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ABSTRACT 

In several regions across the world there is an increasing trend in compounding heat wave 

and flooding events. Heat waves and floods can, when occurring close to each other in 

time, significantly alter the water processes and dynamics during a multi-hazard event. 

Even though these type of multi-hazard occurrences can compound impact, they are 

generally studied separately, resulting in a poor understanding of their changes under 

climate change. In this study we consider the Periyar river basin of Kerala, India to assess 

the evolution of these hydrometeorological hazards with the help of Extreme temperature 

and precipitation indices to detect temperature and extreme precipitation events. The 

Floods and heatwaves were identified in historical (1986-2023) and future periods; near 

term (2015-2045), medium term (2046-2075) and Far term (2076-2100) under two SSP 

scenarios (SSP2-4.5 and SSP5-8.5). A flood model was set up and calibrated using the 

FastFlood.org simulation platform. The population  exposure to floods and heat waves were 

calculated for low  land, mid land and high land in the region using projected population 

data. The study found an increasing trend in extreme precipitation and peak discharges, 

with higher peaks from 2001 to 2010, while extreme temperature indices rose, peaking 

between 2011 and 2023. The lowland and midland regions experienced higher 

precipitation extremes, and midlands saw the most significant increase in temperature 

extremes. The flood model showed 92% accuracy for the historical 2018 floods and the 

population exposure analysis to floods revealed midlands had the highest exposure for 

both 20 and 100 year return period flood scenarios. SSP2-4.5 showed medium-term peaks 

in extreme precipitation, while SSP5-8.5 indicated far-term peaks. Lowlands are projected 

to experience the highest precipitation extremes, and midlands the highest temperature 

extremes. Heatwave analysis suggested minimal events under SSP2-4.5 but up to 90 days 

under SSP5-8.5 in the far term. Population exposure to both floods and heatwaves is 

predicted to be higher under SSP2-4.5, particularly in the midlands. The study concludes 

that compounding heatwave-flood events, though historically rare, are likely to become 

more frequent and intense under future climate scenarios and to accurately predict and 

study this there should be more investment in accurately recording observation data. 

Future research should incorporate higher resolution datasets, region specific indices, 

consider dam discharge impacts, and utilize an ensemble of climate models for more 

accurate projections. 
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 Chapter 1: Introduction 

1.1. Hydro-meteorological hazards 
Hydro-meteorological hazards are defined as a “process or phenomenon of atmospheric, 

hydrological or oceanographic nature that may cause loss of life, injury or other health 

impacts, property damage, loss of livelihoods and services, social and economic disruption, 

or environmental damage” (United Nations International Strategy for Disaster Reduction, 

UNISDR, 2009). This includes a wide range of hazards such as floods, droughts, heat 

waves, cold waves, precipitation extremes, hurricanes, and tornadoes. Global climate 

change is intensifying the severity and frequency of hydro-meteorological hazards in most 

climate zones around the world (Shah et al., 2020).  

The Centre for Research on the Epidemiology of Disasters (CRED) estimated that in the 

period from 2000 to 2019, floods accounted for 44% of all disaster events, impacting 1.6 

billion people globally, making it the most common disaster type. It also reports that 

extreme temperature events and floods have increased by approximately 232% and 

134%, respectively, in the decade  2000 to 2019 compared to the previous decade (1980 

to 1999), accounting for 13% and 9% of global deaths during this period (CRED,2020). In 

terms of economic damage, floods and extreme heat events alone have resulted in an 

average annual damage of $15.1 and  $2.8 billion globally respectively, since the 1960s  

(Gu et al., 2022). 

1.2. Compounding hazards 
Heatwaves and floods can lead to devastating impacts by themselves as is evident by the 

economic damage and the lives lost to these disasters discussed in section 1.1.  

However, natural hazards are often not discrete and independent events; they interact 

spatially and temporally with other hazards, creating aggravated impacts on the 

socioeconomic systems (de Brito, 2021). 

Heatwaves are typically considered dry hazards and are often studied in conjunction with 

droughts and low precipitation events. However, high daily temperatures are also linked 

to precipitation extremes. These compounding hot-wet hazard events remain relatively 

understudied (Sauter, Fowler, et al., 2023). Due to global warming and an associated 

increase in extreme heat events, an upward trend in compound wet-warm events is 

expected at a global scale posing an additional threat to food security, water and 

ecosystem services (Meng et al., 2022). This leads to more compounding interactions of 

extreme heat events such as heatwaves with wet events like flooding. 

During a heatwave or an extended warm period in a region, the atmosphere is warmer, 

which increases the moisture-holding capacity of the atmosphere, which may lead to 

extreme precipitations (Brutsaert, 2017). Prolonged hot periods compact the soil, forming 

crusts, reducing the infiltration and increasing runoff, which may result in intense flooding 

(Zhang et al., 2023). Also, heatwaves decrease the baseflow and water-carrying capacity 

of rivers making them vulnerable to flooding in case of extreme precipitation (van Vliet et 

al., 2023). 

Also, a compounding heatwave and flood can have profound impacts on society. They 

disrupt economic activities like inland shipping, agriculture, tourism, and hydroelectric 

power generation. Heatwaves can lead to dehydration, heat exhaustion, and heatstroke, 

particularly affecting vulnerable populations, while floods can further exacerbate the 

situation by contaminating drinking water, causing outbreaks of waterborne diseases 

(Arsad et al., 2022; Shafii et al., 2023). Also, a region facing a heatwave is unlikely to be 

prepared for a wet hazard like floods, and often, the society is caught off-guard, making 
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them more vulnerable. Also, the vulnerability of population, livestock and crops that are 

already affected by a heatwave would even be higher for flooding events, increasing the 

risk significantly. Moreover, risk reduction measures for floods might be negatively affected 

by the heatwaves; for example, dikes and levees will develop cracks when exposed to 

longer periods of heat waves, also dams will be operated to save more water during the 

heat wave event and might not be in a capacity to reduce the flooding (Ward et al., 2022).  

(Sauter et al. (2023) used meteorological data to identify the predominant weather 

patterns during the transition from a heatwave to extreme rainfall events over Europe and 

Australia. The study reported that after a heat wave, the atmospheric instability and 

moisture levels are significantly higher than the climatological norm for the same time of 

the year most likely leading to more extreme rainfall events. It was also noted that the 

non-arid, mid and high latitudes, which have ample moisture supply and  high summer 

temperatures, have a higher likelihood of such compounding events (Sauter et al., 2023) 

A lot of regions around the world have experienced such temporally compounding hot-wet 

extremes. For instance, in July 2018, Japan faced a devastating flood which was preceded 

by unprecedented heatwaves (Zhang & Villarini, 2020). Pakistan faced a similar situation in   

June 2022 , when there was a massive flooding event which followed a heat wave in May 

2022(Iqbal et al., 2022). Similarly, in June 2024, Delhi experienced significant flooding 

shortly after enduring one of the worst heatwaves in the region (Economic Times, 2023). 

Sauter et al. (2023) examined rainfall at the end of the heat wave period and reported a 

compounding relationship between heatwaves and rainfall extremes in Australia. Zhang & 

Villarini, (2020) reported that such compounding heat wave flood events are becoming more 

common in the Central United States.  

There are also increasing occurrences of compounding flooding and heat wave events, 

especially in China. Zheng et al. (2024) studied sequential flooding and heat waves in 

China, using a weighted average of precipitation to determine floods and minimum 

temperature to detect heat waves; the study found that urban areas experienced a greater 

increase in such events. Qian et al. (2023) studied the anthropogenic influence in spatially 

compounding flooding and heat waves in China and concluded that anthropogenic climate 

change has increased the probability of such events 10 times more and such events are 

predicted to likely increase 14 times by the end of the 21st century.  

Also, there are studies which look at abrupt transitions from dry to wet periods based on 

precipitation and moisture anomalies. Such abrupt alterations are often termed dry-wet 

abrupt alterations (DWAA) and often focus on deviations in precipitation patterns (Ren et 

al., 2023). However, studies that explore the DWAA events often employ indices which are 

often based on precipitation and focus on drought–flood alternate events and do not 

include heat waves. 

Although the occurrences of compounding heat wave-flood events are on the rise, studies 

that analyze both together are limited, and they are often analyzed individually, owing to 

the complexity of accurately defining the events and modelling them. As a result, studies 

that integrate both flood and heat waves for the same region are limited (Alves et al., 

2023).  

The following section gives a brief outline of the current methodologies that are used to 

analyze heatwaves and floods. 

1.3. Heat waves 
The definition of heat waves varies by region, and there is no globally accepted standard. 

However, most existing definitions are based on having consecutive days that exceed a 

specific temperature threshold, which is determined by the local climate and the physiology 
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of the population (Awasthi et al., 2022). Defining heat waves is challenging because similar 

meteorological conditions might cause a heat wave in one location but not in another. For 

instance, 5 consecutive days exceeding 30◦C might be normal temperatures in the tropics, 

but in the poles, it would mean abnormally high temperatures. Owing to this lack of 

universal definition, various countries and organizations use different criteria for 

determining heat waves. 

The World Meteorological Organization (WMO) defines heatwaves as a period where 

maximum temperatures exceed the daily normal temperature (1961-1990) by 5oC for 

more than 5 consecutive days (WMO,nd). When we look at country-wide definitions, they, 

too, vary in their approach to defining a heat wave. South Africa defines heatwaves as 

periods when daily maximum temperatures exceed the 90th percentile for at least three 

consecutive days (Lyon, 2009). Whereas for Australia, a period of three or more 

consecutive hot days where temperatures exceed relative thresholds (varies within the 

country) is termed a heat wave (Jyoteeshkumar reddy et al., 2021). In China, it is defined 

as three or more consecutive days of temperatures exceeding 35oC (Ji et al., 2023). The 

heatwave definitions across the world are based on a threshold for duration and a threshold 

for temperature, this could be either relative or absolute thresholds (Awasthi et al., 2022). 

Several heatwave indices are commonly used in the literature to quantify and analyze 

heatwave events. These indices vary in complexity and the variable they use. Some of the 

indices which measure the intensity of heat waves include, ‘The Excess heat factor’ (EHF), 

‘Universal Thermal Climate Index (UTCI)’, ‘Heat Index (HI)’ and ‘Maximum value of daily 

maximum temperature (TXx)’. EHF is an index based on excess heat and heat stress and 

is widely used to study heatwaves around the world as it is not based on any region-

specific thresholds (Trancoso et al., 2020). HI combines the relative humidity and dry bulb 

temperatures to estimate temperatures that would perceived by humans (Awasthi et al., 

2022).UTCI is a heat stress index that includes both physiological and meteorological 

factors. It accurately reflects the heat stress experienced by the human body in outdoor 

environments, based on variables such as air temperature, solar radiation, humidity, and 

wind speed and is highly sensitive to changes in these environmental parameters (Pecelj 

et al., 2020). TXx is the maximum daily temperature in a period (year or month) and is 

one of the extreme indices defined by the Expert Team on Climate Change Detection and 

Indices (ETCCDI). TXx is widely used for climate change-related studies to assess heat 

waves and is recommended by WMOs for the same (Thompson et al., 2023). Some 

examples of indices which attributes for the frequency of heatwaves include  “Tropical 

nights”, “summer days”, “Number of days with maximum temperatures greater than 90th 

percentile (TX90”), “Warm spell duration index (WSDI)” (Barriopedro et al., 2023).  

Since there exist a plethora of definitions for heatwave depending on the region, for this 

study, we will use the definition used by the Indian Meteorological Department (IMD) as it 

is developed specifically based on the climatic characteristics of the region. More on the 

IMD definition will be discussed in section 4.1.4. 

1.4. Flood modeling 
Flood modelling is a critical tool in understanding and predicting flood behaviour,  which 

enables effective risk reduction and mitigation strategies. Various flood modelling 

approaches are in use, each having its own advantages and disadvantages. (Kumar et al. 

(2023) conducted a comprehensive review of flood modelling approaches and stated that 

some of the common types of flood models are Hydrological models, Hydraulic models, 

Hydrodynamic models, statistical models and physically based models. 
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Hydrologic modelling simulates water flow in a river or stream system using mathematical 

and computer tools. It requires input data such as elevation, land use, precipitation, 

evaporation, and soil moisture and simulates the flow rate, volume, and water arrival time 

(Herrera et al., 2022). Moreover, the results of hydrologic modelling can be used as input 

for hydraulic modelling, which models water behaviour during flood events providing the 

depth and extent of flooding and the peak flows predicted (Munir et al., 2020). One of the 

main limitations of these modelling approaches is the complexity of setting up the model 

and interpreting the outputs, making it difficult for non-specialists (Kumar et al., 2023). 

 

Statistical models rely on the historical data to predict future flooding events. They rely on 

creating a statistical relationship between meteorological, hydrological and topographical 

variables with historical flood occurrence. Major limiting factors for this approach are that 

it only gives the flood probability and does not consider the hydrological processes and is 

based on the assumption that future events will follow the past patterns (Hakim et al., 

2024) . Currently, there have been a lot of advancements in flood modelling using Artificial 

Intelligence (AI) and Machine learning (ML). AI and ML algorithms require a large amount 

of quality training data, including meteorological, hydrological, and topographical data and 

historical flood data to accurately model floods of a region (Karim et al., 2023). However, 

a major challenge in applying these innovative methods is the lack of high-quality data 

available for training in many regions. Additionally, the inherent uncertainty and "black 

box" nature of these algorithms make their flood predictions difficult to interpret and trust. 

 

Physical-based models are rainfall – runoff models, which are based on the understanding 

of physical processes involved  in run-off production and consider processes such as  

infiltration, evapotranspiration, runoff routing etc. These models are capable of accurately 

reproducing catchment behaviour to various hydrological conditions and are widely used 

in flood modelling (Kumar et al., 2023). Physical process  based models such as The Soil 

and Water Assessment Tool (SWAT) have been used extensively around the globe to model 

floods and other hydrological processes (Boithias et al., 2017; Yu et al., 2017). Another 

extensively used model is HEC-RAS (de Macedo et al., 2024). The main limitation of 

physically based models are that they require a lot of computation power and time ,along 

with precise input data (Kumar et al., 2023). This makes it less accessible for rapid flood 

assessment especially in regions with limited data availability. 

This necessitates models that can achieve high accuracy with faster processing times. One 

such  model called FastFlood, is discussed in the next section. 

 

1.4.1.The FastFlood model 

FastFlood is a browser-based flood simulation model developed by Bout et al. (2023) which 

combines computational efficiency with robust accuracy and can be used to perform rapid 

flood hazard simulations in data-scarce regions. Bout et al. (2023) reported that the model 

can simulate flash and fluvial floods 1500 times faster and with similar accuracy when 

compared with full simulation models. The model incorporates a fast, steady-state flow 

accumulation solver and an adaptive pressure-driven inundation solver, which allows the 

model to generate detailed flood hazard maps significantly faster than conventional models 

without sacrificing accuracy. The input requirement for the flood simulation in FastFlood 

include data representing the event duration, elevation of the region, rainfall intensity and 

terrain roughness. Additional parameters such as infiltration and soil moisture can also be 

added to the model for a better representation of the region and event. 
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The overview of methodology involved in the working of the FastFlood model as described 

in Bout et al. (2023)  can be divided in to five steps and is presented in Figure 1. 

The initial step involves creating a monotonically increasing elevation model by applying 

a fast sweeping algorithm on the grid cells of the input elevation model. It ensures that 

the grid cells are at least as high as the lowest neighbour. The second step involves the 

derivation of the flow network. The hydrologically corrected elevation models are then 

used to derive flow network based on the local derivatives. The direction of flow is 

determined based on the angle of the steepest descent. The third step is the creation of a 

steady state discharge over the derived flow networks. This routing is done using a simple 

flow accumulation which uses a fast sweeping numerical algorithm to speed up the 

process. Since it is highly improbable to steady state flow in nature mostly due to dynamic 

rainfall, infiltration and other additional factors, the steady state assumption of the model 

should be compensated. This correction for partial steady state is done in step four. This 

correction is based on the duration of the event and  the properties of the catchment and 

is used to calculate the actual peak flow for every location. The final step in the process is 

the reconstruction of a flood map. The flow depths are reconstructed  from the discharge 

values using stage-discharge relationships. This is achieved by using exponentially 

cascaded profile approximations that integrate channel information with elevation data. 

 

1.5. Climate change and evolving hazards. 
As per the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate 

Change (IPCC), a considerable increase was observed in global surface temperatures in 

recent decades. This rise in temperatures can vary the distribution of global and regional 

water resources spatially and temporally, which would result in altering the rainfall 

distribution and aggravating extreme weather events like floods and heatwaves (Zhang et 

al., 2023). In a warming climate, it is necessary to understand how these hazards and 

their interactions will evolve. Precipitation and temperature data from Global climate 

models can be used to investigate these changes. Several studies use historical and future 

projections of extreme precipitation data from the Coupled Model Intercomparison Project 

Figure 1: Methodological flow chart for FastFlood model based on Glas (2023) and Bout et al. (2023) 
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Phase 6 to study the occurrence of Heat waves and floods in the future (Chen et al., 2021; 

Meng et al., 2022; Try et al., 2022; Wang et al., 2021; Zhao & Dai., 2021). 

The CMIP6 climate models take into account both the shared socioeconomic pathways 

(SSPs) and the representative concentration pathways (RCP). The shared socioeconomic 

pathways (SSPs) are used as input for climate models to simulate how greenhouse 

emissions will change depending on societal choices. There are five SSP pathways which 

simulate different scenarios. The SSPs range from SSP1 (sustainable development) to 

SSP5 (fossil-fueled development)(Gidden et al., 2019). The five SSPs and their brief 

descriptions are shown in Table 1. The RCP values provide different scenarios of 

greenhouse gas emissions and the associated radiative forcing. For each SSP scenario a 

number of radiative forcing could be achieved based on the policies implemented and the 

values of the forcing outcomes ranged from 1.9 to 8.5 W m−2 (Gidden et al., 2019). SSP1-

2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5 are the four common scenarios used in climate 

change-related studies as they were designed as the continuation of CMIP5 scenarios 

(Tebaldi et al., 2021). Out of this scenarios which has forcing levels of 6.0 or higher are 

considered as high emission scenarios and those between 1.9 and 4.5 W/m2 are considered 

low emission scenarios (Y. Chen et al., 2020). 

Scenario Description 

SSP1 Sustainable path: low challenges to mitigation and adaptations 

SSP2 Middle of the road: medium challenges to mitigation and adaptation 

SSP3 Regional rivalry: High challenges to mitigation and adaptation 

SSP4 High inequality: low challenges to mitigation, high challenges to adaptations 

SSP5 
Fossil fuelled development: High challenges to mitigation, low challenges to 
adaptation 

Table 1: SSP scenarios and their descriptions based on (Riahi et al., 2017). 

 

With the shifting dynamics of extreme weather events under a changing climate, it is 

essential to analyze the compounding heat wave–flood hazards under a changing climate.   

 

1.6. ETCCDI indices 
The Expert Team on Climate Change Detection and Indices (ETCCDI) were established in 

early 2000 to address the limitations of the lack of long-term global climate data and a 

standard definition of extreme event indicators across different countries, which hindered 

studies on global extreme weather and climate events (Yin & Sun, 2018). ETCCDI includes 

27 representative climate indices which can be used to analyze extreme climate change 

on both global and regional levels. This index were used by multiple studies to analyze 

extreme temperature and precipitation events. Yin & Sun, (2018) used the ETCCDI indices 

such as annual maxima of daily maximum temperature (TXx), Extreme wet day 

precipitation (R99p) and Very heavy precipitation days (R20mm) to study the 

characteristics of extreme temperature and precipitation in China. Panda et al. (2014) 

used ETCCDI indices like TXx , warm day frequency (TX90p) along with other indices to 

study the spatial-temporal patterns in extreme temperature events in India for the period 

1971 to 2005 and concluded that the intensity and frequency of warm extremes have 

increased, while the cold extremes in large parts of the country are declining. Yapo et al. 

(2023) studied the changes in the seasonal cycle of heatwaves, dry spells and wet spells 

using the ETCCDI indices, consecutive dry days (CDD), consecutive wet days (CWD) and 

Heatwave duration index (HWDI). 
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The ETCCDI indices were found to be useful in determining extreme temperature and 

precipitation events and could be seen applied in different regions of the world. The 

ETCCDI indices used for the study will be discussed in detail in section 4.1. 

 

1.7. Research Gap 
 Several studies have shown that there is an increasing trend in heat waves and floods 

especially in regions with high temperatures and high moisture availability where there in 

an increasing likelihood of occurrence of compounding heatwaves and floods. Even though 

these compounding hazards create a higher risk to the region, these hazards are most 

often analyzed separately. This approach might misinterpret the overall risk of the region 

by underestimating the hazard (Kappes et al., 2012). It is essential to incorporate both 

these hazards and their occurrence together and analyze their evolution in a changing 

climate to enhance the stakeholders to mitigate the impacts of these increasing compound 

events. 

This study aims to bridge this gap by analyzing the evolving floods and heat waves in a 

region, with a wet and humid climate and assess the changes in the occurrences of these 

hazards in the future period and evaluate corresponding changes in exposure. The Periyar 

River basin, which is the river basin of the longest river in the state of Kerala, India, was 

selected for this. The objectives of this study and the research questions that will be 

covered are discussed in the next chapter. 
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Chapter 2: Objectives and research questions 
 

The main objective of this research is to model the evolution of hot, dry extremes, such 

as heatwaves, and wet extremes, including extreme precipitation and floods, and their 

compounding occurrences in the Periyar River Basin, Kerala, India.  

The sub-objectives and research questions are discussed below. 

Sub-Objective 1:  Analyze the historical occurrence, severity and frequency of climate 

extremes such as heat waves, extreme precipitation and floods in the Periyar River 

basin.  

1.1. How has the frequency and intensity of hydrometeorological extremes evolved in 

the past decades? 

1.2. To what extent were these extreme events temporally compounding in the study area?  

Sub-Objective 2: Calibrate FastFlood model to model the floods in the region. 

2.1. How can the flood model built predominantly on global datasets be calibrated with 

historical data? 

Sub-Objective 3: Evaluate how the hydrometeorological hazards and their occurrences 

change under SSP2-4.5 and SSP5-8.5 climate scenarios using best-fit GCMs from CMIP6. 

3.1.How are hydrometeorological hazards and their intensity and frequency altered under 

SSP2-4.5 and SSP5-8.5 climate scenarios? 

3.2. How does the exposure to floods and heat waves change under the SSP pathways for 

different future periods? 
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Chapter 3: Study area 

3.1.Introduction to Kerala. 
Kerala, often referred to as “God’s own Country”, is a state located on the southwestern 

coast of India.  The geographical location of the state is approximately between 8° 18ʹ to 

12° 48ʹ N latitudes and 74° 02ʹ to 77° 22ʹ E longitudes, covering an area of approximately 

38,863 Km2. The state has a population of about 33.4 million as per the 2011 census (Last 

available official record. The state has a high population density of about 860 per  Km2, 

which is higher than the national average of 382 per Km2 (Lal et al., 2020) . It is bordered 

by the state of Karnataka to the north and northeast, the state of Tamil Nadu to the east 

and south, and the Arabian Sea to the west. The diverse topography of the state ranges 

from the high Western Ghats mountain range in the east to the coastal plains in the west. 

The altitudinal variation of the state varies from 5m above sea level in the west to about 

2695m above sea level in the East. The coastline spans 560 Km, and the width from west 

to east spans from 11 Km to 124 Km. In terms of physiography, the state is divided into 

three regions: lowlands (0 to 7.5 m), midlands (7.5 to 75 m) and highlands  (>75 m) 

(Tripathi & Davis, 2020). 

The state of Kerala experiences a tropical monsoon climate characterized by seasonally 

excessive rainfall, high humidity, and hot summers. There are four main seasons: summer 

(March to May), the southwest monsoon (June to September), the northeast monsoon 

(October to December), and winter (January and February) (ENVIS, n.d.). Kerala receives 

an average annual rainfall of approximately 3000mm, peak rainfall in June and July. The 

southwest monsoon, which lasts from June to October, is the primary rainy season, 

accounting for about 70% of the state's annual rainfall. 

 

Kerala is categorized as a multi-hazard zone with 39 hazards that are specific to the state 

according to the Kerala State Disaster Management Plan 2016. The state is most 

vulnerable to multiple hazards, including floods, landslides (especially in the highlands), 

heat waves, droughts, forest fires, lightning and strong winds (KSDMA, 2019). The 

following subsections explore the historic floods and heatwaves that were recorded in the 

state. 

 

3.1.1.Historic floods in Kerala. 
Kerala is among the most flood-prone states in India due to its geographical location and 

topography and has witnessed multiple flood events in the past Mishra, (2021). One of the 

oldest recorded floods in the state was that of 1924 and is referred to locally as the “great 

floods of ’99” (as per the Malayalam calendar, the year was 1099). The 1924 flood was 

caused by the southwest monsoon and recorded maximum one-day, two-day and three-

day rainfalls of 484mm,751mm and 897mm, respectively (CWC,2018). The peak rainfall 

was recorded in mid-July, and the floods led to a heavy loss of life, property and crops in 

the state. The year 1961 also recorded a severe flood event as the southwest monsoon 

brought intense rainfalls, which were 57% above the normal rainfall, with maximum daily 

rainfalls of 234mm recorded in the district of Kozhikode (CWC,2018). 

The most recent floods recorded in the state were in the years 2018 and 2019. In the 

southwest monsoon period of 2018, Kerala received rainfall exceeding 164% from the 

normal rainfall of the period. The one-day and two-day maximum rainfall values were 

reported to have a return period of about 75 and 200 years, respectively (Hunt & Menon, 

2020). The 2018 floods and associated landslides killed more than 400 people and left 

millions of people displaced. The economic loss of the event was estimated to be more 

than 3.8 million dollars (Lal et al., 2020). Mishra et al. (2018) reported that six out of the 
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seven major reservoirs in the state were at 90% of their full capacity before the onset of 

the extreme event precipitation, which increased the severity of the floods. However, a 

study by Sudheer et al. (2019) used a hydrological model to investigate the role of dams 

in the Periyar river basin during the 2018 floods and reported that even if the reservoirs 

were empty before the start of the extreme precipitation event it would not have reduced 

the floods significantly as most of the runoff was caused by sub-catchment which were not 

controlled by any dams. The study also found that with better reservoir management, the 

floods would have only reduced by about 16 to 20 per cent. 

In 2019, the southwest monsoon season, the state received 32% deficient rainfall during 

the period from June and July and 123% excess rainfall during the month of August 

(KSDMA,2019).Mishra, (2021) reported that the 2019 flooding event was caused by a low-

pressure system that developed over the Bay of Bengal and moved toward the west coast, 

causing increased convection over Kerala leading to extreme rainfall events in several 

districts during July and August, resulting in heavy cumulative rainfall and catastrophic 

flash flooding.(Vijaykumar et al. (2021) attributed the 2019 floods to a mesoscale mini 

cloud burst event that happened over Kerala. KSDMA reported that the peak of the 2019 

period was from August 6 to August 14, during which the state received a rainfall of 

602mm as opposed to the normal rainfall expected in the period (122mm). It also states 

that some IMD stations recorded extreme rainfalls exceeding 200mm in a day 

(KSDMA,2019).125 people were killed due to floods and landslide during the 2019 Floods. 

Sreelash et al. (2018) studied the rainfall variability in Kerala and found a declining trend 

in moderate rain days and an increase in high-intensity rainfall events. The study also 

underlined the reduction in groundwater recharge as a consequence of this variability in 

rainfall. This implies that Kerala is likely to experience alternating hazards like floods due 

to the high-intensity short, duration rainfall and exacerbated heatwave effect due to the 

overall decline in rainfall days and reduced groundwater levels. 

 

3.1.2. Heat wave occurrences in Kerala. 
Heat waves in Kerala are not as frequent as floods, 2016 there were no reported cases of 

heatwave incidents; as per the Kerala state disaster management plan, the first reported  

heat wave warning was issued on April 2016 when the district of Palakkad recorded 

temperatures exceeding 6◦C from normal. Districts such as Alappuzha and Kozhikode also 

showed temperature increase of more than 4◦C. Even though the media reported 324 

sunburn cases and 10 deaths, the Directorate of Health Services did not confirm these 

deaths as a result of sunstroke (KSDMP,2016).  

In 2019, the state reported 109 cases of sunstroke, even though heat warnings were 

communicated, these years were not officially considered as heatwaves  (Onmanorama, 

2019). 2023 also recorded nine districts exceeding the normal temperatures by 5◦C but 

was not considered as a heat wave. In April 2024 Kerala declared heat wave when 

temperatures crossed 41◦C in Palakkad district exceeding 5.5◦C from the normal. More than 

400 people suffered from heat-related ailments, and 2 people were reported dead because 

of heatstroke ( Kallungal,2024). 

According to some sources 2016 is regarded as the first heatwave event in Kerala but 

some sources report 2024 as the first official heatwave event. Also, there is mismatch 

between the death tolls recorded due to heat-related events; the central government 

claimed there were 120 reported deaths in 2023 where, as  KSDMA rejected the numbers 

and stated that there were no deaths reported due to heatwaves in 2023 and it was a 

human error in data entry (Kumar, 2023). This underlines the need for better documenting 

of heatwave events and casualties. 
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The increasing heat wave events in Kerala may be attributed to global warming, land use 

changes ( increased urbanization and reduced green cover), and the presence of anti-

cyclones, which prevent the hot air from the ground from rising higher. also, El Nino events 

tend to favour these events (Benjamin, 2024). Ravindra et al. (2024) studied the heat 

wave attribution over India and reported that states like Kerala which have not experienced 

heatwaves in the past are showing higher frequency of extreme temperatures. 

 

3.2.Introduction to the Periyar river basin. 
Periyar River Basin (PRB) is located in the Western Ghats, spreading over 3 districts: 

Idukki, Thrissur and Ernakulam. The population living in the region is highly dependent on 

the Periyar River for drinking, agriculture, and navigation needs. The Periyar River is 

regarded as the lifeline of Kerala due to its significance to Kerala's economy, generating a 

substantial proportion of the state's electrical power through the Idukki Dam while flowing 

through a region rich in industrial and commercial activities (Irrigation Department, 2020). 

The Periyar River is the longest river in Kerala and has the highest water discharge. It 

originates in the western ghats at an elevation of 1830 m, with a total length of 244 Km 

and draining an area of 5398 Km2. The river divides into two branches at Alwaye, one 

flowing north to combine with the Chalakudy River, and the other divides into smaller 

streams, eventually flowing into the Vembanad-Kol wetlands and eventually joining the 

Arabian Sea. Figure 2 shows the location map of the Periyar river basin. 

 

Figure 2:Study area map of Periyar River Basin. 
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The basin receives an average rainfall of 3200 mm annually. The temperatures in the 

region range from 14 to 32°C (Sadhwani et al., 2023). The major land cover of the area 

is plantations (52.02%) and forests (33.2%). The built-up constitutes only 5.31% of the 

area. PRB displays three primary geological formations: Precambrian crystalline rocks, 

Tertiary formations, and Quaternary deposits. The crystalline rocks include charnockites, 

migmatites, gneisses, and intrusive rocks from the Proterozoic to the Tertiary era. Above 

this, there are sedimentary layers from the Eocene to Miocene periods, as well as more 

recent deposits near the coast, including Sub-Recent laterite and Recent alluvium (Sudheer 

et al., 2019).  

The PRB has a total of 17 dams, reservoirs and two barrages, which are mainly for 

hydroelectric power generation and irrigation. These infrastructure projects regulate the 

stream flow of the river (Sudheer et al., 2019). The three major reservoirs include Idukki, 

Mullaperiyar and Idamalayar. The largest reservoir is the Idukki Reservoir which includes 

Idukki, Cheruthoni, and Kulamavu dams. The basin is also part of inter-basin transfer 

projects such as Mullaperiyar Dam which links the basin to the Vaigai River in Tamilnadu 

and the Idukki hydroelectric project which is connected to the Muvattupuzha River. The 

region, with multiple dams and power stations, is crucial for the state's economy ( Singh 

et al., 2022).  

For the purpose of this study, we have divided the Periyar River Basin into three regions, 

following the same physiographical classification for Kerala that is into lowlands (0 to 7.5 

m), midlands (7.5 to 75 m) and highlands  (>75 m). 

A study by Kumar & Mishra (2020) found that dry extremes during the monsoon season in 

India have increased by 1% each decade from 1951 to 2015 and the frequency of both 

dry and wet events is expected to rise if there is a global temperature rise of 1.5°C or 

more. Kerala was subjected to severe floods in 2018 and 2019, disrupting the whole state 

affecting thousands and causing widespread damage to agriculture and infrastructure 

(Vijaykumar et al., 2021). Periyar river basin (PRB) which is the second largest river basin 

of Kerala, was one of the worst affected regions during these floods (Krishnakumar et al., 

2022). PRB was also severely affected by the historic floods of  1924 and 1961 (Central 

Water Commission, 2018).  

Floods and heat waves pose a grave threat to the lifeline of thousands of people and their 

livelihoods in the region. Numerous studies have been done on flood hazards in the Periyar 

River basin. Singh et al. (2022) investigated the effectiveness of advanced hydrological 

and hydrodynamic tools like HEC-HMS, HEC-RESSIM and HEC-RAS combined with remote 

sensing data and observation data to increase the accuracy of flood forecasting in the 

region. This was achieved by reconstructing the historic flood events and calibrating them 

with observations. Sudheer et al. (2019) investigated the role of dams in the floods of 

2018 in the PRB. All the studies conducted were focused mainly on individual flood hazards 

and often limited the study to reconstructing the 2018 floods. 

The studies dealing with ‘dry’ hazards in the region are comparatively less than those of 

floods. Abhilash et al.( 2019) studied the changing characteristics of droughts in Kerala 

using gridded rainfall data from IMD and using it to calculate the SPI values. The study 

shows that long-term droughts are becoming more frequent in recent decades. Gopinath 

et al. (2020) developed a browser-based environmental model named Northern Kerala 

Drought Information System (NKDIS) which calculates the drought risk index based on 

the Normalized difference vegetation index (NDVI) anomaly calculated from MODIS Terra 

satellite. In terms of regional heatwave hazards, no studies were found.  

A study by Sadhwani & Eldho (2023) assessed the vulnerability of water balance to climate 

change in the Periyar river basin by using the SWAT hydrological model. The study 
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analyzed different water balance variables such as precipitation, surface runoff, 

groundwater flow and percolation with 3 GCMs from the CMIP 6 scenarios. In the analyses, 

it was found that there would be a considerable increase in runoff (>40%) and stream 

flow (>65%) in the mid and far future, implying an increased potential for flooding. 

However, in the near term, runoff and streamflow were found to be reduced by 15% and 

5% respectively. The temperature values were also exhibiting increasing trends, which can 

be seen in Figure 3. 

 

Figure 3: Comparison of temperature IMD and GCM ensembles Source: Sadhwani &Eldho (2023) 

3.3.Role of hydropower plants in hazard reduction 
Given the numerous dams in the PRB, it is also significant to consider the roles of 

hydropower plants in the region. During a flood event, these dams could store the flood 

waters and release it in a controlled manner to reduce flood intensity and similarly, the 

water stored in the reservoirs could be utilized during a heat wave event to reduce its 

impacts. Studies like Sun et al. (2023) and Lazin et al. (2023) have demonstrated the 

effectiveness of dams and hydropower plants to mitigate floods by controlling the outflow. 

However, during the 2018 floods, all the reservoirs in the region were near full reservoir 

level (FRL) and had to be opened which aggravated the floods in the region (Sudheer et 

al., 2019). This implies that the dams in the region can have an effect in both reducing 

and increasing the hazard intensities. A long period of heat wave would mean that the 

dams would be storing as much water as they could and a sudden onset of flood event 

would render them ineffective in regulating the flood hazard. Even though Dams can play 

a significant role in flooding, these effects could not be incorporated in the study as the 

dam discharge data were not available to public.  
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Chapter 4: Methodology 
 

This chapter will provide an overview of the research methods that were used to answer 

the research questions and achieve the objectives. The conceptual framework for this 

study is given in Figure 4. 

The methodology used for this research can be broken down to three general sections 

1. Analyzing Past hydrometeorological extreme events 

2. Calibrating the Flood model 

3. Analyzing future hydrometeorological extreme events. 

These general sections are further explained in detail in the following subsections.  

 

4.1.Analyzing historical events 
The initial step was to explore how had the hydro meteorological hazards like Flooding 

extreme precipitation events, extreme temperature events and heat waves evolved in the 

study area during the historical period. To achieve this the river discharge data, 

precipitation data and the maximum temperature data available in the region were used. 

The river discharge data was available only for the period from 1980 to 2020, while the 

precipitation and temperature data were available for the period from 1986 to 2023. The 

following sub section delve into each type of data and the analysis done. 

Analysing historical events in the Peryar River basin

FastFlood model Flood simulation

Predicting future extreme events 

Floods Heat waves Extreme 
temperature and 

precipitation 
indices

• Gridded max 
temperature 

• Gridded Rainfall
• River discharge 

• DEM (Copernicus 90m)
• Land cover data (ESA 

WorldCover 10m)
• Infiltration

Calibration

• SSP245 and SSP585 
rainfall 

• SSP245 and SSP585 max 
temperature

Extreme 
temperature and 

precipitation 
indices

Heat wavesFloods

Exposure Calculation

• SSP2 and SSP5 
population data for 
near(2030), 
medium(2060) and far 
(2090) terms

• 3 -day  cumulative rainfall
• Observed peak river 

discharge
• 3-day cumulative rainfall 

return periods

20 year and 100 
year return period 

floods

• Worldpop population 
count 2020

Exposure calculation Flood 2018 radar extent

Sub objective:1

Sub objective:2

Sub objective:3

Input data

Outputs

Derived data

Legend

Conceptual framework of research methodology

Figure 4: Conceptual framework for the study linking the subobjectives. 
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4.1.1.River Discharge 
The river discharge data (1980-2022) for three discharge gauges (Kalady, Mangalapuzha 

and Marthandavarma) in the Periyar river basin were collected from the Kerala State 

Disaster Management Authority (KSDMA). Out of the three gauges , Kalady had a missing 

data for 8.2% of the total record, Mangalapuzha had 68.7% missing values and 

Marthandavarma had 53.7% missing values. The locations of the river gauges are shown 

in Figure 5. 

The  river discharge data from the three stations were used to calculate the return periods 

of discharge using Gumbel analysis. Gumbel analysis is a statistical method used to 

identify the probability of extreme events by fitting a Gumbel distribution to the maximum 

or minimum observation. To calculate the return periods, first the maximum annual 

discharges were identified and ranked in descending order and each value was assigned a 

rank, with one representing the highest value. 

Cumulative  probability for each discharge is given by 

𝑃𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙(𝑥) = exp (− exp (−
𝑥−𝑢

𝛼
))  (1) 

 

Where, 

u = x̅ − 0.5772𝛼  

𝛼 =
√6𝑠𝑥

𝜋
  

𝑠𝑥
2 =

1

𝑛−1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1   

x= observed annual maximum discharge point 

x̅ = average of annual maximum discharge 

n= number of observations 

i= rank of the observation 

The return period for each discharge value is given by 

 

𝑇𝑃(𝑥) =
1

1−𝑃𝑇ℎ𝑒𝑜𝑟𝑜𝑡𝑖𝑐𝑎𝑙(𝑥)
  (2) 

Equations 1 and 2 are used to calculate the return periods corresponding to each 

discharge. Further the return periods were plotted against the discharge value and a line 

is fitted through this distribution to derive the corresponding discharge for different return 

periods. 

The Kalady river gauge was missing the  discharge data on the peak of the 2018 flood 

(August 13 to 30) probably due to damage to the discharge gauge during the peak event. 

The threshold of 5 year return period was set as the flood threshold. This threshold was 

decided based on the historical flood occurrences, where 5 year return period was resulting 

in floods. The years where the discharges exceeded this threshold were considered as 

flood years. 
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4.1.2.Rainfall data 
Initially rainfall data from six stations were collected from KSDMA for the period from 1986 

to 2022. Out of the six station two were in the lowlands (Irinjalakuda and Kodungallur), 

two in the midlands (Aluva and Perumbavur) and two in the highlands (Idukki and 

Munnar). The locations of all the rainfall gauges are shown in Figure 6. Upon closer 

inspection of these gauge data, they showed extremely high rainfall values for multiple 

years, which exceeded 10000mm annually (shown in Figure 7).The highest recorded 

annual rainfall in Kerala is about 4258mm in 1961 (Nambudiri,2021). Since the values 

shown by the rainfall gauge data were not considered realistic and the authorities could 

not confirm or reject the values, we decided not to use these data in further analysis. We 

used daily gridded rainfall data (0.25° × 0.25°)  provided by the Indian Meteorological 

Department (IMD) instead for further analysis. IMD daily gridded rainfall data (IMD4) is a 

gridded precipitation dataset created by interpolating data from 6695 rain gauges across 

India using the Shepard (Inverse Distance Weighted) interpolation method (Pai et al., 

2014)(Pai et al., 2014). This IMD4 dataset has been extensively used in different studies 

in India as reference precipitation data (Reddy & Saravanan, 2023)(Reddy & Saravanan, 2023). 

The rainfall values for each station were extracted from the IMD4 dataset using the climate 

data operator (CDO).The daily rainfall data from 1986 to 2023 for each station were stored 

in different NetCDF files.  Only five stations out of six were used, as the stations Aluva and 

Perumbavur stations in the midland region were lying on the same pixels. 

 

 

 

 

Figure 5: River Gauges in Periyar River basin. 
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Figure 6: Rain gauges in the study area. 

Figure 7: Annual rainfall as per the IMD station data. 
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Correlation analysis 

To check how the IMD station data and IMD gridded data correlated with each other, the 

Pearson’s Correlation Coefficient was used. It is a measure of  the degree of linear 

correlation between two variables and is calculated as follows (Profillidis & Botzoris, 2019). 

Pearson’s correlation coefficient,  𝑟 =
∑(𝑥𝑖−𝑥)̅(yi−y̅)

√∑(𝑥𝑖−�̅�)
2
(yi−y̅)

2
 

Where xi and yi are individual data points. 

x̅ and  y̅ are the means of x and y respectively. 

Pearson's correlation analysis for the datasets was conducted, using a Python script. Table 

19 in annexure 1 shows the values of the correlation coefficient and the corresponding 

degrees of correlation. 

Calculation of Precipitation Extreme Indices 

To analyze the precipitation extremes in the historical period (1986-2023),  extreme 

precipitation indices were calculated. These indices were defined by the Expert Team on 

Climate Change Detection and Indices (ETCCDI) such as, very heavy precipitation days 

(R20mm), heavy precipitation days (R10mm) and Extremely wet day precipitation (R99p). 

These indices were calculated for all the five stations for the period 1986 to 2023 using 

the IMD gridded data. The list of extreme precipitation indices used in this study and the 

description is given in Table 2. The R20mm captures the days with very high precipitation 

and is used in multiple studies around the world, but in the context of Kerala it should be 

noted that there are instances of daily rainfall exceeding 200mm per day, however to stick 

with the internationally accepted standards this index was used as measure of very heavy 

precipitation days. The R10mm is comparatively a low threshold and represents days with 

moderate heavy rainfall however it poses a threat of flooding it continues consecutively 

for a higher duration. The R99p targets the most extreme events statistically, highlighting 

the rarest and most severe instances of heavy rainfall. For the calculation of R99p the 99 

percentile for daily precipitation in each year is identified and then the precipitation 

corresponding to these days are summed to obtain the R99p value for each year. The study 

includes these multiple indices to capture a wider range of extreme precipitation scenarios 

that might lead to floods. The indices were calculated using Python script. 

Indices Name Definition Units 

R10mm Heavy 
precipitation days 

Number of days with at least 10 mm rainfall Days 

R20mm Very heavy 
precipitation days 

Number of days with at least 20 mm rainfall Days 

R99p Extremely wet day 
precipitation  

The total annual rainfall on days when daily precipitation exceeds 
the 99th percentile of the base period. 

mm 

Table 2: Extreme precipitation indices and their definitions. 

4.1.3.Temperature data 
The IMD gridded daily temperature  data were used as observed temperature data. These 

datasets incorporate data from 395 quality-controlled temperature measurement stations, 

which were interpolated using Shepard’s (Inverse Distance Weighted)  interpolation 

method to generate gridded temperature fields. (S. Kumar et al., 2020). To match the IMD 

precipitation datasets, the original IMD maximum temperature gridded data (1° × 1°)  

were re-gridded to 0.25° × 0.25°  by the nearest neighbor interpolation method using 

Climate Data Operator (CDO). The daily temperature values for the five stations  were 

extracted using the nearest neighbor method in CDO for the period from 1986 to 2023. 
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Calculation of Temperature Extreme Indices 

To analyze the temperature extremes in the historic period, the extreme temperature 

indices were calculated as defined by the Expert Team on Climate Change Detection and 

Indices (ETCCDI), such as the maximum value of daily maximum temperature (TXx) and 

the number of warm days (TX90). For the 90th percentile calculation the base period of 

1986 to 2023 was taken. The list of extreme temperature indices used in this study and 

the description is given in Table 3. 

Indices Name Definition Unit 

TXx Maximum value of 

daily maximum 

temperature  

Maximum of daily maximum temperature in 

a year 

°C 

TX90 Warm days Number of days when the temperature 

exceeded the 90th percentile of the base 

period 

Days 

Table 3: Extreme temperature indices and their definitions 

4.1.4.Analyzing Heat waves 
For this study we used the definition by IMD definition of a heatwave, which identifies 

conditions based on temperature thresholds either in absolute temperature or deviations 

from the normal. A heat wave is officially declared when the following criteria are met 

continuously for at least two consecutive days: 

1) The maximum temperature at a station reaches or exceeds 40 degrees Celsius in 

plains or 30 degrees Celsius in hilly regions. 

2) The average maximum temperatures surpass the climatological average by at least 

4.5 degrees Celsius. 

The climatological average is calculated based on the period 1980 to 2010. Based on the 

intensity of the heat wave it is classified to heat wave and severe heat wave. If the 

departure from the climatological average is between 4.5oC to 6.4oC it is considered  a 

heat wave and if it exceeds 6.4oC it is considered as a severe heat wave.  

Heat index or apparent temperature is widely used in studies to express the risk levels to 

humans from heat waves and is calculated using surface temperature and relative humidity 

(Hoang et al., 2022)(Hoang et al., 2022). In this study, however the heat index will not be 

calculated as the relative humidity values for the region were unavailable.  

Since temperature data from 1980 to 1985 was not available, the data from 1986 to 2015 

was used to calculate the normal temperatures for the region to depict the climatological 

average. Normal temperatures  for each day of the year was calculated by taking the mean 

of maximum temperatures recorded on that day in the period 1986 to 2015. Normal 

temperature values were calculated for all the stations.  The maximum daily temperature  

for the five stations were used to derive the number of heatwave days and their intensity. 

4.2.Calibrating the Flood model 
To model the flood hazard of the region, FastFlood, a browser-based flood simulation model 

developed by Bout et al. (2023) was used. This online tool is accessible at fastflood.org. 

The flood model was initially set up and calibrated using the 2018 flood event and was 

then further used to create 20 and 100 year return period floods for the region. The model 

set up and calibration procedures are described in the following subsections. 

4.2.1.FastFlood model set up 
FastFlood browser application required a DEM and event rainfall data to simulate floods. It 

also requires additional parameters like infiltration, landcover, input discharge that can be 
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added to the model  for a better simulation. For this study the  Fast Flood model was 

initially set up using the 30m Copernicus Global Digital Elevation Model resampled to 

90m.The DEM was resampled to 90 m because of the larger size and higher resolution of 

the 30m DEM, the FastFlood model repeatedly crashed giving out of memory error. The 

Copernicus 30 m global DEM (GLO30) was downloaded from Open Topography 

(OpenTopography, n.d) . The Copernicus 30 m global DEM (GLO30) was created from the 

high resolution commercial radar data acquired through  the TanDEM-X mission (2011 to 

2015)  and was reported to be superior to all other DEMs of similar spatial resolution (30m) 

(Li et al., 2022). The resampled DEM was then reprojected from the World Geodetic System 

(WGS) 1984 to Universal Transverse Mercator (UTM) 43 N in ArcMap. For input rainfall, 

three-day cumulative rainfall was used as it was found to better represent the flood in the 

region compared to one day, five-day and seven-day cumulative rainfall based on a 

previous Master’s thesis study by Glas (2023) in the neighboring Pamba river basin. 

Additional parameters like Land cover (World Cover 10m) and Infiltration (based on Soil 

grids 2.0) for the model domain were downloaded with in the FastFlood Tool itself.  

The Manning’s surface coefficient is  defined by the land cover used. The FastFlood allows 

automatic downloading of the ESA WorldCover 10 m data. The world cover data is a global 

land cover dataset which were created using advanced image recognition techniques and 

data from Sentinel-1 and Sentinel-2, which includes both radar and optical imagery. This 

map categorizes the Earth's surface into 11 distinct land cover classes at a high resolution 

of 10 meters. The default values for different land cover types in FastFlood model is shown 

in Table 18 in  Annexure 1. 

The infiltration rates were derived within the FastFlood model using the pedotransfer 

functions based on Saxton et al. (1986) and the global predictions of soil texture and 

organic matter content from the SoilGrids data. SoilGrids is a comprehensive global soil 

mapping initiative designed to produce detailed maps of soil properties at a medium spatial 

resolution (250 m cell size). The development of SoilGrids involves the application of 

advanced machine-learning techniques to a vast collection of soil observations (240,000) 

and 400 global environmental covariates(Poggio et al., 2021) 

Automatic channels were derived from  FastFlood were not able to represent the channels 

in the region accurately, especially the bifurcation of the river. Figure 8a shows the 

modelled flood before editing the channel, does not show the bifurcation of the river at 

Aluva (marked in red) and shows that the majority of the water flows to the southern 

branch, which is not the case. The channels were further edited using the channel edit tool 

in Fast Floods, which allows the drawing of channels and culverts. Figure 8b shows the 

floods modelled after correcting the channels; even though the flood models depicted the 

bifurcation, the southern branch of the river show reduced flow. 
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4.2.2.Calibration of FastFlood 
A dataset depicting the 2018 historic flood extent was obtained from KSDMA and used as 

the observation data for computing the flood modeling error. This historic flood extent was 

created by the National Remote Sensing Centre (NRSC)  from a combination of radar 

images that was analyzed during the 2018 floods. Since there were no metadata along 

with this data the exact radar images used to create the  flood layer is not known. This 

was  still used as the observed extent as it was officially recognized as the 2018 flood 

extent by the authorities. This historic flood extent map did not contain the permanent 

water bodies, and was merged with the map of the permanent water bodies which was 

also provided by KSDMA to create a comparable observed flood extent in Tiff format  with 

a similar grid size as the simulated flood extent (90m). 

To accurately model the peak discharge from the flood simulation it should be compared 

with the observed peak discharge. The Kalady river gauge was missing the discharge data 

during the peak event of 2018.Sudheer et al. (2019) used  Gridded precipitation datasets 

of Integrated Multi-satellite Retrievals for GPM (IMERG) to reconstruct 2018 floods in the 

Periyar River basin and reported that the return period of the rainfall during the 2018 flood 

in the Periyar River basin was 145 years and the return period of discharge was 142 years. 

Hence, the 142-year return period discharge of Kalady station calculated using the Gumbel 

analysis was used as the observed peak discharge. 

The FastFlood model was calibrated by modifying parameters such as infiltration, Mannings 

coefficient, channel dimensions and concentration speed. Considering the large extent of 

the study area, solver accuracy was kept very high, which will increase iterations of fast 

sweeping model in the model set-up but also increase the time to run the model 

(Glas,2023). The model performance was derived using performance indicators such as 

Cohens Kappa, percentual accuracy and error in peak discharge. To derive the performance 

indicators the model, classifies pixels of the modeled flood map, based on the observed 

flood map to true positive (TP), true negative(TN), false positive (FP) and false Negative 

(FN) and the performance indicators are derived as follows within the model: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑁 + 𝑇𝑃)/(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃) 

Figure 8: a) The flood modeled before channels edits b) The flood modeled using edited channels. 
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𝐶𝑜ℎ𝑒𝑛𝑠𝐾𝑎𝑝𝑝𝑎 = (((𝑇𝑃 + 𝑇𝑁)/𝑁) −((𝑇𝑃 + 𝐹𝑃)/𝑁 + (𝑇𝑁 + 𝐹𝑁)/𝑁))/(1 −((𝑇𝑃
+ 𝐹𝑃)/𝑁 + (𝑇𝑁 + 𝐹𝑁)/𝑁)) 

Ranges of Cohens Kappa values and corresponding strength of agreement is given in Table 

4 (Landis & Koch, 1977). 

Cohen's Kappa Strength 

of 

agreement 

<0.00 Poor 

0.00–0.20 Slight 

0.21–0.40 Fair 

0.41–0.60 Moderate 

0.61–0.80 Substantial 

0.81–1.00 Almost 

perfect 
Table 4: Ranges of Cohen's Kappa and their strength of agreement. 

Once the flood model was calibrated, flood maps with flood heights for 20 and 100-year 

return periods were generated for the region. 

4.2.3. Population exposure analysis 
To calculate the population exposed to 20 and 100-year return periods of floods, population 

data for the region was downloaded from the WorldPop website (Bondarenko et al., 2020). 
The primary method for generating WorldPop products involves a weighted dasymetric 

technique that utilizes a random forest model  which creates a predictive weighting layer 

to dasymetrically redistribute population counts into gridded cells(Leyk et al., 2019). From 

the Worldpop datsets, the “constrained individual countries 2020 UN adjusted” dataset 

was used. This was developed by Bondarenko et al. (2020) using a top down method, 

adjusted to match the United Nations national population 2020 estimates. 

This gridded dataset for India was created based on the 2011 census, and the growth rate 

for the period from 2001 to 2011 was then used to calculate the projection for 2020. This 

population data with the number of people per pixel for the entire India was first clipped 

to the study area to calculate the exposure to floods. 

The population data had an initial spatial resolution of about 100m; this was further 

reprojected to UTM zone 43 and re-gridded to the same spatial resolution as the flood map 

(90m). The re-gridding was done using the nearest neighbour interpolation method in 

ArcMap. The re-gridded data was aggregated for the lowland, midland and highland to 

ensure the population remained the same. The flood map with flood heights was 

reclassified to a binary flood extent map  (flood and no flood) and was used to mask the 

exposed population. The spatial analyst tool in ArcMap was further used to calculate the 

number of people exposed to floods in the lowlands, midlands and highlands, respectively, 

for 20 and 100-year return periods. 

 

4.3.Analyzing future hydrometeorological hazards 
To derive future climate data, General Circulation Models (GCMs) are essential. However, 

the coarse resolution of GCM outputs makes them unsuitable for direct use at regional and 

basin levels (Jaiswal et al., 2020). These GCMs should be downscaled to a higher resolution 

using either statistical or dynamical methods and bias corrected to address the systematic 

errors before using them on a regional scale (Kim et al., 2022). Mishra et al. (2020) 
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developed bias-corrected gridded maximum temperature and precipitation using Empirical 

Quantile Mapping (EQM) (statistical downscaling method) for different climate scenarios 

using 13 General Circulation Models (GCM) at a spatial resolution of 0.25° x 0.25° (About 

27 Km in Kerala) for  18 river basins in India. Bias correction was performed using the IMD 

gridded temperature and precipitation datasets. 

Using multi-model ensembles of several GCMs have shown to improve the reliability of 

future projections by averaging out individual model biases and uncertainties (Jose et al., 

2022). Multi-model ensembles can be created by either calculating the mean or median of 

a set of General Circulation Model (GCM) outputs or by assigning weights to different GCMs 

based on their historical performance. However, this process involves extensive data 

processing and analysis, which can be time-consuming. Due to the time limitations, a 

single well-performing climate model was chosen as a representative future scenario for 

the region.  

To model the Future climate, the bias-corrected Earth Consortium 3 (EC 3) climate model 

was selected from the 13 bias-corrected GCMs created by Mishra et al. (2020); this was 

based on several studies which reported that EC Earth 3 climate model performs well in 

modelling the Indian monsoon. The EC Earth 3 climate model was developed by the 

European EC-Earth consortium with the Swedish Meteorological and Hydrological Institute 

(SMHI). Mitra, (2021) conducted a comparative study on the skill of the 13 bias-corrected 

GCMs developed by Mishra et al. (2020) to model the daily spatial pattern of the Indian 

monsoon using a machine learning based probabilistic graphical model which can identify 

spatial clusters and found that EC Earth3 performed robustly in modeling the spatial 

clusters and spatial patterns of monsoon rainfall over India. Reshma & Arunkumar, (2023) 

used the bias corrected GCM models from Mishra et al. (2020) and ranked them using 

multi-criteria analysis using correlation coefficients (R), Nash-Sutcliffe efficiency (NSE), 

normalized root-mean-square error (NRMSE), and absolute normalized mean bias error 

(ANMBE) as performance metrics to study the change in stream flow in Idamalayar basin 

(a sub basin of Periyar). The study found that among the 13 bias corrected GCMs EC  Earth 

3 performed the best. 

The SSP2-4.5 and SSP5-8.5 climate scenarios were used to extract different possible 

pathways for the future. SSPs are Shared Socioeconomic Pathways which consider both 

the socioeconomic dimensions of climate change adaptations and mitigations along with 

the emission scenarios. The SSP2-4.5 scenario is  often referred to as the middle-of-the-

road approach that represents a scenario where global development and technology 

resemble the historic pattern and the emissions by 2100 is 4.5 W/m2. The second scenario 

SSP5-8.5, referred to as “Taking the highway” represents a world that  remains heavily 

dependent on fossil fuels and the emissions would reach 8.5  W/m2 by 2100 (Riahi et al., 

2017). These scenarios are chosen to model intermediate and extreme possible conditions 

for the future in the study area.  

4.3.1.Preprocessing and Extraction of climate data 
The EC Earth 3 bias corrected datasets for Indian sub continental river basin from Mishra 

et al. (2020) were downloaded from Zenodo.org(Mishra et al., 2020a). 

This datasets was divided in to 18 sub continental river basin files in text format and 

contained the maximum temperature and precipitation data for the period 2015 to 2100 

for different SSP scenarios. The data for the study area was partly in two sub continental 

river basin files (the west coast and the south coast).The temperature and precipitation 

data  for both these files were downloaded and combined in to a csv file. Thich was then 

converted to a NetCDF file using the “table to NetCDF “tool in the ArcMap. The NetCDF file 

created was then re-gridded using CDO to the same grids as the IMD gridded data. Once 
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the maximum temperature and precipitation data were extracted for SSP2-4.5 and SSP5-

8.5 scenarios, it was then used to extract maximum temperature and rainfall values for 

the five stations. The data for the stations were extracted using the nearest neighbor 

interpolation in CDO. 

4.3.2.Correlation Analysis 
To examine the suitability of the EC Earth 3 climate  model data for representing the region 

a Pearson correlation analysis was done for both precipitation and maximum temperature 

with the EC Earth 3 and IMD4 datasets for the common time period between 1986 and 

2014 , as the historical period of the EC Earth 3 is from 1951 to 2014 and the available 

historical observation data is  from 1986 to 2023. Correlation analysis was done for only 

four stations ( Irinjalakuda, Aluva, Munnar and Idukki ) because the EC Earth 3 data was 

not covering the pixel of the Kodungallur station. The sample extent of the EC Earth 3 

dataset is shown in Figure 9. 

4.3.3.Calculation of Precipitation Extreme Indices 
To analyze the precipitation extremes for the future period (2015-2100), extreme 

precipitation indices defined in section 4.1.4, such as “very heavy precipitation 

days”(R20mm), “heavy precipitation days” (R10mm) and “extremely wet day 

precipitation” (R99p) were  used. 

The daily precipitation data extracted for each station for the Scenarios SSP2-4.5 and 

SSP5-8.5 were used to calculate the precipitation extreme indices using a Python script. 

The calculated indices were further averaged for near term (2015-2045), medium term 

(2046-2075) and Far term (20176-100) to analyze the relative difference in precipitation 

extremes. Even though this approach would smoothen the extremes was still used to 

denote the relative changes in the future terms. 

Figure 9: The extent of EC Earth 3 precipitation data. The red circle shows the Kodungallur station, which is not covered by 
the EC Earth 3 extent. 
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Since there were only one station each in low land (Irinjalakuda) and mid land (Aluva), 

they were used to represent the low land and mid land respectively. However for the high 

land there were two stations available (Idukki and Munnar), the mean of these stations 

were used to represent the high land region. The extreme precipitation indices were 

calculated station wise as well as region wise for different future periods under SSP2-4.5 

and SSP5-8.5 scenarios. 

4.3.4.Calculation of Temperature Extreme Indices 
To analyze the temperature extremes in the future period, the extreme temperature 

indices which were defined in section 4.1.6 ,such as the “maximum value of daily 

maximum temperature” (TXx) and the “ number of warm days“(TX90) were calculated. 

For the 90th percentile calculation the base period from 1986 to 2023 was kept constant, 

this was done so that it would be able to compare the change in extreme events directly 

to the historic conditions. The indices were calculated for both the SSP scenarios (2-4.5 & 

5-8.5) for low land, mid land and high land.  

4.3.5.Analyzing future heat waves 
For identifying the Heat waves in the future climate, the normal temperatures  based on 

the period 1986 to 2015 were used, similar to the historical occurrence analysis. This was 

done for mainly two reasons, one to compare directly the changes in heatwaves in historic 

and future periods and secondly, even if higher temperatures becomes the new normal, it 

is still going to have an impact on the people. The number of heat waves and their intensity 

was  calculated for the SSP2-4.5 and SSP5-8.5 scenarios using the methodology described 

in section 4.1.7. Also the average change in intensity and frequency of heat waves  are 

calculated for the near, middle and long term. 

4.3.6.Flood simulation for future scenarios 
To model flood for the future scenarios, the FastFlood model which was calibrated using 

the 2018 flood was used. The land use parameters of the flood model were not changed 

and the same land use was assumed for the region through out the future period. Even 

though this assumption is unrealistic, very low resolution of global future land use and the 

added complexities in modelling this and high level of uncertainties lead to the decision to 

continue with the same land use parameters used in the historical period. 

The event duration values were maintained at 72 hours and for the rain fall intensity values 

three-day cumulative rainfall values corresponding with 50 and 100 year return periods 

were used for the near, medium and far terms. These return periods were calculated by 

first dividing the future period to three: near term which is the period from 2015 to 2045, 

medium term corresponds to the period from 2046 to 2075 and the far term is the period 

from 2076 to 2100. For each of these period the three-day cumulative rainfalls were used 

to calculate the rainfall corresponding to different return periods using the Gumbel analysis 

discussed in section 4.1.1. 

The flood model was run using the 20 and 100 year return period of the three-day 

cumulative rainfall for the near term , medium term and far term for the scenarios SSP2-

4.5 and SSP5-8.5  to generate corresponding flood maps. 

4.3.7.Population exposure analysis for future 
To analyze the exposure of population in  the future scenarios, global population grids 

dataset created by X. Wang et al. (2022) was used. These gridded datasets were global 

population projections from 2020 to 2100 for different SSPs developed from the WorldPop 

dataset using a Random forest model. The gridded datasets, with a spatial resolution of  

approximately 1km, are widely used for climate change-related studies (Trancoso et al., 

2024;Liu et al., 2024).  
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Since the population data was at a very low resolution compared to the flood layer (90m), 

it needed to be re-gridded to a higher resolution for better exposure analysis. The 

population data was first reprojected from WGS84 to UTM 43N.Then the reprojected data 

was re-gridded to 90 m using the nearest neighbor interpolation method. The resulting 

population data  was aggregated for the regions (lowland, midland, high land) and were 

compared with the aggregated sum calculated using the original population data (1Km).It 

was found that the re-gridded data was exactly 10 times more  than the original data due 

to the nearest neighbor interpolation. The re-gridded data was then corrected using the 

raster calculator in ArcMap by dividing it by a factor of 10.The re-gridded population data 

is then used to calculate the exposure to floods and heat waves. 

The flood layers simulated for both the SSP scenarios and for various time periods (near , 

medium and far) where used as the hazard layers and  the projected population data for 

similar periods were used as the element at risk layer. The exposure was calculated by 

first masking the population layer with the flood layer and then using the zonal statistics 

tool in ArcMap. The exposure to floods for the low land, mid land and high land  were 

calculated for the combination of both the SSP scenarios and for different future periods. 

For the exposure calculation for heat waves, since the analysis was based on only point 

data, if a station is found to have heat wave in a period then the whole region is assumed 

to be exposed to heat waves. Essentially this means that the exposure to heat waves will 

be same as the total population in each region across different time periods and SSP 

scenarios. This was calculated using the zonal statistics tool in ArcMap. Table 5 shows an 

overview of the datasets that were used in this study.  

 

Table 5: Overview of the datasets used in the study. 

S.No Dataset Resolution Source 

Temporal  Spatial 

1 Copernicus 

DEM 

 NA 30 m Open Topography 

2 EC Earth 3  

Precipitation  

Daily 27 Km Mishra et al.2020 

3 EC Earth 3  

Temperature  

Daily 27 Km Mishra et al.2020 

4 IMD Gridded 

rainfall  

Daily 27 Km Indian Meteorological 

Department 

5 IMD Gridded 

Temperature  

Daily 100 Km Indian Meteorological 

Department 

6 River discharge 

station data 

Daily  NA Kerala State Disaster 

Management Authority 

7 Historical Flood   NA  NA Kerala State Disaster 

Management Authority 

8 IMD station  

rainfall  

Daily  NA Indian Meteorological 

Department 

9 World pop 

population  

 NA 90 m Worlpop hub 

10 Future 

population 

distribution  

5 year 900 m Wang et al. (2022) 



 

37 
 

Chapter 5: Results 
This chapter presents the results obtained using the methodology discussed in the previous 

chapter. 

5.1.Historical events 
The first objective was to analyze the hydrometeorological extreme events in the historical 

period in the Periyar river basin using the discharge, rainfall and temperature data. The 

following subsection present the results of this analysis. 

5.1.1.River discharge analysis. 
The river discharge data from 1980 to 2020 is used to analyze the return period values 

using the Gumbel analysis, and the results are shown in Figure 10. The  return period up 

to  twice the length of the available time series could be derived through Gumbel analysis 

(El Adlouni & Ouarda, 2010). The discharge data used for Gumbel analysis had a record of 40 

years, so it was used to interpolate to derive discharge values up to an 80-year return 

period. 

Figure 10 shows that even though the Kalady gauge is upstream of the other two gauges, 

it has a higher discharge because the river bifurcates before reaching the other two 

stations. It is also possible that the missing values in the Marthandavarma and 

Mangalapuzha river gauges have caused the underestimation of discharge in these two 

gauges. Return periods of discharge for the three stations are shown in Table 6. The return 

periods of Marthandavarma and Mangalapuzha are calculated with limited discharge data 

and is highly likely to be underestimated.  
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Figure 10:River discharge return periods of River Gauges in the Periyar River Basin 
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Table 6:Discharge corresponding to various return periods for the river gauges in Periyar River basin. 

As discussed in section 4.1, the gauges Marthandavarma and Mangalapuzha were missing 

quite some data and only the Kalady gauge was used to analyze the flood occurrences in 

the past. Figure 11  shows the maximum daily discharge recorded in the Kalady gauge 

and the events when it crossed the 5 year return period threshold. In the previous two 

decades between 1980 and 2000 no recorded discharge  exceeded the 5 year return period 

threshold. On contrary the decade after 2000 show multiple events exceeding the 

threshold. The events and their corresponding return period are shown in Table 7. This 

change in trend might indicate an influence of climate change and the return period 

calculation based on the whole period might have under estimated the river discharge 

return periods. 

 

Intensity of 
discharge 

Years 

5 year RP 2001,2004,2005,2007,2009,2013,2019 

10 year RP 2005,2007,2013,2019 

20 year RP 2005,2007 
Table 7: Years in which various return period events were identified. 

 

Return 
period 

Discharge (m3/s) 

Kalady Marthandavarma Mangalapuzha 

5 3060 1283 1773 

10 3685 1571 2274 

20 4285 1848 2754 

50 5062 2207 3375 

80 5457 2389 3691 
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Figure 11: Maximum daily discharges recorded in the Kalady gauge for the period of 1980 to 2020. 
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It is to be noted that the 2018 flood event is shown as only a 5 year return period event 

in the graph due to the missing data during the peak of the floods. The discharge 

corresponding to the event was calculated to be a 142 year return period event as 

discussed in section 4.2.2. 

 

5.1.2.Correlation analysis 
To compare the IMD gridded data and the IMD station data, Pearsons correlation analysis 

was conducted shows statistical significance  for all values with near zero p values. The 

correlation coefficient values ranged from 0.4 to 0.6 implying a weak positive to 

moderately positive correlation. Idukki station in the high lands showed the lowest 

correlation while, Aluva station in the midlands showed the highest correlation. The 

correlation of Kodungallur station is given in Figure 12a and the corresponding annual 

precipitation recorded in the rain gauge and IMD gridded data is shown in Figure 12b.  

Similar plots for the other four stations are shown in Figure 29 of Annexure 1. Figure 12b 

shows that both the datasets show similar values throughout the time period and only 

show different values during the years where the station data records very high values. 

After 2012, no such anomaly in rainfall was observed in the station data. 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.3.Precipitation extreme indices  
The very heavy precipitation days (R20mm) for the stations in the low and mid lands show 

similar trend with the highest peak recorded in 2007. The highland stations of Idukki and 

Munnar show comparatively lower ‘very heavy precipitation days’. Figure 13a shows the 

trend in very heavy precipitation days. The midland regions received the highest R20mm 

rainfall days through out the period. The low and midlands shows a declining trend from 

2010 while the highlands shows a steady increase. The average R20mm days for each 

period are shown in Table 8. 

Figure 12: a) Correlation analysis between station rainfall and IMD gridded rainfall for Kodungallur station. b) Annual 
rainfall comparison between IMD gridded data and the rain gauge station data from 1986 to 2022. 
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Heavy precipitation days (R10mm) shows a similar trend as  very heavy precipitation days 

with mid lands and high lands showing an increasing trend from 1986 to 2023, while the 

low lands shows an increasing trend from 1986 to 2010 and a decrease from 2010 to 

2023. The average number of heavy rainfall days for each period is summarized in Table 

8. For most stations,  R10mm peaked in 2021, followed by 2007 and 1998. Munnar station 

shows the lowest heavy precipitation days throughout the period 1986-2023. Figure 13b 

shows how the number of heavy precipitation days has evolved from 1986 to 2023. 

 

The extremely wet day precipitation (R99p) for each station for the period 1986 to 2023 

is shown in figure 13c. It shows a similar trend to the other precipitation indices ,  where 

low lands and midlands stations show a similar trend.  The Munnar station shows the 

lowest R99p values. Unlike the other precipitation indices, R99p clearly shows the 2018 

flood event with the highest recorded value for Idukki station. Table 9 shows the average 

change in R99p for lowlands, midlands and highlands for different time periods. All the 

  Average R99p (mm) Average R10mm (days) Average R20mm (days) 

 Region 1986-
2000 

2001-
2010 

2011-
2023 

1986-
2000 

2001-
2010 

2011-
2023 

1986-
2000 

2001-
2010 

2011-
2023 

Low 
lands 

359 396 355 84 88 83 50 50 47 

Mid 
lands 

350 384 338 89 89 92 51 53 50 

High 
lands 

222 294 288 61 76 79 26 36 37 

Table 8: Average values for R99p,R10mm and R20mm for the lowlands, midlands and highlands in different time periods. 

Figure 13: (a) Very heavy precipitation days calculated for the stations in Periyar river basin for the period 1986 to 2023 (b) 
Heavy precipitation days calculated for all stations in the Periyar River basin. (c) Annual sum of precipitation for days 
exceeding the 90 percentile rainfall based on the period 1986 to 2023. 
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regions show an increasing trend from 1986 to 2010 and a decreasing trend from 2011 to 

2023. The decrease is lowest, in high lands which is about a reduction of 2% while Midlands 

saw a reduction in 11.9% and lowlands a reduction in 10.3% respectively. 

 

5.1.4.Extreme temperature indices 
Figure 14a shows the warm days (Tx90) calculated for each station during the period 1986 

to 2023. All the stations show similar trends with peaks exceeding 60 days in the years 

2019,2016,2010 and 1998. While the number of hot days were lower in the years 

2008,2011,2006,2000,1999 and 2015 with all stations having less than 20 warm days. 

The graph also exhibits a pattern of  years with very high and very low Tx90 values 

repeating consecutively. Table 9, shows the average Tx90 values for lowlands, midlands 

and highlands for different time periods. All the regions shows a increasing trend from 

2010 to 2023. Lowlands and midlands shows a similar trend throughout the period of 

analysis, however highlands shows a slight reduction in Tx90 values in the period 2001 to 

2010. 

 

 

 

 

 

 

 

 

 

 

 

  Average Tx90 (days) Average TXx (◦C) 

  
1986-
2000 

2001-
2010 

2011-
2023 

1986-
2000 

2001-
2010 

2011-
2023 

Low 
land 

32 32 45 37.96 37.82 38.26 

Mid 
land 

32 32 45 36.84 36.72 37.16 

High 
land 

34 31 43 34.72 34.56 34.98 

Table 9: Average values of  Tx90 days and TXx temperatures calculated for lowland, midland and highland for different time 
periods. 
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Figure 14: a) Number of Tx90 days for the five stations in the Periyar river basin for the period 1986 to 2023. b) Maximum 
value of maximum daily temperature (TXx)  recorded each year for the five stations in Periyar river basin, from 1986 to 
2023. 
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Annual maxima of maximum daily temperatures (TXx) for all the stations in the Periyar 

River basin is shown in Figure 14b. The highest temperatures were recorded in the 

Kodungallur station (lowland) followed by Aluva (midland) and Irinjalakuda (lowland) 

stations and the lowest were recorded in Munnar and Idukki stations (highlands). Highest 

maximum daily temperatures were recorded in the year 2016, followed by 1998 and 2019 

for all the stations. Table 9 shows the change in average maximum temperature recorded 

in a year for the lowlands, midlands and highlands for different time periods. It shows that 

there  was a slight decrease in daily maximum temperature for all the regions 1986 to 

2010. Over all there is an increase of 0.76%,0.87% and 0.74% in the average maximum 

daily temperature recorded for lowlands, midlands and highlands respectively throughout 

the study period (1986-2023). 

5.1.5.Heat waves 
As per the IMD heat wave definition no heat waves were detected in the period 1986 to 

2023 in the stations. Even though as discussed in section 3.1.2 there were instances of 

extreme high temperatures but only one heat wave warning was issued in 2016 for 

Palakkad region, which is not in the study region. Also the 2024 heat wave event is not 

captured as the data analyzed was  for the period 1986 to 2023 due to the data availability. 

Hence the findings agree with the official heat wave records.  

5.2.Calibrating the Flood model 
The FastFlood model was run with different calibration settings to accurately represent the 

2018 flood. Table 10 shows the parameters and the multipliers used for each parameter 

and the Cohens Kappa percentage accuracy and percentage error in discharge values that 

were obtained for each test. The test six with multipliers 1.4, 0.3, 1 and 1 for the 

parameters Mannings N, infiltration, channel dimension and concentration speed 

respectively showed the highest overall accuracy. It showed  a percentage accuracy of 

92%, Cohens Kappa of 0.34 and an error in the discharge of 0.47%.  

 

Parameters Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 

Manning’s n 1.7 1.7 1.7 1.7 1.5 1.4 1.4 1.4 

Infiltration 1 0.5 0.5 0.5 0.2 0.3 0.4 0.4 

Channel 
dimensions 1 1 0.5 0.5 1 1 1 1.2 

Concentration 
speed 1 1 1 0.5 1 1 1.2 1 

Cohens Kappa 0.34 0.34 0.37 0.38 0.33 0.34 0.34 0.31 

% Accuracy 0.92 0.91 0.92 0.92 0.92 0.92 0.92 0.92 

% error in 
discharge 22.00 4.40 8.60 90.50 0.70 0.47 2.17 2.17 

Table 10: Multipliers used for flood model calibration based on the 2018 floods and the accuracy values for each test. 

Figure 15 shows the flood extent modeled with FastFlood and the observed 

historical flood extent  for the 2018 flood. The FastFlood  modeled floods  shows  

higher flood extent in the highland  and traces the  smaller channels well in the 

study area. 
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The 20 and 100 year return period of 3 day cumulative rainfall  which were 351.3mm and 

449.07 respectively were used to simulate corresponding flood extents. The 3 day 

cumulative rainfall were spread out uniformly in time for the duration of the event (72 

hours) representing a uniform rainfall. The flood extent derived for the 20 year and 100 

year return period are shown in Figure 16. The total flooded areas corresponding to the 

Figure 15: Flood extent comparison Observed flood 2018 extent and flood extent for the same event modelled 
in FastFloods. The zoomed in sub map is from the portion marked with the red box. 
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20 and 100 year return periods are shown in Table 11. It shows that even though the 

increase in 3day cumulative rainfall from 20 to 100 year return period is 27.8%, it resulted 

in a flooded area change of about 47.1%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Simulated floods for 20 year return period and 100 year return period in the FastFlood model. 
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5.2.1. Population exposure 
The population exposed in the Periyar river basin to different return period floods are 

shown in Figure 17. Midlands had the highest number of people that will be exposed to 

both 20 and 100 year return periods. For 20 year return period, it was found that 

4.9%,11.45% and 8.61% of the population in lowland, midland and highland respectively, 

were exposed. Whereas, 7.2%,14.3% and 9.7% of the population were exposed in the 

lowland, midland and highland respectively, for a 100 year return period floods. Table 12 

shows the Total population and the population that is exposed to 20 and 100 year return 

period floods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region  Total population No of people exposed to floods 
  

20 RP 100 RP 

Lowlands 912884 44842 66421 

Midlands 889450 101928 127804 

Highlands 768813 66202 74680 
Table 12:Total population and the population exposed to floods. 

 

 

 

 

Flood return 
period 

Area Flooded 
(Km2) 

3 day cumulative rainfall 
(mm) 

20 111.05 351.3 

100 163.45 449.07 

Table 11: Total flooded area for the 20 and 100 year return period floods. 
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Figure 17: Population exposed to 20 and 100 year return periods in the lowland, midland and 
highland in the Periyar river basin. 
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5.3.Analyzing future hydrometeorological hazards. 
 

5.3.1.Correlation analysis 

Precipitation 

 

The Pearsons correlation coefficient calculated for daily rainfall values for all stations when 

comparing the gridded IMD data with the EC Earth historical data, ranges from 0.14 to 

0.22 implying very weak positive correlations between the climate model data and IMD 

gridded precipitation data. It was not possible to use the original rainfall station data  for 

the correlation analysis due to very high uncertainty and error as discussed in section 

4.1.2. 

Table 13 shows that the model predictions are found to vary from the actual values of 5.6 

to 9.5 mm/ day. In the case of Aluva and Idukki stations, the model tends to overestimate 

precipitation, whereas, for Irinjalakuda and Munnar stations, the model underestimates 

the daily precipitation. The precipitation correlation plots for each station can be found in 

Figure 27 of Annexure 1. 

  Irinjalakuda Aluva Idukki Munnar 

Correlation Coefficient: 0.21 0.22 0.2 0.14 

Mean Absolute Error (mm/day): 9.51 10.54 8.86 5.6 

Root Mean Square Error (mm/day): 19.82 20.32 17.06 10.84 

Bias (mm/day): 0.27 -1.11 -0.26 0.29 
Table 13: Correlation matrices calculated for the stations in Periyar River basin comparing the IMD gridded and EC Earth 
historical daily rainfall for the period 1986 to 2014. 

Temperature 

Table 14 shows Pearson's correlation values when comparing the IMD gridded data and 

the EC Earth 3 daily max temperature data from 1986 to 2014. The correlation coefficient 

ranges from 0.64 to 0.65 for all stations, implying a moderate positive correlation between 

the datasets. However, this was expected as the temperature has comparatively less time 

and spatial variation. The highest variation in correlation is found in Munnar station, where 

there is a significant difference between the IMD and EC Earth 3 datasets. The temperature 

correlation plots for each station can be found in Figure 28 of Annexure 1. 

 

 

  Irinjalakuda Aluva Idukki Munnar 

Correlation Coefficient: 0.64 0.65 0.65 0.65 

Mean Absolute Error (◦c): 1.99 1.74 1.2 10.44 

Root Mean Square Error (◦c): 2.43 2.11 1.56 10.57 

Bias (◦c): 1.46 1.42 -0.32 10.44 
Table 14:  Correlation matrices calculated for the stations in Periyar River basin comparing the IMD gridded and EC Earth 
maximum daily temperatures for the period 1986 to 2014. 

5.3.2.Precipitation Extreme Indices 
The precipitation indices calculated for SSP245 and SSP585 scenarios for the four 

stations in the Periyar River basin are discussed below. 
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Very Heavy precipitation days 

The analysis of "very heavy precipitation days" (R20mm) under SSP2-4.5 and SSP5-8.5 

scenarios reveals a general increase over time, particularly towards the far-future period 

(2076-2100). Figure 18 shows how the R20mm days change throughout each period under 

both the SSP scenarios. 

Under SSP2-4.5, the lowlands and midlands exhibit the highest increase in R20mm days, 

with the lowlands showing a 23.8% to 28.5% increase, and the midlands a 21.7% to 

25.9% increase when compared to the base period (2010-2023). The highlands, however, 

show a decrease of 6.0% to 9.7%. Under SSP5-8.5, a similar trend is observed with the 

highest increases in the far term, where lowlands show a 16.3% to 50.3% increase, 

midlands a 15.1% to 47.1% increase, and highlands show an initial decrease of 8.4% to 

17.2% in the near and medium terms, but an increase of 20.2% in the far term. The 

averaged R20mm days throughout the future periods for both SSP scenarios are shown in 

Table 15. Aluva in the midlands consistently has the highest values for very heavy 

precipitation days, while Munnar in the highlands has the lowest. The percentage changes 

for each period is shown in Table 21 in the Annexure 1. 

 

Heavy precipitation days 

From the analysis of heavy precipitation days (R10mm) under SSP2-4.5 and SSP5-8.5 

scenarios, it is evident that both climate scenarios predict an overall increase in the 

number of heavy precipitation days in the future, particularly towards the far future period 

(2076-2100) .Figure 18 shows how the R10mm days change throughout each period. 

Regionally, the low land consistently show a higher increasing trend than the mid land and 

high land regions. The midlands exhibit the highest number of heavy precipitation days. 

Although the highlands show lower values overall, there is a noticeable decrease in heavy 

precipitation days in the near and medium terms under SSP5-8.5, followed by an increase 

in the far term. Munnar station in the highlands shows the lowest values throughout while 

Aluva in the midlands shows the highest values for heavy precipitation days for both the 

  Average R99p (mm) Average R10mm (days) Average R20mm (days) 

Scenario:SSP2-4.5 

Region Near 
term 

Medium 
term 

Far 
term 

Near 
term 

Medium 
term 

Far 
term 

Near 
term 

Medium 
term 

Far 
term 

Low 
land 

437 581 511 93 96 99 58 59 60 

Mid land 433 550 490 106 108 112 61 61 63 

High 
land 

277 351 313 75 77 77 33 35 34 

Scenario:SSP5-8.5 

  Near 
term 

Medium 
term 

Far 
term 

Near 
term 

Medium 
term 

Far 
term 

Near 
term 

Medium 
term 

Far 
term 

Low 
land 

454 542 789 92 97 109 55 58 71 

Mid land 445 506 685 104 108 121 58 60 74 

High 
land 

283 322 437 72 76 87 31 34 44 

Table 15: Average values of extreme precipitation indices calculated for lowland, midland and highland for different time 
periods under scenarios SSP2-4.5 and SSP5-8.5.  
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scenarios. The averaged R10mm days throughout the future periods for both SSP 

scenarios are shown in Table 15.  

When compared to the base period of 2010 to 2023, lowlands showed a percentage 

increase of 12.5 to 19, while midlands shows an increase of 14.9% to 21.4% and the 

highlands shows a decrease of 4.7% to 2 % respectively for the SSP2-4.5 scenario. While 

for the SSP5-8.5 scenario a percentage increase of 10.4 to 31.6 was observed for the 

lowlands, while midlands shows an increase of 13.3% to 31.6% and the highlands shows 

a decrease of 3.4% to 9.0% in the mid and near terms  and showed an increase of 9.9% 

in the far term. The percentage changes for each period is shown in Table 22 in the 

Annexure 1. 

Extremely wet day precipitation 

The extremely wet day precipitation (R99p) for each station for the period 2015 to 2100 

under the both scenario are shown in Figure 18.Under the SSP2-4.5 scenario, R99p peaks 

in the middle term (2046-2075) with the highest peak observed in 2074. The lowlands 

exhibit a significant increase in R99p values with 23.1%, 63.7%, and 43.9% increases for 

the near, medium, and far terms respectively, compared to the base period (2010-2023). 

The midlands show similar trends with 28.0%, 62.4%, and 44.79% increases for the same 

periods. The highlands show a 3.8% decrease in the near term but then increase by 22.0% 

and 8.7% in the medium and far terms.  

Meanwhile, under the SSP5-8.5 scenario, the highest R99p values are found in the far 

term, with average values ranging from 437.9 mm/year to 789.6 mm/year. The averaged 

R99p days throughout the future periods for both SSP scenarios are shown in Table 15. 

Lowlands show the highest R99p values, followed by the midlands and highlands. R99p 

values show an increasing trend across the near, medium, and far terms for all stations. 

The lowlands see increases of 27.7%, 52.7%, and 122.1% for the near, medium, and far 

terms, respectively. The midlands show increases of 31.6%, 49.6%, and 102.5% for the 

same periods. The highlands initially show a slight decrease of 1.73% in the near term but 

then increase by 11.7% and 51.9% in the medium and far term. Detailed percentage 

changes for each period are shown in Table 20 in Annexure 1.  
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Figure 18: Extreme precipitation indices R99p,R10mm and R20mm calculated for the stations in Periyar river basin under SSP scenarios 2-4.5 and  SSP5-
8.5. 
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5.3.3.Extreme temperature indices 
The Tx90 days, that is, the days exceeding the 90th percentile temperature for all four 

stations under scenario SSP2-4.5  and SSP5-8.5, are shown in Figures 19a and 19b, 

respectively.  

Figures 19 a and 19 b show the evolution of Tx90 days under SSP2-4.5 and SSP5-8.5 

scenarios, respectively. Under SSP2-4.5, all stations show an increase in Tx90 days 

throughout the periods, peaking in the far term (2076-2100). Average Tx90 days increase 

from 16 to 51 in lowlands, 18 to 50 in midlands, and 21 to 47 in highlands from the near 

to far term. An overall decreasing trend is observed in the near term compared to the base 

period (2010-2023), but an increasing trend from the medium to far term can be seen. 

Under SSP5-8.5, all stations exhibit a significant increase in Tx90 days, with the near term 

having the lowest and the far term the highest. Average Tx90 days rise from 2 to 85 in 

lowlands, 4 to 79 in midlands, and 8 to 67 in highlands from near to far term, with the far 

term showing up to an 89% increase compared to the base period (2010-2023). The 

percentage changes for different periods compared to the base period 2010 to 2023 are 

shown in Table 23 in Annexure 1. The averaged Tx90 days throughout the future periods 

for both SSP scenarios are shown in Table 16. 

 

The annual Maxima of maximum daily temperatures (TXx) for all the stations in the SSP2-

4.5  and SSP5-8.5 scenarios are shown in Figures 19c and 19d, respectively. The 

Irinjalakuda station shows abnormally high values with a change of about 5 to 10◦c from 

the base period of 2010 to 2023. Other stations show similar trends, with the lowest 

maximum daily values recorded in the Idukki station. Both scenarios show an overall 

increasing trend in maximum daily temperatures from the near term to the far term, 

indicating a warming climate. Irinjalakuda station consistently shows abnormally high TXx 

values, with increases ranging from 5 to 10°C compared to the base period (2010-2023). 
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Figure 19: a) Warm days (Tx90) calculated for the scenario SSP2-4.5. b) Warm days (Tx90) calculated for the scenario SSP5-
8.5. c) Annual maximum of daily maximum temperature (RXx) calculated for the scenario SSP2-4.5. d) Annual maximum of 
daily maximum temperature (RXx) calculated for the scenario SSP5-8.5. 
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The lowlands experience significant temperature increases, particularly in the far term. 

While the midlands show a slight decrease in the near term, they show an increase in the 

medium and far term. The highlands show the smallest increase compared to other regions 

but still show a warming trend over time. The changes for the regions in different time 

periods under both SSP scenarios, compared to the base period (2010-2023), are shown 

in Table 24 in the Annexure. Under the SSP2-4.5 scenario, the highlands show 3.2°C to 

4.5°C lesser temperatures than the base period, while the midlands show a decrease of 

0.5°C in the near term and then an increase of 0.5°C to 0.8°C in the medium and far 

terms, respectively. The lowlands show an increase of 5.5°C, 9.3°C and 10.3°C for near, 

medium and far terms, respectively, when compared to the base period. 

For the SSP5-8.5 scenario, highlands exhibit temperatures that are comparatively 1.78°C 

to 4.52°C lower than the base period. In the midlands, there is a decrease of 0.4°C in the 

near term, followed by an increase of 1.1°C to 2.7°C in the medium and far terms, 

respectively. The lowlands experience significant increases of 5.7°C in the near term, 

10.7°C in the medium term, and 12.8°C in the far term compared to the base period. The 

maximum daily temperatures averaged over each future period (Average TXx) under both 

scenarios are presented in Table 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.4.Heatwaves 
The heat wave days calculated for the four stations in the Periyar River basin under 

scenarios SSP 245 and SSP 585 are shown in Figure 20. As it was observed in section 

5.3.3, the maximum temperature values for the Irinjalakuda station were showing very 

high values; as a result a very high number of heatwave days are predicted in the station. 

The highest heatwave occurrences are predicted to be in the lowlands, followed by the 

  Average Tx90 (days) Average TXx (◦C) 

Scenario: SSP2-4.5 

Region 
Near 
term 

Medium 
term 

Far 
term 

Near 
term 

Medium 
term 

Far 
term 

Low 
land 

16 46 51 43.78 47.62 48.65 

Mid 
land 

18 44 50 36.61 37.68 37.98 

High 
land 

21 44 47 30.41 31.28 31.76 

Scenario:SSP5-8.5 

  
Near 
term 

Medium 
term 

Far 
term 

Near 
term 

Medium 
term 

Far 
term 

Low 
land 

2 31 85 43.97 48.99 51.09 

Mid 
land 

4 34 79 36.69 38.30 39.89 

High 
land 

8 40 67 30.46 31.93 33.20 

Table 16: Average values for exterme temperature indices calculated for lowland, midland and highland for different time 
periods under scenarios SSP2-4.5 and SSP5-8.5. 
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midlands and highlands. SSP585 scenarios also show a similar trend with the highest 

number of heatwave days predicted in the far term for all stations except in the lowlands.  

 

  

The severe heat wave days calculated for the four stations in Periyar River basin under 

scenarios SSP 245 and SSP 585 are shown in Figure 21. The Irinjalakuda station shows 

severe heatwave days, even exceeding 150 days in the medium and far term for SSP585. 

Even the SSP 245 scenario shows a similar pattern with an abnormally high number of 

days predicted as severe heatwave days. Irinjalakuda station predicts a total of 2636 and 

5250 severe heatwave days for SSP245 and SSP585 scenarios, respectively, for the entire 

period from 2015 to 2100. Aluva, the midland station, shows no severe heatwave for 

SSP245 and only 114 days for SSP585, of which 109 are predicted to be in the far term. 

Highland stations, Munnar and Idukki, also do not predict any severe heatwave throughout 

the period 2015-2100 for SSP245.In the SSP585 scenario, the highland stations only 

predict severe heatwaves in the far term, with Idukki predicting 24 and Munnar predicting 

10 days of severe heatwave days. The number of heatwaves predicted for lowlands, each 

station in different time periods and SSP scenarios are presented in Table 25 in Annexure 

1. The number of heat waves and severe heat waves calculated for each region under both 

climate scenarios are summarized in Table 17. 
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Figure 20:  Heat wave days predicted for different stations under SSP scenarios SSP245 and SSP585. The figures a,b,c, and d 
shows the heat wave days for the stations Irinjalakuda, Idukki, Aluva and Munnar respectively. 
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Region Period 

No of heatwave days 
recorded 

No of Severe heatwave days 
recorded 

SSP245 SSP585 SSP245 SSP585 

Low land 

Near 151 105 328 282 

Medium 285 330 1143 1854 

Far 210 200 1165 3114 

Mid land 

Near 4 9 0 0 

Medium 59 224 0 6 

Far 65 994 0 109 

High land 

Near 0 9 0 0 

Medium 10 100 0 0 

Far 17 514 0 17 

Table 17: Average number of heat waves and severe heat waves recorded in different regions in near, medium and far term 
futures under SSP scenarios SSP2-4.5 and SSP5-8.5. 
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Figure 21: Severe heat wave days predicted for different stations under SSP scenarios SSP245 and SSP585. The figures a,b,c, 
and d shows the heat wave days for the stations Irinjalakuda, Idukki, Aluva and Munnar respectively. 
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5.3.5.Flood simulation for future scenarios 
The flood maps were generated for the 20 and 100-year return period floods in the near 

term (2015-2045), medium term (2046-2075) and far-term (2076-2100) for scenarios 

SSP245 and SSP585. Figure 23 shows the flood map created for the 20 and 100-year 

return period in the near-term future under the SSP245 scenarios. Flood maps for other 

SSP scenarios and time periods are provided in section A.1 of Annexure 1. The future 

floods generated showed that the highest flood inundated area (392.1 Km2) would be for 

the 100-year return period flood in the medium-term future under the SSP245 scenario. 

This is followed by the 100-year return period floods in the far term under the SSP585 

scenario. Figure 22 shows the total area flooded for different return periods of floods in 

the SSP245 and SSP585 scenarios. 
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Figure 22: Total flooded  area in  the Periyar river basin for different time periods and return periods. 
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Figure 24: FastFlood generated 20 and 100 year return period floods for the SSP245 scenario in the 
near term future. 

Figure 23: 20 and 100 year return period floods simulated for near term future under SSP2-4.5 scenario 
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5.3.6.Population exposure in Future scenarios 

Exposure to floods 

The population exposure to different return periods calculated for different climate 

scenarios shows that the highest population exposure to floods will be in the midland 

during the medium term (2046-2075). The SSP245 scenarios show higher population 

exposure compared to the SSP585 scenario in near, medium and far-term future periods. 

The lowest exposure was found to be in the highlands during the far-term future period. 

Throughout the periods, it is observed that the midland had the highest number of exposed 

people, followed by the lowland and then the highland. Figure 25 shows the population 

exposed to 20- and 100-year return periods of floods for different future periods under the 

scenarios SSP245 and SSP585. 

Exposure to heat waves 

Figure 26 shows the number of people exposed to heat waves in the lowland, midland and 

highland during three different time periods (near, medium and far-term future). Overall 

there is a general increase in population exposure to heat waves from near to medium 

term across all the regions. The highest exposure to heatwaves was found in midlands 

under both SSP scenarios, and both medium and far-term exposures showed that more 

than 14 million people will be exposed. The lowest population exposure was in the lowlands 

Figure 25:No of people exposed to 20 and 100 year return period floods in lowland, midland and highland  for different 
future periods under the scenarios SSP245 and SSP585. 
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during the far-term future under the SSP5-8.5 scenario. In general, the SSP 245 scenario 

shows higher population exposure values across all the regions. 

 

The next chapter will discuss the results that were presented in the results chapter in 

detail.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Number of people exposed to heatwaves in the Periyar river basin in different future periods under the scenarios 
SSP245 and SSP585. 
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Chapter 6: Discussions 

6.1.Analysing historical events. 

6.1.1.Discharge analysis 
Even though the R2 values for the three stations were high, implying a good fit of the 

Gumbel distribution with the observed data (refer to Figure 10), the large amount of 

missing data for the Marthandavarma and Mangalapuzha stations makes the predictions 

of the discharge inaccurate. This justifies only using the Kalady station data for further 

analysis. The discharge analysis conducted on the Kalady river gauge shows a clear 

increase in peak discharge events after the year 2001. This sudden shift in trends of having 

increased peak could be possibly attributed to the missing data in the previous decades 

spanning from 1980 to 2000. Out of the missing data in the Kalady discharge gauge, 

85.4% were missing from the period 1980 to 2000, and 30.5% of this missing data were 

in the monsoon season (June to September). This missing data in the monsoon season 

would have reduced the peak observed during these years, resulting in the 

underestimation of the discharges in different return periods. For instance, the Central 

Water Commission(CWC) report on the 2018 flood stated that on August 16, a peak 

discharge of 8800 m3/s was recorded in the Neeleshwaram river gauge. This river gauge 

is operated by the CWC and is situated about 6 Km upstream of Kalady station, but the 

highest discharge recorded in the Kalady station record was 4428 m3/s; this underlines 

the need for a recalculation of the return periods with a more complete record. Despite 

the missing values and underestimation of the return period, the stream flow in the Periyar 

River basin does indeed show an increasing trend; this is confirmed by Singh & 

Chinnasamy (2021), who reported an increase in the annual maximum daily discharge 

from 1979 to 2018 at a rate of 16 m3/s per year. 

The stream flow in the  Periyar river basin is highly influenced by the dams and reservoirs 

in the region and which are operated mainly for hydroelectric power generation with an 

aim of maximum power generation (Sudheer et al., 2019)(Sudheer et al., 2019). Since 

the dam discharge data was not available, it cannot be conclusively said how the 

discharges recorded were influenced by the dam discharge. Based on the available river 

discharge data, 2001,2004,2005,2007,2009,2013,2018 and 2019  showed flood events. 

Out of these years, only 2013,2018, and 2019 were found to be documented in the official 

records as floods (CWC,2018). Even though the other flood years (2005,2007, and 2009) 

were found to be mentioned in flood situation reports recorded on the relief web (Relief 

Web,2005,2007,2009). The scale and extent of the 2018 and 2019 floods might be a 

primary reason for more focus on these floods in the literature.  

6.1.2.Rainfall data analysis 
The Pearson correlation analysis between the IMD station data and the gridded IMD 

datasets for rainfall validates that the rainfall data recorded in the station were indeed 

very high and highly improbable. The errors in the station data are likely caused by human 

or machine error. The highest correlation for the precipitation datasets was 0.61, which 

was found for the Aluva station, which implied a moderate positive correlation. However, 

this linear correlation only means that the datasets tend to change in a related way. The 

occasional agreement of the station and the gridded data in the periods 1986 -1988, 1996-

2003 and 2012-2022  supports the decision to use the data from gridded IMD4 to 

represent the respective stations in the Periyar river basin. 

The extreme precipitation indices, R20mm, R10mm and R99p calculated, do not show a 

clear increasing trend of rainfall extreme events from 2000 as the discharge data. This 

might be because the gridded rainfall data would have smoothened the extremes during 

the interpolation process. The gridded precipitation datasets, even with high resolutions, 
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are known to exhibit inherent biases and underestimate rainfall extremes (Bhattacharyya 

et al., 2022)(Bhattacharyya et al., 2022). All the regions showed higher values for R99p 

during the period 2001 to 2010, which coincides with the higher number of flood years 

identified using the discharge data. Also, only the R99p index was able to clearly show the 

2018 flood event. Out of the three regions highlands have shown the highest change in 

precipitation extreme events, but the lowlands and highlands show higher extreme 

precipitation indices values; this is contrary to the mean annual rainfall for lowland, 

midland and highland reported by Mathew et al. (2021) based on rain gauges in the river 

basin which stated the highland received the highest mean annual rainfall, followed by 

midland and then lowland. However, the paper does not disclose which rainfall stations 

were used for the study. This underestimation of precipitation in the highland can be 

possibly attributed to the interpolation technique used to create the dataset and the 

location of the Munnar station, which lies closer to the rain shadow region of the western 

ghats which means the value for the Munnar region would be influenced by the rainfall 

gauge in the rain shadow region underestimating the rainfall in the highland. 

Another factor to consider is that that indices like R10mm and R20mm are fixed threshold 

indices and could be triggered continuously in some regions of the world with higher 

precipitation trends and should be interpreted with the local climate knowledge (Dunn et 

al., 2020). This is the case in Kerala, where the daily maximum rainfall can exceed 200mm, 

considering a low threshold as 20mm will increase the number of times this index is 

triggered, but this will risk missing out on the extremely high rainfall days in the mix of 

lower intensity rainfall days. 

6.1.3.Temperature data analysis 
The extreme temperature indices, which denote the possible temperature extreme events, 

show a steady increase in such events, implying that temperature extremes are becoming 

more common. The average  Tx90 days in the period 2011-2023 have increased up to 10 

days for all three regions when compared to the period  2001 -2010. The years 2016, 

2019 and 2024  were the hottest recorded years after 1987 in the state, according to the 

IMD (Thomas,2024). The TXx values calculated for different regions showed that the 

lowland and midland recorded a higher increase in temperature than the highlands; this 

was expected based on the land use and topography of the region. The lowlands and 

midlands are much more urbanized, with a lot of built-up area, while the lowlands are 

comparatively less settled and have a lot of forested regions and plantations. 

The temperature-gridded data used for the had an initial spatial resolution of about 110 

Km, which was re-gridded to the same resolution as the IMD precipitation data (27 Km) 

using the nearest neighbour interpolation. This lower resolution of the initial data has 

caused the temperatures in the highland station of Munnar to be overestimated, as the 

lower resolution means the pixel which contained the Munnar station also included the 

hotter and drier regions of the nearby district of Palakkad and the neighbouring state of 

Tamil Nadu. The pixel for the initial IMD temp data and the location of the Munnar station 

is shown in  Figure 35 in Annexure 1. This underlines the need for higher-resolution 

datasets in the region for accurate analysis. 

6.1.4.Heat waves 
The heat wave analysis using the  IMD definition yielded no results, even though several 

days in 2016 and 2019 were recorded as the hottest days in the state. The definition of 

IMD required a difference of 4.5 degrees Celsius from the normal temperature for that day 

and the presence of similar conditions for at least two consecutive days. Kerala state being 

a humid state the IMD definition based on maximum temperature alone does not account 

for the risks of heatwaves in the region. Cvijanovic et al. (2023) examined recent 

heatwaves in Europe, the United States and Asia and reported that defining and 
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communicating heat wave alerts based only on maximum temperatures can lead to 

insufficient warnings for the possible health risks and it should be based on physiological 

heat stress indices which combines both maximum temperatures and humidity of a region.   

The first official record of heatwaves in Kerala was recorded in Palakkad, which is a 

neighbouring district of the PRB, in April 2024, with 413 heatstroke-related cases reported 

(Kallungal,2024). Media had reported about 250 cases of sunstroke, out of which 10 died 

in the summer of 2016 (The New Indian Express, 2016). Similarly, in 2019, the state 

reported 109 cases of sunstroke, and even though heat warnings were communicated 

these years, they were not officially considered heatwaves  (Onmanorama, 2019). 

6.2.Flood modelling and calibration 
The flood model set up using Fastfloods to reconstruct the 2018 flood in the region showed 

relatively higher percentual accuracy (92%)  and modelled discharge accuracy (99.5%) 

compared to the Cohens Kappa (0.34). The higher percentage accuracy is due to the higher 

number of true negatives (non-flooded regions classified as no floods), which were higher 

due to the relatively higher surface area of the study region. As per Landis & Koch (1977), 

Cohen’s Kappa values from 0.21 to 0.40 imply a fair agreement. The low value for Cohen’s 

Kappa for the flood model could be explained by the quality of the observed radar flood 

extent and the coarse resolution of the DEM used. The uncertainty in the observed flood 

extent arises because the methodology followed for the flood extent delineation from the 

radar image was not known. The flood extent delineation using the radar imageries is 

mostly done using thresholding methods and is known to be affected by speckle noise, 

double noise (double bounce reflection) and vegetation effects (dense vegetation 

cover)Foroughnia et al., 2022). Since the Periyar River basin is densely vegetated in most 

of the region (85%), there is a possibility of underestimating the floods using SAR imagery. 

The other possible reason for a low Cohen’s Kappa value is the coarse resolution of the 

DEM (90m). A coarser DEM could not capture the small topographic features resulting in 

inaccurate channel generation and flow routing. This effect could be seen when comparing 

the observed and the modelled floods, where the modelled flood shows lesser flood extent 

in the lower river channel after bifurcation. Coarser DEM was selected for computational 

efficiency due to the large size of the river basin. This has resulted in a problematic trade-

off sacrificing the accuracy of the flood model. For future analysis, higher resolution DEMs 

should be used to model the sub-basins of the Periyar River basin to get a more accurate 

flood model. 

The 20 and 100-year return period floods were generated by inputting corresponding 3-

day cumulative rainfalls to the FastFlood model. The model was run in such a way that the 

rainfall is spread uniformly in the study for the entire duration (72 hours). No peak events 

were simulated. This is a deviation from reality as often the rainfall is non-uniform with 

peak intensities at different times and places. This consideration would have flattened the 

peak discharge generated, but since we are only considering the flood extent for this study, 

it may not present a considerable difference. 

The analysis also reveals the nonlinear relationship between the three-day cumulative 

rainfall and the flooded area. Although the increase in 3-day cumulative rainfall from the 

20-year return period to the 100-year return period is 27.8%, this incremental rise leads 

to a disproportionately larger increase in the flooded area, amounting to approximately 

47.1%. This suggests that even a slight increase in rainfall might mean a significantly 

larger flood. This amplification in flooded areas might be because higher cumulative rainfall 

may saturate the soil more quickly, reducing infiltration rates and increasing the runoff. 

This additional runoff might create bottlenecks in channels, causing the water to spread 

out over larger areas. This could also be the result of the topography of the region, 
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especially the lowland region, which is mostly flat; this means that a small rise in water 

level can spread horizontally over a larger area. However, this nonlinear relationship 

between three-day cumulative rainfall and flooded area cannot be conclusively said as this 

is only based on two return periods. 

6.2.1.Population exposure 
Exposure analysis to 20-year and 100-year return period floods in the current time period 

showed that the highest number of exposed people are in the midland, followed by the 

highland and lowland, respectively. This may be attributed to the large flood susceptible 

regions and higher population density in the midlands.   Ramesh et al. (2022) observed 

that the increased urbanization in the midlands and lowlands has disrupted the natural 

flow of water both over the surface and into the ground, creating artificial barriers resulting 

in flood scenarios across these regions.  

Exposure occurs when a hazard and element at risk overlap and does not mean that the 

highly exposed region has the highest risk. So, based on the exposure calculation, we 

cannot conclude that the midlands have the highest risk towards floods. For that, the 

vulnerability of the population and their coping capacity should also be assessed. 

The population dataset used in the WorldPop gridded population data is highly based on 

the 2011 census data and the population changes from 2001 to 2011 (which was 1.37%). 

However, the population growth rate has decreased to 0.68% from 2011 to 2020, which 

means that the population estimates shown in the Worldpop data might be overestimated 

(Ranjan, 2023)(Ranjan, 2023). Even though there is this possibility of underestimation 

since there was no census conducted in India after 2011, this gridded population remains 

the best estimate we have of the population distribution in the region. 

6.3.Analyzing future hydrometeorological hazards 

6.3.1.Correlation analysis 
The correlation analysis between the IMD gridded precipitation data and the bias-corrected 

EC -Earth precipitation data for the period (1986 to 2014) shows very weak positive 

correlations across all the stations in the Periyar River basin. The Pearson correlation 

coefficients range from 0.14 to 0.22, indicating that the climate model data does not 

closely follow the observed IMD data for the observed period. Additionally, the bias values, 

which measure the average tendency of the model to overestimate or underestimate, show 

that the EC earth data does not uniformly overestimate or underestimate the rainfall across 

all regions in the Periyar river basin; it underestimates the daily rainfall for two stations 

(Irinjalakuda and Munnar) and overestimates the daily rainfall for two stations (Aluva and 

Idukki). This shows that the modelled precipitation is inconsistent across different locations 

within the basin.  

Accurately simulating precipitation remains a significant challenge for climate models, 

particularly at high resolutions or on a daily timescale; this complexity often leads to 

typical biases such as the underestimation or overestimation of precipitation 

(Kesavavarthini et al., 2023)(Kesavavarthini et al., 2023). EC Earth 3  dataset used for the 

study was statistically bias corrected using Empirical Quantile Mapping (EQM) still shows 

biases in the study region. The low correlation between the precipitation datasets might 

also be because, in this study, we have only taken the pixel values for the stations as 

opposed to a weighted average over the entire region. 

In contrast to the precipitation analysis, the correlation coefficients for maximum daily 

temperatures show moderate positive correlations between the IMD gridded data and the 

EC Earth data, ranging from 0.64 to 0.65 across all stations. This suggests that the model's 

predictions for temperature align more closely with the observed data compared to 
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precipitation. The mean absolute error (MAE) for temperature varies from 1.2°C to 

10.44°C, with Munnar station showing the highest MAE, indicating significant deviations 

from the observed values. Similarly, the RMSE ranges from 1.56°C to 10.57°C, with the 

highest values again observed in Munnar, highlighting the errors in Munnar station 

discussed in subsection 6.1. The EC Earth value for maximum temperature ranges from 

23°C to 28°C, which is more representative of the region than the gridded IMD maximum 

temperature dataset. 

For the other stations, however, the biases vary; with the Irinjalakuda and Aluva stations, 

the EC Earth 3 data underestimates the maximum temperature, while for the Idukki 

station, it overestimates the maximum temperatures. For the Idukki station, EC Earth 

overestimates both the precipitation and the maximum temperature. While for the Aluva 

station it overestimates the precipitation and underestimates the maximum temperature. 

Meanwhile, the Irinjalakuda and Munnar stations consistently underestimate both 

precipitation and maximum temperature. 

The majority of studies prefer multi-model ensembles (MMEs) to a single GCM as they 

perform better in projecting future climate (Jose et al., 2022). Since this was a 

methodological trial, we had only used the EC Earth model 3. The correlation analysis 

shows that for future work, MMEs should be considered over a single climate model. 

6.3.2.Extreme precipitation indices 
The precipitation extreme indices calculated for the SSP245 and SSP585 scenarios across 

different regions of the Periyar river basin(lowland, midland, and highland) for the near, 

medium and far-term future portray a detailed projection of future precipitation patterns, 

including the very heavy precipitation days (R20mm), heavy precipitation days (R10mm) 

and extremely wet day precipitation (R99p). 

Under the SSP 245 scenario, all the stations show a similar pattern for all three extreme 

indices with varying intensity. For all the extreme precipitation indices, highland stations 

showed the lowest values. Even though the extreme precipitation indices of the Munnar 

station for the initial period (1986 to 2023) had shown such similar values the Idukki 

station has shown a reduction in extreme precipitation indices. Under SSP2-4.5, the 

medium-term (2046-2075) is predicted to have higher R99p values, implying that even 

though the number of days with R10mm and R20mm will be comparatively lower than the 

far-term, it would bring a higher amount of rainfall. This signifies a period of higher-

intensity rainfall with fewer rainfall days, which might lead to flash floods and 

landslides(Montrasio et al., 2011; Tamm et al., 2023). Conversely, for the far term, the 

values of R10mm and R20m are slightly higher compared to the R99p values, implying a 

period with more rainfall days but with slightly lower intensities. Compared to the base 

period (1986-2023), the precipitation indices in the lowland and midland show an 

increasing trend, but noticeably, in the highland region, the extreme precipitation indices 

show a sudden decrease (3.8% for R99p,4.74% for R10mm and 9.76% for R20mm) in 

the near term. Even though there is an increase in medium and far term the R10mm and 

R20m days does not reach the baseline period levels. However, the R99p value does 

increase to 22.09% in the medium term before it drops again to 8.72 %; this signifies that 

during the medium term, in the highland, very high-intensity rainfall could be expected 

for shorter periods. 

Under the SSP585 scenario, the extreme precipitation indices are predicted to peak in the 

far term. All the stations in the region show similar trend with the Munnar station having 

the lowest values for the extreme precipitation indices. Meanwhile, the highest 

precipitation indices are predicted to be in the lowland and midland regions. The SSP585 

scenario predicts very high values for R99p values in the far term, which shows an increase 

of 122.9%,102.56% and 51.95% for lowland, highland and midland, respectively. 
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However, the R10mm and R20mm values do not show such extreme increase, which again 

signifies a shift towards lower duration high-intensity rainfall. The  higher changes in 

R20mm compared to the R10mm rainfall also support this. 

The spatial distribution of these extreme precipitation events reveals significant variability 

across different regions within the basin. The highland shows a comparatively lower 

number of extreme events compared to the lowland and midland. This pattern highlights 

the influence of elevation and local climatic conditions on precipitation extremes. Also, 

depending on the scenario, the peak of extreme events changes from medium term for 

SSP245 to far term for SSP585. 

6.3.3.Extreme temperature indices. 
Extreme temperature indices calculated Tx90 and TXx shows a general increasing trend 

from 2015 to 2100 for all the stations. This supports the study by (C & Ramesh, 2023), which 

projected the changes in temperatures over the entire region and found that the west 

coast of India (a larger region which include Periyar river basin) is projected to have an 

increasing trend in maximum temperatures and the warm days (Tx90)  will intensify about 

5.6 times in the region under SSP585 scenario. 

Tx90 values calculated shows that for the SSP245 and SSP585 scenarios the near term 

will have comparatively lower hot days even compared with the base period.  Also the far 

term is predicted to have the highest number of Tx90 days for both scenarios. Highland 

shows a higher number of Tx90 days for the near and medium term for both scenarios, 

while the lowland and midland show a higher peaks in the Tx90 days for the far term. This 

suggests that the lowlands are at comparatively higher risk to extreme heat events in the 

near and medium term than the lowland and highland regions. The main difference in the 

occurrence of Tx90 days in the SSP scenarios are that , under the SSP585 near term all 

stations predicts values lower than 30 days per year until 2035 and this exponentially 

increases in the far term with above 100 days per year recorded as warm days. Where as 

for the SSP245 scenario the increase in Tx90 days is more gradual and in the far term it 

predicts about 80 days per year as warm days. 

Tx90 days for the future periods is defined as  the days exceeding the 0.90 quantile 

temperatures based on the temperatures of the period 2015-2100, the 0.90 quantile 

temperature in this time period is higher than the 0.90 quantile temperature for 1986-

2023 this means that the Tx90 alone should not be alone considered to tell if a period is 

hotter than the base period. Adding TXx values to the analysis paints a better 

understanding of this changes from the base period. 

The TXx value analysis shows that under both scenarios the highlands predicts  lower 

maximum annual temperatures throughout the near, medium and far term periods 

compared to the base period. This can be traced back to the fact that the Munnar station 

was overestimating the daily maximum temperature as discussed in section 6.1. However 

the midlands too does show a slight decrease in maximum temperature for both scenarios 

in the near term. Another anomaly that is observed is the temperature predictions for the 

Irinjalakuda station which during the base period showed maximum temperatures between 

35°C and  40°C, predicts temperatures between 40°C and 50°C and occasionally 

exceeding 50°C. Given that the EC Earth 3 was underestimating the maximum 

temperatures in the historical period (1986-2014) when compared to the IMD dataset 

makes this increasing trend remarkably high. As per the extreme temperature indices the 

lowlands are predicted to have more extreme temperatures followed by midlands and then 

lowlands. 



 

64 
 

6.3.4.Heatwaves 
Under the SSP245 scenarios scenario the number of heatwaves remains relatively low for  

midland (Aluva) and highland stations (Idukki and Munnar) with mostly below 10 heat 

wave days recorded per year. However the lowland station (Irinjalakuda) records above 

10 days and shows heatwaves more frequently. The heatwave occurrence can be seen 

affected by the elevation as the lowlands predicted the highest number of heatwaves, 

followed by midland and highland. The Munnar station only predicts heatwaves in four 

years throughout the period from 2015-2100, this could be attributed to the fact that the 

heatwave calculation is based on the normal temperatures which were calculated for each 

day based on the maximum temperatures for that day for the period (1986 to 2015) and 

the historical maximum temperature data from IMD were overestimated. 

Under the SSP585 scenario, which is a higher emission scenario shows a increased 

heatwave trend with peaks in the Far term for all but the Irinjalakuda station. All stations  

except Irinjalakuda , still shows an increasing trend in heatwaves  with elevation. However 

when sever heatwave days are taken into account Irinjalakuda station also follows this 

trend. 

The severe heat wave days that is the days exceeding 6.5 °C are mainly predicted for the 

Irinjalakuda station which predicts up to 180 days of severe heat days per year. This is 

alarmingly high and need to be further verified with additional analysis by considering 

other climate models. Severe heatwave days for other stations are zero for the SSP245 

scenario and under 10 days for the highland stations and under 30 for the midland station. 

This anomaly in the Irinjalakuda station might be because the pixel of Irinjalakuda station 

was located under the west coast river basin while all the other station pixels are located 

in the southern coast basin as per the bias corrected climate dataset by  Mishra et al. 

(2020) which was used for this study. It is possible that the observed data used for bias 

correcting different sub basins were weighted average of that region which would mean 

the climate dataset of these sub basins might show different trends. However Mishra et 

al. (2020) have not explicitly stated how the bias correction was done on separate river 

basins. 

Overall an increasing trend in heatwaves and severe heatwaves with peaks in the far term 

could be seen for both  SSP scenarios, implying more prevalence of heatwaves by the end 

of the century with a significant increase from medium term. This finding is supported by 

C & Ramesh (2023) which states that  the Heatwaves are not only increasing but also 

accelerating under various climate change scenarios in the western coast of India. 

6.3.5.Future flood simulations 
The flood maps generated for 20-year and 100-year return periods across near term 

(2015-2045), medium term (2046-2075), and far term (2076-2100) under scenarios 

SSP245 and SSP585 provide shows how the flood inundation would  change. The highest 

inundated area was predicted to be in the medium term under SSP245 scenario which is 

followed by inundation caused in the Far term under the SSP585 scenario. This inundation 

area is mainly dependent on the 3day cumulative rainfall for the period as expected and 

follow the same order. Additionally the extreme precipitation indices too shows a similar 

trend with higher peaks in these periods. The lowest inundation occurs in the near term 

for both scenarios for 20 year return period floods. 

The evolution of the inundated area for the 20 and 100 year return period floods under 

SSP245 and SSP585 scenarios shows that the 20 year return period are having more % 

increase than the 100 year return period floods. For instance the 20 year return period 

flooded area for the near, medium and far period are 66%, 173% and 100% more under 

SSP245 scenario and 72%,100% and 168% respectively under SSP585 scenario when 
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compared to the base period of 1986-2023. While for the 100 year return period flooded 

regions the changes are 55%,140% and 82% for the SSP245 and 60%,82% and 124% 

respectively for SSP585 scenario. This suggests that depending on the SSP scenario, the 

flood hazard varies and peaks through different periods. 

When comparing the floods generated for the future period it should be noted that the 

future flood were generated by assuming that the landuse of the region remain same, 

which in reality is not the case. Future works in the region should make use of modeled 

landuse changes to incorporate the possible changes in the landcover to model floods more 

accurately depicting future conditions. Moreover flood models are susceptible to a high 

levels of uncertainty due to the complexity of underlying physical processes and limitations 

in the availability and quality of data(V. Kumar et al., 2023). The uncertainties discussed 

in the section 6.2. regarding the coarse resolution of the DEM used, lower Cohens Kappa 

of the model, using uniform rainfall rate throughout the region and low agreement between 

climate model data and observations, will be propagated to the future flood predictions 

too adding to the uncertainties of the floods generated. 

6.3.6. Population exposure in future scenarios. 
Population exposure to floods calculated in the Periyar river basin shows how exposure to 

flood would change under different SSP scenarios and time periods for different return 

period floods. Similar to the hazard extent, the highest population exposure is found to be 

in the medium term under the SSP245 scenario. However, unlike the flood extent, the 

population exposure is found to be comparatively higher for the SSP245 scenario than the 

SSP585 scenario.  

The projected gridded population data for the future developed by Wang et al. (2022) is 

developed based on the Worldpop dataset by sampling 8 regions across the globe, 

excluding the uninhabitable regions; India is part of the South and East Asia (SEA) region, 

which had about 24000 sample points. Even though it is expected that the SSP585 

scenario, which is a fossil-fueled development, would show a higher population than the 

SSP245 scenario, in the case of the Periyar basin, it shows the opposite trend. A similar 

trend was observed by Wang et al. (2022) in Delhi (the capital of India), which showed 

during SSP5 a decrease in the spread of population around the city and more concentration 

within the city. This means that the population under the SSP5 scenario will be more 

concentrated in the cities, and since there were no major cities in the inundated regions, 

it shows a decrease in exposure. 

In terms of the regions, it is found that the midland showed the highest exposure, followed 

by the lowland and highland. This exposure trend can be attributed to the population 

distribution in the regions and the topography of the region making the regions differently 

susceptible to floods. Another shortcoming of the exposure calculated is that the flood 

generated does not take into account the possible flood mitigation measures that might 

be implemented in the regions, but this exposure calculation gives an overview of the 

possible future with no mitigation measures in place. 

The heatwave exposure is calculated by considering all the people present in the region as 

exposed to heatwaves, this was done because the heatwave analysis was conducted based 

on stations and if a station recorded heatwave, the whole region is considered to be under 

heatwave. A more detailed exposure analysis based on the heatwave index is eminent to 

accurately calculate the people exposed and eventually the population at risk of 

heatwaves. 

As per the calculated exposure SSP245 medium term in the midland showed the highest 

exposure, followed by the SSP585 medium term in midland. However, as discussed above, 

these exposure values are driven by the population in the region. Considering the higher 
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probability of heatwave occurrence in the lowlands and midlands, the population in those 

regions might be more exposed than in the highlands. Also, if the vulnerability of people 

in the regions is not the same, due to the highly urbanized nature of lowlands and 

midlands, there is a possibility of additional effects like “urban heat islands” in the region, 

making people in this region more vulnerable than in the highlands. 
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Chapter 7: Conclusions 
The main objective of this study was to model the evolution of hot, dry extremes, like heat 

waves, and wet extremes, like extreme precipitation and floods in the Periyar river basin 

under different climate scenarios. To achieve this, the study was further broken down into 

three sub-objectives. The first sub-objective was to analyze the past (1986-2023) 

hydrometeorological events in the region; this was studied using river discharge records, 

precipitation and maximum temperature data. It was found that the extreme precipitation 

indices and peak discharges show an increasing trend from 1986 to 2023, with higher 

peaks concentrated in the period 2001 to 2010. Similarly, the extreme temperature indices 

also showed an increasing trend from 1986 to 2023, but the peaks were concentrated to 

the end of the period (2011-2023). Heatwave analysis found that there were no heatwave 

events as per the IMD definition, even though there were years which recorded significant 

changes in temperatures and impacted people. In terms of the regions affected, the 

lowlands and midlands showed higher precipitation extreme events followed by the 

highlands, whereas midlands showed the highest increase in extreme temperature events 

followed by the lowlands and highlands. In the historical term, there were no official cases 

of compounding heat wave–flood events; however, 2019 was an extremely hot year and 

had floods. 

The sub-objective two was to set up a flood model for the PRB with the FastFlood app 

predominantly using global datasets and calibrate it with historical flood datasets. The 

flood model simulated for the 2018 floods showed a percentage accuracy of 92% with a 

Cohen’s Kappa coefficient of 0.34, implying a fair agreement with the observed flood 

extent. This suggests that the flood model primarily based on freely available datasets 

performs fairly in modelling floods in the Periyar river basin. However, the lower Cohen’s 

Kappa underlines the need for calibrating the model with higher-quality observation data 

and higher-resolution DEM. 

The sub-objective three was to evaluate the changes in the hydrometeorological hazards 

and their occurrences change under SSP2-4.5 and SSP5-8.5 climate scenarios using best-

fit GCMs from CMIP6. The EC Earth 3 dataset used to predict the future climate showed 

very weak positive correlations for precipitation and a moderate positive correlation for 

the temperature data when compared to the observed IMD data for the period. The 

extreme precipitation indices calculated showed a general increasing trend of extreme 

precipitation events under both SSP scenarios. However, the peaks differed; for the 

SSP245 scenario, it was found that the highest number of extreme precipitation is found 

to be in the medium term, which is characterized by a lower number of rainfall days with 

high-intensity rainfalls and for the SSP585 scenario, peak extreme precipitation events are 

found to be in the far term. The lowland region shows the highest values for precipitation 

extremes, while the highlands predict the lowest values. 

The extreme temperature indices calculated for the future period also show an increase 

from the near-term to the far-term future under both SSP245 and 585 scenarios. The 

extreme indices peak in the far term for both SSP scenarios, which implies a higher number 

of extreme heat events to be concentrated in this period. The exposure calculated for the 

floods for different periods showed that under-population exposure will be higher for the 

SSP245 scenario than the SSP585 scenario, and the midland region has higher exposure 

to floods than the lowland and highland regions under both scenarios. The heatwave 

exposure also shows the highest population exposure under the SSP245 scenario, with the 

Midlands having the higher number of exposed people under both scenarios. 

The study shows that compounding heatwaves and floods were not common in the historic 

period, other than the year 2019, when there were really hot temperatures in the summer 

period (March to May) followed by floods in the monsoon season (June to September). 
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However, looking at future extreme heat and precipitation events under SSP scenarios 245 

and 585 using bias-corrected EC Earth 3 datasets shows that both heatwaves and floods 

will become more frequent and intense, especially in the medium term under SSP245 and 

in the Far term under SSP585, making the occurrence of compounding heatwaves and 

floods highly probable. It should be noted that the correlation values between observed 

IMD data and EC- Earth3 were very low, implying a large uncertainty in the modelled 

future scenarios. 

It is crucial to take mitigation measures to reduce the impacts of such compounding heat-

flood events, especially in the Periyar River basin, where the majority of people are 

dependent on outdoor activities for livelihood. The mitigation measures should consider 

the impacts of both dry and wet extremes to make the region more resilient. For instance, 

the dams and reservoirs in the region should start operating considering this impending 

increase in compounding heat wave–flood hazard instead of only focusing on maximizing 

energy generation. This study emphasizes the need for better observation data in the 

region, as only with accurate observation data can future hazards be modelled and 

mitigated. Another concern for the region is the increased unplanned urbanisation, the 

authorities should promote green infrastructure in the region and conserve the wetlands 

in the region. 

 

7.1.Future considerations. 
There were many uncertainties and limitations to the study conducted; these are discussed 

here, along with what should be considered to improve a future study. 

One of the main challenges for the study was the irregularity and missing values in the 

observation datasets. Hazard modelled for a region is only as good as the observational 

data that is based on. The study underlines the importance of having accurate and 

complete observation data for precipitation temperature and river discharge. The Gumbel 

analysis for the river discharges should be recalculated with a more complete dataset. 

Using higher-resolution gridded datasets like CHIRPS (for precipitation) and CHIRTS (for 

maximum temperature) can capture the precipitation and temperature values with more 

detail. The unavailability of dam discharge remains a concern because without these 

values, the flood model considers the basin as a free catchment, and the influence of dam 

operations is not considered. 

Another limitation of the study was that it was based on a point approach, considering 

only the available five stations in the Periyar River basin. A future analysis using the 

gridded datasets to calculate a weighted average of the whole region might give a clearer 

picture of the regional changes and reflect changes in the basin as a whole. Including the 

heat index values to also include the impact of heatwaves on the human body would paint 

a better picture of the spatial distribution of heatwaves and also account for additional 

processes such as the urban heat islands.  

 The future climate was projected using only one climate model, increasing the uncertainty 

of the projected climate; the future climate analysis should be repeated with a multi-model 

ensemble of several climate models. The flood model can be improved by running the 

model with a higher resolution for a smaller subbasin, especially for the lowland and 

midland regions, as they were found to be more susceptible to floods. Also, for future flood 

modelling, the future land use changes modelled for the respective SSP scenarios should 

be used to create more accurate flood maps. 
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Annexure 1  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 
Manning's 
Coefficient 

Forest 0.12 

Shrubs 0.1 

Grass 0.03 

Crops 0.05 

Building 0.02 

Bare 0.01 

Snow 0.01 

Water 0.01 

Wetland 0.09 

Mangroves 0.14 

Moss 0.07 

Table 18: Default values for Mannings Coefficient for various land covers. 

Pearson 's correlation 
coefficient 

Degree of Correlation 

1 Perfect positive correlation 

0.8 to 1 Very strong positive correlation 

0.6 to 0.8 Strong positive correlation 

0.4 to 0.6 Moderate positive correlation 

0.2 to 0.4 Weak positive correlation 

0 to 0.2 Very weak positive correlation 

0 No correlation 

-0.2 to 0 Very weak negative correlation 

-0.4 to -0.2 Weak negative correlation 

-0.6 to -0.4 Moderate negative correlation 

-0.8 to -0.6 Strong negative correlation 

-1 to -0.8 Very strong negative correlation 

-1 Perfect negative correlation 

Table 19: Pearson’s correlation coefficient and their  degree of correlation strength 
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Figure 27: Daily rainfall comparison between IMD gridded data and EC Earth 3 data for different stations for the period (1986-
2014). 

Figure 28: Daily temperature data comparison between IMD gridded data and EC Earth 3 data for 
different stations for the period (1986-2014). 
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  % change in Average R99p precipitation:SSP245 

Period Lowland Midland Highland 

2015-2045 23.17 28.03 -3.86 

2046-2075 63.75 62.44 22.09 

2076-2100 43.98 44.79 8.72 

  % change in Average R99p precipitation:SSP585 

Period Lowland Midland Highland 

2015-2045 27.76 31.62 -1.73 

2046-2075 52.7 49.65 11.74 

2076-2100 122.19 102.56 51.95 

Table 20: Percentage change in average R99p compared to the base period 2010-2023. 

Figure 29:IMD station precipitation plotted against IMD gridded data for daily rainfall. 
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Table 21: Percentage change in average number of R20mm days compared to the base period 2010-2023. 

 

 

 

 

 

 

 

 

 

Table 22: Percentage change in average number of R20mm days compared to the base period 2010-2023. 

  % Change in Tx90 days:SSP245 

Period Lowland Midland Highland 

2015-2045 -65.23 -59.64 -52.03 

2046-2075 1.85 -2.37 1.16 

2076-2100 13.78 11.2 10.28 

  % Change in Tx90 days:SSP585 

Period Lowland Midland Highland 

2015-2045 -94.84 -90.11 -80.31 

2046-2075 -31.04 -24.67 -7.36 

2076-2100 89.42 76.27 56.14 

Table 23: Percentage change in average Tx90 days compared to the base period 2010-2023. 

 

 

 

 

 

  % change in R20mm days:SSP245  

Period Lowland Midland Highland 

2015-2045 23.82 21.74 -9.76 

2046-2075 24.47 22.67 -6.08 

2076-2100 28.51 25.92 -8.22 

  % change in R20mm days:SSP585 

Period Lowland Midland Highland 

2015-2045 16.68 15.16 -17.22 

2046-2075 23.48 20.33 -8.42 

2076-2100 50.38 47.12 20.22 

  % change in R10mm days:SSP245  

Period Lowland Midland Highland 

2015-2045 12.51 14.9 -4.74 

2046-2075 15.06 17.46 -2.76 

2076-2100 19.37 21.43 -2 

  % change in R10mm days:SSP585 

Period Lowland Midland Highland 

2015-2045 10.49 13.36 -9.09 

2046-2075 17.35 17.86 -3.42 

2076-2100 31.66 31.65 9.95 
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A.1.Flood maps simulated for various future periods 
 

  Change in maximum daily temperature: SSP245 

Period Lowland Midland Highland 

2015-2045 5.52 -0.55 -4.57 

2046-2075 9.36 0.52 -3.7 

2076-2100 10.39 0.82 -3.22 

  Change in maximum daily temperature: SSP5-8.5 

Period Lowland Midland Highland 

2015-2045 5.71 -0.47 -4.52 

2046-2075 10.73 1.14 -3.05 

2076-2100 12.83 2.73 -1.78 

Table 24: Percentage change in maxima of maximum daily temperature TXx compared to the base period 2010-2023. 

Table 25: The number of heatwaves predicted for lowlands midlands and highlands in different time periods and SSP 
scenarios 

Station   No of heatwave days recorded No of Severe heatwave days recorded 

  Period SSP245 SSP585 SSP245 SSP585 

Irinjalakuda 

2015-2045 151 105 328 282 

2046-2075 285 330 1143 1854 

2076-2100 210 200 1165 3114 

Aluva 

2015-2045 4 9 0 0 

2046-2075 59 224 0 6 

2076-2100 65 994 0 109 

Idukki 

2015-2045 0 11 0 0 

2046-2075 18 135 0 0 

2076-2100 23 612 0 24 

Munnar 

2015-2045 0 7 0 0 

2046-2075 2 65 0 0 

2076-2100 11 415 0 10 
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Figure 30: Flood simulated for 20 and 100 year return periods in Medium term under SSP2-4.5 
scenario. 
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Figure 31: Flood simulated for 20 and 100 year return periods in Far term under 
SSP2-4.5 scenario. 
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Figure 32: Flood simulated for 20 and 100 year return periods in Near term under SSP5-8.5 scenario. 
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Figure 33: Flood simulated for 20 and 100 year return periods in Medium term under SSP5-8.5 scenario. 
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Figure 34: Flood simulated for 20 and 100 year return periods in Medium term under SSP5-8.5 scenario. 
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Figure 35: The representation of the original gridded temperature data for Munnar.  


