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ABSTRACT: 

 

Estimating snow depth is vital for various purposes like hydrology, climate modelling, 

avalanche risk assessment, and winter sports. While remote sensing techniques, particularly 

Synthetic Aperture Radar (SAR), have made significant advancements in estimat ing snow 

depth, there remains a lack of comparative assessments of various SAR modalities. This 

includes employing different polarization modes, frequencies, and sensor platforms for 

accurate snow depth estimation over complex terrains. This study thus employs SAR data from 

various platforms, including Sentinel-1, SAOCOM, and UAVSAR, to investigate the impacts 

of different polarisation configurations (dual polarimetric (DP) and quad polarimetric (QP)), 

different frequencies (C- and L- bands), and different SAR sensor platforms (airborne and 

spaceborne) on snow depth estimation. The study focuses on five sites situated in the 

mountainous terrains of the western USA. By utilizing NASA’s SnowEx snow depth data as a 

reference and employing a Random Forest regression model, this study reports a comparative 

assessment of SAR-based snow depth estimation performance across polarization, frequency, 

and sensor platforms. The results indicated varying degrees of accuracy among the different 

SAR datasets, with UAVSAR operating as an airborne system in quad-polarised mode and its 

L-band frequency consistently achieving the best performance across most study areas, 

exhibiting the lowest RMSE and MAE values. Following it, spaceborne SAOCOM’s quad-

polarimetric L-band data performed notably well but still with higher RMSE and MAE values 

than UAVSAR. Next in line, dual-polarimetric spaceborne data from both Sentinel-1 (C-band, 

10 m spatial resolution) and SAOCOM (L-band, 50 m spatial resolution) often showed 

comparable error levels, with Sentinel-1 achieving slightly lower RMSE and MAE values 

amongst the two datasets due to an advantage of higher spatial resolution. Overall, the 

SAOCOM dual-polarimetric dataset yielded the least accurate results across most study areas. 

Visual inspection of the maps revealed that the UAVSAR predictions had the closest 

resemblance to the reference snow depth maps among all other datasets. The models struggled 

to predict the full range of snow depth values accurately thus leading to a compressed range of 

values in the predicted maps. The difference maps indicated that large errors were mainly 

concentrated in regions with extreme snow depth values, where the models tended to 

underestimate the higher values and overestimate the lower values. 
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CHAPTER 1 

Introduction 

 

 

1.1.     Background 

 

Water is undoubtedly the most vital natural resource for human beings and ecosystems all 

around the planet. Considering the problems posed by climate change, monitoring water 

resources is essential (Muelchi et al., 2021). During the summer, water stored as snow is critical 

for over a billion people globally (Lievens et al., 2019). Snow, an essential part of the Earth's 

cryosphere, contributes significantly to the hydrological cycle, climate systems, and other 

environmental processes (T. G. F. Kittel et al., 2011). Therefore, estimating snow depth has 

garnered significant scientific and practical importance. 

 

The seasonal heavy snowfall is known to cause disruptions in transportation, agriculture, 

infrastructure, and ecosystems. Snow-related hazards like avalanches often pose life-

threatening risks to humans (Schweizer et al., 2003). Snow depth or snow thickness can be 

defined as the distance of the snow surface to the ground. Snow depth estimation (SDE) is 

imperative for assessing avalanche risk and improving its forecasting (Bühler et al., 2022). This 

information can help conduct efficient mitigation measures and guarantee the safety of 

populations living in snow-prone areas. In colder areas, the water collected in snowpacks 

during the winter melts and flows off in the summer. Rapid melting of snow can sometimes 

cause rivers to overflow and result in flooding (Bashmakov et al., 2022). Contrarily, some areas 

(e.g., the Alpine region) depend entirely on this meltwater for domestic, agricultural, and 

commercial use during the summer (Lievens et al., 2022). However, global warming and 

climate change mess with the dynamics of snowmelt and consequently alter the quantity and 

timing of available water, remarkably through the concept of Snow Water Equivalent (SWE) 

(Lievens et al., 2022). The knowledge of SWE and hydrological processes can be strengthened 

by monitoring the depth of snow. Moreover, SDE can advance our knowledge of climate 

systems and how climate change affects snow regimes (Li et al., 2022). It enables researchers 

to examine trends, variations, and shifts in the snowpack's properties by keeping track of 

changes in snow depth. Accurate SDE is crucial for developing climate and weather forecasting 

models, especially in areas impacted by extreme winter weather conditions. Thus, extensive 

knowledge of snow depth and how it changes with the climate is critical for managing water 

supplies and supporting a sustainable future for communities.  

 

 

1.2.     Literature Review 

 

Historically, territorial techniques such as manual surveys and in-situ measurements using 

mechanical instruments were used for the prediction of the parameters of snow, such as its 

depth, density, and albedo (Gallet et al., 2009; Montpetit et al., 2012; Worby et al., 2008). While 

they offer accurate data, these methods are labour-intensive, time-consuming, and have limited 
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availability due to low spatial coverage and are unfeasible in isolated areas such as very high 

mountain peaks (Li et al., 2022). LiDAR (Light Detection and Ranging) is one of the most 

widely utilised methods for research on snow and the whole cryosphere (Leinss et al., 2014; 

Tedesco et al., 2014). It employs laser pulses to gauge the distance between the LiDAR sensor 

and the top surface of the snow as well as the Earth's surface (Baños et al., 2011). LiDAR is 

appropriate for snow mapping because it can deliver high-resolution, three-dimensional 

topography data, which is relevant for SDE and snow mapping (Broxton et al., 2019). Deems 

et al. (2013) predicted snow depth from airborne LiDAR data quite accurately. However, the 

study also depicted that weather conditions strongly influence LiDAR data; for example, heavy 

rainfall or snowfall can scatter and absorb laser beams. Additionally, the cost of acquiring and 

processing airborne LiDAR data limits its availability to many researchers. Optical remote 

sensing methods, over the years, have successfully utilised visible and near-infrared 

wavelengths for detecting and monitoring the snow cover (Cannistra et al., 2021; Vikhamar & 

Solberg, 2003). This approach offers worldwide coverage, is economical, and is non-invasive. 

However, these conclusions were confined to the snowpack's surface because it is difficult to 

precisely estimate snow depth due to the inability of optical remote sensing wavelengths to 

penetrate the snow cover (Varade & Dikshit, 2018, 2019). Moreover, there are several 

drawbacks to optical remote sensing, including reliance on daylight and cloud cover. For 

comprehensive research on the snow's depth, Synthetic Aperture Radar (SAR) gained fame for 

being beneficial over optical remote sensing, owing to the microwave signal's increased 

penetrability (Kelly et al., 2003; Ulaby & Long, 2015).  

 

SAR has emerged as effective for providing spatially distributed and comprehensive 

information on the depth of snow cover on the Earth (Qiao et al., 2023a). The study by Che et 

al. (2008) presented how SAR data can be employed to generate reliable conclusions about 

snow depth. SAR data also advantageously allows the study of large areas. However, at present, 

most of the studies with large-scale estimates of snow depth, such as of complete mountain 

ranges, have a low spatial resolution (Lievens et al., 2019, 2022; Muñoz-Sabater et al., 2021; 

Saha et al., 2010). Contrastingly, high resolution is considered important for SDE because it 

can capture greater details (Cimoli et al., 2017). Since it is impossible to track snow depth over 

the whole cryosphere at high spatial resolution, such studies are only helpful for understanding 

snow depth at the planetary scale. Thus, they are useless in smaller and specific areas, e.g., the 

Himalayan or Alpine terrain, because they cannot capture their spatial diversity. Qiao et al. 

(2023) developed a snow profile reconstruction method based on Unmanned Aerial Vehicle 

(UAV) SAR tomography, primarily including spectral estimation-based 3D imaging methods 

and a snow profile correction. Using a UAV provided high resolution but restricted the study 

to a small scale. Such small-scale models using airborne platforms that can span only a small 

area have drawbacks because they have not been tested for different regions or complex 

topographies and are too expensive to scale over vast areas (Bühler et al., 2015; Eberhard et 

al., 2021).  

 

Zhou et al. (2018) investigated the retrieval of snow depth along with sea ice thickness using a 

combination of L-band remote sensing data and laser altimetry. Empirical models were 

developed to estimate snow depth and sea ice thickness in the Beaufort Sea in the Arctic region. 

The study highlighted a significant relationship between snow depth and snow freeboard and 

incorporated this covariability into a retrieval algorithm to improve the accuracy of the 

retrievals. The study successfully achieves reliable retrievals of snow depth and sea ice 

thickness, with major errors arising mainly from mismatches between modelled and observed 

data. Moreover, the research demonstrated the potential of L-band microwave radiation’s 

ability to penetrate through snow and facilitate the tracking of snow dynamics in polar 
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locations. Recent advancements in the retrieval of snow depth and SWE have also used dual-

polarization X-band SAR data. Patil et al. (2020) demonstrated the effectiveness of using co-

polar phase difference (CPD) and particle anisotropy models for accurate snow depth and SWE 

inversion, validated by field measurements. Most recently, Daudt et al. (2023) presented a state-

of-the-art technique for estimating snow depth using SAR data at a high spatial resolution (10 

m) with a recurrent convolutional neural network (CNN). This method yielded rare findings 

for large-scale and high-resolution snow depth mapping with decent accuracy. The outcomes 

were compared to high-fidelity snow depth maps acquired using aircraft laser-scanning for 

three years to assess the accuracy. The study did, however, notice model-induced abnormalities 

and uncertainties in the snow depth estimates of various locations, such as the absence of 

features or the presence of under-represented objects in the resulting maps. SDEs have been 

generated with moderate accuracy and have achieved reasonable success in the past, but such 

products are uncommon and rely on either enormous ground monitoring networks or the 

integration of SAR data with other datasets (Wulf et al., 2020). 

 

 

1.3.     Research Gap and Problem 

 

Although research on snow depth assessment using radar remote sensing has advanced 

significantly, there are still several research gaps in existing knowledge. Most of the current 

research works compromised on resolution of the study. Although SAR is fundamentally 

designed for distance-based data acquisition, the backscattering coefficients of SAR imagery 

vary systematically with snow depth due to changes in surface and volume scattering properties 

(Patil et al., 2020). Thus, accurately deriving snow depth from SAR backscatter, especially in 

mountainous terrains, poses a significant challenge due to the complex interplay of topography, 

snow properties, and SAR signal characteristics. Moreover, there is a lack of comparative 

analyses on SDE using different polarisations, frequencies, and spatial resolutions. 

Comprehensive knowledge of how the variations in these characteristics influence the accuracy 

of SDE remains unexplored. Notably, less research has been done on machine learning models 

that can estimate snow depth while considering complex terrains. Furthermore, higher 

accuracies of snow depth estimations have mostly been attained by combining radar remote 

sensing data with field observations of snow depth (Guneriussen et al., 2001; Varade et al., 

2019). Thus, there is room for further research to quantify the potential of SAR alone for SDE. 

These research gaps must be filled by precise and robust analysis that can quantify the 

performance of SAR-based SDEs operating on different sensor modalities for any terrain type 

without relying on auxiliary data. This research leverages advanced machine learning 

techniques to address the intricacies of snow depth retrieval from SAR backscatter data, aiming 

to enhance the precision and reliability of SDE in these challenging environments. By using 

remotely sensed SAR data provided by Sentinel-1, SAOCOM and UAVSAR, the research aims 

to evaluate the snow depth estimated from different SAR modalities, including differences in 

frequency, polarization, and sensor platforms, in order to identify the most accurate and reliable 

approaches for SDE. By utilising UAVSAR, this research also allows for estimating snow depth 

at high resolutions. The study aims to improve the accuracy and reliability of SAR-based snow 

depth estimations by bridging the existing knowledge gap between incompetent models of the 

current state-of-the-art and highly accurate models. 
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1.4.     Research Objectives and Questions 

 

1.4.1. Main Objective 

The main objective of this study is to estimate snow depth using various SAR modalities, 

including different SAR frequencies (C- and L- bands), different SAR sensor platforms 

(airborne and spaceborne), and different polarisation configurations (dual polarimetric and 

quad polarimetric). Furthermore, the accuracy of these snow depth estimations will be assessed, 

and a comparison of their respective machine-learning models will be conducted. 

 

1.4.2. Sub-Objectives 

1. To estimate snow depth values using C-band dual-polarimetric spaceborne SAR dataset. 

2. To estimate snow depth values using L-band quad-polarimetric airborne SAR dataset. 

3. To estimate snow depth values using L-band quad-polarimetric spaceborne SAR dataset. 

4. To estimate snow depth values using L-band dual-polarimetric spaceborne SAR dataset. 

 

1.4.3. Research Questions 

 

RQ1: Which frequency (C-band or L-band) of SAR will result in a more accurate estimation 

of snow depth? 

 

RQ2: Do the SDE accuracies differ across airborne SAR and spaceborne SAR when the same 

frequency (L-band) is used? 

 

RQ3: Which of the polarisation modalities (quad-polarisation or dual-polarisation) results in a 

more accurate estimation of snow depth?  

 

 

1.5.     Thesis Structure  

 

The rest of this thesis comprises four additional chapters: ‘Study Area, Datasets, and Tools’ 

(Chapter 2), ‘Methodology’ (Chapter 3), ‘Experimental Results and Discussion’ (Chapter 4) 

and ‘Conclusion’ (Chapter 5). Chapter 2 introduces the study area and datasets used while 

Chapter 3 details the proposed methodology for this research. Chapter 4 presents the 

experimental results of this study which are also discussed thoroughly. Finally, Chapter 5 

concludes the thesis. 
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CHAPTER 2 

Study Area, Datasets, and Tools 

 

 

2.1.     Study Area 

 

The United States of America is a geographically diverse nation, having a wide range of 

climatic conditions and landscapes. As shown in Figure 1, the study areas for this research are 

located in the western parts of the USA, within the hilly terrains of Fraser and Cameron Pass 

in Colorado, Little Cottonwood Canyon in Utah, and Basin Summit and Mores Creek in Idaho. 

Refer to Table 1 for the latitudinal and longitudinal extents of the research sites. These 

regions make up an important part of the Rocky Mountain range and encompass mountains 

located at elevations ranging from 4,000 to 14,000 feet above sea level (F. Kittel et al., 2002). 

These areas have a frigid climate, with wintertime temperatures occasionally falling below zero 

degrees due to their high altitudes (Sospedra-Alfonso et al., 2015). The five study area sites 

might have diverse microclimates and weather conditions due to their varying geographies, but 

one common characteristic is that they all experience chilly winters with significant snowfall. 

The snowfall generally begins in late October and lasts far into April (Sospedra-Alfonso et al., 

2015). Moreover, the high elevations and freezing weather conditions collectively contribute 

to the prolonged snowpack in these areas during the winter months (Beniston et al., 2003). 

Thus, the interplay of temperature and terrain with snowfall significantly influences the 

dynamics of snow accumulation in the focussed study areas, providing an ideal environment 

for SDE research.  

 

 
Table 1: Latitudinal and Longitudinal extent of the study area  

 

SPATIAL 

EXTENT 

FRASER, 

COLORADO 

CAMERON 

PASS, 

COLORADO 

LITTLE 

COTTONWOOD 

CANYON, UTAH 

BASIN 

SUMMIT, 

IDAHO 

MORES 

CREEK, 

IDAHO 

Northernmost 

Latitude 

39° 55' 

55.1078" N 

40° 34' 

20.4826" N 
40° 35' 53.8023" N 

44° 20' 

32.9025" 

N 

43° 58' 

59.7560" N 

Southernmost 

Latitude 

39° 50' 

12.2667" N 

40° 30' 

16.0790" N 
40° 31' 13.3951" N 

44° 11' 

39.9990" 

N 

43° 54' 

28.4898" N 

Easternmost 

Longitude 

105° 50' 

48.5365" W 

105° 51' 

41.7900" W 

111° 36' 55.2166" 

W 

115° 5' 

19.5890" 

W 

115° 38' 

11.3655" W 

Westernmost 

Longitude 

105° 56' 

33.8299" W 

105° 55' 

3.1991" W 

111° 43' 13.0314" 

W 

115° 16' 

47.5332" 

W 

115° 44' 

3.4585" W 
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Figure 1: Study Area Map displaying the locations of the five study area sites  

 

 

2.2.     Data Sources 

 

This study employs SAR imageries from Sentinel-1, UAVSAR (Uninhabited Aerial Vehicle 

Synthetic Aperture Radar) and SAOCOM (Satélite Argentino de ObservaciónCOnMicroondas) 

to estimate Snow Depth using machine learning algorithms. The SnowEx20-21 Snow Depth 

dataset provides snow depth values at five distinct sites in the western USA and will be used 

as the reference dataset to train the models. These models will be used to predict snow depth 

for all the sites using SAR imageries. The acquisition date of the SnowEx LIDAR dataset was 

March 2021 when all the study areas were mostly covered by snow during this period. The 

SAR datasets mentioned in Table 2, including Sentinel-1, UAVSAR and SAOCOM imagery, 

were also collected for either the same or around the same timeframe to ensure environmental 

consistency and temporal relevance while comparing their models' performances. 
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2.2.1. SnowEx Snow Depth Dataset 

NASA SnowEx is a multi-year project aimed at improving estimates and measurements of 

snow-surface energy balance and snow water equivalent (SWE). This campaign aims to 

combine modelling, in-situ observations, and remote sensing to find the best method for snow 

monitoring and to identify ways to achieve precise snow measurements taken from space 

(Marshall et al., 2020). The SnowEx20-21 snow depth dataset (SnowEx20-21 QSI Lidar Snow 

Depth 3m UTM Grid, Version 1 | National Snow and Ice Data Center) used in this study is a 

component of the SnowEx 2020 and SnowEx 2021 campaigns. The source of this dataset is a 

point cloud digital terrain model (PCDTM). The team generated a PCDTM during snow-free 

conditions and later generated a PCDTM during snow-covered conditions. The snow depth was 

then derived by differencing these measurements during “snow-on” and “snow-off” conditions 

(McGrath et al., 2019). This dataset is freely available on NASA’s Earthdata portal in the form 

of raster images (see Figure 2) providing pixel-wise snow depth values at a 3 m spatial 

resolution. For this study, five georeferenced images containing snow depth information 

including, 1) Basin Summit and 2) Mores Creek in Idaho, 3) Cameron Pass and 4) Fraser in 

Colorado, and 5) Little Cottonwood Canyon in Utah will be utilised. The latitudinal and 

longitudinal extents of the study area are mentioned in Table 1. NASA's SnowEx campaign has 

been successfully used in the past for estimating snow depth values (Currier et al., 2019; 

Marshall et al., 2021). The uncertainties in this dataset were not explored; thus, the analysis 

proceeded under the assumption that this data is accurate and reliable. These images were used 

as reference datasets in this study. SAR images from Sentinel-1, SAOCOM, and UAVSAR, 

which spatially overlap with this reference dataset, were acquired. 

 

 

   
(a) Basin Summit, Idaho (b) Mores Creek, Idaho (c) Cameron Pass, Colorado 

  
(d) Fraser, Colorado (e) Little Cottonwood Canyon, Utah 

Figure 2: Snow depth images used in this study, visualised in greyscale for all research sites: (a) Basin Summit, Idaho, (b) Mores Creek, 

Idaho, (c) Cameron Pass, Colorado, (d) Fraser, Colorado, (e) Little Cottonwood Canyon, Utah  
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2.2.2. Sentinel-1 

Sentinel-1, a SAR mission, was launched by the European Space Agency (ESA) in 2014. The 

constellations made by Sentinel-1A and Sentinel-1B are positioned at a distance of 180° in the 

polar orbit. Sentinel-1 comprises a C-band SAR sensor that operates at a frequency of 5.405 

GHz and transmits data in both single (HH and VV) and dual polarised (HH+HV and VV+VH) 

modes. It offers two types of products while collecting data in four different acquisition modes. 

The Ground Range Detected (GRD) product only provides amplitude information. This 

research will explore the VV+VH dual-polarimetric (DP) Level-1 GRD high-resolution data 

from Interferometric Wide Swath (IW) acquisition mode, which covers a 250 km swath. In 

total 4 images for the entire region of interest were downloaded from ESA’s Copernicus Open 

Access Hub. The ground range and azimuth resolution of the imagery correspond to 10 m by 

10 m respectively. To ensure temporal consistency with the reference SnowEx Snow Depth 

dataset, Sentinel-1 images of the same time period are utilised. Figure 3 shows the Sentinel-1 

images clipped according to the study area sites. Sentinel-1 data has been frequently used for 

SDE (Li et al., 2022; Lievens et al., 2022; Varade et al., 2020).  

 

 

  
 

(a) Basin Summit, Idaho (b) Mores Creek, Idaho (c) Cameron Pass, Colorado 

  
(d) Fraser, Colorado (e) Little Cottonwood Canyon, Utah 

Figure 3: Sentinel-1 images used in this study, visualising the intensity of VH band (dB) in greyscale for all research sites: (a) Basin 
Summit, Idaho, (b) Mores Creek, Idaho, (c) Cameron Pass, Colorado, (d) Fraser, Colorado, (e) Little Cottonwood Canyon, Utah  

 

 

2.2.3. UAVSAR 

UAVSAR is built by the Jet Propulsion Laboratory (JPL). JPL is a NASA-funded research and 

development facility run by the California Institute of Technology (Caltech) (Hensley et al., 
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2008). The radar, introduced by NASA in 2007, is intended for use on aeroplanes or UAVs 

(Rosen et al., 2006). Mounted on a NASA Gulfstream III aircraft, the UAVSAR platform 

operates in full-polarisation mode. It has a sensor frequency of 1.26 GHz and provides data in 

the L-band. For the NASA SnowEx program in 2020 and 2021, UAVSAR was tasked with 

conducting weekly to biweekly observations across 14 sites in the western United States from 

January to March (Hoppinen et al., 2024). The UAVSAR imagery, georeferenced and terrain 

corrected with the Shuttle Radar Topography Mission (SRTM) DEM, was publicly accessible 

through the UAVSAR Data Search portal provided by NASA (Fore et al., 2015; Rosen et al., 

2006). The processing level for the data is GRD and provides amplitude information at a range 

and azimuth resolution of 1.8 m each. Four UAVSAR images spanning all the research sites 

that were collected in March 2021 (see Table 3 for dates) will be used for this study. Figure 4 

shows the UAVSAR images clipped according to the study area sites. UAVSAR has been used 

for snow depth estimates in the past (Deeb et al., 2017; Palomaki & Sproles, 2023). 

 

 

   
(a) Basin Summit, Idaho (b) Mores Creek, Idaho (c) Cameron Pass, Colorado 

  
(d) Fraser, Colorado (e) Little Cottonwood Canyon, Utah 

Figure 4: UAVSAR images used in this study, visualising the intensity of HH band (dB) in greyscale for all research sites: (a) Basin Summit, 

Idaho, (b) Mores Creek, Idaho, (c) Cameron Pass, Colorado, (d) Fraser, Colorado, (e) Little Cottonwood Canyon, Utah  

 

 

 

2.2.4. SAOCOM 

The SAOCOM constellation, which includes SAOCOM-1A and SAOCOM-1B, was launched 

in 2018 for microwave remote sensing purposes by Argentina's space agency, Comisión 

Nacional de ActividadesEspaciales (CONAE). It incorporates a SAR sensor that operates in 

the L-band (1,275 GHz,). DP and quad-polarimetric (QP) images providing complete coverage 
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of the study area sites will be used. The dataset consists of 3 images each of both polarisations 

acquired over different dates in March 2021 (see Table 3). Downloaded from the SAOCOM 

Catalog, the dataset’s processing level is Level-1D, the product of which consists of amplitude 

information. L-1D Ground Terrain Corrected (GTC) data was chosen because it is already 

geometrically corrected, geocoded and georeferenced using topography. The acquisition mode 

of the instrument for this dataset is TOPSAR Narrow (TN) which corresponds to a ground 

range and azimuth resolution of 50 m and 50 m respectively. Figures 5 and 6 show the 

SAOCOM DP and QP images clipped according to the study area sites respectively. 

 

 

 

 

 

   
(a) Basin Summit, Idaho (b) Mores Creek, Idaho (c) Cameron Pass, Colorado 

  
(d) Fraser, Colorado (e) Little Cottonwood Canyon, Utah 

Figure 5: SAOCOM DP images used in this study, visualising the intensity of VH band (dB) in greyscale for all research sites: (a) Basin 
Summit, Idaho, (b) Mores Creek, Idaho, (c) Cameron Pass, Colorado, (d) Fraser, Colorado, (e) Little Cottonwood Canyon, Utah  
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(a) Basin Summit, Idaho (b) Mores Creek, Idaho (c) Cameron Pass, Colorado 

  

(d) Fraser, Colorado (e) Little Cottonwood Canyon, Utah 

Figure 6: SAOCOM QP images used in this study, visualising the intensity of HH band (dB) in greyscale for all research sites: (a) Bas in 
Summit, Idaho, (b) Mores Creek, Idaho, (c) Cameron Pass, Colorado, (d) Fraser, Colorado, (e) Little Cottonwood Canyon, Utah  

 

 
Table 2: Summarised characteristics of SAR data sources  

 

Characteristic SENTINEL-1 SAOCOM 

DUAL 

SAOCOM 

QUAD 

UAVSAR 

Band C- band L- band L-band L- band 

Bandwidth 5.405 GHz 1.275 GHz 1.275 GHz 1.257 GHz 

Polarization Dual-

Polarimetric 

(VH, VV) 

Dual-

polarimetric 

(VH, VV) 

Quad-

polarimetric 

(HH, HV, VH, 

VV) 

Quad-

polarimetric 

(HH, HV, VH, 

VV) 

Processing 

Level 

Ground Range 

Detected (GRD) 

Ground Terrain 

Corrected 

(GTC) 

Ground Terrain 

Corrected 

(GTC) 

Ground Range 

Detected (GRD) 

Ground Range 

and Azimuth 

Resolution 

10 m * 10 m 50 m * 50 m 50 m * 50 m 1.8 m * 1.8 m 

Instrument 

Acquisition 

Mode 

Interferometric 

Wide Swath 

(IW) 

TopSAR 

Narrow 

TopSAR 

Narrow 

PolSAR 

Swath width 250 km >150 km >108 km 16 km 

Wavelength 5.55 cm 23.51 cm 23.51 cm 23.79 cm 
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Table 3: Acquisition dates for all dataset 

 

Study Area Fraser, 

Colorado 

Cameron 

Pass, 

Colorado 

Little 

Cottonwood 

Canyon, 

Utah 

Basin 

Summit, 

Idaho 

Mores 

Creek, 

Idaho 

Dataset 

NASA SnowEx 

Snow Depth 

(reference data) 

19th March 

2021 

19th March 

2021 

18th March 

2021 

15th 

March 

2021 

15th March 

2021 

Sentinel-1 30th March 

2021 

26th March 

2021 

21st March 

2021 

21st March 

2021 

21st March 

2021 

SAOCOM dual 6th March 

2021 

6th March 

2021 

18th March 

2021 

3rd March 

2021 

3rd March 

2021 

SAOCOM quad 6th March 

2021 

6th March 

2021 

18th March 

2021 

3rd March 

2021 

3rd March 

2021 

UAVSAR 22nd March 

2021 

16th March 

2021 

16th March 

2021 

16th 

March 

2021 

16th March 

2021 

 

 

2.3.     Tools 

 

Several tools and software were used in the research to handle various stages of study including 

data pre-processing, model generation, and evaluation. For the pre-processing of SAR imagery, 

the Sentinel Application Platform (SNAP) from the ESA and the ASF MapReady software from 

the Alaska Satellite Facility (ASF) were used. Creating training and testing samples and 

subsequently, model generation using random forest and quantitative assessments were 

performed in R programming language in RStudio. Furthermore, the predictions of the models 

were qualitatively evaluated by visualising the outputs in QGIS software. 
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CHAPTER 3 

Methodology 

 

 

3.1.     Methodological Workflow 

 

The flowchart in Figure 7 outlines the steps that will be executed to achieve this study's 

objectives and address the related research questions. 

 

 
 

Figure 7: Methodological Workflow 
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3.2.     Data Pre-processing 

 

Despite their many benefits, SAR images have some inherent limits, which compromise the 

accuracy and quality of their data. Speckles and geometric distortions are a few of these 

drawbacks (Gabriel, 2002). Pre-processing methods must be used to overcome these 

restrictions and improve the accuracy and reliability of SAR-based SDE. The SNAP software, 

created by the European Space Agency (ESA), and ASF MapReady software created by ASF 

were used to perform the pre-processing of the SAR imagery. For missions like Sentinel-1, 

SAOCOM, and UAVSAR, these open-source software provide extensive SAR pre-processing 

capabilities. 

 

3.2.1. Calibration  

The first step was to perform radiometric calibration, which corrects and standardizes the pixel 

values or Digital Numbers (DN) to ensure they accurately represent the radar backscatter 

measurements from the Earth's surface. Additionally, with this process, one can transform the 

raw DN of the SAR image into physical units, namely sigma-nought (σ0), gamma-nought (γ0) 

and beta-nought (β0) (El-Darymli et al., 2014). In all three of the parameters, brightness 

dependencies on incident angle have been widely noted. The dependency is most prominent in 

beta-nought, diminishing but still noticeable in sigma-nought, and even more so in gamma-

nought (Atwood et al., 2012). Thus, gamma-nought (γ0) was used for radiometric calibration 

because it helps remove the influence of incidence angle (Cheng et al., 2012). This was critical 

because the SAR datasets utilised in this study are acquired from a variety of sensor platforms, 

including both airborne and spaceborne sensors. These sensors have varying incidence angles. 

Using gamma-nought (γ0) for radiometric calibration ensures more consistent and comparable 

backscatter values across all datasets. Thus, radiometric calibration was applied to all the SAR 

imageries of Sentinel-1 and SAOCOM-1 using SNAP software and the same was done for 

UAVSAR imageries using the ASF MapReady software.  

 

3.2.2. Denoising  

Speckle is a granular noise present in SAR images caused by interference and phase fluctuation 

(Singh & Shree, 2016). This inherent noise causes the salt and pepper effect, which was reduced 

by speckle filtering. Despeckling seeks to remove speckle noise while preserving the image's 

characteristics (Painam & Manikandan, 2023). The SAR images were filtered using the 

Refined Lee filter in SNAP. There is no option to change the kernel window size for this filter 

and its default is fixed to 7*7 in SNAP. The Refined Lee filter is chosen here for de-speckling 

as it excels in preserving details and features while effectively minimizing the blur effect 

(Yommy et al. 2015). Thus, the same speckle filtering process was applied to all SAR images 

in SNAP to remove noise and improve interpretability. 

 

3.2.3. Geometric Correction 

In this step, the SAR images were geocoded by projecting them to a target Coordinate 

Reference System (CRS) which gave each pixel a set of geographic coordinates based on the 

satellite's position. Ensuring consistency with the SnowEx snow depth images, the target CRS 

for the SAR images was set to EPSG:32611 – WGS 84 / UTM Zone 11N for the study areas 
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located in Idaho, EPSG:32612 – WGS 84 / UTM Zone 12N for the study areas in Utah, and 

EPSG:32613 – WGS 84 / UTM Zone 13N for the study areas in Colorado, respectively. 

Reprojecting the SAR dataset to a real-world geographic coordinate system is necessary to 

align it with the SnowEx snow depth dataset. Additionally, SAR images have some distortions 

caused by the side-looking geometry of radar (Filipponi, 2019). The main aim of geometric 

terrain correction was to somehow mitigate these distortions caused by terrain relief and bring 

the image's geometric representation as close to reality as feasible. The Range Doppler Terrain 

Correction option in SNAP uses a Digital Elevation Model (DEM) to adjust each pixel's 

location in order to correct geometric distortions brought on by topography, such as shadows 

and foreshortening (Filipponi, 2019). For all the SAR images of the study areas, we utilized 

the Copernicus 30m Global DEM, which is already available in SNAP. This DEM was chosen 

because its acquisition year 2021 closely aligns with the acquisition dates of the SAR data from 

March 2021. This temporal proximity aims to ensure greater accuracy while performing terrain 

correction as compared to older DEMs available in SNAP. Moreover, it gives accurate 

topographic information at a 30m spatial resolution which is suitable for terrain correction of 

SAR images (Ghannadi et al., 2023). Terrain correction wasn’t applied to SAOCOM data 

because it is Level-1 GTC data which is already terrain-corrected. After this, the SAR images 

were clipped to the respective study area’s extent in QGIS Software.  

 

Figure 8 shows the first three preprocessing stages of a raw SAR image. 

 

  
(a) Original image (b) After calibration 

  
(c) After denoising (d) After geometric correction 

Figure 8: The outcomes of a SAR image after applying the first four pre-processing stages, shown through the example of one of the 
Sentinel-1 images (visualising intensity of VH band) used during this study: (a) Original image, (b) Calibrated image, (c) Denoised image, 

(d) Geometrically corrected image 
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3.2.4. Georeferencing 

SAR images provided by the SAOCOM satellite are inflicted with some geolocation errors 

where the pixels in the image can be displaced from their true geographic locations by a few 

metres (Mou et al., 2023). Upon visual inspection, it was noted that the SnowEx snow depth 

images weren’t perfectly overlapping with the SAOCOM images. Thus, a manual 

georeferencing process was carried out using the Georeferencer tool in QGIS software. Ground 

Control Points (GCPs) were collected using the very high-resolution “Google Satellite” base 

map.   A third-order Polynomial transformation was applied due to its ability to perform well 

in fitting GCPs accurately across the image (Das et al., 2018).  For this transformation, the 

nearest neighbour resampling method was selected because it preserves the original pixel 

values (SAR backscatter), which is critical for this study. Finally, the georeferenced images of 

SAOCOM data, with their mean errors between 1.14 m to 1.61 m, were utilised for the 

subsequent pre-processing steps.  

  

3.2.5. Conversion to Decibels (dB) 

Radar sensors have high radiometric resolution due to which the range of the measured 

backscatter values is large. Thus, the unitless backscatter coefficient was transformed to dB in 

SNAP using a logarithmic transformation (see Equation 1). This normalises the data and can 

assist the machine learning models to learn more effectively.  

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑑𝐵) = 10 ∗  log10(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)  (1) 

 

3.2.6. Resampling of SnowEx snow depth data 

To maintain consistency and alignment between the SAR imagery and the reference snow depth 

data, the reference data images were resampled to match the spatial resolutions of the respective 

SAR images. Specifically, the SnowEx snow depth rasters were resampled to a pixel spacing 

of 10 m *10 m for Sentinel-1, 50 m * 50 m for SAOCOM-1, and 1.8 m * 1.8 m for UAVSAR. 

This process allows for direct pixel-to-pixel correspondence between the SAR image and the 

SnowEx snow depth image. These resampled snow depth images were used for the subsequent 

steps. 

 

3.2.7. Coregistration 

In this step, coregistration was conducted to align SAR images with their corresponding 

resampled snow depth images using the SNAP software. The SAR image and resampled snow 

depth image were selected as input datasets for the coregistration process. The resampled snow 

depth image was designated as the master image, while the SAR image was designated as the 

slave image. Both images were stacked together to establish a single integrated reference 

geometry, ensuring their collocation and readiness for alignment. Coarse and fine registration 

techniques were employed to calculate cross-correlation between the SAR and snow depth 

images. Coarse registration initially aligned the images based on product geolocation, while 

fine registration refined the alignment by assessing image coherence at various window sizes. 

For warping, a third-degree polynomial transformation along with a cubic convolution 

interpolation was opted for, taking into account the complexity of the terrain in the study areas 

and to achieve precise alignment between the SAR and snow depth images. Before 

implementing the warping process, the distribution of Ground Control Points (GCPs) used in 
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the process was evaluated. Only GCPs with a root mean square error (RMSE) of less than 0.05 

meters were utilized for warping, ensuring accurate coregistration at the sub-pixel level. This 

coregistration procedure ensures accurate spatial alignment, enabling reliable analysis between 

snow depth and their corresponding SAR backscatter intensity. 

 

 

3.3.     Developing a machine-learning model 

 

3.3.1. Data Preparation 

The next step, after pre-processing, was to prepare the data for the machine learning model. 

This process was carried out for all datasets associated with all the study areas of this study in 

the R environment using RStudio. 3000 points were generated by using random stratified 

sampling, ensuring a balanced representation of the variations in snow depth. This was done 

by stratifying the snow depth image into four classes based on their quantiles. These points 

were used to extract corresponding snow depth and SAR backscatter values from the stacked 

(coregistered) image. The SnowEx snow depth images contained some pixels with negative 

values and the interpretation of these values could contain uncertainty. Thus, the sample set 

was further filtered by deleting any points where the snow depth value was less than zero. This 

was done to ensure that only reliable and meaningful snow depth values were considered in the 

analysis. 

 

This refined sample set was split randomly into temporary (70%) and testing (30%) sets. While 

adding points to the testing set, a condition was set that only the points lying outside a 100m 

buffer of the points in the temporary set were added to the testing set. This was done to 

minimize the effect of spatial autocorrelation to some extent. The temporary set was further 

split randomly into training (70%) and validation (30%) sets. Thus, 49% of the initial sample 

set made up the training set, 21% made up the validation set, and the remaining 30% became 

the testing set. By splitting the data in this way, the model was trained on one subset, validated 

on another, and then tested on an independent subset to assess its performance. A manual trial-

and-error approach was carried out (only for 1 study area) with varying amounts of sample 

points, ranging from 1000 to 6000 points, with a step size of 1000. The models were shown to 

yield the best results when 3000 sample points were used. While there is a possibility that larger 

sample sizes might improve the machine learning model's precision in estimating snow depth, 

the computing time skyrocketed, making it unfeasible. Consequently, generating 3000 points 

achieved a balance between model accuracy and computing efficiency.  

 

3.3.2. Random Forest Regression 

Random forest (RF) is an ensemble method that builds several independent trees as a 

regression and uses statistical values to provide results (Segal, 2004). Regression trees serve as 

base learners and are grown from several subsets of training data that are produced by 

bootstrapping (bagging) (Rodriguez-Galiano et al., 2015). The outcome is derived from an 

individual tree and subsequently combined with the average of the trees being used to 

determine the final result (Breiman, 2001). The ability to model complicated and nonlinear 

relationships, resistance to overfitting, and robustness to the noise in the data are some of the 

advantages that RF regression offers over other statistical modelling methods (Seo et al., 2018). 

RF does a random selection of training samples and variables for splitting at each tree node, 

resulting in a huge number of trees, which makes the model insensitive to the quality of training 
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data (Maxwell et al., 2018). In addition, the RF model is user-friendly and quick to train (Tyralis 

et al., 2019). It has been recommended that the RF regression approach be used in remote 

sensing because of its excellent predictive power (Breiman, 2001; Hultquist et al., 2014).  

 

For this study, the randomForest R package was used for developing and implementing the RF 

regression model on RStudio. The model was trained using the training samples set, with SAR 

backscatter values as predictors and snow depth values as the response variable. There will be 

two possible predictor variables (intensities of VH and VV band) in the case of DP SAR data 

and three possible predictor variables (intensities of HH band, HV band and VV band) in the 

case of QP SAR data.  

 

3.3.3. Hyperparameter Tuning 

Enhancing the model’s performance typically involves tuning or setting several user-defined 

parameters, such as the number of trees in the ensemble (ntree), the number of random variables 

at each node (mtry) and the minimum size of terminal nodes (nodesize). A grid search was 

employed across a defined set of hyperparameters. This grid encompassed various values for 

ntree, mtry, and nodesize. Each combination of these parameters was used to train an RF 

regression model, which was subsequently evaluated. The performance of these models was 

measured through Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The 

model configuration that achieved the lowest RMSE and MAE values with the validation set 

provided the optimal combination of hyperparameter values. Finally, these parameters were 

employed to train the model with the training set, which was then used to predict snow depth 

values across the entire SAR image. 

 

3.3.4. Accuracy Assessment 

The testing set was utilised for the accuracy assessment to reveal how effectively the tuned 

model performs with unseen data. The performance of the models was assessed in a 

quantitative manner using the MAE (see Equation 2) and RMSE (see Equation 3). The MAE, 

also referred to as Mean Absolute Deviation, calculates the average of the absolute differences 

between observed and predicted values. MAE offers a straightforward interpretation of 

prediction accuracy by indicating the average size of the errors without considering their 

direction. The RMSE, also known as Root Mean Squared Deviation, is the square root of the 

mean of the squared errors. Essentially, RMSE represents the standard deviation of the 

prediction errors and indicates how closely the predicted values align with the observed data 

points. It is a commonly used accuracy metric (Karl, 2010; Spadavecchia & Williams, 2009). 

RMSE is sensitive to outliers and penalizes larger errors more heavily, while MAE treats all 

errors equally, providing a balanced perspective on overall prediction accuracy. Thus, the MAE 

and RMSE were computed for every model using the testing set. These methods have been 

recommended to assess the performance of the regression model (Adnan et al., 2017). 

 

𝑀𝐴𝐸 =  
1

𝑁
∑ | 𝑆𝐷𝑎

𝑁

𝑖=1

− 𝑆𝐷𝑝| (2) 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑(𝑆𝐷𝑎 − 𝑆𝐷𝑝)

2
𝑁

𝑖=1

 (3) 

 

 
Where 𝑁 is the total number of observations, 𝑆𝐷𝑎 is the actual snow depth and 𝑆𝐷𝑝 is the 

predicted snow depth. 

 

 

Along with the assessment using MAE and RMSE, p-values were computed to evaluate the 

statistical significance of the relationship between the predictor and the response variable. It 

helps determine whether the RF regression model's findings are due to random chance or if 

there is a statistically significant relationship between the variables. It facilitates formal 

hypothesis testing, allowing the testing of the alternative hypothesis (H1) against the null 

hypothesis (H0) (De Leeuw et al., 2006). 

 

H0 – There is no statistically significant relation between the SAR backscatter values and the 

snow depth values. 

H1- There is a statistically significant relation between the SAR backscatter values and the 

snow depth values. 

 

A low p-value (p < 0.05) indicates that the null hypothesis was rejected, indicating a statistically 

significant relationship between the predictors and the response variable. On the other hand, a 

higher p-value (p ≥ 0.05) indicates weak evidence against the null hypothesis, implying that 

the observed relationship may be the result of chance. 

 

3.3.5. Assessment of Spatial Generalization 

To assess the model's spatial generalization ability, the training samples from four study areas 

(Mores Creek, Fraser, Cameron Pass, and Little Cottonwood Canyon) were combined and used 

to test the model on an independent, spatially disjoint study area (Basin Summit). This was 

done for all four SAR datasets and the same methodological workflow was followed as 

mentioned before. The RF regression model was trained using the combined training dataset 

with SAR backscatter values as predictors and snow depth as the response variable. The 

accuracy assessment was done utilizing the same testing set used previously for assessing the 

model performance over the same study area. The performance metrics (RMSE and MAE) of 

this new model with combined training data were compared with the model trained on the 

area’s own training data.  
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CHAPTER 4 

Experimental Results and Discussion 

 

 

4.1.     Results from model optimization analysis 

 

4.1.1. Sensitivity of the model to training sample size 

An investigation was done to examine how varying sample sizes affect the accuracy and 

computational efficiency of an RF regression model when predicting snow depth values from 

SAR backscatter values. The findings revealed that the RMSE and MAE values decreased as 

more sampling points were added to the training set, indicating an improved predictive 

capability and fewer errors in snow depth measurement. The time went up from 156.25 seconds 

for 1000 sampling points to 696.08 seconds for 3000 sampling points. Notably, the RMSE 

dropped from 0.61 m for 1000 sample points to 0.41 m for 3000 sample points, indicating a 

significant improvement in model precision. However, beyond 3000 samples, the 

improvements were minimal, and the computational time increased largely without significant 

improvements in accuracy. The RMSE and MAE values obtained with bigger sample sizes 

(4000, 5000 and 6000) were comparable to that of 3000; however, the processing time 

increased substantially, often doubling or tripling at these larger sample sizes. These results 

indicated that a sample size of 3000 points was optimal because the model execution time was 

2x faster.  

 

One aspect of the procedure carried out for this investigation is the random selection of sample 

points for each dataset size, which could possibly have an impact on the RMSE and MAE 

variations. Each set of points was selected randomly, possibly leading to variability in the 

features included in the training sample set. This suggests that while 3000 sample points 

appeared to be optimal, different randomly selected subsets of the same sample size could’ve 

produced different results. While iterating through different sample sizes, future research could 

also explore multiple iterations of sample selection (within the same sample size) to identify 

the most representative subset in each sample size and ensure more reliable conclusions. 

Generally, large training datasets result in higher accuracy for “data-hungry” machine learning 

models like RF regression (Domingos, 2012). Thus, this choice of using 3000 training samples 

for this study strikes a balance between model accuracy and computational time. Future studies 

could use cloud-based computing platforms such as the Geospatial Computing Platform (GCP) 

provided by the Center of Expertise on Big Geodata Science (CRIB) for the implementations 

of such models with large sample sizes in lesser runtime.  

 

4.1.2. Checking for overfitting 

Table 4 shows the RMSE and MAE values for training and validating dataset. All models show 

evidence of some extent of overfitting, as demonstrated by the slightly higher validation RMSE 

and MAE values compared to their respective training RMSE and MAE values. Amongst all 

datasets, Sentinel-1 shows the most extensive overfitting in a few cases, with significant 

differences between training and validation metrics. For instance, in Fraser, the Sentinel-1 
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model has a training RMSE of 0.421 m and a validation RMSE of 0.477 m, indicative of a 

severe fall in performance. Similarly, in Cameron Pass, the training RMSE for Sentinel -1 is 

1.008 m, whereas the validation RMSE is 1.021 m, suggesting a relatively higher extent of 

overfitting compared to models of other datasets. Models with SAOCOM DP and QP datasets 

showed minimal differences between training and validation RMSE and MAE values implying 

limited overfitting. However, the UAVSAR dataset consistently exhibited the least overfitting 

for all regions. In Basin Summit, Idaho, for example, the training RMSE is 0.410 m and the 

validation RMSE is 0.415 m, with MAE values of 0.321 m and 0.330 m respectively.  

 

 
Table 4: Performance metrics for training and validation sets  

 

 

 

Overfitting in all the models implies that these models fitted too closely to the training samples 

and failed to generalize well. There exists a possibility that overfitting is occurring due to an 

insufficient training dataset that lacks enough sample points to accurately represent the range 

of input data (Ha et al., 2018). Additionally, the presence of noise in the training data could’ve 

Study Area Dataset Training 

RMSE 

Validating 

RMSE 

Training 

MAE 

Validating 

MAE 

Basin Summit, 

Idaho 

  

 SAOCOM DP 0.519 0.531 0. 372 0.384 

` Sentinel-1 0.511 0.522 0.356 0.367  
SAOCOM QP 0.483 0.489 0.331 0.354  

UAVSAR 0.410 0.415 0.321 0.330 

Mores Creek, Idaho   

 SAOCOM DP 0.524 0.544 0.411 0.425  
Sentinel-1 0.512 0.529 0.402 0.398  

SAOCOM QP 0.477 0.489 0.388 0.397  
UAVSAR 0.421 0.423 0.350 0.357 

Cameron Pass, 

Colorado 

  

 SAOCOM DP 1.012 1.033 0.509 0.520  
Sentinel-1 1.008 1.021 0.503 0.521  

SAOCOM QP 0.965 0.972 0.495 0.503  
UAVSAR 0.884 0.900 0.472 0.489 

Fraser, Colorado   

 SAOCOM DP 0.356 0.364 0.232 0.241  
Sentinel-1 0.421 0.477 0.265 0.273  

SAOCOM QP 0.342 0.355 0.238 0.245  
UAVSAR 0.405 0.447 0.260 0.274 

Little Cottonwood 

Canyon 

  

 SAOCOM DP 0.817 0.830 0.627 0.629  
Sentinel-1 0.803 0.819 0.593 0.604  

SAOCOM QP 0.735 0.771 0.585 0.590  
UAVSAR 0.705 0.727 0.559 0.561 
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led to overfitting. If the model's complexity is too high, it learns and gets trained on the noise 

along with the useful information in the training dataset. From the results, although all models 

show some aspects of overfitting, it is noteworthy that the differences are not significant in 

most cases, suggesting that the overfitting is not very severe. Sentinel-1, however, shows higher 

extents of overfitting than others which might happen due to its specific characteristics. Its high 

spatial resolution, while beneficial for capturing details, might have introduced local variations 

that don’t generalise well to the independent data. Moreover, SAOCOM products due to their 

low spatial resolution don’t capture small-scale variations as compared to Sentinel-1 data, thus 

leading to minimal overfitting. Conversely, UAVSAR with the highest spatial resolution is the 

least overfitted during model implementation. The exact reasoning for these patterns requires 

further investigation. Since the difference in RMSE and MAE in the validation set after 

hyperparameter tuning is only a few centimetres, overfitting is not severe and thus no action 

was taken. However, it is acknowledged that overfitting, even though minimal, is not ideal. 

Thus, future models can focus on utilising regularisation techniques to avoid overfitting 

(Ghojogh et al., 2019).  

 

 

4.2.     Results from RF regression analysis 

 

The performance metrics established by using the testing set to assess the accuracy of the 

predicted maps generated by the RF regression models, including RMSE, MAE, and p-value 

are given in Table 5. 

 

 
Table 5: RMSE, MAE and p-value achieved by assessing the models on the testing set 

 

Study Area Dataset RMSE MAE p-value 

Basin Summit, 

Idaho 

 

 SAOCOM DP 0.549 0.400 0.0042  
Sentinel-1 0.540 0.388 0.0009  

SAOCOM QP 0.502 0.360 0.0425  
UAVSAR 0.438 0.327 1.78 × 10-7 

Mores Creek, Idaho  

 SAOCOM DP 0.554 0.430 1.92 × 10-5  
Sentinel-1 0.549 0.415 0.02388  

SAOCOM QP 0.492 0.406 8.90 × 10-6  
UAVSAR 0.439 0.364 2.20 × 10-16 

Cameron Pass, 

Colorado 

 

 SAOCOM DP 1.038 0.527 3.11 × 10-6  
Sentinel-1 1.029 0.523 0.00085  

SAOCOM QP 0.980 0.520 4.56 × 10-6  
UAVSAR 0.907 0.487 2.20 × 10-16 

Fraser, Colorado  

 SAOCOM DP 0.449423 0.282026 0.6108  
Sentinel-1 0.460416 0.2935155 0.00078  

SAOCOM QP 0.40537 0.27818 0.0003 
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UAVSAR 0.42468 0.2873148 0.6425 

Little Cottonwood 

Canyon 

 

 SAOCOM DP 0.859 0.635 0.1556  
Sentinel-1 0.821 0.605 0.5059  

SAOCOM QP 0.788 0.610 0.1389  
UAVSAR 0.730 0.591 0.02464 

 

 

A model with smaller RMSE and MAE values suggests better predictive accuracy. In Mores 

Creek, the lowest RMSE (0.42 m) and MAE (0.36 m) values were achieved using the UAVSAR 

dataset. Following UAVSAR, SAOCOM QP showed RMSE and MAE values of 0.49 m and 

0.40 m, respectively. Sentinel-1 closely followed with an RMSE of 0.54 m and MAE of 0.41 

m. SAOCOM DP dataset displayed the highest RMSE and MAE values of 0.55 m and 0.43 m, 

respectively. A similar trend is seen (see Figure 9 and Table 5) in Basin Summit, Cameron Pass, 

and Little Cottonwood Canyon where UAVSAR outperformed other datasets with the lowest 

RMSE and MAE, followed by SAOCOM QP, Sentinel-1, and SAOCOM DP. These values 

highlight the significant variability in the performance of different datasets. Moreover, most of 

these RF regression models achieved a p-value less than 0.05, indicating that their 

corresponding results are statistically significant and not due to random chance. Comparing 

across all study areas, the UAVSAR dataset in Basin Summit achieved the lowest overall 

RMSE (0.43 m) and MAE (0.32 m) in this study. The predictions of this model are reliable, 

which is supported by the model’s small p-value of 1.78*10-7. On the other hand, the highest 

RMSE was observed with the SAOCOM DP dataset in Cameron Pass, which produced 

statistically significant outcomes with an RMSE of 1.03 m and an MAE of 0.52 m.  

 

 

 

  
(a) RMSE (b) MAE 

Figure 9: Performance metrics using the testing set for different models: (a) RMSE, (b) MAE 

 

 

 

The quantitative results in Table 5 indicate that the datasets follow an order in terms of model 

performance and accuracy, with UAVSAR exhibiting the best results, followed by SAOCOM 
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QP data, Sentinel-1 and finally the SAOCOM DP data. The occurrence of this pattern is most 

likely to be a result of the specific characteristics of these datasets, such as its sensor’s spatial 

resolution, polarisation configuration and frequency. UAVSAR's exceptional performance and 

accuracy in all the study areas are noteworthy. The lower RMSE and MAE values for UAVSAR 

across all study areas highlight its superiority over the other datasets used in this study for 

estimating snow depth. Having an airborne sensor platform, it has a very high spatial resolution 

that enables capturing finer details and identifying region-specific variations in the height of 

snow, leading to accurate predictions (Jones et al., 2013). It operates in the L-band, allowing 

for deeper penetration into the snowpack, which improves its ability to make accurate 

predictions about the depth of snow. Moreover, it employs full polarisation (HH, HV, VH, VV) 

which provides more comprehensive information about the snowpack as compared to dual 

polarization (Salma et al., 2022). The next best in line, spaceborne SAOCOM QP data has a 

much lower spatial resolution than UAVSAR, yet it compensates for the distance between 

sensor and snowpack through its deep-penetrating L-band data. Its fully polarimetric data, like 

UAVSAR, provides information in four channels (HH, HV, VH, VV). Sentinel-1 data, with its 

moderate spatial resolution of 10 m by 10 m, provided a better spatial resolution than 

SAOCOM QP data. However, it still resulted in higher RMSE and MAE values than SAOCOM 

QP data. This can be attributed to its dual polarization configuration that provides data only in 

two channels (VV and VH). Dual polarimetric data of Sentinel-1 offered lesser information to 

the model as compared to fully polarimetric SAOCOM QP and UAVSAR data. Moreover, 

Sentinel-1 operated in the C- band which has lesser penetration into the snowpack compared 

to the L-band, thus limiting its accuracy of snow depth measurements. The highest errors were 

observed in SAOCOM DP data. Coming from the same satellite, both SAOCOM DP and QP 

datasets have the same spatial resolution and frequency (L-band), yet the RMSE and MAE 

values are significantly higher in models of the SAOCOM DP dataset. Its dual-polarised data 

offering information in two channels provides lesser information to the model and limits the 

dataset’s ability to estimate snow depth as accurately as the other fully polarised datasets. 

Interestingly, SAOCOM DP and Sentinel-1 achieved comparable results with very slight 

differences in their RMSE and MAE values. Although by a minor difference, Sentinel-1 has 

achieved more accurate predictions than SAOCOM DP. Both of them offer information in the 

same polarisation channels (VV and VH), however, SAOCOM DP operates in L- band, 

providing a deeper penetration into the snowpack but it is not enough to compensate for its low 

spatial resolution against the Sentinel-1, C- band, moderate resolution dataset.  

 

In the Fraser region, the dataset accuracy trend deviated from the patterns seen in other research 

sites. Sentinel-1 had the highest RMSE of 0.46 m and MAE of 0.29 m. It also achieved a p-

value less than 0.05 confirming that indeed the high values of RMSE and MAE are a result of 

meaningful interactions between the predictor and response variable. SAOCOM DP, with 

comparable values, achieved an RMSE of 0.44 m and MAE of 0.29 m. UAVSAR did not 

outperform the other datasets in this region, despite being the most accurate in the other study 

area sites. It yielded RMSE and MAE values of 0.42 m and 0.28 m, respectively. Interestingly, 

the SAOCOM QP dataset (RMSE: 0.40 m, MAE: 0.27 m) displayed comparatively lower error 

values, indicating improved performance in this specific study area. One possible reason for 

UAVSAR's higher error values could be that the training samples couldn’t adequately represent 

the variability of snow depth in the Fraser region. The model might require a larger or more 

diverse set of samples to tackle such a problem. However, it is difficult to pinpoint the exact 

cause of UAVSAR’s underperformance with surety without proper investigation. Furthermore, 

it is noteworthy that Little Cottonwood Canyon and Cameron Pass regions present significantly 

higher errors, representative of lesser predictive accuracy in these regions. For instance, in 

Cameron Pass, the UAVSAR dataset, despite being the most accurate among the datasets in 
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this region, recorded an RMSE of 0.9 m. and an MAE of 0.48 m which are higher than the 

corresponding values in other regions. Apart from model or training sample issues, such 

deviations from the usual trend might also be attributed to the local topography of these regions. 

SAR’s side-looking geometry and the terrain distortions due to steep slopes or rugged terrains 

can tend to exhibit higher measurement errors (Zebker et al., 1997). However, further 

investigation is required to identify the underlying reasons for such deviations. 

 

Figures 10 to 14 show the reference and predicted snow depth maps along with a difference 

map for all datasets across all study areas. The difference maps were generated by subtracting 

the predicted image from the reference image. 

 

Through visual inspection of the maps, predicted maps from the UAVSAR dataset displayed 

the closest resemblance to the reference snow depth maps. The SAOCOM QP dataset showed 

more pronounced errors but still bears a fair amount of similarity to the reference snow depth 

values. The SAOCOM DP and Sentinel-1 datasets seem to show the largest discrepancies 

between the predicted and the observed snow depth values in the reference maps. It was also 

observed that the predicted snow depth maps generated by the models narrowed down the 

original range of snow depth values, indicating that the models failed to predict the full 

spectrum of snow depth values accurately in the study area. This failure to predict well is also 

confirmed by the high RMSE and MAE values of the models. The difference maps reveal areas 

where the model overestimated or underestimated the observed snow depth values. 

Overestimation is the case when the observed snow depth is minimal, yet the predicted values 

are higher. On the other hand, underestimation is the case when the observed snow depth is 

high, but the predicted value is low. All the models showed a tendency to slightly overestimate 

the snow depth values which were originally towards the lower end of the spectrum (close to 

0) in the reference snow depth image. Similarly, underestimation was seen with snow depth 

values present originally in the higher end of the spectrum (close to the maximum snow depth 

of that region). This implies that the models showed a tendency to predict snow depths within 

a medium or middle range with respect to the reference data range, failing to predict the 

extremes. These difference maps also highlight where these errors are significantly higher. 

Upon visual inspection, it is evident that the highest errors (in both directions) are observed in 

areas where the snow depth values were either too high or too low, i.e., snow depth values were 

at the extreme ends of the reference data range. 
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 (a) UAVSAR  

   

 (b) SAOCOM QP  

   

 (c) SAOCOM DP  

   

 (d) SENTINEL-1  

Figure 10: The reference (left), predicted (middle) and difference (right) snow depth maps for Basin Summit: (a) UAVSAR, (b) SAOCOM 
(QP), (c) SAOCOM (DP), (d) Sentinel-1 
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 (a) UAVSAR  

 
 

 

 (b) SAOCOM QP  

 
 

 

 (c) SAOCOM DP  

 
  

 (d) SENTINEL-1  

Figure 11: The reference (left), predicted (middle) and difference (right) snow depth maps for Mores Creek: (a) UAVSAR, (b) SAOCOM 
(QP), (c) SAOCOM (DP), (d) Sentinel-1. 
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 (a) UAVSAR  

   

 (b) SAOCOM QP  

   
 (c) SAOCOM DP  

 
  

 (d) SENTINEL-1  

Figure 12: The reference (left), predicted (middle) and difference (right) snow depth maps for Cameron Pass: (a) UAVSAR, (b) SAOCOM 
(QP), (c) SAOCOM (DP), (d) Sentinel-1 
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 (a) UAVSAR  

 
 

 

 (b) SAOCOM QP  

  
 

 (c) SAOCOM DP  

  
 

 (d) SENTINEL-1  

Figure 13: The reference (left), predicted (middle) and difference (right) snow depth maps for Fraser: (a) UAVSAR, (b) SAOCOM (QP), 
(c) SAOCOM (DP), (d) Sentinel-1 
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 (a) UAVSAR  

  
 

 (b) SAOCOM QP  

  
 

 (c) SAOCOM DP  

   
 (d) SENTINEL-1  

Figure 14: The reference (left), predicted (middle) and difference (right) snow depth maps for Little Cottonwood Canyon: (a) UAVSAR, 
(b) SAOCOM (QP), (c) SAOCOM (DP), (d) Sentinel-1 
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4.3.     Results for model’s generalisation ability 

 

Table 6 shows the results obtained (combined RMSE, combined MAE) after training the model 

using combined training data from four study areas (Mores Creek, Fraser and Cameron Pass, 

Little Cottonwood Canyon) and testing it on a spatially disjoint study area (Basin Summit). 

The results revealed a slight increment in the RMSE and MAE values as compared to the results 

of the model trained using the area’s own training samples.  

 

 
Table 6: Model performance metrics (RMSE and MAE) for original and combined training sets  

 

Dataset RMSE (Old) RMSE (Combined) MAE (Old) MAE (Combined) 

SAOCOM DP 0.549 0.559 0.400 0.409 

SENTINEL-1 0.540 0.550 0.388 0.374 

SAOCOM QP 0.502 0.520 0.360 0.393 

UAVSAR 0.438 0.515 0.327 0.383 

 

 

  
(a) UAVSAR (b) SAOCOM QP 

  
(c) SAOCOM DP (d) SENTINEL-1 

Figure 15: Predicted snow depth maps for the Basin Summit region, generated by training the models with training samples of 
spatially disjoint areas: (a) UAVSAR, (b) SAOCOM (QP), (c) SAOCOM (DP), (d) Sentinel -1 
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Though this investigation’s outcome followed the previously observed trend in dataset 

performance —UAVSAR having the lowest RMSE and MAE, followed by SAOCOM QP, 

Sentinel-1, and SAOCOM DP— the performance of models decreased across all datasets. 

While the increment in RMSE and MAE values of SAOCOM DP, Sentinel-1 and SAOCOM 

QP is minimal, the UAVSAR dataset revealed a significant difference. The RMSE values only 

increased by 1-2 cm in the SAOCOM DP, Sentinel-1 and SAOCOM QP datasets whereas the 

UAVSAR dataset showed an increase of around 7 cm in RMSE. The decrease in prediction 

accuracy implies that the model failed to generalize effectively when tested on an independent 

study area. The higher RMSE and MAE values can be attributed to the fact that the spatially 

disjoint region, Basin Summit, may have unique terrain characteristics that might have 

influenced SAR backscatter values and consequently affected the predicted snow depth. 

Moreover, the combined training dataset might also have included the noise or irrelevant 

variability from the training samples of the four study areas. The incorporation of noise could 

distort the model's understanding of the relations between SAR backscatter and snow depth 

measurements, which in turn could’ve affected the model's capacity to generalize to unseen 

data. Figure 15 shows the predicted snow depth maps produced during this investigation. 

diverse range of backscattering value. 

 

 

4.4.     Results of a complementary investigation of SDE using auxiliary data 

 

To further investigate the impact of using auxiliary data for training the RF regression model, 

a complementary analysis was carried out on the Basin Summit region. During this stage, 

elevation data from the Copernicus 30m Digital Elevation Model (DEM) and SAR backscatter 

values both were used as predictor variables to train the models. The rest of the methodological 

workflow remained the same and the models were made to predict snow depth values for the 

study area. The objective of this additional investigation was to find out to what extent adding 

extra information, apart from SAR backscatter values, can affect the model's performance. 

 

Table 7 shows the results of performance metrics comparing models trained with SAR data 

alone (Old RMSE and Old MAE) versus models built with a combination of SAR and DEM 

data (New RMSE and New MAE). 

 

 
Table 7: Comparing the performance metrics of the model utilizing only SAR data and the model using SAR and 

DEM data 
 

 RMSE MAE 

Predictors SAR SAR+DEM SAR SAR+DEM 

SACOM DP 0.549 0.459 0.400 0.282 

Sentinel-1 0.540 0.420 0.388 0.232 

SAOCOM QP 0.502 0.401 0.360 0.239 

UAVSAR 0.438 0.358 0.327 0.195 

 

 

The incorporation of DEM data led to a considerable reduction in both RMSE and MAE values 

for the Basin Summit region. For the SAOCOM DP dataset, the RMSE decreased from 0.54 m 

to 0.45 m, and the MAE decreased from 0.40 m to 0.28 m. Likewise, Sentinel-1 showed a 
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decrease in RMSE from 0.54 m to 0.42 m while the MAE decreased from 0.38 m to 0.23 m. 

The SAOCOM QP dataset also saw a reduction in RMSE from 0.50 m to 0.40 m, and the MAE 

also decreased from 0.36 m to 0.23 m. Notably, RMSE and MAE values experienced 

substantial improvement in the UAVSAR dataset, with RMSE falling from 0.43 m to 0.35 m 

and the MAE decreasing from 0.32 m to 0.19 m. These findings show that the inclusion of 

DEM data as a predictor variable significantly enhanced the accuracy of snow depth predictions 

using SAR data. The improved performance across all datasets indicates that integrating 

auxiliary data with SAR data has the potential to improve the predictive accuracy of a snow 

depth prediction model. It is essential to note that achieving high accuracies was not the primary 

objective of this research. Instead, the aim was to assess the reliability of SAR-based snow 

depth estimations and compare the performance of different SAR modalities. This additional 

investigation solely aimed at understanding the impact of adding an auxiliary dataset along 

with SAR to estimate snow depth using the same machine learning model. Figure 16 shows the 

predicted snow depth maps produced during this investigation. Upon visual inspection of these 

maps, it can be stated that the model trained with additional data was able to make better 

predictions because the predicted maps demonstrate much more closeness to the reference 

snow depth maps as compared to the predicted maps of Basin Summit using only SAR data.  

 

 

  
(a) UAVSAR (b) SAOCOM QP 

  
(c) SAOCOM DP (d) SENTINEL-1 

Figure 16: Predicted snow depth maps for the Basin Summit region, generated by training the models with additional DEM data: (a) 
UAVSAR, (b) SAOCOM (QP), (c) SAOCOM (DP), (d) Sentinel-1 
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CHAPTER 5 

Conclusion 

 

 

5.1.     Answers to Research Questions 

 

RQ1: Which frequency (C-band or L-band) of SAR results in a more accurate estimation 

of snow depth? 

 

This question can be answered by comparing the performance of Sentinel-1 C- band and 

SAOCOM DP L- band datasets. Both datasets are dual-polarised and acquired from spaceborne 

sensors. The results revealed that the predictive accuracies of both the datasets were quite 

comparable. However, Sentinel-1 data performed slightly better than SAOCOM DP data, 

possibly due to its higher spatial resolution. Despite having a lower penetration capability than 

the L-band, the Sentinel-1 C-band data slightly outperformed in several cases. It suggests that 

although L-band's deeper penetration into the snowpack is advantageous, it may not be 

sufficient to make up for lower resolution when it comes to collecting details about snow depth. 

This implies that a higher spatial resolution has the potential to compensate for the less -

penetrating C-band when estimating snow depth. 

 

On the other hand, it is noteworthy that even though Sentinel-1 has a much higher resolution 

(10m) than SAOCOM DP (50m), the increase in accuracy for Sentinel-1 was not much. The 

RMSE and MAE values of Sentinel-1 were extremely close to the respective values of 

SAOCOM DP. The small difference between their performance metrics shows that L-band 

SAOCOM DP achieved nearly comparable accuracy in SDE despite having a poorer resolution.  

 

Moreover, this comparison might not be entirely fair because of the disparity in spatial 

resolution between the two datasets. Thus, the answer to this question remains debatable. 

Future studies should consider datasets where all other features are held constant, except for 

frequency, in order to obtain a more precise assessment of the effect of frequency on SDE.  

 

 

RQ2: Do the SDE accuracies differ across airborne SAR and spaceborne SAR when the 

same frequency (L-band) is used? 

 

This question can be answered by comparing the performance of airborne UAVSAR and 

spaceborne SAOCOM QP datasets. Both datasets used quad-polarised configuration and L-

band frequency. The results of this study revealed that UAVSAR consistently achieved lower 

RMSE and MAE values than the SAOCOM QP dataset. This superior performance of 

UAVSAR can be attributed to the sensor’s high spatial resolution which could capture finer 

details. Airborne L-band SAR systems may also have an advantage over spaceborne L-band 

SAR systems due to their closer proximity to the Earth’s surface which may allow for higher 

energy to penetrate the snowpack. Thus, an airborne SAR system should be preferred over a 

spaceborne one to achieve higher predictive accuracies in the context of SDE. However, it is 



Snow Depth Estimation using Different SAR Image Modalities  

 

35 
 

important to note that this higher accuracy of airborne systems comes with significantly higher 

costs associated with its operational expenses. On the contrary, the acquisition of satellite 

imagery from spaceborne systems is less expensive. Therefore, even if aerial SAR data offers 

more accuracy, its cost-effectiveness needs to be taken into account, particularly for large-scale 

or long-term snow monitoring studies. 

 

 

RQ3: Which of the polarization modalities (full-polarization or dual-polarization) results 

in a more accurate estimation of snow depth? 

 

The comparison of the SDE accuracies of SAOCOM’S DP and QP data can facilitate the 

answer to this question. While both datasets had the same spatial resolution and L-band 

frequency, the results of this study revealed that the QP data proved to be more accurate at 

predicting snow depth values. The DP data of SAOCOM contains information in two channels 

(VH, VV) while the QP data provides data in four channels (HH, HV, VH, VV). Thus, this 

additional information provided by QP data helped the machine learning model in better 

understanding the snowpack which led to its lower RMSE and MAE values across most study 

areas. Thus, SAOCOM QP clearly outperformed the SAOCOM DP dataset, indicating that QP 

SAR data is more advantageous over DP SAR data in the estimation of snow depth. 

 

 

5.2.     Uncertainties 

 

While conducting this research, several sources of uncertainty were identified that could affect 

the accuracy and reliability of the snow depth predictions. Some amount of residual noise 

persists even after applying speckle filtering techniques which may impact the accuracy of 

snow depth estimations (Qiu et al., 2004). Additionally, there exists a gap of many days 

between the acquisition dates of the SAR data and reference data. This may lead to 

discrepancies because snow depth can change rapidly due to snow-melting or new snowfall 

over a period of a few days. Thus, temporal alignment between SAR data acquisitions and 

reference snow depth measurements is critical for accurate SDE. The original SAOCOM 

images were found to have geolocation errors due to which the pixels of the image were 

displaced from their true ground locations by a few metres. This led to misalignments between 

the SAOCOM data and the reference snow depth images. The inherent errors in GCP placement 

used for georeferencing may have introduced additional uncertainties. Since the georeferencing 

was done manually, there remains a possibility of persisting geo-location errors or imperfect 

alignment between the SAR images and their corresponding snow depth images. The original 

snow depth raster images used as reference data are also significant sources of uncertainty. 

These images were derived from point cloud DTMs, which might have involved interpolation 

of snow depth values. The exact extent of these uncertainties is unknown, adding another layer 

of complexity to the overall uncertainty in this research.  

 

 

5.3.     Implications 

 

The accurate estimation of snow depth using SAR data holds significant implications across 

various sectors and applications due to its practical importance. Snow depth is essential for 

calculating snow water equivalent which is essential for communities reliant on snowmelt for 
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agriculture, drinking water, and hydropower generation. It is also vital for assessing flood risks 

associated with rapid snowmelt events, enabling authorities to anticipate and mitigate hazards,  

and enhancing disaster preparedness and response strategies. Snow depth information also 

supports the tourism industry, enabling ski resorts and recreational facilities to optimize 

operations, ensure visitor safety, and enhance visitor experience. Reliable assessments of snow 

depth are important for avalanche risk assessment and disaster management, identifying high-

risk areas and informing proactive measures to mitigate hazards. Thus, accurate SDE has far-

reaching potential for water resource management, flood prevention, tourism, and disaster risk 

reduction. 

 

 

5.4.     Future Work and Recommendations 

 

In future, the study can incorporate phase information along with intensity information by 

making use of Single Look Complex (SLC) SAR data. Moreover, effective filtering techniques 

such as non-local or deep learning filters could be used (Aghababaei et al., 2022). Employing 

advanced techniques like Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) in future might prove to be effective at discerning complex patterns and 

relationships within SAR backscatter and snow depth values. Moreover, efforts can be made to 

refine the currently proposed methodology by tackling overfitting and improving sampling 

strategies. Additionally, integrating a variety of auxiliary data sources such as DEMs, thermal 

images, in-situ measurements, etc. can provide contextual insights that refine the connection 

between SAR-derived backscatter signals and variations in snow depth (Yang et al., 2020). 

These recommendations have the potential to advance the development of precise and 

dependable frameworks for estimating snow depth using SAR data. 

 

 

5.5.     Summary 

 

This research explored the use of various SAR datasets to estimate snow depth across multiple 

study areas in the western United States. By using a machine learning model, namely Random 

Forest regression, the study evaluated the performance of different SAR modalities, including 

C-band and L-band frequencies, airborne and spaceborne platforms, and dual-polarimetric and 

full-polarimetric configurations. The UAVSAR dataset consistently yielded the most accurate 

snow depth estimates, followed by SAOCOM QP, Sentinel-1, and SAOCOM DP. The study 

revealed that the airborne platforms (UAVSAR) generally yield more accurate snow depth 

estimations due to higher resolution and closer proximity to the snowpack, than the spaceborne 

ones (SAOCOM QP). Moreover, fully-polarimetric SAR data (SAOCOM QP) is more 

effective than dual-polarimetric configurations (SAOCOM DP), as it provides additional 

information to the model. When comparing the effect of the frequency of radar signals, dual-

polarised C-band data (Sentinel-1) showed better predictive accuracy than dual-polarised L-

band data (SAOCOM DP), suggesting that a higher spatial resolution has the potential to 

compensate for the less-penetrating C-band when estimating snow depth. The study's findings 

have significant implications for hydrology, water resource management, disaster management, 

etc. Overall, this research establishes a strong foundation for assessing SAR-based snow depth 

estimations and understanding the potential of the most available SAR data resources on SDE. 
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5.6.     Data Management 

 

This study involved significant data management and storage requirements. Data was 

systematically arranged and stored, ensuring simple access throughout the research process. 

Data quality problems, one of the study's potential risks, were mitigated by data pre-processing 

methods. To prevent data loss, data redundancy was used, and frequent backups were made on 

a hard drive.  

 

 

5.7.     Ethical considerations 

 

This research was conducted using data from dependable sources. The ITC Faculty of Geo-

information Science and Earth Observation at the University of Twente received the 

SAOCOM-1A dataset with the explicit consent of the CONAE. This dataset is subject to certain 

usage restrictions; therefore, this data was only used for the goals described in this research. 

The data will not be disseminated to anyone else. The SnowEx20-21 QSI Lidar Snow Depth 

dataset from the NASA Open Data Portal and the Sentinel-1A dataset from the European Space 

Agency (ESA) are both publicly accessible. Similarly, the UAVSAR imagery was freely 

available on the official website of NASA's JPL. These publicly accessible datasets were also 

used solely for the objectives of this research, ensuring responsible use of these datasets. The 

contributions of additional authors were recognized per the standards of the American 

Psychological Association (APA) 7th edition referencing style. The results of this research do 

not contain any false information, and they were not skewed in any way. 

 

 

5.8.     Use of AI 

 

The author utilized OpenAI's ChatGPT to grasp various concepts, that were later extensively 

studied by reliable and valid references. The content was additionally proofread for 

grammatical errors using Grammarly. The author examined and revised the content  after 

utilizing these AI tools and services, taking full responsibility for the work's content. 
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