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Bilateral Control Scheme for Surgical Robotic
System Collaboration

Gregory Y. Ward

Abstract—Robotics holds an ever-growing place within surgery.
This paper presents methods introducing a new way of coordinat-
ing multiple medical devices during an aortic catheter insertion.
This, ultimately, allows for complete automation of the process.
We establish the motivation behind the proposed system; hazards
faced through fluoroscopy (the imaging technique required in
the procedure) are discussed. Furthermore, reasoning as to why
collaboration of these systems is beneficial is presented. High-
level, kinematic modelling of each system’s robotic manipulators
allows for catheter control (through joint angle input provided by
the operator) and automatic positioning of a C-Arm fluoroscope
within the catheter’s bending plane. A mathematical model of
the fluoroscope’s projection creates an artificial image of the
catheter and aorta’s interior. This completes the system model.
Image processing allows for an angle estimation method. Thus,
completing the required inputs for the bilateral control scheme.
The complete bilateral control method allows for fully automated
positioning of the C-Arm fluoroscope. To validate the presented
methods, a simulated test bench environment was created. This
motivates the feasibility of such a system. Considerations when
developing a realistic application, control optimisations and
limitations of the proposed system are also included in the
concluding section of this paper. The appendices contain in-depth
derivations of models and methods used to develop this bilateral
control scheme. The concept this paper proves can be applied to
many use cases. It opens a new door in medical and collaborative
robotics.

Index Terms—bilateral control, automated catheter insertion,
surgical robotics, collaborative robotics.

Monday 1st July, 2024

INTRODUCTION

AUTOMATION within medical procedures is ever-
increasing. The advantages brought by automation not

only lower the risk of certain procedures but also protect
surgeons from factors that can have bad implications for their
health. Equipment used during surgery can be quite complex
and requires specialised operators. It can also be quite te-
dious to calibrate and position optimally, costing crucial time.
During an operation, surgeons and operators must collaborate
synchronously to ensure a smooth and successful surgery. This
presents the issue that this paper proposes to explore: the
automation of surgical equipment for a procedure that requires
the collaboration of two robotic systems.

Fluoroscopic Imaging

Fluoroscopy is commonly used within surgery as an imaging
technique. This consists of a camera that captures real-time

Dr. Kenan Niu was the acting supervisor of Gregory during this project.

moving images of the inside of a patient using X-rays and
a fluorescent screen [1]. This camera is given freedom of
movement about the patient by attachment to a frame known
as a C-arm. This technique does not come without cost. Being
exposed to X-rays can lead to skin injuries and radiation-
induced cancer in severe cases. Exposure of ionising radiation
to the patient is best kept at a minimum and contained to
only regions of interest. Radiation is not only a danger to
the patient, but the surgeon will also receive exposure to
some levels of radiation. Over time this accumulated exposure
could pose a major issue to their health. Another issue faced
with medical apparatus is its complexity. When regarding
the C-arm, manual operation is no straightforward task; the
kinematics of the C-arm body are rather complex and finding
the old (optimum) position of the camera after moving it (it
obstructs the surgeon for example), can prove to be very time-
consuming [2]. Longer time duration leads to higher doses of
radiation; this is problematic.

Robotics within Surgery

Evidently the exposure a patient receives can not be avoided,
but it could be reduced to the absolute minimum. Full automa-
tion of the C-Arm would increase its precision of operation
and remove the need for an extra operator to be present in
the operating theatre; the C-Arm can be operated through a
remote control panel. This saves precious time during surgery,
reducing the patient’s exposure to the emitted X-rays. Many
surgical procedures today, take place with the assistance of
robotic systems. In this research, we consider aortic catheter
insertion. The catheter is inserted through a small incision
made in your groin, chest or top part of your shoulder. This
allows for a non-invasive method of placing an aortic valve
within a patient [8]. A teleoperated catheter would allow
surgeons to be absent from operating theatres during surgery,
eliminating any risks they can incur from radiation exposure.
Although advantageous, both systems still need to be operated
by different persons. One cannot control both simultaneously:
it is simply too great of a risk to the patient.

There then lies the gap into which this project explores:
creating a control scheme that allows for the C-Arm to follow
the catheter, at an optimal position, during its operation. In
this way, only the patient would be exposed to radiation, and
to a lesser degree. We can take this concept further and devise
a fully automated system in which the catheter is inserted
completely of its own accord given a projected path within the
aorta. This research aims to present methods and prove these
through the creation of a simulation environment, to devise a
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concept that will open the door to a new way of coordinating
multiple medical devices and robots for autonomous catheter
navigation.

PROPOSED METHODS

The system can be divided into two main categories: robotic
manipulators and image processing methods. Methods for
control of each system’s dynamics already exist [2], [7]
and are not the focus of this research. Instead, high-level
control through the kinematics manipulation is proposed. The
fluoroscope functions similarly to a light projector. A scaled
image of what the X-rays are projected through is perceived.
This is modelled to attain an artificial image. In turn, this
image is used to realise the complete, bilateral control scheme.
Figure 1 shows a block diagram of the complete system.

These methods propose homogeneous transforms. This is
imperative for the system proposed as the rotations of different
joint frames will be about origins which are not co-located.
Homogeneous transformation matrices are in R4×4 and allow
for the combination of translation and rotation transformations
into one matrix. To avoid confusion, regardless of whether
a manipulator’s joint actuates a translation or a rotation, its
configuration is still denoted by an angle θ.

C-Arm Manipulation

Forward Kinematics: We model the C-Arm part of the
system as a 3 DOF robotic manipulator. A diagram of said
manipulator is given in figure 2. Application of screw theory
allows for the full transformation, from the base to the end-
effector of the manipulator, to be described by equation 1.
Background on screw theory relevant to this paper is included
in appendix C.

gst(θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3gst(0) (1)

The separate matrix exponentials and their derivations are
included in appendix D.

We can now evaluate equation 1 as,

gst(θ) =

[
R(θ) p(θ)
01×3 1

]
(2)

In which R ∈ R3×3 and p ∈ R3. To simplify representation let
us define ci = cos(θi) and si = sin(θi). We can then express
R(θ) as,

R(θ) =

c1c3 −s1 c1s3
c3s1 c1 s1s3
−s3 0 c3

 (3)

And p(θ) as,

p(θ) =

−s1
(
l1 + l2 + θ2

)
c1
(
l1 + l2 + θ2

)
0

 (4)

The full transformation from base to end-effector is now
completely described by equation 2.

Inverse Kinematics: The inverse kinematics are derived by
way of geometric analysis methods. We begin with the first
joint of the C-Arm. This has rotational movement fixated in
the x-y plane. An abstraction is shown in figure 3.
Using polar coordinates, the angle of the first joint is straight-
forward to determine.

Without derivation:

θ1 = arctan
py
px

(5)

The second joint of the C-Arm is now considered. It actuates
a translation within the x-y plane. For some angle θ, the
difference in magnitude of the end-effector in current and zero
configuration gives the joint angle θ2. An abstraction is given
in figure 4.
The joint angle θ2 is simply the difference in radii.

θ2 = r2 − r1

=
√
p2x0

+ p2y0
−

√
p2x + p2y

(6)

Roboticising a Flexible Catheter

Forward Kinematics: The forward kinematics of the flexible
catheter are derived differently from that of the C-Arms’. Two
joints shall have their homogenous transformations determined
via screw theory, whilst the final joint shall be determined
using geometric analysis.

A diagram, defining the relevant parameters of the manip-
ulator, is given in figure 5.

The complete transformation is now described by equation
7.

gst(θ) = eξ̂1θ1eξ̂2θ2T 3
2 gst(0) (7)

The separate matrix exponentials and their derivations are
included in appendix E.

Equation 7 is evaluated as,

gst(θ) =

[
R(θ) p(θ)
01×3 1

]
(8)

We use the same representations as for the previous transfor-
mation Matrix. R(θ) can then be expressed as,

R(θ) =

 c1c3 −c1c3 s1
s3 c3 0

−c3s1 s1s3 c1

 (9)

And p(θ) as,

p(θ) =


c1
(
l1 +

l2
θ3
s3
)

θ2 +

(
l2
θ3

(
1− c3

))
−s1

(
l1 +

l2
θ3
s3
)

 (10)

Equation 8 now fully describes the transformation from base
to end-effector.
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Fig. 1: Block diagram presenting an overview of the proposed system.

Fig. 2: A diagram of the proposed C-Arm manipulator defin-
ing all relevant parameters. POI (position of interest) is the
location of the end-effector.

Fig. 3: Abstraction of the motion of joint 1.

Inverse Kinematics: Before deriving the inverse kinematic
relationships for the catheter, the DOFs shall be considered.
The first joint is revolute about the y-axis. This will affect
the rotation of the bending plane of the catheter. The second
joint is prismatic along the y-axis. The third, bending joint,
has movement within the bending plane.

The prismatic joint is straightforward. An abstraction is
shown in figure 4 with θ = π

2 .

Fig. 4: Abstraction of the motion of joint 2.

Fig. 5: A diagram of the proposed flexible catheter manipulator
defining all relevant parameters. POI (position of interest) is
the location of the end-effector.

Without derivation,

θ2 = py0
− py (11)

Turning to joint 3, the geometric analysis yields functions
that cannot be solved algebraically. Instead, the transcendental
function given by equation 47 can be solved to determine the
required joint angle. Let,

f(θ3) =
l

θ3
sin θ3 (12)

To determine the solution to this equation we require, θ3 such
that,

f(θ3)− py = 0 (13)
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The value or values (as there can be infinitely many solu-
tions) that satisfy the above equation will also be the global
minimiser or minimisers of the optimisation problem,

min ∥f(θ3)− py∥22 (14)

Application of the BFGS (this is detailed in appendix H)
algorithm then allows for obtaining an estimation of the
required bending angle. Formulating this approach as a min-
imisation problem, as opposed to the classical root finding
problem, reduces the computational complexity. The BFGS al-
gorithm has a computational complexity O(n2) as opposed to
the O(n3) computational complexity of the Newton-Raphson
method. The accuracy of employing a minimisation problem
to determine the solution will be explored in a later section.

For both manipulators, inverse kinematics to determine θ3
have not yet been discussed. For the catheter, this is assumed
known. The orientation of the aorta can be determined before
surgery and will act as a set point for the catheter. The C-Arm
requires extra modelling to devise a method that allows for the
determining of the required θ3 for some position. This shall
follow.

Fluoroscope Projection and Image Processing

Modelling the Projection: We begin by defining each point
on the catheter within the projection window as the set C =
{pi | pi ∈ R3}. Where, i ∈ N is the index of each point
within the set. We can now define projection transformation
Tproj : R3 → R2. The projection we wish to model is shown
in figure 6.

Fig. 6: Diagram depicting the projection of the catheter from
R3 to R2.

The transform Tproj can be expressed as the matrix multi-
plication of the separate stages of the transformation.

Tproj = TdecompTscaleTtransTperspTrot

=


α 0 β 0

− sin θ(t+b)
t−b − 2n

r−l
cos θ(t+b)

t−b 0

0 0 0 0
sin θ 0 − cos θ 0

 (15)

In which,

α =
2n cos θ − sin θ(r + l)

r − l
(16)

And,

β =
2n sin θ + cos θ(r + l)

r − l
(17)

The derivations for the entire and separate matrices are in-
cluded in appendix F.

In applying the transformation Tproj to C, we acquire the
set CP = {pi | pi ∈ R2}. Where, i ∈ N is the index of each
point within the set. CP comprises of all the points on the
catheter in the projection space of the C-Arm.

Image Processing: We desire a system that will automate
the rotation of the projection plane, upon detecting the rotation
of the bending plane. This presents us with an important
question: how can we detect the rotation of the bending plane?

(a) 0 rad rotation. (b) π
4

rad rotation. (c) π
2

rad rotation.

Fig. 7: Catheter tip of length 1 and bending angle π
2 rad for

different angles of rotation.

From a fixed perspective, one perceives a different bending
angle depending on the rotation of the catheter’s bending plane
as shown in figure 7.

An estimate of the bending angle is required to detect this
change. The projection model gives us an image of the form
shown in figure 8. Its colours have been inverted to make it
more realistic.

Fig. 8: Artificial image created by the projection model and
inversion of colours for a bending angle of π

2 rad.

It should be noted that, for this research, the artificial image
is ideal. Effects of noise, blurring and additional objects within
the image are ignored.

Each vector describing a point on the catheter in the pixel
space of the image belongs to CP (as defined in the previous
section).

To discern whether a pixel belongs to the background or the
catheter, a process known as segmentation must be applied.
Regions are formed in the image, with pixels belonging to
objects or a specific part of an object within that image. This
simplifies analysis [4].

If we let R represent the entire spatial region occupied by
the image,

R = R1 ∪R2 | R1 ∩R2 = ∅ (18)

In which, R1 represents the pixels belonging to the catheter
and R2 those belonging to the background.

As the ideal image is simple, thresholding is adequate
to segment the image. A histogram of the image’s pixel
intensities is created. Thresholds are then chosen to section
the image into the desired regions of interest. For the artificial
image in figure 8 with only 2 regions of interest, thresholding
can be used to create a binary image.
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Let IT represent the pixel intensity threshold and f(x, y) the
pixel intensity within the image. We can then define g(x, y)
as the binary value of that pixel after the threshold has been
applied.

g(x, y) =

{
1 f(x, y) ≥ IT

0 f(x, y) < IT
(19)

We can reduce the binary objects to a 1-pixel-wide repre-
sentation to simplify feature extraction. This is called skele-
tonisation. It entails making successive passes of the image
to identify pixel borders which are removed on the condition
that the connectivity of the corresponding object is not broken
[5]. The image in figure 9 results from all this combined
processing.

Fig. 9: Artificial image after being segmented and skele-
tonised.

Extracting the location of each pixel with the binary value
corresponding to region R1 yields the positional vectors be-
longing to CP . Figure 10 shows the resulting data from the
processed, artificial image.

Fig. 10: Graph of points extracted from the artificial image
after processing.

Geometrical analysis allows for an angle estimation method;
the bending part of the catheter is well-modelled as the
segment of a circle. One can obtain the bending angle using
the equations of an arc length, namely l = rθ. As l is a
known quantity, obtaining the radius r of this circle allows
for calculating the bending angle θ.

Acquiring the circle, correlating to the segment acting as
the flexible portion of the catheter, can be done using a fitting
algorithm. This comprises of solving a minimisation problem
to obtain the best estimate of a circle that fits all the points in
CP . An estimate of the angle follows from this. The method of
minimisation applied is the method of least squares. Appendix
G includes further detail regarding this method. For the vectors
belonging to CP , we define the equation of an ideal circle.(

xi − xc

)2
+
(
yi − yc

)2
= r2 (20)

Where i ∈ N is the index of a vector belonging to CP . We
can re-write the expression in the form,

axi + byi + c = x2
i + y2i (21)

In which,

a = 2xc

b = 2yc

c = r2 − x2
c − y2c

(22)

For every vector belonging to CP , the whole system can
be written in matrix form. Let n be the number of vectors
belonging to the set CP . Then,

x1 y1 1
x2 y2 1
· · · · · · · · ·
xn yn 1

 ·

ab
c

 =


x2
1 + y21

x2
2 + y22
· · ·

x2
n + y2n


Ax = b

(23)

Where A ∈ Rn×3, x ∈ R3 and b ∈ Rn. The optimal
solution (as proven in appendix G) to this inconsistent system
of equations is given by,

x̂ =
(
ATA

)−1
AT b

=

ab
c

 (24)

Where, x̂ ∈ R3.
Rearranging the original expression for a, b and c,

xc =
a

2

yc =
b

2

r =

√
4c+ a2 + b2

2

(25)

We obtain the parameters of the best-fitting circle for the
vectors in CP .

Applying the fitting algorithm to the points displayed in
figure 10 results in the image shown in figure 11. The
effectiveness of this algorithm shall be assessed in a later
section of this paper.

Fig. 11: Resulting circle from applying the fitting algorithm
to the points extracted from the artificial image.

CONTROL

For this research, control of the system dynamics is assumed
to exist. Control in this context refers to the high-level control
of the manipulator kinematics via some algorithm.

Control of the camera position, relative to the position of
the catheter tip within its bending plane, requires only the



BACHELOR THESIS G. Y. WARD, JULY 2024 6

inverse kinematics of the C-Arm. Catheter tip position can
be fed back directly as an input to the kinematics models.
Methods of acquiring this position are also assumed to exist.
The configuration of the C-Arm manipulator will then adjust
depending on the insertion or bending of the catheter within
the plane of bending. Figure 12 contains a block diagram of
this proposed control structure.

Fig. 12: Block diagram for the control of the C-Arm position
within the bending plane. θ1 and θ2 are the angles of joints 1
and 2 of the catheter respectively.

Rotation of the catheter relative to the perspective angle of the
fluoroscope introduces ambiguity in our angle estimation. The
“actual” angle (or best estimate) is the maximum perceived
angle by the estimator — rotation of the catheter gives the
illusion of the catheter’s bending radius increasing, thus,
causing a decrease in the estimated bending angle.

The rotation of joint 3 of the catheter is continuous, closed
and bounded on the interval [0, 2π]. We can apply, therefore,
the extreme value theorem [6]. Let f be a function representing
the estimate of the angle for some rotation of the catheter.
It follows that f is continuous, closed and bounded on the
interval [0, 2π]. Hence,

f(c) ≥ f(x) ≥ f(d) ∀x ∈ [0, 2π] (26)

In which c, d ∈ R.
This allows us to create a searching method allowing the

C-Arm to determine its optimal position. Initially, the angle
estimator defines the current perceived angle. Joint 3 of the
C-Arm then rotates left and right of the current angle of joint
3 (by some defined step) and compares the angle perceived
at these locations, to the current angle. Upon finding that
the perceived angle in one direction increases, the C-Arm
continually rotates and re-estimates the angle until the estimate
decreases. The largest angle perceived before the estimation
began decreasing, is the maximum perceived angle. The C-
Arm then defines its optimal position on this basis. Figure 13
gives a block diagram of this control method.

Fig. 13: Block diagram for the control of the C-Arms optimal
perspective tracking. θ3 is the angle of joint 3 of the catheter.

Full system automation is obtained through adding an extra,

preliminary step to the diagram in figure 12. Inverse kinemat-
ics of the catheter allow for the following of a planned path.
The optimal perspective will again be found via the control
strategy depicted in figure 13.

EXPERIMENTAL VALIDATION OF PROPOSED METHODS

Simulator
We prove the feasibility of the proposed system by creating

a simulation test bench. This aims to showcase the validity
of the models, control and ultimately the effectiveness of the
design.

Figure 14 is an image of the simulation environment.
Both systems are modelled and an aorta is also visible. The
catheter is controlled through joint angle inputs. The window
in the bottom right corner displays the projection from the
perspective of the fluoroscope receiver.

Fig. 14: Overview of the system within the simulation envi-
ronment.

The catheter model was first simulated in Matlab. Figure 15
depicts the bending joint for various angle inputs. The endpoint
is also identified.

Fig. 15: Plot of the catheter’s bending joint for various angles
and a length of 1. A triangle marks the endpoint.

The validity of this model within the simulation environ-
ment is shown in figure 16.

The projection model produces the correct image. Changing
the position of the C-Arm receiver relative to the aorta changes
the angle at which it is perceived. Figure 17 shows this for
two positions.

Figure 18 displays the result of the searching algorithm and
the automated catheter insertion. The camera seeks the optimal
position (orthogonal to the bending plane of the aorta) and the
catheter calculates the correct joint angles to reach the target.
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Fig. 16: An image of the simulator depicting the bending joint
and its projection for a bending angle of π

2 rad.

(a) (b)

Fig. 17: Comparison of aorta projection for different perspec-
tives.

Fig. 18: Example of automated catheter insertion; the target is
marked in red.

Evaluation of Manipulator Kinematics

Further validation of the accuracy of the auto-insertion
methods is done by comparing the actual and calculated
bending angles. The table below lists the actual and calculated
angles. The percentage error is also included.

TABLE I: Validation of the bending joint’s inverse kinematics

Actual Angle (deg) Calculated Angle (deg) Percentage Error (%)
10 0.06 99.4
20 19.97 0.15
30 29.96 0.13
40 39.94 0.15
50 49.93 0.14
60 59.91 0.15
70 69.90 0.14
80 79.88 0.15
90 89.87 0.14

The percentage error for a bending angle of 10 deg is most
noticeable. For bending angles below 13 deg, the minimisation
algorithm used in the inverse kinematics calculations yields
a near-zero solution. Initial speculation would suggest that

the starting point of the algorithm is incorrect for small
angles. This, however, needs further investigation. For angles
above 13 deg the inverse kinematics method performs with
acceptable degrees of error. Catheter insertion, therefore, is
only possible for targets with bending angles > 13 deg.

Assessment of Catheter Angle Estimation

A similar analysis is done to validate the performance of
the angle estimator. The results of which are given in the table
below.

TABLE II: Validation of the angle estimator

Actual Angle (deg) Estimated Angle (deg) Percentage Error (%)
10 9.36 6.40
20 19.40 3.00
30 29.87 0.43
40 38.98 2.55
50 48.85 2.30
60 60.36 0.60
70 69.98 0.03
80 80.54 0.68
90 89.07 1.03

Percentage error is, again, noticeably higher for small angles.
For smaller angles, the straight section of the catheter has more
influence over the circle fitted in the angle estimation process.
A further image processing step to obtain only the curved
section of the catheter would help alleviate this issue. Overall,
the percentage error is acceptable and proves this estimator to
be functional.

DISCUSSION

Summary and Reflection

This research aimed to prove a method of collaborating
multiple medical devices in a catheter insertion procedure.
Two robotic manipulators were proposed to allow for the
control of two medical devices. Kinematics alone allowed
for rudimentary C-Arm tracking of the catheter within its
bending plane. A mathematical description of the projection
created by the fluoroscope was used to create an artificial
image. Image processing allowed for angle estimation. A
search algorithm that identified the optimal C-Arm position
relative to the catheter was proposed. We defined the optimal
position as: “the position at which the “actual” angle (or best
estimate) is perceived angle by the estimator”. This was the
maximum possible estimate it could perceive. Moreover, the
procedure was fully automated through a path-tracking algo-
rithm. Validation was done by creating a simulation test bench
and through experimentation to determine the accuracy of the
angle estimator and inverse kinematics methods. Overall, the
proposed concept in this paper was deemed feasible.

Initial reflection upon this work considers its necessity.
Drawbacks of such a robotic procedure include its extended
operating times and increased costs [9]. Such a system, how-
ever, would prevent any radiation exposure for the surgeon
during the procedure. Methods presented by De Silva et al.
[10] propose virtual fluoroscopy to predetermine positioning
and ultimately reduce operation and radiation exposure time.
This bilateral controller completely removes the need for
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C-Arm operation altogether. Work by Kausch et al. [11]
already implements a computer algorithm to automate the
positioning of the C-Arm. It is a more generic method but
is unsuited to automating C-Arm positioning in a dynamic
situation. It requires a “pre-scan” of the patient to determine
the position where the full anatomy of the patient can be
observed. Considering already existing technologies presented
by Mätthaus et al. [2] and Namrata et al. [7], the limitations
of the models become apparent. The robotic manipulators
considered in this paper are greatly simplified. Added model
complexity, however, will not change the basis for the bilateral
control scheme. What will be affected by a more realistic
application are the path-tracking capabilities. Aortas do not
follow the same ideal structure as modelled in the simulator.
More advanced image processing techniques, such as those
presented by Alam [12], to extract the centre line of a real
aorta would yield a more robust system.

Development of a Realistic Application

The reflections in the preceding paragraph allow us to
identify the requirements for developing a realistic application
of the proposed system.

• increased complexity of the manipulator model
• the addition of noise and blurring to make the artificial

image less ideal
• realistic model of an aorta
• additional image processing techniques

The manipulators in question will have larger degrees of
freedom; the flexible joint will have effects due to hysteresis
that require modelling. Additional image processing to acquire
the catheter’s position within the world frame, segment the
catheter into straight and bending sections and obtain the
central lumen of the aorta is required. Adding bounds to the
movement capabilities of the C-Arm would provide useful in-
formation on how the controller functions in enclosed spaces.

Optimisation Potential and Limitations of the Proposed System

Optimisation Potential: No consideration of the efficiency
of the control method is made currently. Optimising the control
of the system can be done with regards to,

• the step size of the C-Arm
• the number of steps for optimal positioning
• the control effort required to obtain the optimal position
• optimising the maximum deviation of the catheter from

the planned path during automatic insertion
Optimising system efficiency would greatly reduce the re-
quired control effort. System precision would also benefit.
Catheter insertion would have much smaller margins of risk
(depending on the error within path planning methods).

System Limitations: For small angles, automated catheter
insertion is not possible. The inverse kinematics become vastly
inaccurate. A small deviation in the initial phases (below a
13 deg bending angle) of path tracking is observed. As the
catheter is narrow, relative to the diameter of the aorta, this
deviation is unlikely to cause a collision. An additional initial
guess determination step would ensure convergence of the
root-finding algorithm to the correct solution.

The system is also limited to bending angles below 90 deg.
Above this limit the system’s behaviour is unknown. This
makes the current system unsuitable for a real application as
aorta insertions typically require bending angles above 90 deg.
Exploring the difference in system behaviour for bending
angles above 90 deg would lead to a more realistic system.

The effects of latency in the communication between the
various control hardware are not modelled. Considering la-
tency poses some questions. How long does an automatic
catheter insertion take compared with a manual one? How
quickly can the C-Arm position be in response to a positional
change of the catheter? Answering these will give further
motivation to the benefit of developing such a system and
incorporating the proposed methods in other areas of surgical
robotics.

CONCLUSION

This paper proposed a new approach to the collaboration of
multiple medical devices: a bilateral control scheme allowing
for automated control of a C-Arm fluoroscope using a flexible
catheter’s positional and bending angle as inputs. Not only
does this optimise the procedure of catheter insertion, but
it also reduces the risk posed by radiation exposure to the
surgeon and patient. This control scheme not only allows for
C-Arm positioning under manual operation of the catheter,
but with the addition of path tracking (for catheter insertion)
it allows for complete automation of the procedure.

Analysis methods to derive the inverse and forward kine-
matics of both systems are presented with the resulting trans-
formation matrices detailed. Forward kinematics are derived
as a series of linear transformations extending from the base
to the end-effector of each manipulator. Inverse kinematics are
derived using a combination of geometric analysis and opti-
misation (minimisation specifically) methods. The kinematics
methods were unproblematic in a manual catheter operation
case. With automatic catheter insertion, for small angles, there
was inaccuracy in the calculation of the inverse kinematics.
This led to deviations from the planned path at small bending
angles.

The fluoroscope projection was modelled to allow for the
creation of an artificial image. Image processing methods
were used to extract information used in the estimation of
the bending angle. Exploiting the fact that the perceived
angle (for a fixed fluoroscope perspective) is dependent of the
rotation of the catheter, a searching algorithm to determine the
optimal fluoroscope position was devised. The resulting angle
estimator was accurate resulting in a functioning fluoroscope
position optimisation strategy.

To prove the feasibility of this concept a test bench simulator
was created. This validates the system models and showcases
the capabilities of the bilateral controller. The concept that this
paper proposes is proven to be feasible and introduces a new
approach to automating catheter insertion procedures.
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APPENDIX A
AI STATEMENT

During the preparation of this work the author used Gram-
marly in order to check spelling and grammar. After using
this tool/service, the author reviewed and edited the content
as needed and takes full responsibility for the content of the
work.

APPENDIX B
ROTATION TRANSFORMATION

For the rigid body motions we model in this paper, rotational
transformations are required. For completeness, a derivation
of the rotational transformation matrix is included. For the
translation aspect of the motion, the transformation is deemed
trivial. It is simply the addition or subtraction of some transla-
tion factor to the coordinate in the axis that we wish to translate
along. This is intuitive to understand and is, therefore, not a
part of this paper. Deriving the rotational transformation matrix
is best done using the diagram in figure 19.

Fig. 19: Diagram showing the rigid body undergoing a rota-
tional transform in R2.
u is a vector belonging to R2 and is subject to a rotational
transform about the origin. This transformed vector is denoted
u′. Using the polar coordinate system, we can define the
individual components of the vectors u and u′. For u,

x = r cosα

y = r sinα
(27)

And for u′,

x′ = r cos (α+ θ)

y′ = r sin (α+ θ)
(28)

Now, expanding the expressions for u′ give,

x′ = r
(
cosα cos θ − sinα sin θ

)
y′ = r

(
sinα cos θ + cosα sin θ

) (29)

And substituting the expression for u,

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ
(30)

We can re-write this in the form of a matrix equation,[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(31)

We define the rotational transformation matrix R(θ) as,

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(32)

We now wish to determine the R3×3 equivalent of this matrix.
A rotation in R3 only affects the coordinates in the axes about
which it does not rotate. In other words, a rotation about some
axis will be an identical transformation to that in R2 within
the plane of rotation.

We can now define the rotational matrices about each axis
in R3.
About the x-axis,

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (33)

About the y-axis,

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (34)

About the z-axis,

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (35)

APPENDIX C
SCREW THEORY

Screw theory as presented by Murray [13], is a method for
deriving the forward kinematics of serial robotic manipulators.
Screw theory works with the basis of screw motions that are
used to describe transformations between coordinate frames.
Screw motions represent a rotation θ about some axis followed
by a translation hθ parallel to the axis of rotation. Each screw
motion has an associated twist ξ. This twist quantifies the
associated screw motion. For some rigid body, the exponential
of a twist eξ̂θ describes its relative motion. It functions as a
mapping: taking the initial coordinates to the coordinates after
the application of the rigid motion

Chasles [13] stated: “every rigid body motion can be re-
alised by a rotation about an axis combined with a translation
parallel to that axis”. The exponential of a twist realises this
exactly. Application of screw theory allows us to derive a
matrix T ∈ R4×4 which gives a combined description of the
translation and rotation of the relevant body frame with respect
to the world frame. This has the following form,

gst(θ) =

[
R(θ) p(θ)
01×3 1

]
(36)

In which R(θ) is a matrix in R3×3 describing the rotation of
the joint about some axis and p(θ) is a vector in R3 describing
the translation parallel to the axis of rotation.

Now given some set Q = {θ | θ ∈ [0, 2π]}, the forward
kinematics from base to end-effector of the manipulator is de-
scribed by the linear transformation gst : Q → SE(3). Where
SE(3) (the Special Euclidean Group in three dimensions) is
a space used to move vectors from one coordinate frame to
another [14]. The reader is encouraged to refer to the citation
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should they wish to have more information about this space.
For interconnected joints, we can form a complete mapping
by carrying out consecutive transformations. This is simply
(order-dependent) matrix multiplication. We, therefore, define
this mapping using the product of exponentials formula.

gst(θ) = eξ̂1θ1 · · · eξ̂nθngst(0) (37)

For revolute joints, the exponential terms in equation 37 can
be evaluated using the following expression.

eξ̂iθi =

[
eω̂iθi (I − eω̂iθi)(ωi × vi)
01×3 1

]
(38)

Where: eξ̂iθi is the rotational matrix in the relevant axis as
defined by equations 33, 34 and 35, ωi ∈ R3 is a unit vector
describing the orientation of rotation with respect to the base
coordinate frame and vi = −ωi × qi in which qi ∈ R3 is the
position of the joint respective to the origin.

For prismatic joints, the exponential terms in equation 37
can be evaluated using equation 39.

eξ̂iθi =

[
I3×3 viθi
01×3 1

]
(39)

Where vi ∈ R3 is a unit vector in the direction of translation.
To acquire the full transformation given by 37, one must

also obtain gst(0). This is a matrix describing the transforma-
tion from base to end-effector in base configuration.

gst(0) =

[
I3×3 p(0)
01×3 1

]
(40)

APPENDIX D
C-ARM FORWARD KINEMATICS

To begin deriving the forward kinematics of the C-Arm,
the relevant parameters of the manipulator must be defined.
They are depicted in figure 2. We define ωi ∈ R3 as the unit
vector in the axis of rotation, vi ∈ R3 as the unit vector in the
direction of translation and qi ∈ R3 as the positional vector
of joint i.

For the two revolute joints:

ω1 =

00
1


ω3 =

01
0


q1 =

00
0


q3 =

0
l1
0


And for the prismatic joint:

v2 =

01
0



q2 = q1
This yields the following transformation matrices for each
joint.

eξ̂1θ1 =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1

 (41)

eξ̂2θ2 =


1 0 0 0
0 1 0 θ2
0 0 1 0
0 0 0 1

 (42)

eξ̂3θ3 =


cos θ3 0 sin θ3 0
0 1 0 0

− sin θ3 0 cos θ3 0
0 0 0 1

 (43)

Finally, the transformation from base to end-effector in base
configuration is given by,

gst(0) =

I3×3

( 0
l1 + l2

0

)
01×3 1

 (44)

These, when combined, give the full transformation in equa-
tion 1.

APPENDIX E
CATHETER FORWARD KINEMATICS

The revolute and prismatic joints are determined using the
following parameters for the catheter manipulator. Again, we
define ωi ∈ R3 as the unit vector in the axis of rotation,
vi ∈ R3 as the unit vector in the direction of translation and
qi ∈ R3 as the positional vector of joint i.

For the revolute joint:

ω1 =

01
0


q1 =

00
0


And for the prismatic joint:

v2 =

01
0


q2 = q1

This yields the exponential matrices eξ̂1θ1 and eξ̂2θ2 for the
two joints.

eξ̂1θ1 =


cos θ1 0 sin θ1 0
0 1 0 0

− sin θ1 0 cos θ1 0
0 0 0 1

 (45)

eξ̂2θ2 =


1 0 0 0
0 1 0 θ2
0 0 1 0
0 0 0 1

 (46)
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The bending joint cannot be determined in the same manner.
First, let us consider what a bending transformation would
consist of. Relative to the origin, the end-effector will expe-
rience a rotation and a translation. The rotation is defined by
equation 35: a rotation about the z-axis.

The translation can be determined through geometric analy-
sis. We can consider the catheter as the arc length l of a circle
segment with radius r and angle θ. θ is the bending angle, l
the (fixed) catheter length and r is the bending radius. l and θ
are the known quantities. Figure 20 illustrates an abstraction
of this description.

Fig. 20: An abstraction of the catheter tip. The relevant
parameters of the bending joint are depicted.

We further simplify the process by creating two sub-problems
from our abstraction. These are given by figures 21a and 21b.
Referring to figure 21a, an equation for the y component of
the catheter tip is easily obtained. We first note the relationship
between arc length and radius: l = rθ. Thereafter, application
of Pythagoras’ theorem gives,

y =
l

θ
sin(θ) (47)

(a) (b)

Fig. 21: Sub problems devised from the abstraction in figure
20.

The derivation of the x component is more involved. We
begin with the sub-problem depicted in figure 21a. Again, by
applying Pythagoras’ theorem we obtain an expression for d
in terms of l and θ.

d = 2
l

θ
sin

θ

2
(48)

Turning to the subproblem in figure 21b, it can be deduced that
β = θ

2 . This, in turn, allows us to acquire an initial expression
for x.

x = d sin
θ

2
(49)

Substituting equation 48 and applying the trigonometric iden-
tity cos 2θ = 1− 2 sin2 θ, yields the final expression for x.

x = 2
l

θ
sin2

θ

2

=
l

θ

(
1− cos θ

) (50)

The two transformations (rotation and translation) can now
be combined into one bending transformation defined by the
matrix T 3

2 .

T 3
2 =


cos θ3 − sin θ3 0 l2

θ3

(
1− cos θ3

)
sin θ3 cos θ3 0 l1 +

l2
θ3

sin θ3

0 0 1 0
0 0 0 1

 (51)

For θ3 = 0 there is a singularity. We account for this by
modelling the flexible catheter section as a straight line when
it is in its base configuration.

Hence, the corresponding transformation T 3
2 is defined as,

T 3
2 =


1 0 0 0
0 1 0 l1 + l2
0 0 1 0
0 0 0 1

 (52)

The two joints determined using screw theory are located
at the origin in the base configuration. gst(0), therefore, is
simply I4×4. The distance from the base to the end-effector is
modelled in the translation part of the bending transformation.

APPENDIX F
PROJECTION TRANSFORMATION

Before deriving the matrix representation of this projection
transformation, we must define the canonical view volume.
Within this volume, the view space is normalised such that all
points within the camera frustum are contained within a cube.
A square pixel aspect ratio is then maintained and the depth
of field information is preserved within the 2D image [3].

Fig. 22: An abstraction of the Canonical View Volume. This
cube is centered at the origin with r = t = n = 1 and l = b
= f = −1.
The parameters above are defined as,

n - near plane
f - far plane
l - left plane
r - right plane
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t - top plane
b - bottom plane

The near plane is the plane in which the projected object lies,
with the far being the plane in which the projection shall fall.
Referring to figure 6, these are defined by a value on the z-
axis. The left and right planes are defined by values on the
x-axis depending on orientation. It follows that the top and
bottom planes are defined by values on the y-axis.

The projection matrix is more easily derived in stages.
Initially, one must model the effect of distance between the
object and the projection device. This is modelled by a
scaling factor proportional to this distance (n in this case).
Additionally, to distinguish how near or far an object is within
the 2D image, the translation of the object (relative to the
centre) must also be included in the transformation.

We define the coordinate system of the object with its z-axis
normalised [15] as,

(x̂, ŷ, ẑ) =

(
x

n

−z
, y

n

−z
,
az + b

−z

)
(53)

To obtain normalised coordinates in the z-axis, we enforce the
boundary conditions,

z = −n → ẑ = −1

z = −f → ẑ = 1
(54)

This allows us to define the system of simultaneous equations,

az + b

−z
= 1

az + b

−z
= −1

∴ −n = −an+ b (1)

f = −af + b (2)

(55)

Upon solving, we obtain the following expressions for a and
b,

a =
−
(
f + n

)
f − n

b =
−2fn

f − n

(56)

This allows us to define the perspective matrix Tpersp as,

Tpersp =


n 0 0 0
0 n 0 0

0 0 − f+n
f−n − 2fn

f−n

0 0 −1 0

 (57)

To finalise our projection, the result obtained through multi-
plication with Tpersp must be translated and scaled. Translation
aligns the view volume with the origin and is defined by matrix
Ttrans.

Ttrans =


1 0 0 − r+l

2

0 1 0 − t+b
2

0 0 1 − f+n
2

0 0 0 1

 (58)

Each translation term is simply the midpoint of each plane
along the relevant axis.

Scaling transforms the dimensions of the projection to that
of the canonical view volumes. The scaling factor is the ratio
between the canonical and orthogonal (this is the volume
obtained after multiplication with Tpersp) view volume’s di-
mensions. The scaling transformation Tscale is defined as,

Tscale =


2

r−l 0 0 0

0 2
t−b 0 0

0 0 1 0
0 0 0 1

 (59)

For the purpose required in this research, the perception of
depth within the image is unnecessary. We therefore only
require the x and y coordinates of the vector projections. It is,
therefore, necessary to define a transformation matrix Tdecomp
to decompose the vectors from R3 → R2.

Tdecomp =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 (60)

Now the angle of projection is not stationary. As the fluoro-
scope is rotated about the target object, the perspective angle
also changes. This is simply modelled by a transformation
matrix Trot. This has rotation defined about the same axis as the
C-Arm’s third joint. We define Trot for the system parameters
defined in figure 2 (origin of rotation is the POI). One should
take notice that this is applied foremost as we wish to project
from that perspective angle.

Trot =


cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

 (61)

APPENDIX G
METHOD OF LEAST-SQUARES

Let us define the matrix A ∈ Rm×n and the vector b ∈ Rm.
The method of least-squares provides an approximate solution
to an inconsistent matrix equation. Let us define the matrix
equation,

Ax = b (62)

Which is inconsistent and, thus, has no solution.
Now we can define x̂ ∈ Rn as the optimal solution. This is

such that,
∥b−Ax̂∥2 ≤ ∥b−Ax∥2 (63)

The optimal solution is acting to minimise the sum of the
squares of the difference b−Ax.

Now the closest vector of the form Ax to b is the orthogonal
projection of b onto Col(A). Hence, we can define the solution
x̂ of Ax = bCol(A) as the least-squares solution.

To derive an expression of the least squares solution we
begin by defining W = Col(A). Now, let b = bW + bW⊥ be
the orthogonal decomposition with respect to W . By definition
bW lies in W = Col(A); there is a vector x̂ ∈ Rn where
Ax̂ = bW . We know that b− bw = b−Ax̂ lies in W⊥ which
is equal to Nul(AT ) [19].
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Hence,
0 = AT (b−Ax̂) (64)

Therefore,
ATAx̂ = AT b (65)

For A and b, the following three statements are equivalent,
1. Ax = b has a unique least-squares solution.
2. The columns of A are linearly independent.
3. ATA is invertible.

∴ x̂ = (ATA)−1AT b (66)

This is the least-squares solution [16].

APPENDIX H
BFGS ALGORITHM

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
is a method with which one can iteratively solve uncon-
strained, non-linear optimisation problems [17]. The algo-
rithm’s derivation is quite complex and is beyond the scope
of this research. The reader is invited to investigate this
themselves if they so feel inclined. Here, a description of the
algorithm is included to give the reader insight into how it
helps solve part of the problem proposed during this research.

Now in an application case of the BFGS algorithm, we wish
to minimise f(x) | x ∈ Rn. Note that f : Rn → R is a
nonlinear, objective function.

We begin with an initial guess x0 ∈ Rn and initial Hessian
B0 ∈ Rn×n. From here, the algorithm iterates in the following
steps until xk ∈ Rn converges. We first define pk ∈ Rn

1. Obtain the direction pk ∈ Rn through solving the equa-
tion

Bkpk = −∇f(xk) (67)

2. Perform a line search [20] to find an acceptable step
size αk ∈ R in the direction found in the initial step.
αk should satisfy the Wolfe conditions [18]. These, in
principle, ensure that the gradient converges to 0.

3. Now set sk = αkpk, in which sk ∈ Rn, and update
xk+1 = xk + sk.

4. Let,
yk = ∇f(xk+1)−∇f(xk) (68)

Where yk ∈ Rn.
5. Now we can define the next iteration of the Hessian

matrix as,

Bk+1 = Bk +
yky

T
k

yTk sk
− Bksks

T
kB

T
k

sTkBksk
(69)

We can determine convergence to the solution by observing
the norm of the gradient. For some ϵ > 0, the algorithm may
be halted under the condition,

∥∇f(xk)∥2 ≤ ϵ (70)
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[2] Lars Matthäus, A Robotic C-arm Fluroscope, September 2005, Article

in International Journal of Medical Robotics and Computer Assisted
Surgery.

[3] Notabene, What is the purpose of the canonical view volume?, https:
//gamedev.stackexchange.com/questions/6279.

[4] Wikipedia, Image Segmentation, https://en.wikipedia.org/wiki/Image
segmentation.

[5] Scikit-Image, Skeletonize, https://scikit-image.org/docs/stable/auto
examples/edges/plot skeleton.html.

[6] Wikipedia, Extreme value theorem, https://en.wikipedia.org/wiki/
Extreme value theorem.

[7] Nayar Namrata, Towards the Design and Development of a Robotic
Transcatheter Delivery System for MVI, November 2022, IEEE Trans
Med Robot Bionics.

[8] Spire Healthcare, Transcatheter Aortic Valive Insertion (TAVI),
https://www.spirehealthcare.com/treatments/heart-treatments/
transcatheter-aortic-valve-insertion-tavi/.

[9] Sakashi Bramhe, Robotic Surgery: A Narrative View, 15th September
2022, Cureus.

[10] T. De Silva, C-Arm Positioning Using Virtual Fluoroscopy for Image-
Guided Surgery, 30th May 2017, Proc SPIE Int Soc Opt Eng.

[11] Lisa Kausch, Toward automatic C-Arm positioning for standard projec-
tions in orthopaedic surgery, 20th May 2020, IJCARS.

[12] Saaed Alam, An Enhanced Algorithm for Image Processing Based
Catheter Selection During Right Coronary Angiography, 14th December
2020, Cardiology.

[13] Richard M. Murray, A Mathematical Introduction to Robotic Manipula-
tion, 1994, Caltech.

[14] Wikipedia, Euclidean group, https://en.wikipedia.org/wiki/Euclidean
group.

[15] Emmanuel Agu, Derivation of Perspective Projection Transformation,
Lecture 6 (Part 3), WPI.

[16] Mathematics LibreText, The Method of Least Squares, https://math.
libretexts.org/Bookshelves/Linear Algebra.

[17] Wikipedia, Broyden-Fletcher-Goldfarb-Shanno Algorithm, https://en.
wikipedia.org/wiki.

[18] Wikipedia, Wolfe conditions, https://en.wikipedia.org/wiki.
[19] Mathematics LibreText, Orthogonal Complements, https:

//math.libretexts.org/Bookshelves/Linear Algebra.
[20] Wikipedia, Line search, https://en.wikipedia.org/wiki/Line search.


