
CPSL: A Domain-Specific Language for Modelling the Behaviour of
Cyber-Physical Systems
HAROUN MANGAL, University of Twente, The Netherlands

ABSTRACT
Cyber-physical systems (CPS) are complex machines consisting
of many physical and computational parts. These machines have
numerous challenges when it comes to their maintenance due to the
many disciplines of expertise needed for their understanding. Project
Zorro, a multi-institutional research initiative, has been set up with
the task of reducing downtime in CPS. In this paper, we propose a
novel Domain Specific Language (DSL) for modelling the behaviour
of a CPS called Cyber-Physical Systems Language (CSPL). CSPL
infers which computational tasks are affected by component failures,
thus facilitating intelligent diagnostics and reducing downtime. This
is done by specifying the behaviour of the CPS in terms of the parts
needed to perform computational tasks performed by the system.We
primarily focus on the design of CPSL and showcase its functionality
via an example of a smart traffic light system.

KEYWORDS
Cyber-physical systems, domain-specific language, model-based
system engineering, ontology

1 MOTIVATION
Cyber-physical systems (CPS) are integrations of computation with
physical processes. Embedded computers and networks monitor
and control the physical processes with sensors and actuators, with
feedback loops where values received from physical processes affect
computations and vice versa. Sensors are parts of the system which
monitor conditions and signals when a change occurs, while actua-
tors receive signals and perform actions. For example, a pressure
sensor is a sensor since it measures pressure differences and an LED
screen is an actuator since it displays the values it receives. CPS
can perform computational tasks or communicate with other CPS
via the cloud. Thus, CPS are an integration of the physical and the
cyber world [14]. Examples of CPS are smart grids, autonomous
vehicles, and medical monitoring [12].

For a CPS to enable seamless integration between the physical
and cyber worlds, the physical events must be reflected in the cyber
world, and the computational decisions taken by the cyber world
need to be communicated to the physical world. Both these actions
need to be accurately performed and in a timely manner. Thus,
CPS must coordinate between embedded systems which themselves
are heterogeneous systems, consisting of computing devices and
distributed sensors and actuators [12]. Therefore, modelling the

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

behaviour of a CPS is not simple.

Due to the diversity of the components of a CPS, maintenance is
complex, and reducing downtime is not a trivial task [11]. Project
Zorro, a multi-institutional research project, was set up aimed at
reducing the downtime of complex systems, specifically CPS [2]. By
utilising intelligent diagnostics, as opposed to traditional human-
based diagnosis, anomalies can be detected and related to potential
root causes more precisely and faster. Zorro is composed of multiple
work packages where this research will focus on work package 4,
model-based systems engineering [2]. This research will do so by
creating a grammar of a Domain Specific Language (DSL).

In this paper, we propose Cyber-Physical Systems Language
(CPSL), a DSL for modelling the behaviour of a CPS. CSPL is used
to measure the impact of failure of a part of the system by looking
at how the behaviour of the system changes. Firstly, the necessary
background is introduced. Then, the relevant parts of CPS are cap-
tured into an ontology model. Finally, the grammar and syntax of
CSPL are shown and the functionality of the proposed DSL is show-
cased via an example with a smart traffic light system.

2 BACKGROUND

2.1 Maintenance
Buksh and Stipovanic mention four types of maintenance in their
paper: preventive maintenance (PM), condition-based maintenance
(CMB), predictive maintenance (PdM), and reactive maintenance
(RM) which can be seen in Figure 1 [4]. PM is a type of maintenance
that is done too early leading to parts of the machine not reaching
their full economic potential while RM is a run-to-failure type of
policy where the system will incur downtime. CMB or PdM are
preferred strategies due to the substitution of a part being done
close to its point of failure while still being early enough to not
incur downtime. CMB is similar to PdM, however, they differ in two
key ways. With PdM continuous monitoring via edge computing
and sensors is performed while with CMB regular inspections are
done. With the PdM strategy, sensor data is analyzed with machine
learning models while with the CMB approach, structural-specific
models are used.

As part of this project, we have interviewed a product manager
from Philips, one of the industry partners of Zorro. In this interview,
the product manager shared details about the machine learning
models used at Philips to predict the failure of a part of a CPS. These
models get various data about each part of the CPS such as the tem-
perature, voltage, software logs, etc. The machine learning model
uses these inputs to determine with what probability the part goes
down. These data points are monitored continuously. Thus, Philips

1

TScIT 41, July 5, 2024, Enschede, The Netherlands Haroun Mangal

Fig. 1. Buksh and Stiponvic’s four types of maintenance [4]. The yellow
triangle denotes a point of failure of a part in a system.

uses a PdM strategy. The goal of the DSL proposed in the paper
is, therefore, to measure the impact of the failure of a part after
describing the behaviour of the system. The language should infer
whether the behaviour of the system changes based on input given
by the user.

2.2 Domain Specific Languages
A Domain Specific Language (DSL) is a computer programming
language of limited expressiveness focused on a particular domain,
rather than a general-purpose language like Java [6]. Examples of
domain-specific languages are Graphviz [7] for producing graphical
renderings of graphs, CSS [3] for styling web pages, and SQL [5] for
database queries. The benefit of using a DSL over a general-purpose
language is that it boosts the productivity of engineers by providing
a clearer intent of the part of the system that it is modelled [6, 16, 24].
This clear intent can, for example, be captured in a declarative model
where it is specified how things are, rather than what to do as is the
case with imperative languages.

A distinction can be made between an internal DSL and an exter-
nal DSL [6]. An internal DSL or embedded DSL is as an extension
of another programming language [20]. This allows the DSL to in-
tegrate seamlessly within the host language. This gives the benefit
of having the familiarity and tooling of the host language, such as
IDE support, while still working with a language that is tailored to
the needs of the specific task. The downside of internal DSL is that
the syntax of the DSL is constrained to that of the host language.
An example of an internal DSL is JMock, a mocking library in Java
primarily used for unit testing [6]. An external DSL is a stand-alone
language which allows for complete freedom when designing the
syntax of the language. The downside of an external language is
that it comes with the cost of having to build and maintain a new
language. In addition, the developers using the language also need
to learn this new language. An example of an external DSL is Gra-
phiz [7].

Fig. 2. Harel and Rumpe’s structure of a language [10].

The development of a DSL can be broken down into 5 phases:
decision, analysis, design, implementation, and deployment [16].
In the decision phases, the decision to make the time, effort, and
financial investment into making a DSL is made. The analysis part
focuses on gathering domain knowledge in addition to identifying
the problem domain. In the design part, the DSL syntax needs to
be determined. The implementation part is about transforming the
grammar and syntax made in the previous phase into an actual
executable DSL using a compiler, interpreter, etc. Although the pa-
per mentions the deployment phase, it does not offer a concrete
definition of it. The paper by Zaystev [29] does mention including
proper tooling like IDE support. In this research paper, the focus
will be only on the analysis, and design of a DSL for modelling the
behaviour of a CPS due to the scope of the project.

3 DOMAIN ANALYSIS
The creation of a DSL starts by analysing the relevant domain. This
domain must be captured by the language vocabulary of the DSL
such that all domain constructs can be expressed. We can split up a
language into its syntax and its semantics. The syntax is the symbols
used in expressions of the language. The semantics of the language
is the meaning behind the syntax [10]. For example, consider the
syntax of the SQL statement: SELECT * FROM USERS; The seman-
tics, the meaning, behind the statement is: "select all attributes of
all rows from the users table"[21]. The semantics of a language can
in turn be split into the semantic domain and the semantic mapping
from the syntax to the semantic domain. The semantics domain
denotes all different kinds of meanings that can be created with a
language. Thus, the semantic domain is an abstraction of reality
describing all important aspects of the system that will be modelled
in the DSL. The full structural tree of a language as defined by Harel
and Rumpe can be seen in Figure 2. This meaning gets mapped to
by the semantic mapping via expression created in the language’s
syntax [10].

The semantic domain can be modelled using an ontology. Within
the context of model-based engineering, an ontology is a represen-
tation of domain knowledge [22]. Generally speaking, an ontology
is denoted with (domain) concepts and the relationships between
these concepts [9]. Numerous papers have been written about ssing
an ontology for the development of a DSL. To name a few, Lyado
et al. describe a framework for developing DSLs by letting domain
experts develop an ontology upon which DSL developers will base

2

CPSL: A Domain-Specific Language for Modelling the Behaviour of Cyber-Physical Systems TScIT 41, July 5, 2024, Enschede, The Netherlands

the language on [15]. In the paper by Tairas et al., an ontology for
air traffic communication is constructed and a subsequent context-
free grammar is proposed for a DSL design [23]. Utilin and Babkin
discuss the evolution of an ontology and its DSL by adding new
rules to the DSL which subsequently also adds new concepts and
relationships to the ontology [25].

Four different kinds of anomalies can occur when mapping an
ontology to a construct (which in this paper is a DSL): construct
deficiency, construct overload, construct redundancy, and construct
excess [17].

• Construct deficiency means there is no construct for an onto-
logical concept.

• Construct overload is when a single notation maps to multiple
ontological concepts.

• Construct redundancy is when multiple notations map to the
same concept.

• Construct excess is when a notation construct does not map
to an ontological construct.

In case there is a construct deficiency, then the DSL is said to be
ontologically incomplete. If any of the three other cases occur, then
the DSL is ontologically unclear [17]. The goal of a good DSL is
to have a one-to-one mapping from ontological concepts to the
language vocabulary.

There are different kinds of formal notations to describe ontolo-
gies. For example, the Ontology Web Language (OWL) is a formal
ontology for which Pereira et al. created OWL2DSL, an OWL to
DSL converter [19]. However, OWL is mostly used in the context of
the Semantic Web. Bunge-Wand-Weber (BWW) is a different kind of
formal notation for an ontology and is one of the leading ontology
frameworks used [17, 27]. The proposed ontology in this paper uses
the following concepts of the BWW ontology to describe CPS: Thing
(an elementary unit), Properties (attributes belonging to a thing),
State (the values of all attributes of a thing), Event (a change of one
or multiple properties, i.e. a change in state), History (all events of
a thing), Coupling (whether the history of two things are indepen-
dent or not), System (things which are connected to each other and
have dependent histories), Composition (all things inside a system),
Environment (all things outside a system that interact with things
inside the system), Structure (the coupling among the components
of the systems and the Environment), Subsystem (a system whose
Composition and Structure are a subset of another system), Input
(a thing in a system acted upon by an environmental thing), and
Output (a thing in a system acting on an environmental thing) [8, 27].

For defining an ontology, we need a rigorous definition of a CPS.
Embedded computers in CPS measure and interact with their envi-
ronment via sensors and actuators. These embedded computers can
communicate with cloud computers which can communicate with
other CPS. However, we can describe a CPS more formally. Research
conducted by Morozov et al. describes a possible modelling of CPS,
where an unambiguous division is made between the physical and
cyber parts of the system [18]. There is also a separation between
the physical connections of the system and the cyber connection

Fig. 3. A graphical view of a CPS where the nodes represent BWW
things [27], lines show BWW Couplings, and the inner circle represents the
BWW subsystem of the outer circle which is the BWW system.

which are components connected via connected via software.

More formally, a CPS is denoted as a tuple𝐶𝑃𝑆 = ⟨𝑃,𝐶,𝐶𝑃𝑆, 𝑅𝑝 , 𝑅𝑐 ⟩.
𝑃 stands for the physical parts of the CPS, 𝐶 stands for the cyber
part,𝐶𝑃𝑆 stands for a another CPS which is part of the total𝐶𝑃𝑆 , 𝑅𝑝
stands for a relationship between components that are physically
connected and 𝑅𝑐 stands for the cyber connection of components.
This leads us to the ontology which is in Table 1.

In Figure 3 all Couplings can be seen between Things of a CPS
and what Things constitute a CPS. It can also be seen that there is
no distinction between physical and cyber connection as the BWW
ontology does not make a distinction. The difference between the
embedded system and the whole CPS highlights the interconnected
nature of CPS.

With the ontology in Table 1, a DSL will be constructed via an
iterative forward approach as mentioned in physics-of-notation
methodology [17].

4 DESIGN

4.1 Language and features
For describing the behaviour of the system, we propose CPSL. The
grammar of CSPL is shown in Figure 4. The grammar allows for
describing the system in terms of its parts. The parts are then further
specified by their types which are defined by the user. This allows
for the modelling of niche types of a CPS. Types are preceded with
an underscore symbol so it is easier to visually distinguish them be-
tween identifiers. The parts are split into physical and cyber parts as
has been defined by Morozov et al[18]. Each part has a mode which
denotes whether the sensor is on or off. If no mode is specified, the
sensor is assumed to be on. The distinction between the two is that
the cyber parts also need to be specified in terms of what computa-
tional tasks they compute. These computational tasks are written
down in terms of requirements. The requirements themselves are
declared in terms of what and how many minimum types of parts
of the system are needed. The grammar also includes storing parts,
computational tasks, requirements, and CPS into variable names via
a declaration. The program is a list of declarations.

After specifying the behaviour, the user can enter which sensor
will go down by referring to the sensor by its identifier and declaring

3

TScIT 41, July 5, 2024, Enschede, The Netherlands Haroun Mangal

BWW concept CPS concept Description
Class Part Represents a physi-

cal or cyber part of
the CPS.

Thing Sensor Represents a phys-
ical sensor on the
CPS.

Thing Actuator Represents a physi-
cal actuator on the
CPS.

Thing Embedded Com-
puter

Represents a physi-
cal local computer
embedded on the
CPS itself.

Thing Cloud Computer Remote computer
which a CPS com-
municates with, i.e.
sends and receives
data.

Thing Computational
Task

A computational
task requires Re-
quirements

Thing Agent Represents an ex-
ternal source to the
CPS upon which
the CPS acts or the
CPS acts on.

Property Mode Whether a part is
turned off or on.

Property Requirements A list of values
needed to perform
a computational
task.

Event Turn On When the property
Mode changes to
On.

Event Turn Off When the property
Mode changes to
Off.

Table 1. BWW Ontology of CPS

it as off. This feature is similar to querying which is done in the
programming language Prolog [13]. Prolog is a declarative language
where a programmer specifies what the situation is via rules and
facts. After specifying the relevant situation, one can conduct a
query which is either true or false in the world that is specified. The
truthfulness of these queries is determined by the logic inference
engine of the program [13]. Similarly, CPSL can use an inference
engine to check whether the failure of one system affects any of
the computational tasks performed by the CPS. If so, then CPSL
will print out which computational tasks are affected. Because of
the niche syntax and the under-the-hood inference engine that will
accompany the DSL, the DSL has been chosen to be an external DSL.

Ontological representation Grammar representation
Part part
Sensor physical_part
Actuator physical_part
Embedded Computer cyber_part
Cloud Computer cyber_part
Computational task comp_task
Mode (property of Part) mode
Requirements (property of
Computational Task)

req

Table 2. Mapping between the ontological and grammar constructs

As can be seen in Figure 4 comments, indentation & white space,
substitution, and a numeric data type are included in the grammar
of CPSL. These features are taken from the ’DSL Core’ described
in the paper of Zaytsev [29]. Zaytsev details a grounded theory
for software language design by creating 96 so-called cards based
on 24 books about software language design which cover at least 7
categories of software language design, namely: Parsing Techniques,
Compiler Construction, Compiler Design, Language Implementa-
tion, Language Documentation, Programming Languages, and Soft-
ware. In this paper, a cluster of cards is made for a DSL, referred to as
the ’DSL Core’. These cards have been used as a software language
design toolkit.

4.2 Ontological Analysis
In Table 2 the ontological representation is mapped to their grammar
counterparts. At first glance, the grammar seems to be ontologi-
cally redundant since physical_part maps to both Sensor and
Actuator, and cyber_part maps to both Embedded Computer
and Cloud Computer. However, both non-terminals allow for
type specification, allowing for distinction to be made by the end
user. The grammar also shows that the Property Mode cannot exist
outside of the Thing Part to which it is a property. However, a
Requirement can exist as a standalone declaration outside of the
Computational Task. This indicates that there is ontological ex-
cess. However, the requirement can only be part of a computational
task and the decision to allow for stand-alone declarations was for
better in-lining all requirements may lead to large variables being
created. In addition, the Events Turn On and Turn Off are also
incorporated into the language via part_mode.

4.3 Example
To illustrate the functionality of CPSL, the behaviour of the CPS
which controls traffic flow in Enschede, a city in the East of the
Netherlands, is constructed in CSPL. In Enschede, there are a select
few traffic lights that will send a signal to a central computer that a
biker is approaching when that biker has installed the ’Enschede
Fietst’ app and the central computer can communicate with the
embedded computer in the traffic light pole [1]. The biker can also
use the button on the traffic light pole (sensor) which will make
the embedded computer in the traffic light make the traffic light
(actuator) light up green. Let us also suppose that there are two

4

CPSL: A Domain-Specific Language for Modelling the Behaviour of Cyber-Physical Systems TScIT 41, July 5, 2024, Enschede, The Netherlands

pressure sensors which allow the biker to not press the button and
make use of these sensors that are present at the traffic light. In
Figure 5 the BWW representation of this example can be seen.

In Figure 6, the described scenario is expressed in the proposed
DSL. We can see that the computational task 𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝐿𝑖𝑔ℎ𝑡 gets de-
fined in terms of the types of parts needed for the task (pressure
sensor, button, etc.). The type of the physical parts and cyber parts
needs to be specified. The cyber parts also need to have a com-
putational task assigned to them. Finally, the whole system is an
agglomeration of all parts together. After having defined the system,
the user should be able to disable parts of the system and see which
computational tasks are affected. For example, if 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟

is turned off, then the system can still perform the task 𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝐿𝑖𝑔ℎ𝑡
as the pressure sensor, button, and embedded computer are still op-
erational. If in addition, the embedded computer on the traffic light
is turned off, then DSL will display that the task 𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝐿𝑖𝑔ℎ𝑡 will
be affected.

5 RELATED WORK
In this paper, a model for the DSL was constructed via an ontology.
However, there are alternative approaches to modelling complex
systems such as the work of Zaytsev about megamodelling [30]. In
this paper, systems are represented as Nodes, Graphs, and Automata
(NGA) via a megamodel. A megamodel is a type of model which
is an amalgamation of other models. Therefore, each element in
a megamodel is a model. The Node view represents the most ab-
stract view and, as the name implies, is visualised as a node in a
megamodel. A Graph view shows more details by representing arcs
between Nodes, thus specifying the relationship between Nodes.
The Automaton view models the behaviour of the system by speci-
fying what happens when the system is run and can be modelled by
automata used in software engineering. Together, these three types
of representation allow for the modelling of the components, the
relationship between components, and the behaviour of the system
relevant to the model that is being constructed. These models can
then be mapped to syntax in the language instead of the ontology.

The purpose of the DSL in this paper was to model the behaviour
of the system. However, research conducted by van den Berg et
al. has been made into the construction of CPS using DSL specif-
ically focused on agricultural machines [26]. In their paper, van
den Berg et al. propose a grammar in which all different parts of
the CPS can be modelled together to form one whole system. Each
part can model their requirements in terms of operations spaces.
An operation space is a number of operation dimensions where
an operation dimension is either a value or a range. For example,
consider the requirement of a rotor needing to be a certain speed.
We can specify this by saying the operation space ‘speed‘ must have
a value between ‘[10, 30]’ rotations per second. Another example
could be modes of light. The operation space ‘light’ can be modelled
with valued ‘[on flicker off]’. The operation spaces get merged in
a bottom-up fashion, i.e. system/parts at the top inherit operation
spaces from their children. These top-level operations spaces can

program : declaration* EOF;
cps : part (AND part)*

| IDENTIFIER (AND IDENTIFIER)*;
part : physical_part | cyber_part

| IDENTIFIER;
cyber_part : physical_part COMPUTES comp_task

(AND comp_task)*;
physical_part : type part_mode

| type;
part_mode : ON | OFF;
type : '_'IDENTIFIER;
comp_task : disjunctive_req;
disjunctive_req : conjuctive_req (OR conjuctive_req)+

| conjuctive_req;
conjuctive_req : req (AND req)+

| req;
req : MIN NUM type | IDENTIFIER;

declaration : IDENTIFIER ASSIGN expr;

expr : cps_expr
| part_expr
| comp_task
| req_expr;

cps_expr : part (AND part)*;
part_expr : physical_part | cyber_part;
req_expr : MIN NUM type;

/** Fragments are type definitions to make the grammar
more readible, not used in the actual language */
fragment LETTER : [a-zA-Z];
fragment DIGIT : [0-9];

ASSIGN : '=';
COMPUTES : '->';
MIN : 'min';
ON : 'on';
OFF : 'off';
AND : '&';
OR : '|';
NUM : DIGIT+;
IDENTIFIER : LETTER (LETTER | DIGIT)*;

/** Comments with double slashes */
COMMENT : '//' (~('\n'))* -> skip;

/** Ignore whitespace */
WS : [\n\t\r]+ -> skip;

Fig. 4. CPSL grammar in ANTLR

5

TScIT 41, July 5, 2024, Enschede, The Netherlands Haroun Mangal

Fig. 5. A graphical view of the smart traffic light example where the CPS
concepts are denoted in parentheses.

displayLight = min 1 _pressureSensor
& min 1 _embeddedComputer
| min 1 _button
& min 1_embeddedComputer
| min 1 _centralComputer

pressure1Traffic = _pressureSensor
pressure2Traffic = _pressureSensor
buttonTraffic = _button
lightsTraffic = _lightsActuator
computerTraffic =

_embeddedComputer -> displayLight
centralComputer =

_cloudComputer -> displayLight
TrafficSystem = pressure1Traffic

& pressure2Traffic
& buttonTraffic
& lightsTraffic
& computerTraffic
& centralComputer

Fig. 6. Traffic light system expressed in CPSL.

then be used to generate a Pareto optimal system which satisfies
all requirements, i.e. a system such that improving one part of the
system would come at the cost of deteriorating another part.

Another DSL related to CPS is Triton, a high-level DSL that targets
the Java Virtual Machine (JVM) [28]. This DSL was intended to
program the behaviour of the DSL by specifying constraints within
task blocks and what to do when these constraints are violated. It
also allows for offloading, either synchronously or asynchronously
(via an await-like structure), computationally expensive tasks to
remote servers. The DSL was made specifically and allows for the
integration of Remote Method Delegation (RMD), a grid computing
platform, and MQ Telemetry Transport (MQTT), a machine network
protocol. This DSL is closer to specifying the behaviour of DSL
although it focuses primarily on the communication aspect of the
DSL.

6 CONCLUSION
As part of work package 4 of project Zorro, we constructed a DSL,
specifically for modelling the behaviour of a CPS. The DSL does
so by showcasing what impact a component has on the system in
terms of how many computational tasks are affected. This is done
by specifying the computational tasks of the system in terms of

what parts are needed for these tasks. The impact of a component
failure is then measured in terms of how many computational tasks
are affected. Combined with the output of the machine learning
model used by Philips, the end user can make a more informed
decision about replacing a component of a CPS. Therefore, CPSL
aids in reducing the downtime of CPS.

The model of CPSL was built via the BWW ontology [27] which
was constructed from a literature review on the definition of CPS.
For future work, domain experts should be involved in the process
of formulating the ontology as they can provide experience and
knowledge which is not written down in academic literature.

The functionality of CPSL was demonstrated via an example of
simple CPS. For future work, CPSL should be tested by modelling
more complex CPS such as the MRI machines of the industry partner
Philips. Preferably, this complex CPS should be written by domain
experts in CPSL as this would not only test the DSL in terms of
being able to model the system, but also provide an opportunity to
get feedback from the domain experts on the developer experience.

In addition, the implementation and deployment phases of CPSL
need to be executed. For the implementation phase, that includes
research into whether a compiler or interpreter is more suited as
well as creating the inference engine needed for the language. Fur-
thermore, for the deployment phase, the language also needs more
features as has been outlined in Zaytsev’s paper about language
design. For example, the language needs to have code completion
for popular IDEs such as VS Code [29].

Overall, CPSL serves as a basis for modelling the behaviour of
CPS and is as a good step at reducing downtime, the goal of project
Zorro [2], via model-based systems engineering. However, it still
needsmore features before it can become a full standalone language.

REFERENCES
[1] 2023. Enschede Fietst. https://enschedefietsstad.nl/enschede-fietst-app/.
[2] 2024. Zero Downtime in cyber physical systems. https://zorro-project.nl/.
[3] Bert Bos, Tantek Çelik, Ian Hickson, and Hakon Wium Lie. 2011. Cascading

Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C Recommendation,
http://www.w3.org/TR/2011/REC-CSS2-20110607.

[4] Zaharah Allah Bukhsh and Irina Stipanovic. 2020. Predictive Maintenance for
Infrastructure Asset Management. IT Professional 22, 5 (Sept. 2020), 40–45. https:
//doi.org/10.1109/MITP.2020.2975736

[5] Donald D. Chamberlin. 2012. Early History of SQL. IEEE Annals of the History of
Computing 34, 4 (2012), 78–82. https://doi.org/10.1109/MAHC.2012.61

[6] Martin Fowler and Rebecca Parsons. 2007. Domain-specific languages. Addison-
Wesley Professional.

[7] Emden Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon Woodhull.
2003. Graphviz and Dynagraph — Static and Dynamic Graph Drawing Tools.
https://www.graphviz.org/documentation/EGKNW03.pdf.

[8] Boryana Goncharenko and Vadim Zaytsev. 2016. Language design and imple-
mentation for the domain of coding conventions. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering. ACM, Ams-
terdam Netherlands, 90–104. https://doi.org/10.1145/2997364.2997386

[9] Nicola Guarino. 1998. Formal Ontologies and Information Systems.
[10] David Harel and Bernhard Rumpe. 2003. Modeling Languages: Syntax, Semantics

and All That Stuff Part I: The Basic Stuff. (Sept. 2003).
[11] Erkki Jantunen, Urko Zurutuza, Luis Lino Ferreira, and Pal Varga. 2016. Optimising

maintenance: What are the expectations for Cyber Physical Systems. In 2016 3rd
International Workshop on Emerging Ideas and Trends in Engineering of Cyber-
Physical Systems (EITEC). 53–58. https://doi.org/10.1109/EITEC.2016.7503697

6

https://enschedefietsstad.nl/enschede-fietst-app/
https://zorro-project.nl/
http://www.w3.org/TR/2011/REC-CSS2-20110607
https://doi.org/10.1109/MITP.2020.2975736
https://doi.org/10.1109/MITP.2020.2975736
https://doi.org/10.1109/MAHC.2012.61
https://www.graphviz.org/documentation/EGKNW03.pdf
https://doi.org/10.1145/2997364.2997386
https://doi.org/10.1109/EITEC.2016.7503697

CPSL: A Domain-Specific Language for Modelling the Behaviour of Cyber-Physical Systems TScIT 41, July 5, 2024, Enschede, The Netherlands

[12] Siddhartha Kumar Khaitan and James D. McCalley. 2015. Design Techniques
and Applications of Cyberphysical Systems: A Survey. IEEE Systems Journal 9, 2
(2015), 350–365. https://doi.org/10.1109/JSYST.2014.2322503

[13] Feliks Kluzniak and Stanisław Szpakowicz. 1985. Prolog for programmers. (1985).
[14] Edward Ashford Lee and Sanjit Arunkumar Seshia. 2017. Introduction to Embedded

Systems - A Cyber-Physical Systems Approach (second edition ed.). MIT Press.
[15] Lyudmila N. Lyadova, Alexander O. Sukhov, and Marsel R. Nureev. 2021. An

Ontology-Based Approach to the Domain Specific Languages Design. In 2021
IEEE 15th International Conference on Application of Information and Communica-
tion Technologies (AICT). IEEE, Baku, Azerbaijan, 1–6. https://doi.org/10.1109/
AICT52784.2021.9620493

[16] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and how to
develop domain-specific languages. ACM Comput. Surv. 37, 4 (dec 2005), 316–344.
https://doi.org/10.1145/1118890.1118892

[17] Daniel Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering 35, 6 (Nov. 2009), 756–779. https://doi.org/10.1109/TSE.2009.
67

[18] Dmitry Morozov, Mario Lezoche, and Hervé Panetto. 2018. Multi-paradigm
modelling of Cyber-Physical Systems. IFAC-PapersOnLine 51, 11 (2018), 1385–1390.
https://doi.org/10.1016/j.ifacol.2018.08.334 16th IFAC Symposium on Information
Control Problems in Manufacturing INCOM 2018.

[19] Maria João Varanda Pereira, João Fonseca, and Pedro Rangel Henriques. 2016.
Ontological approach for DSL development. Computer Languages, Systems &
Structures 45 (April 2016), 35–52. https://doi.org/10.1016/j.cl.2015.12.004

[20] Lukas Renggli. 2010. Dynamic Language Embedding With Homogeneous Tool
Support. (2010). https://doi.org/10.7892/boris.104713

[21] Larry Rockoff. 2021. The language of SQL. Addison-Wesley Professional.
[22] Michael Rosemann, Iris Vessey, Ron Weber, and Boris Wyssusek. 2004. On the

Applicability of the Bunge-Wand-Weber Ontology to Enterprise Systems Require-
ments. (Jan. 2004).

[23] Robert Tairas, MarjanMernik, and Jeff Gray. 2009. Using Ontologies in the Domain
Analysis of Domain-Specific Languages. InModels in Software Engineering, Michel
R. V. Chaudron (Ed.). Vol. 5421. Springer Berlin Heidelberg, Berlin, Heidelberg,
332–342. https://doi.org/10.1007/978-3-642-01648-6_35 Series Title: Lecture
Notes in Computer Science.

[24] Federico Tomassetti and Vadim Zaytsev. 2020. Reflections on the Lack of Adoption
of Domain Specific Languages. In STAF Workshop Proceedings (STAF) (CEUR
Workshop Proceedings, Vol. 2707), Loli Burgueño and Lars Michael Kristensen
(Eds.). CEUR-WS.org, 85–94. http://ceur-ws.org/Vol-2707/oopslepaper5.pdf

[25] Boris Ulitin and Eduard Babkin. 2017. Ontology and DSL Co-evolution Using
Graph Transformations Methods. In Perspectives in Business Informatics Research,
Björn Johansson, Charles Møller, Atanu Chaudhuri, and Frantisek Sudzina (Eds.).
Vol. 295. Springer International Publishing, Cham, 233–247. https://doi.org/10.
1007/978-3-319-64930-6_17 Series Title: Lecture Notes in Business Information
Processing.

[26] Freek van den Berg, Vahid Garousi, Bedir Tekinerdogan, and Boudewijn R.
Haverkort. 2018. Designing Cyber-Physical Systemswith aDSL: a Domain-Specific
Language and Tool Support. In 2018 13th Annual Conference on System of Systems
Engineering (SoSE). 225–232. https://doi.org/10.1109/SYSOSE.2018.8428770

[27] Yair Wand and Ron Weber. 1990. An ontological model of an information system.
IEEE Transactions on Software Engineering 16, 11 (Nov. 1990), 1282–1292. https:
//doi.org/10.1109/32.60316

[28] Bradley Wood and Akramul Azim. 2021. Triton: a Domain Specific Language for
Cyber-Physical Systems. In 2021 22nd IEEE International Conference on Industrial
Technology (ICIT), Vol. 1. 810–816. https://doi.org/10.1109/ICIT46573.2021.9453575

[29] Vadim Zaytsev. 2017. Language Design with Intent. In Proceedings of the ACM/IEEE
20th International Conference on Model Driven Engineering Languages and Systems
(MoDELS), Don Batory, Jeff Gray, and Vinay Kulkarni (Eds.). IEEE, 45–52. https:
//doi.org/10.1109/MODELS.2017.16

[30] Vadim Zaytsev. 2017. Megamodelling with NGA Multimodels. In Proceedings of
the Second International Workshop on Comprehension of Complex Systems (CoCoS),
Christoph Bockisch and Michael L. Van De Vanter (Eds.). ACM, 1–6. https:
//doi.org/10.1145/3141842.3141843

7

https://doi.org/10.1109/JSYST.2014.2322503
https://doi.org/10.1109/AICT52784.2021.9620493
https://doi.org/10.1109/AICT52784.2021.9620493
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1016/j.ifacol.2018.08.334
https://doi.org/10.1016/j.cl.2015.12.004
https://doi.org/10.7892/boris.104713
https://doi.org/10.1007/978-3-642-01648-6_35
http://ceur-ws.org/Vol-2707/oopslepaper5.pdf
https://doi.org/10.1007/978-3-319-64930-6_17
https://doi.org/10.1007/978-3-319-64930-6_17
https://doi.org/10.1109/SYSOSE.2018.8428770
https://doi.org/10.1109/32.60316
https://doi.org/10.1109/32.60316
https://doi.org/10.1109/ICIT46573.2021.9453575
https://doi.org/10.1109/MODELS.2017.16
https://doi.org/10.1109/MODELS.2017.16
https://doi.org/10.1145/3141842.3141843
https://doi.org/10.1145/3141842.3141843

	1 Motivation
	2 Background
	2.1 Maintenance
	2.2 Domain Specific Languages

	3 Domain analysis
	4 Design
	4.1 Language and features
	4.2 Ontological Analysis
	4.3 Example

	5 Related Work
	6 Conclusion
	References

