These
errors can be significantly minimized using deep learning. An influ-
ential paper in this area is [9] in which a dataset and an architecture
for this problem are introduced. The architecture in the paper (from
here on referred to as RoNIN-architecture) comes in three varieties
with ResNet18-, LSTM- and TCN-backbones respectively.

While the paper performs an evaluation of the accuracy of the
trajectories reconstructed with the architectures they are not de-
ployed on any edge devices (mobile or otherwise). Other aspects of
performance, such as resource-usage, are also not considered. The
following work aims to correct this by first training the existing
and two new varieties of the architecture. And then evaluating their
performance on edge devices.

Two experiments are performed to evaluate the architectures. Firstly
a power-measurement setup for a Raspberry Pi was created. This al-
lowed measuring inference times and also directly evaluating power
consumption. Secondly the architectures were made to process data
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locally on three smartphones. Here inference time was recorded,
which directly relates to power consumption.

2 RELATED WORK
Avariety of classical approaches to inertial navigation exist. Pedestrian-
dead-reckoning measures steps and uses heading and step-length
estimates to deduce position change. For this these systems either
use foot mounted sensors (velocity=0 every step) or they infer steps
from patterns in IMU data (e.g. via spectral analysis) [7]. Another
common approach is double integration of acceleration measure-
ments. This leads to quadratic error growth however. Error can be
reduced by introducing motion constraints. One of these constraints
is requiring that the IMU regularly come to a stationary position.
This means when the IMU measurements are in a range correspond-
ing to being stationary they are set to 0 eliminating the error that
accumulates during the stationary phase of walking. A downside of
this is that it requires mounting the IMU on a foot.

To deduce and remove higher order error patterns machine learning
can be employed. Deep convolutional neural networks for instance
enabled significant strides in object-recognition as shown in [16].
Convolutions also allow discovering relations between neighbour-
ing data points in a time series. A larger variety of patterns in data
can be deduced by varying the kernel sizes of those convolutions.
Stacking kernels is however computationally expensive. Inception
addresses this by using several kernels at the same level of a network
[18]. Classically deep neural networks suffer from vanishing gra-
dients during training. In [8], residual connections are introduced
to address this. To reduce computational costs MobileNets can be
applied. In [12] the original MobileNet splits the task of convolution
into two lower cost convolutions. This is further modified for perfor-
mance and complexity in the subsequent iterations of themodel [11].

While it is possible to process time-series data using the afore-
mentioned techniques, architectures specifically for time-series do
exist. A long-standing approach is using recurrent networks such
as LSTM [10]. Convolutional approaches can however outperform
recurrence on such tasks as shown in [1]. Temporal Convolutional
Networks, which consist of stacked dilated causal convolutions [13],
are specifically designed for this task.

An early approach for using machine learning for inertial tracking
is [19]. Here an SVM first identifies phone position before two SVRs
specific to this positioning regress x- and y-velocity. IONet [2] uses
motion data (vector of the last 200 samples of x,y,z-accelerations,
roll, pitch and yaw) to deduce the change in position and orientation
over the last step. The backbone of this design is LSTM. LSTM was
chosen to prevent vanishing/exploding gradients related to RNNs
[2]. The architecture is bi-directional as past and future frames are
relevant for accurate predictions [2]. To model intermediate steps in
determining output vectors, two layers of LSTMs are stacked atop
each other.
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The RoNIN-architecture is based on this. It has three variations,
LSTM, ResNet18 and TCN. Just like IONet, the ResNet-variant takes
200 frames of the same 6D positioning vectors as input. The ResNet
architecture has an additional fully-connected layer of 512 units to
produce the desired output shape of one 2D velocity-vector. Dur-
ing operation inference is performed every 10 frames. The result is
integrated over the time taken to sample the 10 IMU-frames to get
position change. The temporal architectures process frames sequen-
tially. For LSTM first a bilinear layer is applied to a frame. Then
both the bilinear-output and the input are concatenated. The subse-
quent LSTM-component consists of three layers with 100 hidden
states each. The LSTM output passes two linear layers. Per frame the
LSTM-architecture outputs a 2D velocity-vector. The TCN architec-
ture has six blocks with 16, 32, 64, 128, 72, and 36 channels resulting
in a receptive field of 253. This is followed by a 1x1 convolution.
During operation the 2D-velocity vector for a frame is integrated
over the time taken to sample the frame. This yields position change.

For rotation RoNIN uses a heading-agnostic coordinate frame. At
inference time all model input and output correspond to a fixed (ran-
domly chosen at the start) coordinate frame where the z-axis aligns
with gravity. To achieve this the android "game vector rotation sen-
sor" is used. This utility returns a quaternion which corresponds
to rotating positions in the heading-agnostic coordinate frame into
the frame aligning with phone position. This heading is used to
rotate the linear accelerations which by default are relative to the
device. Unlike the "rotation vector sensor", "game vector" does not
use geomagnetic measurement to keep its heading, therefore the es-
timate of device orientation suffers drift over time. An advantage is
that this makesmeasurements immune tomagnetic disturbances [6].

Out of all the papers mentioned in [15] only L-IONet ([3]) is con-
cerned with making pedestrian tracking efficient on mobile devices.
LSTM which is used in the original IONet suffers from having very
complex operations. It is also difficult to paralellize since it operates
sequentially. This leads to high resource use and slow inference.
In [3] WaveNet is used instead of LSTM, with the softmax-layer
replaced by pooling and a fully connected layer to generate position
and rotation change-vectors. The L-IONET is deployed on several
mobile devices in [3] achieving mean-squared errors comparable to
the two-LSTM-structure in IONet, while having significantly faster
inference time.

3 PROBLEM FORMULATION
Aside from results on the OxIOD dataset the RoNIN-architecture
significantly outperforms IONet. So far there has however not been
a paper trying to adapt the design to a limited-resource context in
the way [3] did. This paper aims to do so by making two important
contributions. An analysis of the performance of RoNIN motion
tracking on smartphones and Raspberry Pi and testing a wider range
of architecture variations for the backbone of the design. This results
in the following Research Questions:

(1) What are the performance characteristics of different varia-
tions of the RoNIN architecture?

(a) How do the architectures introduced in the paper perform
(ResNet18, TCN, LSTM)?

(b) How do MobileNetv3 (Small), VGGNet16 and Inceptionv4
perform?

(c) What is their inference time on a Smartphone?
(d) How much energy do they consume on a Raspberry Pi?
(e) How much error do they generate?

4 EXPERIMENTAL DESIGNS

4.1 Models
Six different backbones were trained: The ResNet18-architecture
was taken from [9]. It takes 200x6 input values to produce one 2D-
velocity-vector. Inception v3, VGGNet16 and MobileNetv3-small
operate with the same in- and outputs. All operations that would
regularly be 2D were converted to their 1D counterparts when build-
ing the models.

To reduce training time the number of inception blocks was reduced
from (InceptionA: 4, InceptionB: 7, InceptionC: 3) to (InceptionA:
1, InceptionB: 2, InceptionC: 1). For Inception v4, the final softmax
and dropout were replaced by FCOutputModule taken from model_-
resnet1d.py. This module consists of three linear, two ReLU and two
dropout layers. FCOutputModule allows changing the output to the
appropriate shape. Dropout was 0.2. The Trans_planes argument
was set to None as having more planes in the later layer would add
more parameters. For VGGNet the final fully connected layers were
likewise replaced by the FCOutputModule. Here dropout was 0.5
like for ResNet18. LSTM and TCN were used in the same way as in
the RoNIN-paper [9].

For mobile deployment the models were made more compact using
"torch.utils.optimize_for_mobile". This utility fuses different types
of operations together to reduce model size [5].

Table 1. Number of parameters in the different architectures

Model Num. Parameters
ResNet18 4634882
VGGNet 5627266
MobileNet 1473106
Inception 10143938
TCN 540488
LSTM 205832

4.2 Methodology
4.2.1 Training. The authors of [9] made pre-trained versions of
their architectures available on GitHub. These were not used and
instead all six backbones were trained with the same data. This was
necessary as only part of the RoNIN-dataset was published meaning
otherwise a proper comparison among architectures would have
been impossible. The same training methods as in [9] were used.
The ResNet18, VGGNet and MobileNet architectures were trained
to predict positional change over the 200 input frames. This train-
ing employed mean-squared-error loss. In the temporal case the
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outputs over 253 (LSTM) and 400 (TCN) frames were summed. Dur-
ing training the L2-norm of this sum and position change over the
frames was minimized. In [9] this unexpectedly lead to predicting
instantaneous velocity per frame. Training was performed using an
NVIDIA Tesla T4 with 256 GB of memory.

Training was considered complete upon stagnation of the valida-
tion error. In the case of VGGNet and ResNet this occurred after
39 iterations. For MobileNet 18 iterations of training were deemed
sufficient. TCN took 42 iterations and LSTM 16. Inception did not
converge during training.

4.2.2 Dataset. Only about half of the data used in [9] was made
publicly available. Of this only the RoNIN-dataset was used here, as
it was sufficiently large. The data was further split into three sets:
Training, Validation and Testing. Due to the significantly slower
training process of LSTM and TCN, a subset of the training set was
used for them.

4.2.3 Evaluation. To test accuracy the models were run on the test
set with code to reconstruct trajectories from their predictions. The
reconstructed trajectories can be seen under A. In [9] two met-
rics Absolute Trajectory Error (ATE) and Relative Trajectory Error
(RTE) are used. As per [17], ATE is calculated by first rotating and
translating the trajectory to minimize root-mean-square error with
ground-truth. ATE is the root-mean-square error that then results
from this. RTE is the root-mean-square error over a fixed (here one
minute) time-interval. The same metrics were used during evalua-
tion.

The Python code used for reconstructing trajectories was run on
a Raspberry Pi for all six models and all four test files. Using the
Arduino power measurement setup in 1 power draw was logged.
The python code records the time it takes to run, excluding the
time to load the model and dataset. Using operating time and power
measurements, total energy use was calculated. The models were

Fig. 1. Wiring diagram. The diagram is a modified version of a diagram
on the website in [4]. An INA219 was used to measure power draw. The
device is embedded in a JZK CJMCU-219 PCB (blue chip in the middle of
the schematic).

further deployed on three mobile devices: a Samsung Galaxy S8,
a Samsung Galaxy S23 and an HTC U11. A program was written
in Android Studio to perform inference on the same testing data

as used on the Raspberry Pi. Trajectory reconstruction was not
implemented locally to avoid complexity.

5 RESULTS AND DISCUSSION

5.1 Accuracy
The error of the different models can be seen in 2. Inception did
not converge during training and is therefore showing high levels
of trajectory error. This is likely due to vanishing gradients as the
model contains 51 subsequent convolutions. Due to not converging
it was excluded from the experiments. Besides for LSTM, error
performance of the remaining architectures was better than for the
tests on unseen data performed in [9]. This can be explained by the
fact that only a subset of the testing data from [9] was used here.
Non-temporal architectures outperformed temporal ones. A likely
cause is less training data having been used compared to VGGNet,
ResNet18 and MobileNet. Lower parameters counts (see 1) might
play a role too. As per [1] it was expected that LSTM underperforms
against TCN. This likely also relates to it having less than half as
many parameters (see 1). VGGNet performs best in terms of ATE.
Here too higher network complexity (see 1) offers an explanation.

Table 2. The average ATE and RTE (in m) over the 4 trajectories in the
test-dataset

Model ATE RTE
ResNet18 3.1 2.1
VGGNet 2.1 2.2
MobileNet 3.1 2.0
Inception 15.4 20.2
LSTM 5.0 2.6
TCN 3.1 2.3

5.2 Power consumption
As can be seen below the total energy consumption and inference
time closely correlated indicating that inference time was a good
proxy for energy use. Relative energy draw of LSTM and TCN was
very slightly lower compared to inference time. Due to their quick
inference times and uncertainty related to the start of measurements
this can be attributed to measurement error.

(a) Normalized total time for
processing the four test files
on Raspberry Pi.

(b) Normalized energy draw
for processing the four test
files on Raspberry Pi.

Fig. 2. Comparison between normalized energy use and inference time on
Raspberry Pi
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5.3 Inference Time
On the Raspberry Pi ResNet18 was faster than VGGNet. This is
in line with lower parameter counts. ResNet was in turn outper-
formed by MobileNet, which operates with less computationally
intensive convolution operations. The inherently temporal LSTM
and TCN significantly outperformed MobileNet, with TCN perform-
ing better than LSTM. This is in spite of having about twice as many
parameters 1.

Fig. 3. Total times (in ms) for processing the four test files on Raspberry Pi.

Surprisingly, unlike on Raspberry Pi, Resnet18 consistently under-
performed compared to VGGNet on all three smartphones. On the
S20 and U11 MobileNet was still the fastest non-temporal archi-
tecture. LSTM and TCN still significantly outperformed the other
architectures on the phones.

Fig. 4. Total inference times (in ms) for processing the 4 test files on a
Samsung Galaxy S23

Fig. 5. Total inference times (in ms) for processing the 4 test files on a
Samsung Galaxy S8

Fig. 6. Total inference times (in ms) for processing the 4 test files on an HTC
U11
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The code was also run without any ML-inference, purely loading
and storing data. The non-temporal data processing approach took
significantly more time here. For non-temporal out of a set of N-
frames, samples of 200 frames are taken at every 10th frame. This
results in roughly 200 * N/10 = 20*N data points for processing.
This stands in contrast to merely processing N-data points in the
temporal case. The difference in pure loading- and storing-time
between temporal and non-temporal was significant. It was not
20-fold, likely due to fixed costs for loading data. The measured
inference times in 3, 4, 5, 6 had differences in excess of factor 20.
From this it can be concluded that even if the temporal and non-
temporal architectures were to process the same amount of data the
temporal design would still be faster.

Fig. 7. Average file data loading times over the 4 files. The times are nor-
malized against the highest loading time (highest loading time corresponds
to non-temporal + HTC U11 in each case).

5.4 Flaws
Processing a test file on the phones does not directly mirror real-
world use of the devices. Under real-world conditions IMU-data
would regularly be sampled and used to continuously calculate
position. Since this results in only short bursts of model usage it
was not deemed suitable for measuring model inference times. The
phone test does not include reconstruction of the path it merely
generates the data needed to do so. This might skew results since
for N-data points the non-temporal architectures generate about
N/10 outputs as opposed to N-many in the temporal case. Given that
the Raspberry Pi has path-reconstruction and the trend of temporal-
strongly outperforming non-temporal-architectures persists, this is
unlikely to result in large alterations of experiment outcomes.

In some cases the time spent on temporal-inference is negligible
compared to data loading. For example operation time for TCN
on the Galaxy S23 was 6036ms. Running a version of the program
that performs no inference took 5973ms (the difference amounts to
random fluctuations). This makes it difficult to compare temporal
architectures.

To allow for faster training only a subset of the training data was
used for LSTM and TCN. This casts doubt over the correctness of
accuracy-comparisons made between temporal and non-temporal
architectures.

6 CONCLUSIONS
It can be seen that TCN is the ideal solution for minimizing energy
consumption. Further inherently temporal architectures represent
a more energy efficient approach to IMU processing. 2 reasons for
this were found. For one the temporal mode of operation processes
data points only once instead of processing a sliding window (which
contains repeats). Secondly the temporal architectures themselves
process the same amount of datapoints faster. When targeting maxi-
mal accuracy the high performance of VGGNet indicates that greater
parameter counts still allow for accuracy gains over the architec-
tures presented here. Directly measuring power draw was shown
unnecessary as inference time closely correlates with it.
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A APPENDIX TRAJECTORIES

(a) Trajectories for non-
temporal architectures

(b) Trajectories for temporal
architectures

Fig. 8. Trajectories reconstructed with the models for test file a000_1

(a) Trajectories for non-
temporal architectures

(b) Trajectories for temporal
architectures

Fig. 9. Trajectories reconstructed with the models for test file a000_2

(a) Trajectories for non-
temporal architectures

(b) Trajectories for temporal
architectures

Fig. 10. Trajectories reconstructed with the models for test file a000_3

(a) Trajectories for non-
temporal architectures

(b) Trajectories for temporal
architectures

Fig. 11. Trajectories reconstructed with the models for test file a000_4
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