
Testing Security and Performance of MQTT Protocol on Raspberry Pi for
IoT Applications
DANIL VOROTILOV, University of Twente, The Netherlands
SUPERVISOR: DR. ING. M.ELHAJJ (MOHAMMED), University of Twente, The Netherlands

Abstract - One of the core requirements for IoT Environments is an M2M
protocol, through which devices can communicate with each other. One
such protocol, which is widely used in IoT environments is MQTT. MQTT’s
lightweight design makes it ideal for resource-constrained IoT applications,
and Raspberry Pi’s affordability and versatility have positioned it as a popu-
lar platform for such projects. This research investigates the security and
performance of the MQTT protocol on Raspberry Pi 4 model B. To achieve
this goal, IoT environments with several levels of bandwidth will be created
and analyzed. The Raspberry Pi will be running the broker on a Linux in-
stance. Virtual instances of Linux will act as the clients. Then an analysis of
performance and security will be conducted on the data collected from the
experiments.

Additional Key Words and Phrases: IoT, MQTT, M2M, Raspberry Pi, Security,
Protocol, Linux

1 INTRODUCTION
Internet of Things (IoT) [10] refers to the interconnection of every-
day objects with embedded sensors, software, and internet connec-
tivity. These "smart" devices transcend their traditional functionali-
ties, acquiring the ability to collect and transmit data, communicate
with each other, and even respond autonomously based on pre-
programmed rules or machine learning algorithms. For such devices
to communicate with each other, some networking protocol must be
used. Many IoT environments are resource-constrained, whether it
is limited bandwidth or limited memory of devices. The lightweight
MQTT protocol was created exactly for such environments.

1.1 Background
MQTT was first created to monitor oil pipelines Andy Stanford-
Clark was made in 1998 [2]. The goal of MQTTwas to be bandwidth-
efficiency, lightweight, work in unstable network environments, and
use little battery power, whereas other application-layer protocols
such as HTTP wouldn’t work because of their large packet size
[3]. To understand how these goals were achieved we should look
at the MQTT packet structure. An MQTT packet consists of three
parts. The fixed header, variable header, and payload. Both variable
header and payload are optional parts of the packet, so in theory
the smallest MQTT packet is only 2-5 bytes [4] in length depending
on the ‘packet type’ field.

1.2 Motivation
The Message Queuing Telemetry Transport (MQTT) protocol has
emerged as the dominant messaging protocol within the Internet

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

of Things (IoT) domain. Much of the literature is about the perfor-
mance and security of the protocol. There isn’t much research on
implementing and analyzing the security of the MQTT protocol on
the Raspberry Pi. This is the main goal of this research. To analyze
the security, performance, and scalability of the MQTT protocol
when the server is run on a Raspberry Pi.

1.3 Structure
This paper splits the major research question into three smaller
research questions in section 2.5. A thorough literature review will
be conducted in section 3. After the literature review, the methodol-
ogy in section 4 will mention the proposed solution and how each
experiment will answer the research questions. Then the results
will be discussed and compared to previous literature in the section
6.

2 PROBLEM STATEMENT
MQTTs reliability and scalability make it a popular choice for IoT
systems [7]. Due to its popularity, it is a major target for attackers
attempting to steal valuable info or sabotage the system’s availability.
Security is a major concern for the MQTT protocol, and it’s one of
the problems this research aims to tackle. The other problem this
paper will cover is the performance of the MQTT protocol, and how
it compares to an alternative protocol, CoAP.

2.1 MQTT
The Message Queue Telemetry Transport (MQTT) protocol is a
protocol used for M2M communication within an IoT environment
[12]. It is a publish-subscribe protocol, meaning it utilizes the roles
of publisher and subscriber. In the MQTT protocol, the publisher
publishes to a designated group on the server. The server then
redirects the payload to all endpoints which are subscribed to the
publisher’s group. When compared to other protocols like HTTP,
the MQTT protocol has a considerably smaller header size, making
it better suited for IoT applications [7].

2.2 CoAP
CoAP is a messaging protocol for resource-constrained networks
like those with low-power sensors. It follows a RESTful client-server
model where clients request resources and servers respond. Security
is bolstered by DTLS and RSA encryption [13]. CoAP offers con-
firmable (CON) messages, which are packets that require acknowl-
edgment. This ensures the reliable transfer of packets. Additionally,
CoAP offers non-confirmable (NON) messages for situations where
confirmation is not critical. The protocol also supports various meth-
ods for interacting with resources including GET, PUT, POST, and
DELETE, mirroring functionality found in HTTP.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


TScIT 41, July 5, 2024, Enschede, The Netherlands D. Vorotilov

2.3 Scope
For the broker and client implementations, open-source projects will
be utilized. This makes debugging, and finding vulnerabilities easier,
as the source code is visible. The server will run on a Raspberry Pi
4 model b [11]. The Raspberry Pi itself will be running the 64-bit
Raspberry Pi OS Lite. The kernel version of the operating system
will be 6.6 and the Debian version will be 12. Version 5.0 of the
MQTT protocol will be used.

2.4 Aim
This research will aim to make a security analysis of the MQTT
protocol, as well as record data on the performance of the MQTT
protocol with the use of RPi 4 as the server. The MQTT protocol
itself will be analyzed instead of its implementation. This is why
pre-existing libraries for the server and the client will be used. De-
veloping a custom MQTT implementation for this project would be
unnecessarily complex and is therefore outside of the scope of this
research.

2.5 ResearchQuestions
(1) To what extent does the implementation of the MQTT proto-

col on Raspberry Pi 4 Model B ensure security?
(2) What are the resource utilization implications on the server

when subjected to varying Quality of Service (QoS) levels in
MQTT communication, with specific attention to CPU clock
cycles and memory consumption?

(3) How does the performance of MQTT compare to that of CoAP
in terms of latency, throughput, and reliability?

3 LITERATURE REVIEW
Authors in [6] address the critical issue of security in the Internet
of Things (IoT) landscape, particularly focusing on the Message
Queue Telemetry Transport (MQTT) protocol commonly used for
communication among IoT devices. The authors identify a spe-
cific vulnerability within MQTT that enables clients to manipulate
server behavior, thus introducing SlowITe, a novel low-rate denial
of service (DoS) attack tailored to exploit this weakness. Through
empirical validation against real MQTT services, both encrypted
and plaintext, the authors demonstrate the effectiveness of SlowITe
in orchestrating DoS attacks with minimal resources. The paper un-
derscores the significance of the identified vulnerability and calls for
further refinement of the MQTT protocol to mitigate such threats.
Additionally, it advocates for the development of detection and miti-
gation systems to safeguard against similar attacks in the future. By
conducting tests on various MQTT services and exploring potential
enhancements to the SlowITe attack, the study provides valuable
insights into the vulnerabilities of MQTT and sets the stage for
future research in IoT security.

Building on the work of [5], this paper investigates the application
of machine learning for DoS attack detection in MQTT networks.
The study aims to identify the most effective method for detecting
anomalous device behavior based on MQTT traffic characteristics.
The authors propose a modular DoS attack detection system specif-
ically designed for the MQTT protocol. This system collects and
stores message-related information, linking traffic data to network

addresses, device IDs, and usernames. The researchers then evalu-
ate system performance using the F1-score to determine the opti-
mal detection approach. Their findings suggest that Support Vector
Machines with RBF kernel and SMO optimization, or Multilayer
Perceptron artificial neural networks, achieve the most effective
DoS mitigation. This study’s findings can significantly improve the
accuracy and efficiency of DoS attack detection in MQTT-based IoT
networks.
A performance analysis by [13] compared the Message Queue

Telemetry Transport (MQTT) and Constrained Application Protocol
(CoAP) protocols. In lossless, unsecured networks, CoAP messages
averaged only 226 bytes, while MQTTmessages required an average
of 1560 bytes. This significant difference stems from the underlying
transport protocols: MQTT utilizes TCP, known for its reliability but
larger overhead, while CoAP leverages UDP’s lighter-weight design.
This research underscores the importance of protocol selection for
bandwidth-constrained applications in the Internet of Things (IoT).
By adopting CoAP, resource-limited devices can conserve valuable
network resources, ultimately contributing to a more scalable and
efficient IoT ecosystem.
Building upon prior work [8], this study investigates the perfor-

mance benefits of utilizing the QUIC transport protocol for MQTT
messaging. Compared to the traditional MQTT over TCP approach,
MQTT over QUIC demonstrates significant improvements in con-
nection establishment efficiency. The research found a 56% reduc-
tion in the number of packets exchanged during handshake, directly
translating to reduced processor and memory usage on the server
side. Specifically, eliminating half-open connections yielded up to
83% lower processor utilization and 50% less memory consumption.
Additionally, MQTT over QUIC eliminates head-of-line blocking,
a phenomenon that can significantly impact message delivery la-
tency. This study demonstrates a latency reduction of up to 55%,
highlighting the potential of QUIC to improve the responsiveness
and real-time capabilities of MQTT-based applications. These find-
ings suggest that MQTT over QUIC offers a compelling alternative
for scenarios demanding efficient and reliable data exchange in
resource-constrained environments. The research in [9] investi-
gated the performance of the Message Queue Telemetry Transport
(MQTT) protocol running on a Raspberry Pi Zero W configured as
an IoT gateway. The study focused on three key performance indi-
cators: processor temperature, CPU usage, and message reception
rate under varying Quality of Service (QoS) settings. The findings
revealed that the maximum processor temperature remained well
below critical thresholds, ensuring the safe operation of the Rasp-
berry Pi. Interestingly, the number of received messages exhibited
some random variation, suggesting potential network or client-side
factors at play. CPU utilization remained consistently low through-
out the experiments, indicating sufficient processing headroom for
the chosen workload. These results demonstrate the suitability of
the Raspberry Pi Zero W as a low-power gateway for resource-
constrained MQTT-based IoT deployments.

4 METHODOLOGY
To conduct the experiments, an MQTT broker and client will need to
be chosen. The broker and client must fit the following requirements:

2



Testing Security and Performance of MQTT Protocol on Raspberry Pi for IoT Applications TScIT 41, July 5, 2024, Enschede, The Netherlands

• Open-source
• Include MQTT version 5.0
• Python library

The reason an open-source broker is a requirement is because open-
source projects are more transparent. This is due to the open nature
of an open-source project, where source code is publicly available
on GitHub. My second requirement is to find a broker and client
solution that adheres to version 5.0 of the MQTT protocol. Most
of the current literature on the MQTT protocol uses version 3.1.1,
therefore utilizing version 5.0 of MQTT would expand the current
literature on the subject. The last requirement exists to gather the
latency data as explained in section 4.3 of the paper. For this, features
of the Python language are needed such as the "time" library to
calculate the latency of a packet.

4.1 Proposed Solution

Fig. 1. Testbed setup

Many solutions for an MQTT broker exist. For this research, the
EMQX broker will be used. The EMQX broker is made with Erlang
and supports MQTT version 5.0. For the client, the Python "mqtt-
paho" library will be utilized. This library gives a synchronous and
asynchronous API to communicate with the MQTT broker.

4.2 Hardware and Software setup
The broker implementation that will be used is the EMQX broker.
EMQX Broker is open-source and made with Erlang. The broker
will be running on the Raspberry Pi 4 model b.

An SSH connection will be utilized to control the RPi 4 with the
MacBook Pro. Additionally, the MacBook Pro will generate traffic
throughout the experiments. For the security analysis, the MacBook
Pro will act as the legitimate client.
The ACER laptop will be run on Kali Linux. This Linux distri-

bution is common for security analysis as it provides many tools
to aid in security analysis such as Nmap, Ettercap, and Wireshark.
Nmap will be used for scanning used ports, Ettercap will be used for
ARP spoofing attacks, and Wireshark will be used for monitoring
network traffic. Additionally, this laptop will be used to answer the
research question in 3, as it is easy to control packet loss probability
with the Linux command "tc".

Table 1. Hardware Specification

Broker Client Attacker Router
RPi 4 MacBook Pro ACER ASPIRE 3 Archer AX10

Table 2. Software Specification

MQTT Broker MQTT Client CoAP Operating System
EMQX paho-mqtt aiocoap RPi OS Lite (64-bit)

All devices will be on the same private network, communicat-
ing through the ’wlan0’ interface. The router which enables this
communication is the tp-link router.
For the research question in section 3, the Python CoAP library

will be used called "aiocoap". Several measurements must be con-
ducted regarding the performance of the RPi 4.

4.3 Measurement Metrics
To answer the research questions, the following measurement met-
rics will be recorded: CPU clock cycles, memory utilization, battery
usage, packet latency, throughput, and reliability.
To perform stress-testing for the research question in section 2,

a shell script will be utilized to execute the "top" command for 10
iterations. This command will record CPU and memory usage in
percentage values. The stress test will consist of a certain number of
client instances subscribing to the broker. The number of subscribers
will start from 10 and go up to 100, in increments of 10. Throughout
all iterations, there will be one publisher, constantly sending as
many MQTT packets as possible in a Python script using the paho-
mqtt library. The results will be piped into a text file. Then the mean
of the 10 instances will be taken, with the equation 2 below.

1
10

10∑︁
𝑛=1

𝑎𝑛 (1)

The top command gives CPU usage concerning the power of 1 core.
So when this result reaches 100%, one core is being fully utilized.
Since the RPi 4 has four cores, the full CPU usage is represented by
400%.

• Packet Size:Wireshark will be utilized to capture packets on
’wlan0’ interface. The ’length’ field will be used to analyze
packet size.

• For CPU and Memory Usage: A shell script that will exe-
cute the "top" command every 2 seconds and store the output
in a log file will be utilized.

• For Packet Latency: An Python client library on the ACER
will be utilized. The difference between the timestamp of the
last byte received and the last byte sent will be displayed in a
box plot in milliseconds. These differences will be recorded in
several controlled environments. The independent variable in
these environments would be packet loss. To simulate packet
loss, a Linux command "tc" will be employed before the server
processes the packet. The script will drop a certain percentage
of packets ranging from 0% to 10% in increments of 2%. The

3



TScIT 41, July 5, 2024, Enschede, The Netherlands D. Vorotilov

results will then be displayed in a box plot, where the unit of
time measurement will be milliseconds.

5 SECURITY ANALYSIS
Firstly, we will set the security requirements for the MQTT protocol.
Security requirements define the essential security goals that the
systemmust achieve. These goals encompass data confidentiality, in-
tegrity, and availability. Identifying critical assets and understanding
potential vulnerabilities is crucial to establishing these requirements.
Then, the security design section will show a possible translation of
the established security requirements into a technical implementa-
tion. Lastly, threat modeling will be conducted, where a proactive
identification of potential threats and vulnerabilities the system
might face will be performed.

5.1 Security Requirements
One major goal in security is cryptographic communication. The
goal of cryptographic communication is to make sure that the con-
tent can only be seen in its original form only by the sender and the
receiver. Any third party intercepting the packet should not be able
to interpret the content meaningfully.
The availability of the MQTT protocol is an important aspect

of the IoT field. Much research has been conducted on conducting
DoS attacks towards brokers implementing the MQTT protocol. For
example, the authors in [6] identify a specific vulnerability within
MQTT that enables clients to manipulate the time the attacker con-
nection will be in a ’alive’ state. This DoS attack uses low bandwidth
rates, thus the name ’SlowITe’ was given. The researchers have
attempted to do this attack in MQTT Version 3.1.1.

5.2 Security Design
The MQTT Protocol offers three Quality of Service options. The
first option, which has code 0 is "fire and forget". With this option,
MQTT packets are sent without being acknowledged. The main
advantage of using this configuration is the low overhead of MQTT
packets.
Quality of Service options 1 and 2 offer reliable transmission of

packets, by using acknowledgments. This mechanism ensures the
integrity of the system, by making sure the packets get transmitted
with acknowledgments.

MQTT allows cryptographic communication through TLS. If Con-
fidentiality is a security goal for the IoT system, all connections to
the broker must be made through TLS. Alternatively, TCP connec-
tions could be used for publishing or subscribing to topics that
exchange non-crucial data. Any attacker performing a man-in-the-
middle attack can intercept MQTT packets over a TCP connection,
and be able to see all the MQTT metadata as well as the full payload
in plain text. However, TLS has its own drawbacks. The main disad-
vantage is larger packet sizes. This can be seen in figure 3, which
depicts the number of bytes required for a protocol to achieve a
certain state.

Table 3. Bytes required to achieve a certain state

Protocol CON SUB PUB DISC

TCP 194 148 424 268
TLS 3382 262 512 380

5.3 Threat Modeling
MQTT Version 5.0 takes a different approach to clean sessions than
version 3.1.1. Instead of a single clean session flag, version 5.0 pro-
vides two fields: Clean Start and Session Expiry Interval. Clean Start
lets the server know whether the session is new or not, and Session
Expire Interval is a field that represents how long the session will
expire after the network connection is disconnected. Compared to
the specification of version 3.1.1, where the sessions remained on
the server indefinitely, the sessions in version 5.0, are removed after
Session Expire Interval, freeing up the memory. However, an at-
tacker could set the Session Expire Interval to ’0xFFFFFFFF’, which
would lead to the session never being expired even after the client
disconnects. The protocols explain that both the client and server
"must" save the session if the client disconnects. Additionally, a
"Will Message" is a message that must be stored on the server and
associated with a session. MQTT version 3.1.1 suggests Persistent
Sessions should never expire [1]. The implementation as per OASIS
standard description, a denial of service attack could be employed
via the mass creation of Persistent Sessions, causing exhaustion of
memory. This would violate the Availability of the MQTT Broker,
therefore, in practice, the implementations of the MQTT broker
should provide a global configuration where the user can set the
session expiration time.
figure 2 shows a graph of CPU % usage in relation to 1 core.

Since the RPi 4 has 4 cores, the maximum CPU usage when using
the command "top" can be 400%. The graph shows a clear linear
relationship between subscribers connected to a topic and CPU
usage by the broker.
The figure in 2 shows that connections over TLS were the most

CPU demanding. Both graphs are scaled between 0 and 400% on
the y-axis and 0 to 100 subscriber connections on the x-axis. The
most CPU-intensive TLS traffic for the broker was with ’QOS 0’.
The broker reaches a maximum usage of 325.34 at 100 subscribers
with ’QOS 0’. Since the maximum CPU usage is 400%, 3.25 out of
4 CPU cores were used for the MQTT broker. This is 81.3% usage
of the CPU for 100 subscribers. Using linear interpretation, we can
predict how much subscriber count is required to reach 400%.

𝑦1 − 𝑦10
𝑥1 − 𝑥10

(2)

First, we find the slope with the following equation taking the
difference of the fraction of the first and the last points. With this,
we get a slope of 1.32.

1.32𝑥 + 𝑐 = 𝑦 (3)

after substituting x with 10 and y with 206.84, we get the c constant
as 193.64. Finally, we have the following equation:

1.32𝑥 + 193.64 = 400 (4)

4



Testing Security and Performance of MQTT Protocol on Raspberry Pi for IoT Applications TScIT 41, July 5, 2024, Enschede, The Netherlands

0 20 40 60 80 100

40

80

120

160

200

240

280

320

360

400

subscribers

CP
U
U
sa
ge

as
4[
U
sa
ge

%
in

re
la
tio

n
to

1
co
re
]

QOS 2
QOS 1
QOS 0

0 20 40 60 80 100

40

80

120

160

200

240

280

320

360

400

CP
U
U
sa
ge

as
4[
U
sa
ge

%
in

re
la
tio

n
to

1
co
re
]

QOS 2
QOS 1
QOS 0

Fig. 2. TCP and TLS CPU utilization

After solving for x, we get 156.33. This means we would require 156
connections to the MQTT Broker to achieve 400% of the CPU usage,
meaning all of the CPU usage would be towards the MQTT broker.
This would negatively impact the availability of the MQTT Broker.

The figure in 3, shows memory usage in TCP connections remains
stable when the subscriber amount is increased.
As can be seen, the memory usage of the EMQX broker is fairly

stable. The only noticeable increase happens with "QOS 2", at 100
subscribers, where the memory usage peaks at 13%.

As can be seen by the figure 4, packet loss has a marginal impact
on the performance of CoAP. Comparatively, when looking at the
figure 4, we can see the biggest deviation from 0% packet loss to
2% packet loss. The median in 2% packet loss stays low at 10.48 ms,
however, the 3rd quartile increases to 133.21 ms from 13.40 ms at 0%
packet loss. This is a 993% increase, which suggests MQTT is not
very good at dealing with packet loss. This is further proven when
looking at the median rise in figure 4 as the packet loss % increases.
To calculate throughput, the following equation is used:

𝑇𝐻𝑅𝑂𝑈𝐺𝐻𝑃𝑈𝑇 =
𝑀𝐸𝐺𝐴𝐵𝑌𝑇𝐸𝑆

𝐿𝐴𝑇𝐸𝑁𝐶𝑌 (𝑚𝑖𝑛) (5)

We calculate the throughput of MQTT and CoAP by taking the
number of bytes in the payload and dividing it by the latency as
described in section 4.3. The median latency of 1000 trials will be
taken to calculate throughput. Below are the equations used to
convert my data from bytes into megabytes in 6, as well as convert
the latency from milliseconds to minutes in 7, which were both used
to figure out the throughput with equation 5.

𝑀𝐸𝐺𝐴𝐵𝑌𝑇𝐸𝑆 = 𝐵𝑌𝑇𝐸𝑆/1000000 (6)

𝐿𝐴𝑇𝐸𝑁𝐶𝑌 (𝑚𝑖𝑛) = 𝐿𝐴𝑇𝐸𝑁𝐶𝑌 (𝑚𝑠)/1000/60 (7)
The throughput data is then presented in table 4 using megabytes
per minute as the unit. From the results, we can see a reverse linear
relationship between MQTT’s throughput as packet loss increases.
A 94.23% decrease in throughput can be seen between 0% and 10%

Table 4. Throughput comparison between MQTT and CoAP

Packet Loss 0% 2% 4% 6% 8% 10%

MQTT (MB/min) 6.07 5.73 2.81 0.59 0.54 0.35
CoAP (MB/min) 6.00 6.03 6.03 6.15 6.25 6.09

packet loss. Alternatively, the throughput of CoAP remains stable,
reaching 6.25 MB/minute at 8%. These results suggest that CoAP is
more suitable in unstable networks with high packet loss percentage.

Similarly, cryptographic communication requires additional bytes
for cryptography-related information, such as public keys or cer-
tificates. Additionally, a lot more bytes need to be exchanged to
achieve a certain state when using TLS. To highlight the packet
size difference between a TCP and a TLS connection, an experiment
analyzing captured packets by wireshark will be held. The goal of
the experiment is to analyze the total bytes exchanged between the
client and server to achieve a certain state. For example, to achieve
the connected state with a TCP connection, 194 bytes are required.
To make this experiment fair, the following variables between TCP
and TLS connections were controlled: QOS level, 0 re-transmissions,
equal payload length of 0 bytes, equal topic length of 4 bytes, and
MQTT version 5.0 for both connections. The states: CON, SUB, PUB,
and DISC represent "connected", "subscribed", "published", and "dis-
connected" respectively. States SUB, PUP, and DISC, are all achieved
from the CON state, as in MQTT, the client needs to be connected
to the server before any other action can be made. Each cell repre-
sents the number of bytes that need to be exchanged between client
and server to establish that state for a given protocol. The "estab-
lished state" in this experiment is defined in terms of fully achieving
an action within the MQTT protocol including the size of the last
acknowledgment, assuming no re-transmissions. This means the
very first byte sent from the client to the very last acknowledgment

5



TScIT 41, July 5, 2024, Enschede, The Netherlands D. Vorotilov

0 20 40 60 80 100

2

4

6

8

10

12

14

subscribers

M
em

or
y
U
sa
ge

in
%

QOS 2
QOS 1
QOS 0

0 20 40 60 80 100

2

4

6

8

10

12

14

subscribers

M
em

or
y
U
sa
ge

in
%

QOS 2
QOS 1
QOS 0

Fig. 3. TCP and TLS memory usage comparison

0 2 4 6 8 10
0

200

400

Packet Loss %

Ti
m
e
(m

ill
is
ec
on

ds
)

MQTT

0 2 4 6 8 10
0

5

10

15

20

Packet Loss %

CoAP

Fig. 4. MQTT and CoAP latency comparison

sent by either the client or the server. The largest difference can
be seen for the "CON" state, which takes 3382 bytes to establish
the TLS connection. This is 17.43 times larger than that of the TCP
connection. This is an issue for IoT projects, which are subject to
low bandwidth.

6 DISCUSSION
The research in [6], established a novel denial of service attack to-
wards the MQTT protocol, called ’SlowITe’. This attack made it
impossible to establish new legitimate connections with the broker,
which compromised the availability of the server. With such a cru-
cial vulnerability it is valuable to test it out on several versions of
MQTT and find ways to mitigate this attack. When attempting to
re-create the SlowITe attack, the broker offered ’unlimited’ connec-
tions allowed by default. As the SlowITe attack relied on abusing
the limits on several connections set by the broker, this attack was

not possible on the EMQX broker. However, allowing ’unlimited’
connections introduces other problems, such as the loss of control
of server resources. From the graph 2, the impact of additional sub-
scribers to a topic can be seen. This suggests that either the broker
would be susceptible to a SlowITe attack, or a traditional DoS attack,
where one publisher publishes to many subscribers.

In [12], payload throughput was measured and compared be-
tween TCP and TLS connections. The study concluded that the time
taken to establish a TLS connection was way greater than the TCP
connection. This can be explained using results from 3, where it
took 17.43 times more bytes to achieve the connected state for TLS
connections than the TCP connections. Additionally, TCP connec-
tions achieved a greater payload throughput than TLS connections
and achieved a greater energy efficiency [12]. A similar result can
be seen by comparing CPU usage in 2, where TLS connections use
significantly more CPU than TCP connections.

6



Testing Security and Performance of MQTT Protocol on Raspberry Pi for IoT Applications TScIT 41, July 5, 2024, Enschede, The Netherlands

performance was compared between MQTT and CoAP The exper-
iment for research question 3 compared the performance between
MQTT and CoAP with varying packet loss. The Authors had done
the same experiment, however, the results of the experiment were
different. The results in figure 4 from the experiment suggest that
CoAP is more performant in terms of latency when the network
has packet loss. However, the results in [13] show that the mean
latency of MQTT packets was lower than those of CoAP packets.
This paper answers all of the three research questions. A thor-

ough security analysis was conducted in 5. A performance analysis
was conducted, where stress tests were conducted on an MQTT
broker running on the RPi 4. The results in 2 show the CPU usage
when using TCP and TLS respectively. Additionally, a comparison
of memory usage between TCP and TLS can be seen in 3. The last
research question of comparing latency and throughput between
MQTT and CoAP was answered with an analysis of the gathered
data in figure 4 and table 4.

7 CONCLUSION
This research investigated the security and performance aspects
of the MQTT protocol in the Internet of Things (IoT) context. Our
analysis revealed that MQTT offers lightweight and efficient mes-
saging transport, making it suitable for resource-constrained IoT
devices. However, MQTT inherently lacks built-in security features.
This exposes data transmissions to eavesdropping, tampering, and
unauthorized access. The research explored using Transport Layer
Security (TLS) alongside MQTT. TLS implementation significantly
enhances the security of MQTT communication by encrypting data
and authenticating connections. However, TLS introduces some per-
formance overhead. Therefore, the trade-off between security and
performance should be managed based on the specific needs of the
IoT application. Future research directions could explore lightweight
security mechanisms specifically designed for resource-constrained
devices used in conjunction with MQTT.

REFERENCES
[1] 2014. MQTT Version 3.1.1. https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-

v3.1.1-os.html
[2] Shaun Behrens. 2019. From Oil Pipelines to the IoT: A Brief History of MQTT.

https://blog.paessler.com/a-brief-history-of-mqtt
[3] Ian Craggs. 2022. Understanding the Differences Between MQTT and HTTP. https:

//www.hivemq.com/blog/mqtt-vs-http-protocols-in-iot-iiot/
[4] Laurenz Dallinger. 2023. Mastering Mqtt Packet: A usage example guide. (2023).

https://cedalo.com/blog/mqtt-packet-guide/
[5] Dmitrii Dikii, Sergey Arustamov, and Aleksey Grishentsev. 2021. DoS attacks

detection in MQTT networks. Indonesian Journal of Electrical Engineering and
Computer Science 21 (01 2021), 601. https://doi.org/10.11591/ijeecs.v21.i1.pp601-
608

[6] Enrico Cambiaso Ivan Vaccari, Maurizio Aiello. 2020. SlowITe, a Novel Denial of
Service Attack Affecting MQTT. (May 2020). https://doi.org/10.3390/s20102932

[7] Daniel Kant, Andreas Johannsen, and Reiner Creutzburg. 2021. Analysis of IoT
Security Risks based on the exposure of the MQTT Protocol. Electronic Imaging 33,
3 (2021), 96–1–96–1. https://doi.org/10.2352/ISSN.2470-1173.2021.3.MOBMU-096

[8] Puneet Kumar and Behnam Dezfouli. 2019. Implementation and analysis of
QUIC for MQTT. Computer Networks 150 (2019), 28–45. https://doi.org/10.1016/j.
comnet.2018.12.012

[9] Diana Bezerra Correia Lima, Rubens Matheus Brasil da Silva Lima, Douglas
de Farias Medeiros, Renata Imaculada Soares Pereira, Cleonilson Protasio de
Souza, and Orlando Baiocchi. 2019. A Performance Evaluation of Raspberry
Pi Zero W Based Gateway Running MQTT Broker for IoT. In 2019 IEEE 10th
Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON). 0076–0081. https://doi.org/10.1109/IEMCON.2019.8936206

[10] Maroun Chamoun Mohammed El-Hajj, Ahmad Fadlallah and Ahmed Serhrouchni.
2019. A Survey of Internet of Things (IoT) Authentication Schemes. (2019).
https://doi.org/10.3390/s19051141

[11] Avram Piltch. 2020. . https://www.tomshardware.com/reviews/raspberry-pi-4
[12] Thomas Prantl, Lukas Iffländer, Stefan Herrnleben, Simon Engel, Samuel Kounev,

and Christian Krupitzer. 2021. Performance Impact Analysis of SecuringMQTTUs-
ing TLS. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering (Virtual Event, France) (ICPE ’21). Association for Computing Ma-
chinery, New York, NY, USA, 241–248. https://doi.org/10.1145/3427921.3450253

[13] Victor Seoane, Carlos Garcia-Rubio, Florina Almenares, and Celeste Campo. 2021.
Performance evaluation of CoAP and MQTT with security support for IoT en-
vironments. Computer Networks 197 (2021), 108338. https://doi.org/10.1016/j.
comnet.2021.108338

7

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://blog.paessler.com/a-brief-history-of-mqtt
https://www.hivemq.com/blog/mqtt-vs-http-protocols-in-iot-iiot/
https://www.hivemq.com/blog/mqtt-vs-http-protocols-in-iot-iiot/
https://cedalo.com/blog/mqtt-packet-guide/
https://doi.org/10.11591/ijeecs.v21.i1.pp601-608
https://doi.org/10.11591/ijeecs.v21.i1.pp601-608
https://doi.org/10.3390/s20102932
https://doi.org/10.2352/ISSN.2470-1173.2021.3.MOBMU-096
https://doi.org/10.1016/j.comnet.2018.12.012
https://doi.org/10.1016/j.comnet.2018.12.012
https://doi.org/10.1109/IEMCON.2019.8936206
https://doi.org/10.3390/s19051141
https://www.tomshardware.com/reviews/raspberry-pi-4
https://doi.org/10.1145/3427921.3450253
https://doi.org/10.1016/j.comnet.2021.108338
https://doi.org/10.1016/j.comnet.2021.108338

	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Structure

	2 PROBLEM STATEMENT
	2.1 MQTT
	2.2 CoAP
	2.3 Scope
	2.4 Aim
	2.5 Research Questions

	3 LITERATURE REVIEW
	4 Methodology
	4.1 Proposed Solution
	4.2 Hardware and Software setup
	4.3 Measurement Metrics

	5 Security Analysis
	5.1 Security Requirements
	5.2 Security Design
	5.3 Threat Modeling

	6 Discussion
	7 Conclusion
	References

