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Management Summary

This research is conducted at NS which holds a central position in the Dutch transportation
sector. The supply chain operations (SCO) department manages the supply and storage of train
spare parts and sets up the logistics chains for this purpose. NS wants to improve its inventory
process for seasonal spare parts. This group of spare parts has a yearly higher demand in a specific
season compared to the demand in the rest of the year. NS believes that these spare parts could
have a negative influence on the inventory performance. The current inventory process for these
spare parts is outdated and lacks appropriate models. Instead, it heavily relies on interpretations
and assumptions which could be be structured by policies. The core problems at SCO are the
lack of using specified forecast methods for seasonal spare parts and using inventory policies that
do not incorporate changes over time. These lead to the main research question:

"How can the forecasting methods and the inventory policies of seasonal spare parts
be changed to improve the performance of the SCO department at NS?"

Currently, SCO identifies 59 spare parts as seasonal. These parts show seasonal variation in
either winter or summer. However, this list needs a reclassification because of unclear seasonal
demand patterns, the lack of demand, and unknown lead times. The forecasts of spare parts are
often manually adjusted to cover seasonal demand. However, the performance of the forecasts
including manual adjustments is worse than the forecasts excluding manual adjustments because
the supply chain planner often forecasts the demand too high. Furthermore, the network service
level performance, also known as fill rate, is above the norm of SCO, while the average train
units waiting on materials KPI is below the norm. However, if we let the fill rate get worse,
the average train units waiting on materials KPI would also get worse. Another service level
measure, like the order line fill rate, would be more appropriate as the shortage of one spare part
within an order causes a delay of the complete order. The order line fill rate will be lower than
the fill rate and therefore the order line fill rate would represent the average train units waiting
on materials KPI better.

For reclassification of seasonal spare parts, we use multiple regression to determine whether
the demand pattern of a spare part is correlated to the months of the year. It is a time-efficient
method to identify the presence of seasonal variations in comparison to an exploratory data
analysis. We find that the demand pattern of 88 spare parts is correlated to the months of the
year. Only nine out of the 59 original seasonal spare parts reappear in this list. Furthermore, we
forecast demand using eight different forecast methods with the use of growing-window forward
validation. We interpret the results for each demand class. The following conclusions are drawn
based on the forecast performance measure sMAPE:

• Smooth: The Croston forecast method performs the best,

• Intermittent: The (S)ARIMA forecast method performs the best,

• For erratic demand, the SES forecast method performs the best,

• For lumpy demand, the (S)ARIMA forecast method performs the best.
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When we compare forecast performances, we can conclude that our model performs better
than the current forecast process. Several forecast methods like the moving average, Croston
and (S)ARIMA score better than the current forecast performance. Therefore, we recommend
to keep on testing all of our forecast methods and using them according to the corresponding
performance.

Also, we control the inventory using the (s, (n)Q)-policy as this is the most used policy within
this field of research based on literature research. The current policy uses a variable lot size and
a fixed lot size is preferable as spare parts could come in boxes or on pallets. After simulating
the inventory model for several years, the performance stabilizes with an average e846,654.80
of inventory costs and a service level of 96.6%. When we compare inventory performances with
the current situation, our inventory model performs better on the average stock value and the
usage/value ratio and performs closer to the service level KPI target. This reduces costs by
28.3%. Therefore, we conclude that aiming towards the target service level with our model is
better than the current process.

We recommend identifying seasonal spare parts twice a year just after the summer and
winter seasons. Currently, there is no fixed identification process and the seasonal spare part list
is not up to date. Using our seasonal identification tool will help to analyse a big population of
spare parts at once and is an addition to the current procedure. Additionally, we recommend
implementing the performance measures for the forecast and inventory process of seasonal spare
parts. This way supply chain planners can see in the long term which forecast methods perform
well for which kind of spare parts and how this effects the inventory service level and costs. A
supply chain planner will learn from mistakes as they have insights into their performance.
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Chapter 1

Introduction

The first chapter of this thesis starts with describing the company and motivation of the research.
This is followed by the section about the problem statement, addressing the specific challenges
the research company faces. Additionally, this chapter presents the research design; describing
the research questions, explaining the research methods, and setting the research scope. The last
section describes the structure for the remaining of the thesis. This chapter sets the foundation
for understanding the company’s context and the approach taken in this research to address the
main research.

1.1 Company Introduction

The Supply Chain Operations department (SCO) of the Nederlandse Spoorwegen (NS) wants to
address a critical challenge in spare part inventory management for train components. NS holds
a central position in the Dutch transportation sector, serving as the primary passenger railway
operator since 1938 (Nederlandse Spoorwegen, 2024). With an extensive network of railway lines
connecting cities and regions, NS provides rail services for travelers. The SCO department man-
ages the supply and storage of train spare parts and sets up the logistics chains for this purpose.

The motivation for this project arises from NS’s goal to improve its inventory process for
seasonal spare parts. This group of spare parts has a yearly higher demand in a specific season
compared to the demand in the rest of the year. The current inventory process for these spare
parts is outdated and lacks appropriate models. Instead, it heavily relies on interpretations
and assumptions which could be be structured and automated by policies. NS believes that
the demand pattern of seasonal spare parts means that these spare parts could have a negative
influence on the inventory performance when handled incorrectly. How much it influences the
inventory performance is not known as the performance is not measured. Overall, NS wants to
ensure enough seasonal spare parts in stock to cover the demand, while keeping its costs low.

1.2 Problem Statement

This section dives into the challenges SCO currently faces. First, this section gives an objective
view on the problem context from the researcher’s insights. The second and last subsection
elaborates the core problem. The core problem is the main problem this research investigates.

1.2.1 Problem Context

It is important to get an objective understanding of the problem context because directly trying
to solve the given problem could cause overlooking aspects. By means of interviews with various
stakeholders of SCO, we put together what is already known in the organisation. We present
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1.2. Problem Statement

these results in a list of issues which connect by cause-and-effect relationships. Linking the
known issues leads to a problem cluster. Differently to other models, like for example a fishbone
model, a problem cluster shows the connections between problems at a glance providing the core
problem instantly (Heerkens and van Winden, 2017).

Figure 1.1 shows the problem cluster with core problems (red boxes), and other problems
(orange boxes) given the context of seasonal spare parts at SCO. The selected core problems
are the problems that this thesis tries to solve. Note that this figure only identifies the current
problems and does not differentiate whether any problems are larger than others. For instance,
having a shortage of two spare parts could be a bigger problem than having an excess of two spare
parts in inventory. However, the figure does not indicate which situation is a bigger problem.

No specified fore-
cast methods for

seasonal spare parts

Large gap between
predicted and
actual demand

Inventory policy
does not incorporate
changes over time

Too many spare
parts at inventory

High inventory costs

Too few spare
parts at inventory

Quality loss of op-
erational trains

Low customer
satisfaction

Trains are non-
operational

High nonoper-
ational costs

Figure 1.1: Problem Cluster of Spare Parts Forecasting and Inventory Control at NS

There are three problems that indicate the other problems at SCO which are the high inven-
tory costs, the low customer satisfaction, and the high nonoperational costs. The three indicative
problems lead back to two core problems. These core problems are the lack of using specified
forecast methods for seasonal spare parts and using inventory policies that do not incorporate
changes over time. Forecasting accurately is important as this leads to less uncertainty within
the inventory process. Less uncertainty can help solving the indicative problems. To give more
context about the second core problem: supply chain planners do not frequently review param-
eters of the policy. Currently, these are reviewed once every few years. Since we assume that
solving these two problems within the given time frame of this research is achievable, this thesis
will investigate two core problems.

1.2.2 Core Problems

The core problems "no specified forecast methods for seasonal spare parts" and "inventory pol-
icy does not incorporate changes over time" are derived from action problems. The definition
of an action problem is a discrepancy between norm and reality as perceived by the problem
owner (Heerkens and van Winden, 2017). Here, the problem owner is NS, or more specifically,
the problem owner is the department SCO. SCO lacks measurements for the forecast process.
Essentially, this is already something that has to change as we can not substantiate the problems
with numbers. However, the forecast performance indirectly contributes to the performance of
the inventory control which SCO does measure.
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1.3. Research Design

SCO quantifies the performance of the inventory control of all spare parts using the key per-
formance indicator (KPI) called BWOM. This is an abbreviation in dutch for "bakken wachtend
op materialen" which means train units waiting on materials. This KPI measures the average
number of train units waiting on materials. When spare parts are out of stock and needed for
maintenance, the BWOM KPI increases and scores worse. The longer the spare part is out of
stock, the longer the train unit will be waiting on materials. Every month, SCO evaluates the
reality and norm in their KPI reports. Table 1.1 presents the reality (the performance in 2023)
and norm of the BWOM. The reality and norm do not indicate a big gap. However, this KPI
measurement is for all SCO spare parts. SCO lacks direct insight in this KPI performance for
seasonal spare parts. NS has the sense that seasonal spare parts have a relatively big share in
this number. We will present our forecasting and inventory control performance measures for
seasonal spare parts in Section 2.4.

Table 1.1: Reality and Norm of Inventory Control KPI of Spare Parts

KPI Reality Norm Difference
BWOM 10.9 10.0 + 0.9

Solving the core problems will possibly lead to improvements on the BWOM KPI which will
contribute to the long term goals of SCO. To achieve the norm, the following main research
question holds:

"How can we change the forecasting methods and the inventory control policy of sea-
sonal spare parts to improve the performance of the SCO department at NS?"

The intended deliverables for solving the main research questions are prototype forecast and
inventory control tools, but also an implementation plan for using these tools.

1.3 Research Design

To structure solving the core problems, we use the Managerial Problem-Solving Method (MPSM)
of Heerkens & van Winden. This method is a systematic problem-solving approach. It is ap-
plicable to various problems and takes a problem into account embedded in the context of an
organisation (Heerkens and van Winden, 2017). The MPSM is a seven-step approach visualized
in Figure 1.2.

Defining the
problem ✓

Formulating
the approach

Analysing
the problem

Formulating
solutions

Choosing
a solution

Implementing
the solution

Evaluating
the solution

Figure 1.2: MPSM Flow Chart - Step 1 Completed

The identification of the core problem completes the first step of the MPSM. The next step
of the MPSM is formulating the approach. We present the research approach based on the
remaining steps of the MPSM. This section describes the corresponding research questions and
data collection methods of each step. Solving these research questions results in the answer to
the main research question.
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1.3. Research Design

1.3.1 Analysing the Problem

The third step of the MPSM is analysing the problem. This step gives an overview of the
current situation at the SCO department which helps understanding the context. To analyse the
problem, the first research question and corresponding sub-questions are:

1. What does the current forecast process and inventory control of SCO look like?

(a) What are the operations playing a role at SCO?
(b) What are the different features of spare parts managed by SCO?
(c) What spare part classification does SCO use?
(d) What methods are currently employed for forecasting and inventory control?
(e) What is the current forecast and inventory performance?

Information from oral semi-structured interviews and data analysis provide the answer to
these research questions. The interviews involve stakeholders of the forecast process and the
data analysis uses historical and current data. This step creates a starting position for testing
possible solutions.

1.3.2 Formulating Solutions

The next step of the MPSM is formulating solutions. This step involves literature research since
various possibilities of improvement should be investigated. The second research question and
additional sub-questions are:

2. What are possible forecast methods and inventory policies for the spare parts to apply in
the context of SCO?

(a) What classification methods are present in literature for spare parts management?
(b) How is seasonality identified in spare part forecasting?
(c) Which forecasting methods are recommended for forecasting seasonal spare parts?
(d) What inventory control policies are present in literature?
(e) In what ways can forecast methods be integrated with inventory control policies to

optimize spare parts management?

The outcomes of a literature study contribute to solving the second research question.

1.3.3 Choosing a Solution

After formulating possible solutions, one solution has to be chosen. The possible solutions
obtained in the previous step are compared which result in fitting forecast methods and inventory
policies. The third research question is:

3. What are the best fitting forecast methods and inventory policies for the seasonal spare
parts at SCO?

(a) What spare parts do we identify as seasonal spare parts according to data analysis?
(b) How do we classify our seasonal spare parts?
(c) What forecast methods are most effective for seasonal spare parts?
(d) What inventory control policy is best suited for seasonal spare parts?
(e) How can we validate the used methods?

Consulting stakeholders of this research and applying the outcomes of the literature research
are steps to take for building a quantitative model which will help choosing the best fitting
forecast methods and inventory policies. We split up this step in two chapters as it involves the
model design and comparing the outcomes.
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1.4. Report Structure

1.3.4 Implementing and Evaluating the Solution

The final steps of the MPSM are formulated in two research questions but combined in one
chapter. The corresponding research question to the implementation of the solution is:

4. What should SCO do to implement the forecast and inventory tools?

The implementation of a solution into the operations of a department should go carefully.
In the end, it impacts a lot of people in their daily operations So, it is of high importance to
include the stakeholders throughout the improvement and implementation process. To answer
this question, we will write an implementation plan.

The corresponding research question to the evaluation of the solution is:

5. How should SCO evaluate the new forecast methods and inventory control policies?

To prevent a situation where the solution is outdated, SCO should be able to evaluate the
solution. When the performance of the chosen solution decreases, SCO should notify it and
should have appropriate measures ready. When this is included in the solution, the solution will
be robust to changes which will improve the quality of the solution.

1.3.5 Research Scope

The research investigates the current performance of seasonal spare part demand forecasting and
inventory control. Chapter 2 analyses information about the current identified seasonal spare
parts. Later research in Chapter 4 reclassifies seasonal spare parts to see whether SCO classifies
them correctly. The seasonal spare parts that we identify are the input for the rest of the research.
Furthermore, the study intentionally excludes supplier management and multi-echelon inventory
management from its scope. Historical data from 2019 up to the start of 2024 serves as input for
this research. Setting these boundaries makes solving the problems more tangible and achievable
within the time constraint of this research.

1.4 Report Structure

The structure of this thesis is as follows: Chapter 2 gives an overview of the existing situation
within NS’s SCO department answering the first research question. Subsequently, Chapter 3
presents a study of the relevant literature answering the second research question. For answering
the third research question, Chapter 4 provides the developed model where Chapter 5 shows
a numerical comparison of the solutions. Chapter 6 describes the plan for implementing and
evaluating the model, giving answer to the fourth and fifth research question. Finally, the report
concludes with Chapter 7, drawing the conclusions, giving recommendations, and explaining the
future research and limitations. This last chapter gives an answer to the main research question.

The end of this chapter completes step 2 of the MPSM, formulating the approach. Figure
1.3 shows the progress of the research so far.

Defining the
problem ✓

Formulating
the approach ✓

Analysing
the problem

Formulating
solutions

Choosing
a solution

Implementing
the solution

Evaluating
the solution

Figure 1.3: MPSM Flow Chart - Step 2 Completed
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Chapter 2

Description of the Current Situation

This chapter presents the findings to answer the first research question (RQ) of this thesis.

RQ1: "What does the current forecast process and inventory control of SCO look
like?"

To solve the research question and corresponding sub-questions, this chapter describes the
current operations within the Supply Chain Operations (SCO) department of the Nederlandse
Spoorwegen (NS). Furthermore, it gives an elaboration and analysis of the spare parts that SCO
deals with. Additionally, the chapter explains the current forecasting and inventory controlling
processes and shows the performance of these. The exploration of SCO’s current operational
procedures and corresponding performances is critical, as it will be used as a benchmark to
assess potential improvements. This helps evaluating the efficacy of proposed changes within the
department.

2.1 Supply Chain Operations

NS primarily focuses on the transportation of passengers from one destination to another. Trains
are the cornerstone of the NS’s operations. In simple terms, if the trains aren’t working, NS can-
not do its job properly. Therefore, it is essential to ensure that these trains are operational for
as much time as possible. This means that maintenance is important and especially the part of
getting the right amount of spare parts on the right place on the right time. This is where SCO
plays the main role.

SCO is responsible for the inventory and storage of spare parts and designs the logistic chains
of the maintenance operations. When a train needs maintenance, the goal is to handle this as
quick as possible while minimising costs. Within SCO, the organisation is divided by train se-
ries. This means that certain teams work on the introduction of new train series, some teams are
dedicated to maintaining and guaranteeing train series, and other teams manage the phasing-out
train series in a responsible manner.

SCO distinguishes two types of maintenance which are corrective and preventive maintenance.
Corrective maintenance is reactive; when a component of a train fails, NS needs to perform
maintenance which is unplanned. Preventive maintenance is a proactive measure to prevent
failures. It involves replacing functioning components to avoid unexpected breakdowns. To
maintain sufficient inventory, SCO must forecast the demand for spare parts resulting from
corrective maintenance but also consider the demand for spare parts resulting from preventive
maintenance. The demand of these two types of maintenance is segregated, resulting in separate
forecasting of corrective and preventive maintenance. Preventive maintenance occurs according
cyclical maintenance planning and involves less uncertainty.
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2.2. Spare Parts of SCO

2.2 Spare Parts of SCO

Availability of resources is important to make sure trains that need maintenance are up and
running as quick as possible. There should be enough spare parts present to repair the train. On
the other hand, there should not be too many spare parts since this involves more inventory costs.
Three important variables are the product group, seasonality, and criticality of spare parts. The
first three subsections of this section describe and explain these variables. The last subsection
explains the custom classification that SCO uses for inventory parameters.

2.2.1 Product Group

SCO divides spare parts into two product groups: exchange parts and wear parts. The difference
between these product groups is the life cycle. Exchange parts are parts that are not discarded,
but these parts are repaired after being used in a train. These parts are repaired because this
is technologically possible and economically beneficial. SCO calls unused parts clean and used
parts dirty. Once an exchange part is repaired, the dirty part becomes a clean part which means
it can be used again in future replacements. One remark: According to SCO, on average 7% of
the exchange parts are beyond repair after replacement and have to be discarded. Wear parts
are parts that are always discarded after use. Figure 2.1 shows the flow charts of both exchange
and wear parts in case of performing corrective maintenance.

Procurement
of clean ex-
change part

Clean exchange
part in inventory

Exchange part
placed in train

Exchange
part fails

Is dirty ex-
change part

beyond repair?

Dirty exchange
part is repaired

Dirty exchange
part is discarded

Procurement of
clean wear part

Clean wear part
in inventory

Wear part
placed in train Wear part fails Dirty wear part

is discarded

Yes

No

Figure 2.1: Life Cycle of Exchange Part (top) and Wear Part (bottom) in Corrective
Maintenance

Just as the treatment of exchange and wear parts differs, so does the inventory management
of these parts. The chain size is corresponding to the number of exchange parts within it. The
chain size can increase with incoming orders and can decrease when exchange parts are beyond
repair. However, the chain size is not seen as the exchange part inventory level as it consists
of clean and dirty parts. The dirty parts cannot be used for replacements. Only clean parts
can be used for this purpose, thus representing the exchange part inventory level. The exchange
part inventory level increases when a new order comes in or when a repaired part comes in, and
it decreases when parts are used for replacement. Inventory management for wear parts is a
simpler concept as it does not use a chain size. The wear part inventory level increases when a
new order comes in and decreases when parts are used for replacement. Overall, the exchange
parts require fewer replenishments because dirty parts can be repaired and reused.

To provide some figures, SCO handled 30,958 exchange or wear spare parts at the start of
2024. 15.0% of the spare parts are exchange parts, while 85.0% of these are wear parts. The
classification of the product group of a spare part is not fixed. Due to price reductions of exchange
parts, it can become economically beneficial to label them as wear parts. Contrarily, if the price
of a wear part increases, it may be more beneficial to treat them as exchange parts as long as
this is technologically possible.
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2.2. Spare Parts of SCO

2.2.2 Seasonality

Every spare part has its own monthly demand. Extreme weather conditions in the summer and
winter can increase the chance of a spare part breakdown. Spare parts sensitive to this are labeled
as seasonal spare parts. SCO has identified 59 seasonal spare parts. These are defined with use
of the technical knowledge of reliability engineers and with use of the historical data provided by
the supply chain planners. Section 6.1 explains in more detail how these spare parts are identified.

We look at the difference in demand patterns between a seasonal and nonseasonal spare part.
Figure 2.2 visualises the different kind of spare parts and their trendline. Based on the evaluation
of demand graphs of all 59 seasonal spare parts, spare part FD332067 is the spare part with the
clearest seasonal pattern. Spare part FA500278 is just a arbitrary nonseasonal spare part with
a similar size of demand. The figure shows that every year, spare part FD332067 has higher
demand during the winter months than during the summer months compared to the trendline.
Spare part FA500278 also has variations of demand. However, these do not show that during
either the summer or winter months there is a higher demand than in the other season compared
to the trendline.

Figure 2.2: Demand of a Seasonal (FD332067) and Nonseasonal (FA500278) Spare Part
over Time

Appendix A presents two other demand graphs of seasonal spare parts. Here, we will show
an example of a seasonal spare part which is prone to failures in the summer months. Also, we
show the demand pattern of a seasonal spare part which does not have a clear seasonal demand
pattern. By evaluating the demand graphs of seasonal spare parts, we conclude that most spare
parts do not have a clear seasonal demand pattern, only six spare parts do.

Figure 2.3 and Figure 2.4 illustrate the distribution of demand and planned lead times (re-
spectively) of the seasonal spare parts using box plots. The yellow bar represents the interquartile
range, which accounts for the middle 50% of the data points. The whiskers indicate the last data
point within 1.5 times the interquartile range below the 25th percentile or above the 75th per-
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2.2. Spare Parts of SCO

centile of the data points. Any data points outside the whiskers are considered as outliers.

Figure 2.3: Demand Distribution of
Seasonal Spare Parts

Figure 2.4: Planned Lead Times Dis-
tribution of Seasonal Spare Parts

The box plot of Figure 2.3 indicates a positive skewed distribution of seasonal spare part
demand. This reveals that most of the seasonal spare parts have low demands as the median is
below 10 spare parts in 2023. It is contradictory that there are spare parts selected as seasonal
when they have an annual demand close to zero. These are spare parts that should be removed
from the seasonal spare part list as it does not make sense to monitor these spare parts closely
in advance of a season when they have this little demand. A few spare parts have such a high
demand rate in 2023 that the average demand (the X in the figure) surpasses the maximum
whisker. This shows the variation of seasonal spare parts and indicates to need to monitor
individually as they are different. Note that not all outliers from the demand of the seasonal
spare parts are visual in Figure 2.3 as they exceed 200. Including these outliers in the box plot
visualisation would make the box plot unreadable.

The box plot of Figure 2.4 shows two box plots. A lot of seasonal spare parts do not have
a known planned lead time. Only 27 spare parts have a known planned lead time which means
that there are agreements with the supplier about time until delivery. In reality, these lead
times can differ but SCO assumes these as deterministic. When the lead time is unknown, SCO
assumes a lead time of 222 business days, hence the second box plot in the figure. This is a safe
assumption as it exceeds the upper whisker from the known lead time box plot. The fact that
more than half of the seasonal spare part population do not have a known lead time indicates
that the process is outdated. Assuming a lead time of 222 business days leads to high safety
stocks and a lot of inventory costs. Having known lead times for all spare parts could decrease
these safety stocks and corresponding costs. Note that it looks like there is no median value in
the box plot including unknown lead times. However, the median is the same value as the 75th
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2.2. Spare Parts of SCO

percentile, which is at 222 business days making the median disappear. Furthermore, there are
no outliers.

Managing the seasonal demand variations is important for optimizing inventory levels and
reducing costs. By accurately identifying the seasonal demand patterns, we can explain the
seasonal variation and decrease the safety stocks. This approach will save costs while ensuring
enough inventory. The fact that a lot of current seasonal spare parts do not have a clear seasonal
demand pattern, do not have demand, or do not have a known lead time, indicates the need to
update this classification.

2.2.3 Criticality

The last variable to consider is criticality, which is based on safety and logistics. Criticality
affects the current classification and inventory parameters. Some parts are critical for the safety
of a train. When these parts fail, the train is not allowed to travel any further with passengers
due to safety regulations. Failures in parts that are not critical to safety might affect passengers’
comfort and the customer satisfaction, but do not pose a danger. Additionally, several spare
parts could be critical from a logistic standpoint. When such a part fails, the train cannot op-
erate logistically, meaning it cannot drive at all. These two variables are independent from each
other and important because these say something about the consequences of a breakdown of a
spare part. Subsection 2.2.4 uses this variable to assign inventory parameters.

Figure 2.5 shows two bar charts visualising the critical seasonal spare parts. For 17 seasonal
spare parts, the criticality based on safety is undetermined. SCO assumes these as safety critical
unless proven differently. Therefore, we consider 28 seasonal spare parts to be safety critical. For
four seasonal spare parts, it is unknown whether they are logistic critical. SCO assumes these
spare parts to be logistic critical to be on the safe side as logistic critical spare parts are better
monitored. This means in total 52 of the 59 seasonal spare parts are logistic critical which is
the vast majority. When comparing the safety and logistic aspect, there are only two seasonal
spare parts which are neither safety nor logistic critical. These are spare parts FA702049 and
MD805059.
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Figure 2.5: Critical Classification Bar Charts
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2.2. Spare Parts of SCO

2.2.4 Custom Classification

SCO uses a custom classification for their spare parts which they update quarterly. The clas-
sification of a spare part determines some of the inventory parameters like target service level
(TSL) or lot size. This classification is based on whether the spare part is an exchange or wear
part, the usage (displayed as letter), the value (displayed as number), and whether it is logistic
critical or not. So, the custom classification is four-dimensional.

The letters of the classification range from A until D based on the spare part’s usage of the
past 18 months with the following thresholds:

• Class A: if demand > 17

• Class B: if 2 < demand ≤ 17

• Class C: if 0 < demand ≤ 2

• Class D: if demand = 0

The numbers of the classification range from one until three based on the spare part’s value.
This classification differs for exchange and wear parts as they have other thresholds. Table 2.1
shows the difference between the exchange and wear part classification.

Table 2.1: Spare Part Value Classification Thresholds in Euros

Spare Part Class 1 Class 2 Class 3
Exchange Part value ≤ 999.99 999.99 < value ≤ 3, 499.99 value > 3, 499.99

Wear Part value ≤ 49.99 49.99 < value ≤ 499.99 value > 499.99

When only looking at the letter and number classification, it leads to twelve different classes
for spare parts. Table 2.2 shows the number of seasonal spare parts per class. Most seasonal
spare parts are fast movers with a high value as most spare parts are in classes A2, A3, B2, and
B3.

Table 2.2: Number of Seasonal Spare Parts per Class (Letter+Number Classification)

Usage \Value 1 2 3
A 4 13 9
B 1 8 10
C 2 3 2
D 3 1 3

When looking at the custom four-dimensional classification, it leads to 48 different classes.
Figure 2.6 shows the number of seasonal spare parts per class in the custom classification. Cur-
rently, there are no exchange parts that are not logistic critical, so this is excluded from the
figure. Only 23 of the 48 custom classes are used in the selection of seasonal spare parts.
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Figure 2.6: Number of Seasonal Spare Parts per Class (SCO Custom Classification)

Figure 2.7 shows the influence of the classification on an inventory parameter, the TSL. Here,
the TSLs of C1 & D1, C2 & D2, and C3 & D3 are the same. This means that there is no differenti-
ation between a slow- and non-moving (C and D respectively) spare part regarding the TSL. Also,
the custom classification gives spare parts with higher values a lower TSL. It is cheaper to reach
a higher service level for cheap spare parts as it is cheaper to keep more inventory for these parts.

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3

75

80

85

90

95

100

Categories

T
ar

ge
t

Se
rv

ic
e

Le
ve

l(
%

)

Exchange Part Logistic Critical
Wear Part Logistic Critical

Wear Part Not Logistic Critical

Figure 2.7: Target Service Level per Class (SCO Custom Classification)

20



2.3. Forecasting and Inventory Control

There are other factors that influence some of the inventory parameters. However, these are
not influencing the TSL and therefore not relevant.

2.3 Forecasting and Inventory Control

The forecasting and inventory control processes are very important for SCO. If these are of high
quality, this means that there is enough inventory for maintenance while the costs are reduced
as much as possible. Figure 2.8 shows the echelon structure of the inventory locations at NS.
Logistics Center Tilburg (LCT) is the highest echelon level. The second level consists of the
"onderhoudsbedrijven" (OB), or the maintenance companies, located in four different locations.
The "servicebedrijven" (SB), or the service companies, represent the lowest echelon level. In
total there are 30 service companies spread throughout The Netherlands, each associated with
a specific region and one OB. This thesis focuses on managing the demand and inventory of the
entire system. The inventory and demand of specific locations are not considered in this research
as explained by Subsection 1.3.5.

LCT

OB Onnen OB Amsterdam OB Leid-
schendam OB Maastricht

SB SB ...

Figure 2.8: Echelon Structure and Material Flow of Maintenance Locations

As Chapter 1 identifies the core problems in the forecast and inventory control, the forecast
and order processes are where improvements can be made. NS uses the software Servigistics
XelusParts for their inventory control. This program generates monthly forecasts based on his-
torical data and implements inventory policies. As Servigistics XelusParts will be replaced by
another program in the near future, this research is not bounded to the limitations of the pro-
gram. To give an idea how the process of forecasting and ordering looks like, Figure 2.9 visualizes
these. Here, SCP is referring to the supply chain planner and ME to the maintenance engineer.
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SCP analyses historical
data of spare part
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Figure 2.9: Flow Charts of Forecast Process (top) and Order Process (bottom)

Figure 2.9 shows that the SCP analyses historical data and chooses a fitting forecast method
for a specific spare part, but there is no specified policy to follow. This has lead to the situation
that the SCPs look at only four methods out of the fourteen possibilities of Servigistics Xelus-
Parts and do not look at any parameters as these are unknown for them. The process of choosing
a suitable method involves altering between forecast methods and assessing which would fit the
best based on the forecast visualisations of these methods. When a spare part is labelled as
seasonal, the process can take a different route. Due to a lack of knowledge about using forecast
methods that account for seasonal variations, there is an evaluation step in the forecast process
where the planner can manually adjust the forecast to meet the seasonal demand. Figure 2.10
illustrates the number of seasonal spare parts per forecast method.

Figure 2.10: Number of Seasonal Spare Parts per Forecast Method

SCPs use four forecast methods that only include the level and trend for forecasting the de-
mand of the selected spare parts. Chapter 3 explains the methods from the figure. None of these

22



2.4. Current Performance

forecast methods include a seasonality factor which is contradictory when forecasting seasonal
spare parts. Figure 2.10 also shows that sixteen seasonal spare parts do not have a selected fore-
cast method. This means their forecast is zero every month. This overview of current forecast
methods could indicate that the selected seasonal spare parts do not follow a seasonal demand
pattern or the forecasts are manually adjusted to cover the future demand. But, it could also be
the case that some of these methods cover the demand well enough.

SCO considers safety stock for determining the reorder point. The safety stock is calculated
with use of TSL and lot size. This safety stock is added on the demand over lead time to find
the reorder point per spare part. SCO uses inventory control in Servigistics XelusParts with
continuous review. When the inventory position is below or at the reorder point the internal
system suggests to order for the total of a certain amount of months demand. Ordering a quantity
based on a certain amount of months demand is called a periodic order quantity (POQ). The
value corresponding to the POQ is dependent on the custom classification but only based on the
letter + number classification, shown in Table 2.3. There is no difference between the C and D
classification just like in Figure 2.7. The POQ is low for expensive spare parts which makes sense
as a low POQ results in a low holding costs and expensive parts have higher holding costs than
cheap parts. The POQ first decreases, then increases when going from class A, to B, to C. There
is no logic behind this, indicating the need for an update. Furthermore, the POQ is often lower
than the lead time as most spare parts have a lead time of 222 business days, which translates to
11 months. This could be a problem when allowing one order at a time. Overall, changing the
inventory parameters does not happen proactively, only when there is a reason to change them.
For example during the Corona pandemic in 2020, these parameters were manually adjusted.

Table 2.3: POQ in months of Seasonal Spare Parts per Class (Letter+Number Classi-
fication)

Usage \Value 1 2 3
A 6 5 4
B 4 2.5 2
C 6 3.5 2
D 6 3.5 2

The SCP can decide to take over the decision to order or to do something else as described in
Figure 2.9. For example, the SCP looks at the minimum order quantity (MOQ) of the part. If
the internal systems advises to order less parts than the MOQ, the supply chain planner possibly
chooses to increase the order quantity. Or, the SCP could choose to wait to order that part and
order it only when the advice to order exceeds the MOQ.

If a mechanic wants to perform maintenance and cannot replace a part because there are no
spare parts in inventory, it is called a stockout. When there is a stockout, it could be that the
order is already underway or that no order has been placed yet. In either case, SCO communicates
with the supplier to deliver their goods as quickly as possible.

2.4 Current Performance

As Subsection 1.2.2 describes, SCO does not use performance measures in the current forecast
operations. Therefore, we will analyze the performance in this section ourselves. The literature
in Subsection 3.2.8 explains various measures for forecast accuracy. We compare the historical
demand and forecast with and without manual adjustment based on the previous four years and
calculate the performance. Table 2.4 and 2.5 present the forecast performance which is a starting
point for the further analysis of possible interventions. Here, we calculate the performance as
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an average performance of all seasonal spare parts. It is the higher the measure, the worse the
performance for the symmetric mean absolute percentage error (sMAPE). In Subsection 3.2.8,
we also show the calculation for this measure.

Table 2.4: Average Forecast Performance of Seasonal Spare Parts without Manual Ad-
justment

Measures 2020 2021 2022 2023
sMAPE 53.74% 61.68% 63.24% 57.27%

Table 2.5: Average Forecast Performance of Seasonal Spare Parts with Manual Adjust-
ment

Measures 2020 2021 2022 2023
sMAPE 67.57% 65.68% 64.55% 66.44%

Table 2.4 shows a significant better average forecast performance than Table 2.5. At first
glance, this does not seem logical. When adjusting the forecast based on expert experience
the expectation is that a forecast improves. However, the performance tables prove different.
An explanation of these results could be that the SCP often forecasts the demand too high
just to be on the safe side of availability of spare parts. The bias performance confirms this
explanation as the manual adjusted performance is constantly positive indicating that on average
the forecast is too high while the other performance is fluctuating around zero. Figures 2.11 and
2.12 also show this behavior. The SCP recognises seasonal demand peaks and acts according
these by manually adjusting the forecast. This is common behavior according to Hewage et al.
(2022). Many organizations use human judgement when forecasting for contextual information
like sales promotions, weather, and seasonal conditions. In our case, this behavior results in an
overestimation of demand in almost every time period.

Figure 2.11: Demand and Forecast Pattern of Part FD060882
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Figure 2.12: Demand and Forecast Pattern of Part ZK000348

We evaluate the performance of the inventory control with the KPIs network service level,
usage and the stock value of spare parts. The network service level, also known as fill rate, is the
service level of the whole inventory network of NS. Every time a spare part is needed and there
is no inventory on any location of NS, this KPI decreases. Table 2.6 and 2.7 show the inventory
KPIs of 2021 until 2023. There is no data from 2020 or earlier.We expected that the network
service level of seasonal spare parts was lower than the network service level of all spare parts as
this is a difficult group of spare parts according to SCO. The network service level for seasonal
spare parts is 99.9% in 2023 as there have been four stockouts with a usage of 2,775 spare parts.
This service level is higher than the network service level of all spare parts with a usage of 120,185
spare parts. The usage represents both corrective and preventive maintenance. As the target
service level is 97.0%, these service levels indicate that the stock levels of the seasonal spare
parts are often too high because the supply chain planners predict their seasonal spare parts
rather safely than risky. This does also mean that the service level can become worse, while we
observed that the BWOM should improve according the norm in Table 1.1. As both these KPIs
are related to each other, this is contradictory. Another service level measure, like the order line
fill rate, would be more appropriate as the shortage of one spare part within an order causes a
delay of the complete order. Furthermore, the usage to stock value ratio indicates that inventory
for all spare parts is twice as cost-efficient as for seasonal spare parts. This indicates the need
for improved inventory management for seasonal spare parts.

Table 2.6: Inventory Performance of Seasonal Spare Parts

Inventory Control KPIs 2021 2022 2023
Network Service Level 99.8% 99.8% 99.9%
Total Usage 2,758 3,053 2,775
Average Stock Value e3.6M e3.2M e3.5M
Usage/Value 766.1 848.1 792.9
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Table 2.7: Inventory Performance of All Spare Parts

Inventory Control KPIs 2021 2022 2023
Network Service Level 99.6% 99.6% 99.7%
Total Usage 104,961 112,422 120,185
Average Stock Value e82.0M e83.4M e82.5M
Usage/Value 1,280.0 1,347.9 1,456.8

2.5 Conclusion of the Current Situation

This chapter answers the first research question of this thesis.

RQ1: "What does the current forecast process and inventory control of SCO look
like?"

First, we identified the current operations within the SCO department of NS. These oper-
ations are the supply of spare parts and execution of corrective and preventive maintenance.
These operations are divided by train series.

Furthermore, we analysed the spare parts that SCO deals with. There are exchange and
wear spare parts that differ in inventory management. Currently, SCO labels 59 spare parts that
show seasonal variation in either winter or summer. These spare parts require more attention in
advance of the seasons for forecasting and inventory control. Besides, spare parts are classified
critical when a breakdown means that trains are not allowed to drive any further. Based on
these variables, SCO uses a custom classification for its spare parts based on the demand, value,
product group, and criticality. This custom classification determines several inventory parame-
ters. The seasonal spare part analysis showed that the current selection is not up to date and
needs a reclassification. The most evident arguments are the unclear seasonal demand patterns,
the lack of demand, and the unknown lead times.

Additionally, the chapter explained the current process of forecasting and the inventory con-
trol of spare parts. The forecasting process consists five different forecast methods which is often
selected automatically with use of the forecast program and do not include seasonality. So, when
SCO considers a spare part as seasonal, the SCP often manually adjusts the forecasts to incorpo-
rate the seasonal variations. The inventory control uses a safety stock, reorder point, continuous
review period, POQ, and MOQ which are not updated proactively.

Lastly, we calculated the performance of these processes. The performance of the forecasts
including manual adjustments is worse than the forecasts excluding manual adjustments. This
is probably because the supply chain planner often overpredicts demand to be on the safe side of
availability of spare parts. The network service level, also known as fill rate, performance of the
inventory control for the seasonal spare parts is similar to the performance for all spare parts.
Probably, the average stock value can be decreased while keeping a high network service level.
Furthermore, the network service level is above the norm of SCO and the BWOM is below the
norm. This is contradictory as these two KPIs are related to each other. Another service level
measure, like the order line fill rate, would be a more appropriate service level as the shortage
of one spare part within an order causes a delay of the complete order.

The findings of this chapter give direction to the literature study. We identify the important
aspects classification, identification of seasonality, forecasting, and inventory control. Performing
a literature review on these aspects creates an overview of the possibilities for our model.
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The end of this chapter completes step 3 of the MPSM, analysing the problem. Figure 2.13
shows the progress of the research so far.

Defining the
problem ✓

Formulating
the approach ✓

Analysing the
problem ✓

Formulating
solutions

Choosing
a solution

Implementing
the solution

Evaluating
the solution

Figure 2.13: MPSM Flow Chart - Step 3 Completed
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Chapter 3

Literature Study

The third chapter presents a literature study to answer the second research question (RQ) of
this thesis.

RQ2: "What are possible forecast methods and inventory policies for the spare parts
to apply in the context of SCO?"

To solve the research question, this chapter describes the findings of the relevant literature.
First, it will elaborate classification of spare parts. Next, it will describe several forecast methods
and the way to identify seasonality. Lastly, it continues with an explanation of inventory control
and how to measure the performance. This chapter will be a tutorial based literature study to
understand how a problem in the context of this research can be solved.

3.1 Spare Part Classification

The aim of inventory management is to determine the best fitting forecast method and inventory
policy which result in the most accurate predictions for stock keeping units (SKUs) (Heinecke
et al., 2013). In the context of this thesis, SKUs represent spare parts. The choice of these
methods or policies is partially determined based on the spare parts’ characteristics (Heinecke
et al., 2013; Millstein et al., 2014). This section describes classification by means of different
methods.

3.1.1 ABC-Classification

Silver et al. (2016). suggest using a distribution by value curve for an ABC-classification of spare
parts. Figure 3.1 shows this curve representing the cumulative percentage of yearly usage value
and the cumulative percentage of the total number of spare parts in inventory.

The ABC-classification of spare parts divides spare parts into three categories. Class A rep-
resents the most important spare parts. These spare parts, often 20% of the spare parts with
the highest yearly usage value, account for 80% or more of the total yearly usage value. These
parts need the most management attention. This involves reviewing decision parameters fre-
quently and determining precise values of control parameters. Class B are the spare parts with
a medium importance, usually 30% of the total spare parts, accounting for 15% of yearly usage
value. These parts often have a computerized inventory control with management-by-exception
(Van der Heijden, 2022). Class C is the group of spare parts that are the least important. This
group is relatively large (50%) for the proportion of yearly usage value it represents (5%). Typ-
ically, most companies keep a large inventory for class C spare parts to minimize the possible
difficulties caused by stockouts of these spare parts (Silver et al., 2016).
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Figure 3.1: Distribution by Value Curve of a Fictional Situation (Silver et al., 2016)

Despite the benefits of using ABC-classification, Dhoka (2013) states that the classification
method has a limitation. Critical spare parts that are low in consumption value may be over-
looked as they could be classified as C-item. Silver et al. (2016) propose a solution by shifting
spare parts that are crucial for some operations manually to another class.

3.1.2 XYZ-Classification

Another way of classifying spare parts in inventory is based on the demand uncertainty of spare
parts, also known as the demand predictability (Bhalla et al., 2021). The XYZ-analysis con-
sists of calculating the coefficient of variation (Dhoka, 2013). Similar to the ABC-classification,
XYZ-classification defines three groups of spare parts according an increasing coefficient of vari-
ation. Spare parts with a uniform demand and the lowest coefficient of variation are classified
as class X. Class Y represents spare parts with varying demand and moderating fluctuations.
Spare parts with an irregular demand are classified as class Z. This means that spare parts with
the highest coefficient of variation are in class Z (Nowotyńska, 2013). An example of dividing
the three different classes can be for class X a coefficient of variation of 0-10%, for class Y a
coefficient of variation of 10-25%, and for class C a coefficient of variation larger than 25%. Of
course, these boundaries are not strict as each industry differs, so adjusting the boundaries is
acceptable. Figure 3.2 shows a fictional example of how the demand pattern of spare parts relates
to the possible classes of the XYZ-classification.

Dhoka (2013) identifies a drawback for the XYZ-classification. New spare parts are often
classified as class Z because for these spare parts, it could take some time to establish a stable
demand. Another relevant drawback is that the XYZ-classification overlooks seasonality. Sea-
sonal spare parts could be removed from this analysis.

Combining classification methods can address some of the limitations as the limitation of a
classification method fades when combining it with another method. Combining the ABC- and
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3.1. Spare Part Classification

Figure 3.2: XYZ - Demand over Time and Classification based on Coefficient of Varia-
tion (Dhoka, 2013)

XYZ-classifications creates a more effective 2-dimensional approach for classification (Dhoka,
2013). With the combination of ABC- and XYZ-classification, it becomes possible to establish
service level targets for each class. Class AX, being the most crucial and stable, should have
the highest service level target since the service level raises quickly when increasing the service
stock. On the other hand, class CZ, being the least important and stable, should have the lowest
service level target (Van der Heijden, 2022).

3.1.3 Other Classification Methods

Mobarakeh et al. (2017) suggest that the most widely accepted spare parts demand classification
method is based on a two-dimensional matrix using the average inter-demand interval (ADI)
and coefficient of demand variation (CV). The classification regions are smooth, intermittent,
erratic and lumpy with cutoff values of ADI = 1.32 and CV = 0.49.

• Smooth: Both low ADI and demand variation,

• Intermittent: High ADI and low demand variation,

• Erratic: Low ADI and high demand variation,

• Lumpy: Both high ADI and demand variation.

Smooth demand has the most constant demand. It has the most potential to be forecasted
accurately. Many forecast methods are suitable for this demand class. Based on a study for
intermittent demand of aircraft’s spare parts, exponential smoothing and Croston forecasting
methods outperformed other forecasting methods like the weighted moving average and Winters’
forecast method (Mobarakeh et al., 2017). Not many articles suggest forecast methods for erratic
demand. However, one paper states that linear forecast models like exponential smoothing and
Croston are not suited to capture nonlinear dynamics and uncertainties while machine learning
models are more suitable methods (Jiang et al., 2017). Forecasting lumpy demand is hard and
not very accurate. However, the best approaches are the weighted moving average and Croston
forecast methods (Regattieri et al., 2005).

Bhalla et al. (2021) write about the FSN-classification which is an abbreviation for fast-
moving, slow-moving, and non-moving and is a classification method based on the demand pat-
tern. Fast-moving means that a spare part has a high demand per time unit, while non-moving
means it does not have any demand. The FSN-classification looks like the ABC-classification as
it is also based on the criteria demand but has other classification thresholds. Furthermore, it is
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not different and therefore not relevant for an in-depth review.

All mentioned classification methods are based on the spare part characteristic demand.
However, spare parts can also be classified based on their characteristics like value, stockout
costs, lead times, criticality, or supply uncertainty (Bhalla et al., 2021). Especially, criticality
seems like a relevant characteristic to use in the classification the spare parts of NS as we saw
in Subsection 2.2.3. Another classification method, based on more subjectiveness, is the VED-
analysis. This is an abbreviation for the vital, essential, and desirable analysis. Spare parts are
classified in one of these classes based on consultation with experts. There are no quantitative
factors contributing to the assessment of the class which makes the classification a difficult and
less relevant (Bacchetti and Saccani, 2012).

3.2 Forecast Methods

The main reasons for an inventory control system to look ahead with forecasting are the pres-
ence of a lead time for ordering items and the need to order in batches instead of product for
product. Approaches of forecasting are estimating based on historical data or based on other
factors like demand of complementary items, sales campaigns, or the weather forecast (Axsäter,
2006). Currently, SCO uses a forecast based on historical demand. Figure 3.3 visualises a fore-
cast framework using historical demand (Silver et al., 2016). The figure shows the components
the mathematical model, the actual forecast and the forecast errors. These components are the
main input of this section.

Figure 3.3: A Forecasting Framework (Silver et al., 2016)

3.2.1 Mathematical model

The mathematical model in the context of forecasting consists of five components. Level (a),
trend (b), seasonal variations (F ), cyclical movements (C), and irregular random fluctuations
(ϵ). Level represents the scale of demand and trend is the rate of growth or decline of demand.
Seasonal variations identify as the variations of natural forces or those resulting from human
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decisions. Next, cyclical variations are the ups and downs of economic activity resulting from
business cycles. The last component is the irregular fluctuation which is the residue that remains
after the effects of the other components are removed. This residue is important for inventory
control which will be explained in Section 3.3. Equation 3.1 shows an example of a forecast
formula using all explained concepts, where xt represents the demand in period t (Silver et al.,
2016). This example shows an additive model, but there are also multiplicative models where
the parameters are multiplied instead of summed.

xt = a+ bt+ Ft + Ct + ϵt (3.1)

A constant demand model has the least parameters to estimate as it only involves level.
The trend-seasonal demand model has more parameters to estimate as it also involves trend
and seasonal variations. The trend-seasonal demand model can become very specific due to its
parameters and could cover a wide class of demand. Axsäter (2006) advises to use a simple
demand model with few parameters unless there is evidence that a model with more parameters
clearly shows certain advantages. This is why we look into identifying trend and seasonality in
Subsection 3.2.7

There are three steps involved in the use of a mathematical model. First, the selection of a
general form of the model. Next, the choice of initial values for parameters within the model.
Finally, the use of the mathematical model and chosen parameters to make the forecast (Silver
et al., 2016). This will be the structure of the following subsections that represent forecast
methods.

3.2.2 Moving Average

The moving average forecast method has as demand model the level model: xt = a + ϵt. The
idea of this method is that it uses the average demand of the last N observations as estimate
for a. Reducing N gives more weight to the recent data as older historical data is not included
anymore. If N = 12 (in months) seasonal variations have no effects on the forecast (Axsäter,
2006). Every included data point has the same weight however, it is possible to modify the
moving average approach with different weights for each period. An example of such a method
is the weighted average forecast method (Silver et al., 2016).

3.2.3 Single Exponential Smoothing

Exponential smoothing has also a level demand model with xt = a + ϵt. The difference is the
updating procedure for the level coefficient. This procedure includes a smoothing constant α.
An α close to the value one leads to a high forecast dependency of the recent demand. When it
is close to zero, the level coefficient will not change much as the level coefficient of the previous
time period has the smoothing constant 1 − α. The initialization works by using the average
demand in the first periods as estimate for the level (Silver et al., 2016). If the period length
is one month, it is common to use a smoothing constant alpha between 0.1 and 0.3. When
the forecast is updated every week, a smaller alpha should be used (use α = 2/(N + 1)). For
small values of alpha, it can take long before forecasts are reliable as it converts slowly (Axsäter,
2006). Another way of selecting the smoothing factor is by doing a traditional grid search
(Van der Heijden, 2022). This method divides the existing data into two subsets, uses one for
the initialisation, and the other subset for forecasting. By maximising the forecast performance,
it obtains a local optimal smoothing factor. This exponential smoothing method is also called
the simple or single exponential smoothing method (SES) as it only includes a level coefficient
(Maretania et al., 2021).
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3.2.4 Holt Method

An extension on the single exponential smoothing is the inclusion of trend and is called the
double exponential smoothing method, or Holt method (Maretania et al., 2021). This method
uses the underlying demand model xt = a+ bt+ ϵt. For this model, updating accounts for both
the level and trend coefficient in the same way as it does for single exponential smoothing. The
least squares regression is used as a method to initialise the level and trend coefficients (Silver
et al., 2016). This model has two coefficients and therefore also two smoothing constants, the α
and β. Common values for monthly updates are α = 0.20 and β = 0.05 (Van der Heijden, 2022).
For small values of alpha or beta it can take long before forecasts are reliable as they convert
slowly(Axsäter, 2006).

3.2.5 Holt Winters’ Method

The Holt Winters’ trend-seasonal model is also a form of exponential smoothing. As it is including
level, trend and seasonality, it is a form of triple exponential smoothing (Omar and Kawamukai,
2021). The demand model of this method is xt = (a+ bt)Ft + ϵt. The seasonal coefficient Ft has
the length of P periods. When P = 4 (in a year), it means there are quarterly seasons. When
P = 12, there are monthly seasons. All three coefficients each have similar updating procedures
as for single or double exponential smoothing. For the initialisation of the coefficients, the model
uses the ratio to moving average procedure. Step 1 is a rough estimation of level with moving
average over P periods. Step 2 is estimating the seasonal factors. Step 3 is estimating the final
level and trend coefficients with use of regression. Some typical values for the smoothing factors
α, β, and γ are 0.19, 0.053, and 0.10 respectively (Silver et al., 2016).

3.2.6 Other Forecast methods

When a spare part follows an intermittent demand pattern, it has periods of zero demand and
periods with positive demand, it could be hard to forecast with use of exponential smoothing.
Exponential smoothing will react too slow for peaks in demand (Axsäter, 2006). The Croston
method does differentiate between the size of positive demand and the time between two periods
of positive demand. After each period with positive demand, the method updates the demand
size and demand interval with use of exponential smoothing. One disadvantage of the method
is that it has a positive bias because it over-forecasts the mean demand (Teunter et al., 2011).
The forecast package in R combines the size of positive demand and the time between two peri-
ods of positive demand to create an average forecast R Core Team (2024). Lindsey and Pavur
(2013) propose a way to include seasonality. This makes the Croston method relevant for in-
termittent seasonal spare parts. However, this option is not included in the forecast package in R.

In the previously described forecast methods, we assume independence of demand. However,
it could be the case that this is not true and demand is correlated. A forecasting technique that
handles correlated stochastic demand variations is the autoregressive integrated moving average
(ARIMA) model. This model involves parameters for the autoregression order, difference order,
and moving average order (Axsäter, 2006). The seasonal ARIMA (SARIMA) model includes
seasonal components and involves double the number of parameters compared to ARIMA as
every parameter also has a seasonal parameter. Also, it has a seventh parameter representing
the number of time steps for a single seasonal period (Malki et al., 2022).

To see whether machine learning methods are suitable for demand forecast, Moroff et al.
(2021) compares the statistical Holt Winters’ method and an extended version of the SARIMA
with the machine learning methods XGBoost, random forest, long-term short-term memory, and
multilayer perceptron. They conclude that two factors must be considered in order to compare
the methods. The forecast performance but also the implementation effort of the methods are
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relevant to compare the methods. The statistical methods do perform well but have a high
implementation effort, while the machine learning methods are relatively easy to implement,
but sometimes have a lower performance. Makridakis et al. (2020) also comment on the perfor-
mance of different forecast methods. 40 years ago, the first forecasting competitions took place,
also known as the M forecasting competition. In the first competitions, a simple exponential
smoothing method outperformed ARIMA models. They also found that human judgement did
not improve the accuracy of forecasting. In the latest competitions from 2020 onwards, the con-
clusions shifted towards the machine learning models outperforming all others.

The combination of multiple forecast methods is a well-established procedure to improve
the performance of forecasting. For example, by taking the mean or median of multiple point
forecasts. However, the mean of point forecast is sensitive for outliers and the median needs
about 30 forecasts to function well (Barrow and Kourentzes, 2016).

3.2.7 Identifying Trend and Seasonality

Now, we have seen forecast methods including level, trend and seasonality. The inclusion of these
factors requires more parameters to estimate and if there is no significant effect present, it will
only cause more noise. There are several ways to identify trend or seasonality. The most simple
method is with an exploratory data analysis using graphs or pivot tables. For example, deseason-
alising demand with the moving average over a year and plotting this can help identifying trend.
Or, plotting the demand per month for every year in a graph can help identifying seasonality.
However, this involves creating visualisations and therefore requires visual recognition of trend
or seasonality which is time-consuming (Van der Heijden, 2022).

There are also statistical test for identifying trend and seasonality. Use regression on a large
dataset and check whether the slope is significant to identify the trend. A statistical approach to
identify seasonality is using a regression model with dummy variables for each seasonal factor.
First, remove the trend. Then, use linear regression models for the de-trended demand with
seasonal dummy variables. At last, perform t- and f-tests to see whether the seasonal effects and
model are significant (Van der Heijden, 2022). The statistical methods work in a more systematic
way then the exploratory data analysis and are easier to use when considering many spare parts.

Seasonality might be deterministic and the seasonal factors can be modelled with use of
seasonal dummy variables. However, seasonality might be non-stationary as it evolves over
time. Assuming the one type when the other is dominant can lead to high bias, so testing
and considering whether seasonality is deterministic or stochastic can lead to better forecasting
performance. Darné and Diebolt propose the HEGY (Hylleberg, Engle, Granger, and Yoo) test
procedure to determine the nature of seasonality (Darné and Diebolt, 2002). For the scope of the
research, we proceed with the deterministic assumption as we assume spare parts are constantly
sensitive for seasonality.

3.2.8 Forecast Accuracy

Measuring the accuracy of a forecasting process helps three different purposes. First, it helps
identifying the height of safety stock. Additionally, it makes it possible to monitor the validity
of the forecasting model and parameters. Lastly, the measurements will count as feedback to the
forecasts (Van der Heijden, 2022).

The most common procedure to calculate the forecast accuracy within traditional forecast
evaluation is the last block evaluation (Bergmeir and Benítez, 2012). Here, the available demand
data is split in a train and test set. The train set is used to train the forecast model. This trained
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model will make predictions and this will be tested along the test set. A negative side effect of
this simple approach is that there could be dependency in this procedure. Performing multiple
validation enhances the robustness of the measured performance and prevents overfitting. Possi-
bilities are cross-validation or forward-validation, where forward-validation performs better. An
example is the growing-window forward-validation (Figure 3.4), using five validation iterations,
each with a growing train set and a changing test set (Schnaubelt, 2019).

Figure 3.4: Growing-Window Forward-Validation Visualisation (Schnaubelt, 2019)

A common measurement of performance is the bias. If the bias value is close to zero, the
forecast is unbiased which indicates a well balanced forecast. A high positive or high negative bias
indicates that a forecast is constantly too high or low. The standard deviation of forecast errors
gives an indication of the spread of forecast errors. The bias and standard deviation both give an
indication of the performance but do not give a complete description that could help decide how to
allocate resources (Silver et al., 2016). In contrary, the mean squared error (MSE), the root mean
squared error (RMSE), the mean absolute deviation (MAD), the mean absolute percent error
(MAPE) and the symmetric mean absolute percent error (sMAPE) are performance measures
for variability that are widely used. The remarks on these methods are that the MAD is seen as
more robust than the MSE as the MSE is sensitive to outliers. When aggregating the forecast
performance measures MSE, RMSE, and MAD, it does not include the influence of demand size.
When dividing these measures with the demand size, it is possible to aggregate. Dividing the
MAD with the demand size creates the formula for the MAPE. However, the MAPE is not useful
for low demand. Therefore, the sMAPE is the most appropriate performance measure ranging
from 0-200%. The formula for the sMAPE is shown in Equation 3.2 respectively.

sMAPE =
100%

h

h∑
t=1

|x̂t − xt|
|xt|+|x̂t|

2

(3.2)

where:

• xt is the actual demand in time period t

• x̂t is the forecasted demand in time period t

• h is the forecast horizon

3.3 Inventory Control

Forecasting alone is not enough for inventory management. Controlling the inventory and de-
signing how to replenish, are as important. Inventory control considers different ordering systems
involving order size, reorder points, order up to levels, and safety stock.

3.3.1 Policies

When looking at different inventory control policies, there are policies with a continuous or pe-
riodic review, and policies with a fixed or variable order size.
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The (s, Q)-policy uses a fixed lot size with continuous review. When the inventory position
is at or below the reorder point s, the fixed lot size Q is ordered. Reorder point s consists of the
expected demand during lead time plus the safety stock which should cover the uncertainty in
demand during the lead time (Van der Heijden, 2022).

The (R, s, Q)-policy is the same as the (s, Q) policy, except it does not review the inventory
position continuously but periodically with parameter R. There is more chance of a undershoot
due to waiting for the next review period which should be included when calculating the safety
stock (Van der Heijden, 2022).

The (s, S)-policy uses a variable lot size with continuous review. This means if the inventory
position is at or below the reorder point s, an order is placed. The size of the order depends
on the current inventory position since a lot size is used to reach the order up to level S. The
safety stock should cover the uncertainty in undershoot plus the uncertainty in lead time demand
(Van der Heijden, 2022).

The (R, s, S)-policy makes use of a variable lot size with a periodic review. This means that
according this policy, every R periods the inventory position is checked. If the inventory position
is at or below reorder point s, up to reorder level S is ordered. The (R, S)-policy also uses a
variable lot size with a periodic review. However, every R periods an order is placed up to the
reorder level S. The safety stock should cover the uncertainty in demand during lead time plus
the review period (Van der Heijden, 2022). The review period is often dependent on external
factors like the frequency of truck deliveries (Silver et al., 2016).

3.3.2 Performance Measures

There are multiple ways to measure the performance or to set objectives for inventory control.
These can be divided into shortage costs and service levels. These can be calculated or these
could be set as goal. Based on the cost, there are four measures (Van der Heijden, 2022).

1. B1: Costs per stockout occasion

2. B2: Fractional charge per unit short

3. B3: Fractional charge per unit short per unit time

4. B4: Costs per customer order line short

Based on the service level, there are five measures.

1. P1: Cycle service level

2. P2: Volume fill rate

3. P3: Ready rate

4. Time between stockout occasion

5. Order (line) fill rate

These measures are used to calculate the actual performance, but also to calculate the ex-
pected performance. Organisations can set targets based on a specific measure. Subsection 3.3.3
gives examples to calculate inventory parameters based on a target volume fill rate.
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3.3.3 Reorder Point & Safety Stock

One of the main parameters is the reorder point. The reorder point indicates when an order
should be placed. There are multiple ways to calculate the reorder point dependent on the
demand distribution. Before looking into the calculations, we take a look at determining the
demand distribution.

Silver et al. (2016) propose considering the gamma or lognormal distribution when the CV
is greater than 0.5, else the normal distribution is fitting. Also, when the expected demand
over lead time is below 10 units, other distributions are more appropriate. This reasoning and
determination of the demand distribution follow the decision tree in Figure 3.5 (Van der Heijden,
2022).

Demand during
Lead Time

Coefficient
of Variation Variance to Mean

Normal Dis-
tribution

Gamma /
Lognormal
Distribution

Binomial
Distribution

Poisson Dis-
tribution

Negative Bino-
mial Distribution

> 10 ≤ 10

≤ 0.5 > 0.5 < 1 ≈ 1 > 1

Figure 3.5: Demand Distribution Decision Tree

When considering the normal distribution, the reorder point is calculated with the use of
the demand over lead time and the safety stock (see Equation 3.3). The standard deviation
is dependent on the uncertainty of demand and lead time. The equation assumes that the
lead time (L) and annual demand (D) are independent from each other (Silver et al., 2016).
The standard deviation (σ) is calculated over the errors (ϵ), rather than over the demand itself
because we already considered explainable variation in demand due to seasonality and trend
when forecasting. The standard deviation should only account for the unexplainable variation in
demand: the uncertainty. This equation also assumes that the forecast errors are not correlated,
while these are. Prak et al. (2017) state that this assumption underestimates the variance over
lead time. They correct this underestimation by applying the law of total variance. As this
in-depth standard deviation calculation goes beyond the scope of this research, we will stick to
Equation 3.3.

s = x̂L + k ×
√
E(L)× σ2

ϵ + E(D)2 × σ2
L (3.3)

Furthermore, the safety stock is calculated with the safety factor k. This is calculated dif-
ferently according to the service level measure. As the volume fill rate P2 is important for NS,
Equation 3.4 and the standard normal loss function are appropriate for calculating the safety
factor, where the order quantity Q is used. Note that these equations do not include undershoot
which is not relevant for the (s, Q)- or (s, S)-policy (Van der Heijden, 2022).

G(k) =
Q× (1− P2)√

E(L)× σ2
ϵ + E(D)2 × σ2

L

(3.4)

When considering the other distributions, we need different equations for calculating the
reorder points. Equation 3.5 is the basis for using the volume fill rate in the calculation of the
expected shortage per replenishment cycle (ESPRC). Silver et al. (2016) write about calculating
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the reorder points in case of gamma and poisson distributed demand. With the use of Equation
3.6 and the cumulative distribution function of a gamma distribution, we can find s for gamma
distributed demand. Here, the alpha and beta are the shape and scale parameters, respectively.
For poisson distributed demand, Equation 3.7 holds to determine the reorder point. This is
calculated with the cumulative distribution function of a poisson distribution and the lambda as
mean arrival rate. There are no sources found for the calculation of the ESPRC in case of the
binomial and negative binomial distribution. However, by transposing the ESPRC formulas in
Appendix B, we find the formulas for binomial and negative binomial demand in Equation 3.8
and 3.9, respectively.

ESPRC = Q× (1− P2) (3.5)

ESPRC = αβ × [1− Fgamma(s;α+ 1, β)]− s× [1− Fgamma(s;α, β)] (3.6)

ESPRC = λ× [1− Fpois(s− 1;λ)]− s× [1− Fpois(s;λ)] (3.7)

ESPRC = np× [1− Fbinom(s− 1;n− 1, p)]− s× [1− Fbinom(s; , n, p)] (3.8)

ESPRC =
r × (1− k)

k
× [1− Fnbinom(s− 1; r + 1, k)]− s× [1− Fnbinom(s; r, k)] (3.9)

3.3.4 Order Size

When having a constant demand, it is possible to use the EOQ formula to determine the order
size of an inventory policy. However, it is also possible to adapt to time-varying demand when
determining the order size. Basically, there are three approaches to deal with a deterministic,
time-varying demand pattern. When the variability is low, the EOQ formula still makes sense
to use. Silver et al. (2016) propose using the EOQ formula when the coefficient of variation is
smaller than 0.2. Also, the Wagner-Whitin method can be used as exact best solution. Lastly,
an approximate or heuristic model, like the Silver-Meal heuristic, is an approved method to
determine the order size. There are two situations where the use of a heuristic can lead to
significant costs. When the demand drops rapidly and when there are a lot of periods having no
demand. This argument in combination with simplicity, draws the conclusion to choose for the
EOQ method.

3.4 Combining Forecast Methods with Inventory Control

The research of this thesis considers both forecasting and inventory control. A lot of articles
describe solving a problem regarding either of these subjects. Therefore, it is insightful to gather
literature sources about articles that describe a solution to both subjects. This section is dedi-
cated to this.

Bacchetti and Saccani (2012) state that the elements of integrated spare parts management
follow a closed loop, see Figure 3.6. The loop goes from spare parts classification, to demand
forecasting, then inventory management and ending with the performance assessment after which
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it returns to spare parts classification . Mobarakeh et al. (2017) follow a similar approach. The
approach starts with classifying the SKUs, then it compares a bootstrap forecast function with
other existing forecast methods like moving average, exponential smoothing, and Croston. The
best scenario is chosen for each demand class. In the end, it calculates the inventory costs based
on a predefined inventory strategy based on intermittent demand. This results in a matrix of
the best forecasting method and best inventory management strategy for each SKU.

Figure 3.6: Integrated Approach to Spare Parts Management (Bacchetti and Saccani,
2012)

Table 3.1 shows what literature combines which forecast methods with which inventory con-
trol policies. Here, MA means moving average. Relevant outcomes of this literature are:

• The Croston method is used for infrequent (intermittent) demand data in combination
with the (s, (n)Q)-policy (van Wingerden et al., 2014). This is relevant for the problem of
NS, as NS also has a lot of infrequent demand data.

• In a similar industry, the aircraft service, the SES method is used in combination of the
(R, S)-policy (Syntetos and Boylan, 2006).

• Normal distributed demand including seasonality is forecasted using the Holt Winters’
method in combination with the (s, Q)-policy (Alstrøm and Madsen, 1994).

• In Table 3.1, we find the same forecast methods as we find in Section 3.2. So, it is worth
evaluation all of these in Chapter 4.

• In Table 3.1, we find mostly articles using the (s, Q)- and (s, (n)Q)-policy. This is a simple
approach similar to the policy currently used. We want to use a continuous policy as this
is possible within the capacities of NS and reduces the safety stock needed. Also, a fixed
lot size is preferable as spare parts could come in boxes or on pallets. To make sure the
inventory position increases above the reorder level when reordering, we choose the (s,
(n)Q)-policy for Chapter 4.

• Our research expands the literature by identifying spare parts with seasonal variation and
evaluating many forecast methods on a niche area, namely spare parts management in a
railway company. The integration with an inventory policy is not a theoretical contribution
but it is relevant for NS.

39



3.4. Combining Forecast Methods with Inventory Control

Table 3.1: Related Research Solution Approaches
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3.5. Conclusion of the Literature Research

3.5 Conclusion of the Literature Research

This chapter answers the second research question of this thesis. The findings of this chapter
give an overview of the possibilities for the model approach in the next chapter.

RQ2: "What are possible forecast methods and inventory policies for the spare parts
to apply in the context of SCO?"

First, we identified several classification methods present in literature. Combining multiple
classification methods addresses limitations of a single classification method. Combining ABC-
and XYZ-classification including relocation of critical spare parts is a robust approach and sug-
gest target service levels. Besides classification based on ADI and the CV is a commonly accepted
method to determine suitable forecast methods. The FSN- and VED-classification method are
not relevant for this research.

Furthermore, multiple regression is a time-efficient method to identify the presence of seasonal
variations in comparison to an exploratory data analysis. When seasonal variations are present,
forecast methods, like the Holt Winters’ trend-seasonal method, SARIMA, or machine learning
methods can be used. The Croston method performs well when observing an intermittent de-
mand pattern which could be performing well as seasonal spare parts could have intermittent
demand. Other mentioned methods, like the moving average, SES, and Holt method could be
relevant in case of smooth demand. There is not one single performance measure for forecasting
that captures the complete accuracy. Multiple measures like the bias, mean absolute deviation,
root mean squared error, and symmetric mean absolute percent error give an insight in the fore-
cast performance. However, the symmetric mean absolute percentage error gives the best insight
as it is not sensitive to outliers, zero demand, and possible to aggregate over multiple spare parts.
To prevent overfitting, we should separate training and testing data and include the growing-
window forward-validation method when forecasting. The growing-window forward-validation
method is a method appropriate for time-series data.

Additionally, the chapter explained different inventory policies and corresponding perfor-
mance measures. The most important measure for NS is the volume fill rate. Setting a target
for this measure is used to calculate a corresponding reorder point. Also, we should consider
different demand distributions for calculating the reorder points as these are relevant. The EOQ
formula is suggested to determine the order quantity as the Wagner-Whitin method and Silver-
Meal heuristic are complex and sensitive to a high ADI, respectively.

Lastly, we looked into literature about combining forecast methods with inventory control.
Here, the literature confirms the approach of first classifying spare parts, then forecasting, in-
ventory, and ending with performance assessment. Also, we gave an overview of examples of
combining forecast methods with inventory control policies. We conclude that it is worth eval-
uating all forecast methods from Section 3.2 in Chapter 4. Also, we conclude that we will be
controlling inventory using the (s, (n)Q)-policy as this is the most used policy.

The end of this chapter completes step 4 of the MPSM, formulating solutions. Figure 3.7
shows the progress of the research so far.
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Defining the
problem ✓

Formulating
the approach ✓

Analysing the
problem ✓

Formulating
solutions ✓

Choosing
a solution

Implementing
the solution

Evaluating
the solution

Figure 3.7: MPSM Flow Chart - Step 4 Completed
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Chapter 4

Model Design

The fourth chapter presents the model approach to answer the third research question (RQ) of
this thesis partly.

RQ3: "What are the best fitting forecast methods and inventory policies for the sea-
sonal spare parts at SCO?"

We visualize the model design in Figure 4.1. This chapter follows this flow chart step by step.
First, this chapter describes identifying seasonal spare parts, where the non-seasonal spare parts
are excluded from the research. Next, it will explain the classification method for the seasonal
spare parts. Then, several forecast methods will be implemented as well as a method to measure
the performance of these forecasts. The best performing forecast methods will be chosen as input
for the inventory model. The last section describes the inventory control that will be used and
how to measure its performance. All parts of the model are coded in the programming software
R (R Core Team, 2024). Summarising, this chapter will explain the model after which Chapter
5 will use this model to perform numerical experiments and present the results.

Determine Spare
Part Population

Identify Sea-
sonality

No Seasonality

Classification Forecasting Inventory Control Performance

Figure 4.1: Flow Chart of Model Approach

4.1 Identifying Seasonality

To identify the presence of seasonality in spare part demand, we use the statistical analysis out-
lined in Subsection 3.2.7. This analysis investigates the demand pattern of a particular spare
part to see if there is a relationship between the demand and the corresponding months. With
the analysis goal in mind, we specify the null and alternative hypotheses. These are:

H0 : There is no relationship between the months of a year and the demand.

HA : There is a relationship between the months of a year and the demand.

This test is a correlational analysis where we explore the possible relationships between the
variables demand and month. The demand is a numerical variable whereas the month is a cate-
gorical one. The input for this approach requires demand data of more than a year as we consider
yearly returning seasons. Our objective is to perform a regression analysis on the demand data
which can conclude that there are yearly recurring seasonal variations in certain months. Before
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4.1. Identifying Seasonality

performing the regression analysis, we have to make sure we are dealing with stationary data.
This means that the demand data is constant over time. Because seasonal variations could be
influenced by the trend of demand, we should remove this influence to make the data stationary.

To remove the trend, we should estimate it. First, we calculate the twelve months moving
average using the rollmean function (R Core Team, 2024) to disregard any seasonality. This is
not possible for the first eleven months, so we exclude these data points from the identification of
seasonality. Then, we perform linear regression on the moving averages of the selected demand
points using the stats package (R Core Team, 2024). The regression provides a slope which is
considered as the estimated trend bi. Equation 4.1 shows the formula to calculate the de-trended
demand D̃it per time period t for each spare part i with use of the original demand data Dit and
subtracting the estimated trend multiplied by the time period.

D̃it = Dit − bi × t (4.1)

The next step is the regression analysis on the de-trended demand to identify seasonality.
The month variable is a categorical variable and should be transformed into a numerical variable
to include in the regression analysis. A solution for this problem is creating dummy variables.
Dummy variables are binary, they only take two possible numerical values, zero or one (James
et al., 2022). In the context of the variable month, we create eleven dummy variables. An
example of a dummy variable is:

Jant =

{
1 if the t-th demand point is in January,
0 if the t-th demand point is not in January.

Table 4.1 shows three examples of demand points. Each demand point now has twelve vari-
ables, one demand variable and eleven month dummy variables. Note that there is no dummy
variable for the month December. When all dummy variables are set to zero, this represents a
demand point in December as shown in the third example. The level with no dummy variable
(December) is known as the baseline (James et al., 2022). As there are multiple variables, we
use multiple regression with the demand data as y-input (dependent variable) and the dummy
variables as x-input (independent variables).

Table 4.1: Example of Three Demand Points with Corresponding Values of Demand
and Month Dummy Variables

Demand Point Demand Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
January 2023 22 1 0 0 0 0 0 0 0 0 0 0
July 2023 32 0 0 0 0 0 0 1 0 0 0 0
December 2023 42 0 0 0 0 0 0 0 0 0 0 0

To test whether the multiple regression model is significant or does rely on chance, we cal-
culate the significance of the F-test statistic. This calculation is known as the Fisher test and
is performed with the use of the stats package (R Core Team, 2024). The significance of the
F-test statistic is the chance that any association between the predictors and response occurs by
chance, in the absence of any real association between the predictors and the response (James
et al., 2022). This is also known as the type I error (see Table 4.2). To identify the spare parts
that include a form of seasonality within the demand, there is a threshold. This is a chosen
significance level. The threshold is used to determine which spare part demand patterns include
seasonality. When the calculated significance is lower than the chosen threshold level, we reject
the H0 hypothesis and identify seasonality. It is unlikely that all parameters of the model are

44



4.2. Classification

zero. The identified seasonal spare parts are the input for the further model.

Table 4.2: Seasonal Spare Part Confusion Matrix

Concluded \Reality No Seasonality Seasonality
No Seasonality Confidence Level (1− α) Type II error (β)
Seasonality Type I error (α) Statistical Power (1-β)

In this analysis, we make several assumptions because of simplicity reasons, these are:

• We assume seasonality to be monthly dependent as we have monthly data while it could
also be possible that seasonality is quarterly dependent,

• We assume a consistent cycle length of twelve months, the length of a year,

• Using the multiple regression analysis, we assume additive seasonality,

• We assume that the seasonal variations are stationary.

4.2 Classification

To make deliberate choices in forecasting and inventory control, we perform a three-dimensional
classification on seasonal spare parts. This classification consists of the (i) ABC-classification,
(ii) XYZ-classification, and the (iii) classification based on the average demand interval (ADI)
and coefficient of variation (CV) which are explained in Section 3.1. The ABC- and XYZ-
classification will give guidance in decisions regarding inventory control, while the classification
method based on the average demand interval and coefficient of variation helps choosing fitting
forecast methods as specific forecast methods perform well on specific demand patterns. This
section explains the method for the classification, Section 5.2 describes which cut-off values are
used and what the results are.

The ABC-classification (i) method requires unit prices and historical demand from the sea-
sonal spare parts. We multiply the unit price and summed demand to calculate the usage value.
After sorting the spare parts according to the usage value, the spare parts are split into three
classes. The classification will provide a list of spare parts with an A-, B-, or C- classification.
An addition to the ABC-classification is that we also include the criticality of spare parts. When
a spare part has the characteristic of being critical, we decide to move it to the A class.

The XYZ-classification (ii) only requires historical demand data from the selection of spare
parts. Based on this data, the coefficient of variation (CV) is calculated with Equation 4.2 and
spare parts are classified in the X-, Y-, or Z-class. Low CV values represent stable demand and
are classified with an X, where high CV values indicate irregular demand and are labeled as Z.

CVi =
σi
µi

(4.2)

where:

• σi is the standard deviation of the demand data for spare part i,

• µi is the mean of the demand data for spare part i.
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4.3. Forecasting

Table 4.3 shows qualitative target service levels (TSLs) based on the ABC- and XYZ-
classification. The high usage value and predictable spare parts (class AX) receive a higher
TSL as this will benefit the inventory costs. The low usage value and less predictable spare parts
(class CZ) receive the lowest TSL. The TSLs are chosen based on an aggregate TSL. Compared
to the current classification of SCO, explained in Subsection 2.2.4, we are combining instead of
separating the usage and part value. Therefore, the rule that spare parts with a low value receive
a high TSL does not hold anymore. Now, spare parts with a low usage value receive a low TSL.

Table 4.3: Qualitative TSLs based on ABC- and XYZ-Classification

ABC\XYZ Class X Class Y Class Z
Class A Highest High Medium
Class B High Medium Low
Class C Medium Low Lowest

The third classification method (iii) also uses the CV. But next to the CV, the calculation
of the ADI, requiring historical demand data, is needed. Equation 4.3 shows the corresponding
formula. The ADI provides insight into the intermittency of the demand pattern. Higher ADI
values indicate more intermittent demand. Both calculations will result in a division of four
classes, namely the intermittent, smooth, erratic, or lumpy classes.

ADIi =
Ti

Di
(4.3)

where:

• Ti is the total number of periods observed for spare part i,

• Di is the number of periods with non-zero demand for spare part i.

Table 4.4 provides the classification based on the CV and the ADI.

Table 4.4: Classification based on CV and ADI

CV \ADI Low ADI High ADI
Low CV Smooth Intermittent
High CV Erratic Lumpy

The three-dimensional classification approach using the ABC-classification, XYZ-classification,
and the classification based on the ADI and CV leads to 36 classes in total as the methods rep-
resent three, three, and four classes, respectively (3× 3× 4 = 36).

4.3 Forecasting

Forecasting involves choosing a method, initialising the parameters of that method, the demand
forecast, and updating the parameters. To choose an appropriate forecast method, we develop
a model that uses historical corrective demand data to test various forecasting methods. We
should consider the best performing forecasting methods as appropriate forecast methods.

In our model, we implement the current used forecast methods of SCO, but also additional
forecast methods that include seasonality and are suitable for different demand patterns. These
forecast methods are explained in Section 3.2 and implemented with the use of the forecast pack-
age (R Core Team, 2024). This package also makes estimates of the initial values and smoothing
factors of a forecast method. This means we neglect the proposed smoothing parameters within
the literature research in Section 3.2 as these are possibly not optimal for our set of data. The
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4.4. Inventory Control

forecasts are one period ahead which means that the forecasts are updated every month. The
currently used forecast methods are:

• Moving average,

• Weighted average,

• Simple exponential smoothing (SES),

• Holt,

• No forecast (assuming zero demand every time period).

The additional proposed forecast methods are:

• Holt-Winters,

• Croston,

• (Seasonal) Auto Regressive Integrated Moving Average ((S)ARIMA).

We say (S)ARIMA as we use the auto.arima function (R Core Team, 2024) which automat-
ically selects the best model based on the input data. This means it can in- and exclude the
seasonal parameters depending on what fits the data the best. In our model, we are not using
any machine learning methods. This is because of the low amount of data points. Machine
learning methods are known to perform well when they have access to a lot of historical data.

We implement the growing-window forward-validation method, explained in Subsection 3.2.8.
This validation method makes the results more robust and prevents overfitting. We calculate the
bias, mean absolute deviation, and the symmetric mean absolute percentage error per validation
set with the formulas in Subsection 3.2.8. By averaging the performance of the different valida-
tion iterations, we can compare the forecast methods and provide a substantiated conclusion for
the best forecast method. One remark is that we test the forecast methods on the same data as
we tune the parameters on. This is not the best approach. Ideally, we would have enough data
to separate tuning and testing. However, Section 5.3 explains that we do not have this amount
of data which made us decide to tune and test on the same data.

The assumptions we make in this model are that we assume that we will capture seasonal
patterns within at least one year of historical data.

4.4 Inventory Control

We will use the realized demand data of the most recent year to test the continuous (S, (n)Q)-
policy inventory policy as this covers a year of demand and includes all seasonal variations.
This means that we have another test set. It is important that this is not used in the forecast
selection procedure of Section 4.3 as we want to test our inventory policy with forecasted demand
on unseen data. Due to time limitations and therefore simplicity reasons:

• We generalize exchange parts as wear parts,

• We assume no variability for preventive maintenance demand,

• We assume infinite supplier capacity,

• We assume constant unit prices, holding rates and ordering costs, so also no bulk discounts,
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4.4. Inventory Control

• We assume no spare parts in the pipeline at the start of testing the inventory model.

• We determine the mean and variance of the lead time based on historical records. If not
present, we assume a mean of 222 business days and the maximum known variance. We
do not consider the lead times within the contracts with suppliers,

• We use static inventory parameters,

• Some spare parts have expire date which means they expire after being hold on stock for
too long resulting in more inventory costs. We exclude this from the model.

4.4.1 Forecasting Demand over Lead Time

With the use of the best performing forecast method and the lead times (L), we forecast the
corrective demand over lead time for every time period of the test set. Furthermore, we add the
preventive demand over lead time for every time period of the test set to the forecast to end up
with the total forecasted demand over lead time (x̂L).

4.4.2 Demand Distribution Division

An important parameter is the reorder point. How to calculate this, is determined by the
demand distribution. Subsection 3.3.3 explains with the use of a decision tree how to determine
the demand distribution. We look at the forecasted demand over lead time, CV, and the variance
over mean (V/M) ratio. In Subsection 4.4.1, we explained how to obtain the forecasted demand
over lead time. In Section 4.2, we described the formula for the CV. However, instead of the
mean and standard deviation of demand, we use the forecasted demand over lead time and the
standard deviation of the forecast error over lead time respectively, as seen in Equation 4.4. The
same holds for the calculation of the V/M ratio, shown in Equation 4.5 (Van der Heijden, 2022).

CVi =

√
E(L)× σ2

ϵ + E(D)2 × σ2
L

x̂Li
(4.4)

V/Mi =
E(L)× σ2

ϵ + E(D)2 × σ2
L

x̂Li
(4.5)

where:

• σϵi is the standard deviation of the forecast error for spare part i.

After calculating the CV and V/M ratio, we divide the spare parts into distribution groups.
How we do this is explained in Subsection 3.3.3. The assigned distribution forms the basis for
the reorder point calculations.

4.4.3 Normally Distributed Demand

To calculate the reorder point (s) of the normally distributed spare parts, we first calculate the
safety stock (SS) which is explained in Subsection 3.3.3. Since we are considering uncertain
demand and lead time, the equation is this extensive. With the calculated safety stock, we can
use the formula in Equation 3.3 to determine the reorder point. We are updating the reorder
point for every time period in the test set as we have a forecasted demand over lead time for all
these time periods.
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4.4. Inventory Control

4.4.4 Other Distributed Demand

To calculate the reorder point (s) of the spare parts with a non-normal distribution of demand, we
use Equation 3.5. Here, we calculate the maximum estimated shortage per replenishment cycle
(ESPRC) given the TSL. With use of Equations 3.6, 3.7, 3.8, and 3.9 we find s where we use x̂L
for the mean and E(L)×σ2

ϵ +E(D)×σ2
L for the variance. Again, the calculations for the gamma

and poisson distribution come from Silver et al. (2016). For the gamma distribution, we will
estimate α and β with the use of Equation 4.6 and 4.7. We will estimate λ with Equation 4.8 for
the poisson distribution. For the binomial distribution, we will estimate n and p with Equation
4.9 and 4.10 respectively where we round n to an integer. Lastly, for the negative binomial
distribution, we will estimate r and k with Equation 4.11 and 4.12 respectively (Mandal, 2023).
There is one remark, we can not find s in these equations algebraically. We have to estimate
s with the use of an iterative process in R where we will increase s until we reach the desired
volume fill rate (Silver et al., 2016).

α =
x̂2L

E(L)× σ2
ϵ + E(D)2 × σ2

L

(4.6)

β =
E(L)× σ2

ϵ + E(D)2 × σ2
L

x̂L
(4.7)

λ = x̂L (4.8)

n = round[
x̂2L

x̂L − (E(L)× σ2
ϵ + E(D)2 × σ2

L)
] (4.9)

p =
x̂L
n

(4.10)

r =
x̂2L

E(L)× σ2
ϵ + E(D)2 × σ2

L − x̂L
(4.11)

k =
x̂L

E(L)× σ2
ϵ + E(D)2 × σ2

L

(4.12)

4.4.5 Order Quantity

Furthermore, we can calculate the order quantity with use of the economic order quantity (EOQ),
see Equation 4.13.

Qi =

√
2DiSi

hici
(4.13)

where:

• Di is the annual demand for spare part i,
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4.5. Conclusion of the Model Approach

• Si is the ordering cost per order for spare part i,

• hi is the holding rate per unit per year for spare part i,

• ci is the unit price for spare part i.

To prevent that the EOQ suggests a quantity that does not increase the inventory position
above the reorder point, we use the option to order n × EOQ where n should be chosen such
that the inventory position surpasses the reorder point. However, we also take into account
the minimum order quantity (MOQ). This is a restriction from the supplier. Therefore, we do
Orderquantity = max(nQ,MOQ).

4.4.6 Material Resource Planning

With all input parameters, we set up a material resource planning (MRP) based on a specific
inventory policy. An MRP gives an overview of the materials in the supply chain. It calculates the
on hand balance, fulfilled demand, backorders, replenishments, pipeline, and inventory position
for the test period. Based on the MRP and realized demand, we calculate the performance
measures of the inventory control. These are the inventory holding and order costs, but also the
realized service levels. The performance measures give an indication of how the inventory costs
and service levels relate.

4.5 Conclusion of the Model Approach

This chapter answers the third research question of this thesis partly. The findings of this chapter
give the approach for the solution.

RQ3: "What are the best fitting forecast methods and inventory policies for the sea-
sonal spare parts at SCO?"

First, we use multiple regression to determine whether the demand pattern of a spare part is
correlated to the months of the year. This helps us identify the seasonal spare parts. Then, we
will classify the seasonal spare parts. We use a three-dimensional classification with ABC- and
XYZ-classification including relocation of critical spare parts and the classification based on the
ADI and CV. The ABC- and XYZ-classification will give guidance in choosing the target service
levels, while the third classification method helps choosing fitting forecast methods as specific
forecast methods perform well on specific demand patterns.

Furthermore, we presented a forecast model that tests different tuned forecast methods with
the use of the growing-window forward validation. The model calculates the forecast accuracy
using multiple measures like the bias, mean absolute deviation, and symmetric mean absolute
percent error.

Lastly, the inventory control model calculates the reorder points per demand distribution
and the order sizes which are used in an MRP. We test our inventory model and obtain the
inventory performance. This performance consists of the inventory holding costs, order costs,
and the achieved service level.

The model approach of this chapter will be used to experiment with in Chapter 5.
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Chapter 5

Results Analysis

The fifth chapter presents the results of the model to answer the third research question (RQ)
of this thesis partly.

RQ3: "What are the best fitting forecast methods and inventory policies for the sea-
sonal spare parts at SCO?"

First, this chapter identifies the seasonal spare parts, whereas the non-seasonal spare parts
are excluded from the research. Next, it will classify the seasonal spare parts to use as input
for the forecast and inventory model. Then, the results of the forecasts and inventory model
are analysed. The last section elaborates on the individual value of every model component.
Summarising, this chapter will perform numerical experiments and present the results.

5.1 Determine Seasonal Spare Parts

In Section 4.1, we explain the statistical analysis to identify yearly seasonal variations in the
demand pattern of spare parts. In this section, we describe the experiments and results of this
analysis.

5.1.1 Identified Seasonal Spare Parts

To start, we use the demand data from March 2019 until March 2024 resulting from corrective
maintenance of all spare parts within the current train series. This is demand data from 19,483
spare parts. We prepare the data by removing all spare parts with a total demand of less than 60
parts over the past five years. If we do not make this adjustment, there is a possibility that spare
parts with low usage will be identified as seasonal spare parts. SCO does not want to handle
these as seasonal spare parts as these spare parts do not require intensive monitoring. We do not
use a higher demand boundary as spare parts that were introduced two or three years ago could
show yearly recurring seasonal variations. With a higher demand boundary, these are possibly
not selected. This limitation excludes 95.0% of the spare parts from the statistical analysis. This
is a huge proportion as NS never removes historical data from spare parts. What remains are
971 spare parts that we analyse.

Before looking at the results of the multiple linear regression analysis on all demand data, we
should make a decision for the value of the threshold for the significance of the F-test statistic.
Figure 5.1 shows the relation between the number of identified seasonal spare parts and the
significance threshold. Approximately, it follows a linear graph which indicates that increasing
or decreasing the threshold would mean a linear increase or decrease of identified seasonal spare
parts.
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5.1. Determine Seasonal Spare Parts

Figure 5.1: Line Graph with Number of Identified Seasonal Spare Parts for Different
Significance Thresholds

We set the threshold for the significance of the F-test statistic to 0.05 as this is a commonly
used threshold to accept statistical models and NS agrees on this. Also, we see that for a
significance threshold lower than 0.05, the number of spare parts increases relatively more than
for a significance threshold higher than 0.05. With a significance threshold higher than 0.05,
we should sacrifice more significance to include extra spare parts. Choosing a threshold of 0.05
means that if we identify a spare part as seasonal, it has a probability of at maximum 5% that
any association between the predictors and response occurs by chance. Using this threshold, the
analysis identifies 88 seasonal spare parts.

5.1.2 Validation Statistical Identification Method

To validate the outcomes of the seasonality identification procedure, we compare the list of previ-
ously classified seasonal spare parts with the current identified seasonal spare parts of Subsection
5.1.1. We find nine spare parts that are present in both the previous and the current list. This
also means that 50 spare parts are not identified by our procedure. Furthermore, we perform an
explanatory data analysis using historical demand graphs to assess the presence of seasonality.
Subsection 3.2.7 explains that this procedure is time-consuming. However, the list of previously
classified seasonal spare parts is not extensive which makes it possible to perform this explana-
tory analysis to validate the identified seasonal spare parts.

Table 5.1 shows the results after analysing the demand graphs. By the explanatory data
analysis using historical demand graphs (validation), we identify six seasonal spare parts (see
also Subsection 2.2.2). This is a lower amount than when using the statistical test. We already
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discussed some of the demand graphs in Subsection 2.2.2 and Appendix A. In Figure 2.2, NS
identifies a clear seasonal demand pattern, in Figure A.1, NS identifies an unclear seasonal
demand pattern but they do classify it as seasonal, and in Figure A.2, NS does not identify a
seasonal demand pattern. Interesting to know is that the six seasonal spare parts of the validation
are also identified as seasonal in the statistical test. We can conclude that this observation
validates the statistical test as all visually identified seasonal spare parts are also selected by the
statistical test.

Table 5.1: Validation Results of Identifying Seasonal Spare Parts based on Previous
Classified Seasonal Spare Parts

NS Classification Statistical Classification Validation
Seasonality 59 9 6
No Seasonality N/A 50 53

5.2 Classification Analysis

After identifying the seasonal spare parts, we classify them according to the approach described
in Section 4.2. We use the demand data from the previous twelve months resulting from the
corrective maintenance of all 88 seasonal spare parts. We choose for twelve months as it captures
a full year capturing all possible seasons. If we use more or less months of demand data, possibly
seasonal variations are captured multiple times or are not captured at all. We could choose to
include demand data from the past two years. However, this detracts from the classification
as we want to identify the current importance and variability of the spare parts and not the
importance and variability of two years ago. Furthermore, we use the unit price of all seasonal
spare parts. We calculate the annual usage value by multiplying the demand and unit price and
also the coefficient of variation (CV) by dividing the standard deviation by the mean. We set
up the following classification boundaries:

• Class A: the spare parts with the highest annual usage value covering 50% of the total
annual usage value.

• Class B: the spare parts with the highest annual usage value after class A covering 30% of
the total annual usage value.

• Class C: the spare parts with the lowest annual usage value covering 20% of the total
annual usage value.

• Class X: the spare parts with a CV lower than 0.20.

• Class Y: the spare parts with a CV higher than 0.20 but lower than 0.40.

• Class Z: the spare parts with a CV higher than 0.40.

The boundaries of the ABC-classification are adopted from the literature in Subsection 3.1.1.
However, the boundaries of the XYZ-classification are not adopted but adjusted based on the
literature in Subsection 3.1.2. These boundaries are adjusted to create a more even distribution
of the spare parts over the classes. Table 5.2 summarises the ABC- and XYZ-classification.

Table 5.2: Results of ABC- and XYZ-Classification for Seasonal Spare Parts

ABC\XYZ Class X Class Y Class Z
Class A 4 5 2
Class B 1 2 11
Class C 7 27 29
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In Subsection 2.2.3, we describe the difference between critical and non-critical spare parts.
As we do not desire to control critical spare parts using a low target service level (TSL), we
manually transfer those spare parts to class A so these receive a higher TSL. As 81 of the 88
seasonal spare parts are critical, the adjustment based on criticality makes a lot of impact on the
final classification. Table 5.3 shows how the critical spare parts influenced the final ABC- and
XYZ- classification. Almost no spare parts appear in class B or C. This raises the question about
the value of the ABC-classification. However, it could be the case that for another selection of
spare parts, there are less critical spare parts which would make the ABC-classification useful.
Besides, including this classification is not time-costly. This makes it worth including the ABC-
classification in the analysis.

Table 5.3: Adjusted Results of ABC- and XYZ-Classification for Seasonal Spare Parts
based on Criticality

ABC\XYZ Class X Class Y Class Z
Class A 12 32 37
Class B 0 0 1
Class C 0 2 4

With the final ABC- and XYZ-classification, we can determine the TSLs for each class. We
use an aggregated TSL of 97.0% based on the annual demand as this is the norm for NS. Table
5.4 shows the annual demand for each class while Table 5.5 shows how the division of TSLs over
the different classes. These TSLs will be the input for Section 5.4.

Table 5.4: Annual Demand of ABC- and XYZ-Classification

ABC\XYZ Class X Class Y Class Z
Class A 13,144 6,046 2,411
Class B 0 0 715
Class C 0 115 105

Table 5.5: TSLs of ABC- and XYZ-Classification for Aggregate TSL of 97.0%

ABC\XYZ Class X Class Y Class Z
Class A 99.0% 96.0% 92.0%
Class B 96.0% 92.0% 90.0%
Class C 92.0% 90.0% 85.0%

Using the recommended threshold from literature in Subsection 3.1.3, Table 5.6 provides the
classification based on the CV and the ADI. This leads to the outcomes shown in the same table.
Most spare parts follow a smooth demand pattern. However, half of the seasonal spare parts
follow an intermittent, erratic, or lumpy demand pattern. Possibly, specific forecast methods will
perform well on specific demand patterns. Therefore, we will use this classification only for the
forecasting part. We will test the forecast methods for each of these classes to see which method
fits the best.

Table 5.6: Classification based on CV and ADI

CV \ADI ADI < 1.32 ADI ≥ 1.32

CV < 0.49 Smooth: 45 Intermittent: 20
CV ≥ 0.49 Erratic: 16 Lumpy: 7
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5.3 Forecast Analysis

After classifying the seasonal spare parts, we forecast the demand according to the approach
described in Section 4.3. We use all available historical demand data resulting from corrective
maintenance of the identified seasonal spare parts. However, we exclude the most recent twelve
months of demand data as this data is reserved for testing the inventory model in Section 5.4.
This means that 48 months (four years) of demand data remain for the forecasting model.
As explained, we split the data in training and testing sets using the growing-window forward
validation. This validation method prevents overfitting and is appropriate for time-series data.
We will use the available data as shown in Figure 5.2. Because we only have 48 months of data,
there are some limitations in using the data. It is not possible to use five independent testing
sets, so these overlap.

Figure 5.2: The Model Validation Splits for Forecasting and Inventory Control

Subsection 3.1.3 explains how each demand class has its suitable forecast methods. To test
these hypotheses, we experiment with our forecast methods per demand class. Besides, making
a conclusion about the best suitable forecast method for all spare parts will be very generalising.
Therefore, it is also better to split up the spare parts in groups with the same demand patterns.
This section will elaborate on the performance of the forecast methods based on the smooth,
intermittent, erratic, and lumpy demand.

5.3.1 Forecasting Smooth Demand

There are 45 smooth demand seasonal spare parts with an average monthly demand of 34.
Forecasting with the eight proposed forecasting methods for smooth demand leads to the results
in Table 5.7. These results are the average results of the seasonal spare parts for the five test sets.
When looking at the symmetric mean absolute percentage error (sMAPE), the Croston method
performs the best, shortly followed by the SES method. This is in line with the hypothesis
since smooth demand does not have many variation and a lot of forecast methods could fit well
for this type of demand. While the Croston method is considered to be the most effective for
intermittent demand, it can still perform well on other types of demand. This method combines
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the ADI and the demand level and generates an average forecast. When dealing with smooth
demand, which has a low ADI, the Croston method can predict this correctly and then it is also
likely to perform well.

Table 5.7: Average Forecast Performance of Smooth Demand Seasonal Spare Parts

Forecast Method sMAPE
Moving Average 51.60%

Weighted Average 52.08%
SES 51.26%
Holt 52.57%

No Forecast 191.78%
Holt-Winters 57.61%

Croston 51.25%
(S)ARIMA 55.34%

Figures 5.3 and 5.4 show that we use a lot of methods that are forecasting an average demand.
However, the Holt-Winters method is trying to predict the peaks. Based on the performance,
the forecast methods without much fluctuations score the best for smooth demand.

Figure 5.3: Forecast Comparison for a Smooth Spare Part
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Figure 5.4: Forecast Comparison for another Smooth Spare Part

5.3.2 Forecasting Intermittent Demand

There are 20 intermittent demand seasonal spare parts with an average monthly demand of 7.
Forecasting with the eight proposed forecasting methods for intermittent demand leads to the
results in Table 5.8. These results are the average results of the seasonal spare parts for the five
test sets. All forecast methods perform bad as they have a sMAPE over 100%. This is because
the average monthly demand is quite low. When a forecast differs even a very small bit from low
demand, the sMAPE can become large easily. The (S)ARIMA method performs the best. This
is possibly because (S)ARIMA involves trend and seasonality. It is performing way better than
other forecast methods. This is not in line with the hypothesis as the exponential smoothing
methods and the Croston method should perform the best. When looking at the demand graphs
of intermittent demand, we do not see strange demand patterns. However, we find that a lot of
the intermittent spare parts have an ADI between the threshold 1.32 and the value 2.00. 17 of
the 20 spare parts are in this area which could be considered as grey area. These spare parts are
classified as intermittent parts but show behavior that is similar to smooth demand. This could
be a reason why the Croston method is not performing well. However, in Subsection 5.3.1 we
see that the Croston method is performing well on smooth demand. Another reason for the bad
Croston performance could be the influence of trend and seasonality which we detect in some of
the demand graphs. The Croston method does not consider these components.
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Table 5.8: Average Forecast Performance of Intermittent Demand Seasonal Spare Parts

Forecast Method sMAPE
Moving Average 112.61%

Weighted Average 112.20%
SES 111.97%
Holt 116.47%

No Forecast 124.67%
Holt-Winters 110.88%

Croston 114.46%
(S)ARIMA 100.04%

Figures 5.5 and 5.6 show that the forecast methods cannot predict the fluctuations of inter-
mittent demand very well. Hence, the bad forecast performance. Here, it becomes visible that
the Croston forecast method is often forecasting lower than other forecast methods. The bad
forecast performance indicates that in the test set, there are less zero and low demand periods
than in the training set. The performance of (S)ARIMA shows that this forecast method has
been the best in predicting the peaks and low demands.

Figure 5.5: Forecast Comparison for an Intermittent Spare Part
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Figure 5.6: Forecast Comparison for another Intermittent Spare Part

5.3.3 Forecasting Erratic Demand

There are 16 erratic demand seasonal spare parts with an average monthly demand of 7. Fore-
casting with the eight proposed forecasting methods for erratic demand leads to the results in
Table 5.9 These results are the average results of the seasonal spare parts for the five test sets.
When looking at the best performing method based on the sMAPE, the SES scores the best,
shortly followed by the Croston and moving average methods. This type of demand does not
have one clear best fitting method because of the irregular demand. This is in line with the hy-
pothesis as linear forecast methods do not specifically perform well as machine learning methods
are more suitable.

Table 5.9: Average Forecast Performance of Erratic Demand Seasonal Spare Parts

Forecast Method sMAPE
Moving Average 75.87%

Weighted Average 76.37%
SES 75.23%
Holt 77.98%

No Forecast 174.38%
Holt-Winters 79.63%

Croston 75.45%
(S)ARIMA 80.38%

Figure 5.7 is visualising the demand pattern of a spare part with higher demand than the
spare part in Figure 5.8. Figure 5.7 shows that the (S)ARIMA and Holt-Winters can follow peaks
and low demands well when a spare part has a high average demand. However, according the
forecast performance and Figure 5.8 they are not doing well. There are a lot of spare parts with
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a low average demand within the erratic demand class. Here, on average the SES and Croston
perform better.

Figure 5.7: Forecast Comparison for an Erratic Spare Part

Figure 5.8: Forecast Comparison for another Erratic Spare Part
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5.3.4 Forecasting Lumpy Demand

There are 7 lumpy demand seasonal spare parts with an average monthly demand of 5. Forecast-
ing with the eight proposed forecasting methods for lumpy demand leads to the results in Table
5.10. These results are the average results of the seasonal spare parts for the five test sets. The
results are very bad but this is due to the low average demand. One small mistake influences the
SMAPE heavily. When looking at the best performing method based on the sMAPE, (S)ARIMA,
shortly followed by Holt-Winters and moving average, score the best. This is not in line with the
hypothesis as the moving average and Croston should perform the best. The Croston method is
performing almost the worst. Probably, spare parts with noisy demand patterns and differences
in train and test sets are causing this.

Table 5.10: Average Forecast Performance of Lumpy Demand Seasonal Spare Parts

Forecast Method sMAPE
Moving Average 117.21%

Weighted Average 118.14%
SES 117.24%
Holt 121.57%

No Forecast 118.57%
Holt-Winters 116.75%

Croston 121.12%
(S)ARIMA 116.61%

Figures 5.9 and 5.10 show that identified seasonal spare parts within a demand class can differ
a lot. Figure 5.9 shows a very low average demand. Here, the forecast methods including factors
like trend and seasonality do not seem to be accurate. Figure 5.10 has a very strange demand
pattern as it has a lot of zero demand periods and in three periods a demand of 100 or 200. This
is probably not realistic demand, an error, and noise for the forecast performance. This could
be the case why the best performing forecast method is not in line with the hypothesis.

Figure 5.9: Forecast Comparison for an Lumpy Spare Part
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Figure 5.10: Forecast Comparison for another Lumpy Spare Part

5.3.5 Comparing Forecasting Demand

We compare the performance of this section with the current performance measured in Table
2.4. At first glance, we see that the tested forecast methods perform worse for all measures
except the sMAPE for smooth demand. This does not validate the forecast model as we use
better fitting forecast methods. However, we should not forget that we state that the historical
demand should be bigger than 60. When applying this criterion to the current selection of 59
seasonal spare parts, only 25 spare parts remain. Table 5.11 evaluates the performance of the
25 seasonal spare parts with a historical demand higher than 60. These performance measures
are similar to the performance measures of this chapter as the average forecast performance is
76.18% (without the forecast prediction zero demand) which indicates a valid forecast model.
However, we cannot compare the results in Table 5.11 one on one with the results in Table 2.4
as it involves different spare parts.

Table 5.11: Average Forecast Performance of NS’ Seasonal Spare Parts with a Historical
Demand Higher Than 60

Measure 2020 2021 2022 2023
sMAPE 66.28% 73.82% 71.11% 74.75%

To overcome the issue that we cannot compare the forecasts one on one, we calculate the
historical NS forecast performance on our 88 selected seasonal spare parts. We compare this
performance with the average performance of our model for the same selection of spare parts,
for the same time period, in Table 5.12. It shows that our best performing forecast methods
perform better, based on the sMAPE, than the historical forecast of NS.
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Table 5.12: Comparison Historical Forecast Performance of NS to our Forecast Methods
on new Seasonal Spare Parts in 2022

Measures 2022 sMAPE
NS’ Forecast 78.81%

Moving Average 74.35%
Croston 76.78%

(S)ARIMA 74.85%

5.3.6 Extra Validations Forecasting Demand

In the earlier subsections of this section, we validate the best performing forecast methods for our
selection of seasonal spare parts with the use of the growing-window forward validation method.
We have come up with this selection of seasonal spare parts by using a significance threshold of
0.05 in Section 5.1. We want also to validate if the same forecast methods perform the best if we
choose another significance threshold. We change the threshold of the identification procedure of
Subsection 5.1.1 from 5.0% to 2.5% and 7.5% and find two new sets of seasonal spare parts. Of
course, the two validation sets are similar to the original set, so the results will also be similar.
However, these validation sets should also have the seasonality characteristic.

Table 5.13 shows how the two validation sets differ in demand class division compared to the
original set. For both the validation sets, the division is similar to the division of significance
level 0.05. It is logical that less spare parts are selected when a lower alpha is chosen because
there are less spare parts with a lower F-test statistic, and vice versa for a higher alpha.

Table 5.13: Validation of Forecasting Seasonal Spare Parts based on Demand Class

Demand Class Threshold = 0.05 Threshold = 0.025 Threshold = 0.075
Smooth 45 (51.1%) 30 (52.6%) 55 (47.8%)
Intermittent 20 (22.7%) 13 (22.8%) 25 (21.4%)
Erratic 16 (18.2%) 12 (21.1%) 18 (15.4%)
Lumpy 7 (8.0%) 2 (3.5%) 17 (14.5%)
Total 88 (100%) 57 (100%) 115 (100%)

This section already explained which forecast methods suit best for which demand class in
case of using the seasonal spare parts resulting from a significance level of 0.05. Table 5.14 shows
the conclusions based on the forecasts of all three cases.

Table 5.14: Validation of Forecast Methods based on Demand Class

Demand Class Threshold = 0.05 Threshold = 0.025 Threshold = 0.075
Smooth Croston Croston SES
Intermittent (S)ARIMA (S)ARIMA (S)ARIMA
Erratic SES SES SES
Lumpy (S)ARIMA Moving average Holt-Winters

When looking at the results of the forecast methods in case of a significance level of 0.025, we
have some other conclusions. For almost all demand classes, the same forecast methods perform
the best. Only for lumpy demand, the moving average is performing the best. However, these
results are not representative as the lumpy demand group only consists of two spare parts.

When looking at the results of the forecast methods in case of a significance level of 0.075, we
have some other conclusions. For smooth demand, the SES method performs the best. However,
the Croston method performs similar to the SES method which is in line with the significance

63



5.4. Inventory Analysis

level of 0.05 case as the Croston does perform the best. For intermittent demand and erratic, the
same forecast methods perform the best. For lumpy demand, the Holt-Winters forecast method
performs the best. This is not in line with the other cases. However, it stresses that lumpy
demand is very chaotic.

We can conclude that the results are representative for the demand pattern group. When
these groups differ and contain other spare parts, the results do not differ a lot. This indicates
that the results are valid.

5.4 Inventory Analysis

After deciding the best fitting forecast methods, we run the inventory control model according
to the approach described in Section 4.4. In this section, we describe the experiments and results
of this analysis.

5.4.1 Performing Inventory Analysis

We use all the historical demand data from the previous twelve months resulting from corrective
and preventive maintenance of the identified seasonal spare parts. To determine how the safety
stock of each spare part should be calculated, we estimate the demand distribution of each spare
part. Table 5.15 shows the number of spare parts per demand distribution.

Table 5.15: Demand Distributions of Seasonal Spare Parts

Demand Distribution # Spare Parts
Normal 25
Lognormal / Gamma 35
Binomial 13
Negative Binomial 1
Poisson 14

To calculate the reorder points, and order quantities the formulas from Section 4.4 are used.
We also test the inventory policy for the last twelve months of the available data. When inventory
levels drop below the reorder points, the model orders new spare parts. We use the holding rate,
ordering cost, and aggregate target service level for the model shown in Table 5.16. In Table 5.5,
we show how the individual target service levels are determined to reach the aggregate service
level target of 97.0%. These inputs are based on the parameters that NS uses.

Table 5.16: Input Parameters

Input Parameter Amount
Holding Rate 30% per year
Ordering Cost e25.- per order
Aggregate target service level 97.0%

Table 5.17 shows the performance measures of the inventory model including all relevant
costs. These are the summed costs for all seasonal spare parts. Interesting to see is that almost
all costs consist of holding costs. This is a result from the fixed order costs per order compared
to the relative holding costs.
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Table 5.17: Resulting Costs from Inventory Control

Costs Amount Proportion
Holding Costs e422,555.20 97.47%
Ordering Costs e10,975.- 2.53%
Total Costs e433,530.20 100%

Furthermore, we achieve a certain service level after simulations. The TSL input does not
mean that it will actually be achieved. The achieved service levels per class are shown in Table
5.18 where only class CY achieved its TSL as shown by the figures in parenthesis with pp as
percentage points. Not every class has the same weights as some classes have a higher usage
than others. Incorporating the weight, shown in Table 5.19, leads to an aggregate service level
of 87.9%. This is lower than the desired aggregate service level of 97.0%. The obtained service
level is probably lower than the TSL because of the starting on hand balance. When we start
testing the inventory policy, 46 seasonal spare parts have an inventory position lower than the
reorder point. The chance of backorders for this short horizon of twelve months is relatively high
influencing the achieved service level.

Table 5.18: Achieved Service Levels (& Difference to Targets) based on ABC- and XYZ-
Classification

ABC\XYZ Class X Class Y Class Z
Class A 93.7% (-5.3pp) 85.4% (-10.6pp) 90.0% (-2.0pp)
Class B - - 74.4% (-15.6pp)
Class C - 97.9% (+7.9pp) 75.2% (-9.8pp)

Table 5.19: Weights of ABC- and XYZ-Classification

ABC\XYZ Class X Class Y Class Z
Class A 0.548 0.264 0.116
Class B - - 0.029
Class C - 0.004 0.039

5.4.2 Validation Inventory Analysis

We want to validate our model as we do not obtain our TSL. We hypothesize that we do not
achieve the TSL because of the starting on hand balance and our short test period. By increasing
the test period, we create a more stable inventory environment. The achieved service level will
probably increase towards the target. We simulate the realized demand with the earlier obtained
demand distribution and parameters for each spare part.

Figure 5.11 and 5.12 show how the service level and cost performance evolve over time when
simulating for different horizon lengths up to 192 months (16 years). The figures show that
after 12 months, the model is not yet stable. Thus, the results of Subsection 5.4.1 are indeed
influenced by the starting inventory position. In approximately after 48 months, which is called
the warm-up period, the model is stable and scores an average service level of 96.6% over periods
49 until 192 which is just below the target. The corresponding costs are on average e846,654.80.
A possibility, why the service level does not reach the target, could be a difference between the
used and the actual demand distributions. Given that the model approximates the target service
level, we conclude that the used inventory model is valid.
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Figure 5.11: Achieved Service Level for Different Simulation Runs

Figure 5.12: Inventory Costs for Different Simulation Runs

5.4.3 Comparison Inventory Control

We want to compare the performance of this section with the current performance of NS. Table
2.6 can help us compare the obtained solution with the current situation. However, this is not a
one on one comparison as we identified new seasonal spare parts. To overcome the issue that we
cannot compare the forecasts one on one, we calculate the historical NS inventory performance on
our 88 selected seasonal spare parts. We compare this performance with the performance of our
model after the warm-up period for the same selection of spare parts, for the same time period,
in Table 5.20. It shows that our inventory model performs better on average stock value (28.3%
less) and the usage/value ratio, and performs closer to the service level KPI target. Therefore,
we can say that our inventory model performs better.
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Table 5.20: Inventory Comparison of New Seasonal Spare Parts

Inventory Control NS’ Inventory: Our Model: Our model: After
KPIs in 2023 Testing in 2023 Warm-Up (Simulation)
Network Service Level 99.9% 87.9% 96.6%
Total Usage 22,326 22,326 22,000
Average Stock Value e3.9M e1.4M e2.8M
Usage/Value 5,724.6 15,947.1 8,148.1

5.5 Individual Value of Model Components

Currently, we have tested all model components together. To see if every component of this
model has an added value, we will test these individually and elaborate on the results in this
section.

5.5.1 Identification Seasonality

The identification of seasonality is the first model component, this does not rely on any of the
other model components and just generates the input for the other model components. When
we would neglect this model component, the output of the model obviously differs as other spare
parts are used as input. However, due to this model component, we analyse 88 seasonal spare
parts. Therefore, we would say that this model component creates added value. In Section 6.1,
we will dive deeper into the contribution of this model component for NS.

5.5.2 Classification

To see if our ABC- and XYZ-classification method results in added value, we experiment with
the target service levels. In Subsection 5.4.1, we differentiate the target service levels of the spare
parts based on their ABC- and XYZ-class. In this subsection, we set the target service levels of
all spare parts to 97.0%.

When simulating the inventory control, it scores an average service level of 96.7% over periods
49 until 192 which is just below the target. The corresponding costs are on average e875,193.4.
This means that the service level has gone up with 1.0%, but the costs also increased with a to-
tal of 3.0%. We conclude that using the ABC- and XYZ-classification method has an added value.

Furthermore, we look into the added value of the demand pattern classification based on
ADI and CV. If we do not use this classification, this means that we will look at one best
performing forecast method for all seasonal spare parts. Table 5.21 shows the aggregate forecast
performance of the forecast methods based on all 88 seasonal spare parts with the SES method
as best performing method with an average sMAPE of 72.43%. When averaging the sMAPE
of Croston for smooth demand, (S)ARIMA for intermittent and lumpy demand, and SES for
erratic demand, we achieve a SMAPE of 71.92%. This means that choosing a forecast method
per specific demand group is beneficial for the overall forecast performance. Therefore, the
classification based on ADI and CV is valuable to this research.
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Table 5.21: Average Forecast Performance of All Seasonal Spare Parts

Forecast Method sMAPE
Moving Average 73.51%

Weighted Average 72.77%
SES 72.43%
Holt 74.18%

No Forecast 169.51%
Holt-Winters 77.70%

Croston 74.62%
(S)ARIMA 75.52%

5.5.3 Forecasting

To analyse whether the forecasting model has added value, we test a forecast method for all
seasonal spare parts which is most used in the current forecast process. This is the moving
average forecast method. We use this forecast method to forecast demand over lead time as
input for the inventory control model. When using the moving average forecast method for all
seasonal spare parts in the inventory simulation, it scores an average service level of 96.9% over
periods 49 until 192 which is just below the target. The corresponding costs are on average
e845,840.4. This means that the service level has gone up with 3.1%, but the costs decrease
with a total of 0.9%. We conclude that choosing the forecast method as input for the inventory
control based on the performance measure sMAPE does not give guarantee for a better inventory
performance. This could be because the performance results of the different forecast methods
do not differ much.

5.5.4 Inventory Control

For the inventory control, we should implement an inventory policy with a reorder point and an
order size determined by the periodic order quantity to compare our model with the model of NS.
With input of the forecasts of NS, we can compare the inventory performance of both inventory
policies and determine whether our inventory model has added value. We did not implement
this because of time limits.

5.6 Conclusion of Comparing Solutions

This chapter answers the third research question of this thesis. The findings of this chapter give
the results of the research approach.

RQ3: "What are the best fitting forecast methods and inventory policies for the sea-
sonal spare parts at SCO?"

First, we find that the demand pattern of 88 spare parts is correlated to the months of the
year. Only 9 out of the 88 seasonal spare parts are similar to the selection of NS. Then, we use
a three-dimensional classification where the spare parts are divided into ABC- and XYZ classes
and the demand classes smooth, intermittent, erratic, and lumpy. Here, most spare parts are
classified as class AZ and with a smooth demand pattern. Based on this classification, we set
the TSLs and divide the spare parts for forecasting.

Furthermore, we forecasted demand using eight different forecast methods and looked at
the results for each demand class. The following conclusions are drawn based on the forecast
performance:
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• For smooth demand, the Croston forecast method performs the best,

• For intermittent demand, the (S)ARIMA forecast method performs the best,

• For erratic demand, the SES forecast method performs the best,

• For lumpy demand, the (S)ARIMA forecast method performs the best.

For smooth and erratic demand, the outcomes are in line with the theoretical hypotheses.
However, for intermittent and lumpy demand, this is not the case. This is probably due to the
difference between train and test data and some noisy, unrealistic demand patterns. When we
compare our forecast performance with the current performance, our best performing forecast
methods perform better based on the sMAPE than the historical forecast of NS. Therefore, we
can conclude that our forecast model performs better than the current process.

Our best performing forecast methods are used as input for the inventory control model.
Using the demand distributions, the reorder points are calculated as well as the order quantities.
Testing the MRP for twelve months results in e433,530.20 costs with an aggregate service level
of 87.9%. After simulating the inventory model for several years, the performance stabilizes with
an average e846,654.80 of inventory costs and a service level of 96.6%. When we compare this
inventory performance with the current performance, our inventory model performs better on
average stock value (28.3% less) and the usage/value ratio and is closer to the service level KPI.
Therefore, we can conclude that our model is better.

Lastly, we looked at the added value of all of our model components. We conclude that our
identification of seasonality and classification methods have added value. But, choosing our best
performing forecast methods based on sMAPE, as input for our inventory model, does not give
guarantee for the best inventory performance. Furthermore, we do not test the individual value
of our inventory control model due to time limits.

The end of this chapter completes step 5 of the MPSM, choosing a solution. Figure 5.13
shows the progress of the research so far.

Defining the
problem ✓

Formulating
the approach ✓

Analysing the
problem ✓

Formulating
solutions ✓

Choosing a
solution ✓

Implementing
the solution

Evaluating
the solution

Figure 5.13: MPSM Flow Chart - Step 5 Completed
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Chapter 6

Implementation and Evaluation Plan

The sixth chapter presents the implementation and evaluation actions to answer the fourth and
fifth research questions (RQ) of this thesis.

RQ4: "What should SCO do to implement the forecast and inventory tools?"

RQ5: "How should SCO evaluate the new forecast methods and inventory control
policies?"

First, this chapter explains the implementation and evaluation steps for the identification of
seasonal spare parts. Next, we highlight the adjustments for the classification of spare parts.
The chapter ends with the implementation and evaluation plan for the forecast and inventory
control of seasonal spare parts.

6.1 Adjust Procedure Seasonal Spare Parts

In Section 5.1, we identify and validate the results of our seasonality analysis. Instead of instantly
copy-pasting this method into the working methods of NS, it is important to take a look at the
current process flow and see how it fits. The theoretical and practical procedure of the selection
and evaluation of the seasonal spare parts list show a discrepancy between the two.

In the theoretical process flow, the supply chain planner (SCP) evaluates the usage of pre-
viously identified seasonal spare parts with the use of an evaluation report. In this evaluation
report, the SCP proposes seasonal spare parts based on the actual usage of spare parts in pre-
vious seasons. This is a quantitative analysis. Besides, the reliability engineer (RE) provides a
list of new spare parts that are seasonally relevant and introduced in the operations since the
last identification. This is a qualitative analysis. These two actions are the input for the SCP to
select the seasonal spare parts for the next season. However, this selection is still a concept list
until the RE judges and agrees with the list. As NS considers two seasons, summer and winter,
this process is followed twice a year.

In reality, the theoretical process does not comply as described. The difference is that the list
of seasonal spare parts is not evaluated with use of the evaluation report. Also, the process is
not executed twice a year. This has led to a list where spare parts are present that do not have
seasonal or even any demand. Besides, there are spare parts not identified as seasonal, while
they show statistical seasonal variations. Conclusively, the list is not up to date.

To improve the process, the theoretical process should be restored in the working methods.
Also, the list of current identified seasonal spare parts should be revised. Our statistical analysis
will be an addition to this. The idea is to include the statistical analysis within the evaluation
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6.2. Adjust Classification Seasonal Spare Parts

report as currently in the report only the interpretation of the SCP is involved. The concept
list of seasonal spare parts will still be judged by the RE to see if there could be a qualitative
correlation. Additionally, it is interesting to see which spare parts the statistical tool does not
select, while the RE selects them according to qualitative characteristics. The addition of the
tool creates a more complete process of evaluating seasonal spare parts.

Currently, we evaluated our seasonal concept list with some of the REs at NS. In 17 of the
88 identified seasonal spare parts, the RE saw technical arguments to add them to the seasonal
spare part list. Six of these 17 are already within the current selection of NS. This means that
our solution creates a contribution of 11 seasonal spare parts for the seasonal list.

Adding the tool is quite an investment as RStudio, which is used as a programming environ-
ment, is not integrated into the working methods of the SCO department. This would mean, that
one or possibly more employees should get to know the programming language. Additionally,
the implementation requires working instructions for the tool. The employees should know how
the tool works, and when something does not work, they should know how to fix it. Currently,
the used packages of RStudio are not available on the normal working computers of NS, but an
employee needs a development computer. However, it is also possible to transpose the tool to Mi-
crosoft Excel. This will take less time and makes it easier to adapt. One disadvantage of Excel is
that it slows down when analysing many spare parts. Excel could even stop working. A solution
to this is a limitation of the size of the input. For example, an user can only analyse 100 spare
parts at one time. This would make the identification of seasonal spare parts time-consuming
compared to the tool in RStudio. The analysis in RStudio takes less than 10 minutes.

6.2 Adjust Classification Seasonal Spare Parts

We want to highlight one part of the classification in this section. The current classification uses
18 months of data to classify spare parts based on demand and value. This is not appropriate for
seasonal spare parts. Seasonal spare parts have a higher demand in a certain period compared
to the rest of the year. When classifying based on 18 months of demand data, just after the peak
season, the high demand is included twice and spare parts could be classified as more important.
However just before the season starts, the seasonal demand is included only once and spare parts
could be classified as not important. Changing the classification based on data of the past 12
or 24 months would be more appropriate. This is a small adjustment in the inventory software
Servigistics XelusParts. We recommend evaluating this classification constantly. Despite the fact
that classifying demand pattern classes has added value for the average forecast performance,
we do not recommend using it as the proposed forecast methods never clearly outperformed
others. Additionally, these best performing methods were no guarantee for a good inventory
performance.

6.3 Adjust Forecasting Seasonal Spare Parts

Currently, the SCP analyses historical data and looks at only four methods out of the fourteen
possibilities of Servigistics XelusParts. The process of choosing a suitable method involves alter-
ing between forecast methods and assessing which would fit the best. Due to a lack of knowledge
about using forecast methods that account for seasonal variations, there is an evaluation step in
the forecast process where the planner can manually adjust the forecast to meet seasonal demand.

Currently, there is no forecast performance available for the SCP. This makes it difficult to
know how the SCP is performing and if the appropriate forecast method is used. To create a
more complete process, we recommend to implement this measure. Furthermore, based on the
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6.4. Adjust Inventory Control Seasonal Spare Parts

results of Section 5.3, forecast methods like the Croston and (S)ARIMA method show us that
more forecast methods should be involved within the forecast process. This requires an invest-
ment in knowledge for the SCP.

The forecast process should also change regarding the manual adjustments. Currently, the
sentiment is that there must not be any stockouts leading to a standstill under any circum-
stances. Therefore, the manual adjustment option is used a lot to increase the inventory level
resulting in forecasting too much demand throughout the whole year. This is not a correct way
to intervene in the inventory process. Adjusting the reorder levels and reorder quantity is more
appropriate. The underlying problem of the sentiment is that there are no clear costs associated
with a stockout. With a widely accepted approximation of the stockout costs, a good equilibrium
can be established between stockouts and the inventory level. Overall, the sentiment should be
that a stockout is accepted under good consideration of costs.

Again, adding the tool or the performance measurement is quite an investment as RStudio
is not integrated into the working methods of the SCO department. However, it is also possible
to transpose the performance measurement to a standard format in Microsoft Excel. When ex-
porting and using the correct data, the SCP can easily evaluate the performance. Building this
tool in Excel will cost a lot of time as this involves many forecast methods that work differently.
If NS wants to use this analysis, we suggest evaluating this twice a year to stay up to date, in
advance of the seasons.

A more convenient implementation is suggesting some requirements for the new inventory
software that NS wants to use within two years. These requirements could be used for the market
consultation of the new software. These are the requirements that we would suggest adding to
the current requirements:

• The software should give insight in the forecast performance,

• The software should include the forecast methods that we tested.

6.4 Adjust Inventory Control Seasonal Spare Parts

Currently, one inventory method is used with a certain set of inventory parameters. We do
not recommend changing the current way of controlling the inventory. However, the current
inventory program Servigistics XelusParts does not show any insights into the possible inventory
costs resulting from the current parameters and policy. The tool that we created gives insights
into these costs. Implementing our tool would create the opportunity to test different inventory
parameters and see what works best.

Again, adding the tool or the performance measurement is quite an investment as RStudio is
not integrated into the working methods of the SCO department. It is possible to transpose the
performance measurement to a standard format in Microsoft Excel. However, constructing this
tool in Excel will be time-consuming. If it works, the SCP can easily evaluate the performance.
If NS wants to use this analysis, we suggest evaluating this twice a year to stay up to date, in
advance of the seasons.

A more convenient implementation is suggesting some requirements for the new inventory
software that NS wants to use within two years. These requirements could be used for the market
consultation of the new software. These are the requirements that we would suggest adding to
the current requirements:
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• The software should include identifying demand distributions with corresponding inventory
parameter calculations,

• The software should include direct feedback on the inventory performance, for example
feedback on the costs and service level.

6.5 Conclusion of Implementation and Evaluation Plan

This chapter answers the fourth and fifth research questions of this thesis. The findings of this
chapter give recommendations about the implementation and evaluation plan.

RQ4: "What should SCO do to implement the forecast and inventory tools?"

RQ5: "How should SCO evaluate the new forecast methods and inventory control
policies?"

First, we state that the identification tool should be implemented within the seasonal eval-
uation process. The outcomes of the tool should be evaluated by a RE and supplemented by
qualitative reasoning. After this evaluation, 17 of the 88 seasonal spare parts are acknowledged by
the REs, from which 11 seasonal spare parts are an addition to the current list. The investment
in implementing the identification tool in RStudio tool is quite big. However, it is also possible to
transpose the tool into Excel. The tool should be evaluated twice a year, just after a season ends.

Furthermore, we recommend changing the demand classification based on the previous 18
months of data to using data from the past 12 or 24 months as this considers a complete cycle of
a year. Adapting the classification based on ADI and CV is not necessary as the corresponding
forecast method never outperformed other forecast methods.

The new proposed forecast methods and performance measurements should be considered in
the forecasting process which requires an investment in knowledge and in transposing the mea-
surement in Excel. Also, changing the forecast process regarding manual adjustment is necessary.
A widely accepted estimation of stockout costs could help this change.

Lastly, the implementation of the performance measurements of the inventory control is a
big investment. However, it is worth the insights that will be obtained. The SCP will gain
insight into how different inventory parameters will influence the inventory performance which
is currently not present.

The end of this chapter completes steps 6 and 7 of the MPSM, implementing the solution
and evaluating the solution. Figure 6.1 shows the completed research flow chart.

Defining the
problem ✓

Formulating
the approach ✓

Analysing the
problem ✓

Formulating
solutions ✓

Choosing a
solution ✓

Implementing
the solution ✓

Evaluating
the solution ✓

Figure 6.1: MPSM Flow Chart - Step 7 Completed
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Chapter 7

Conclusions and Recommendations

This chapter includes the conclusions and recommendations of this research. First the answers
to the research questions are presented, followed by the research limitations. Subsequently the
recommendations to NS and regarding the future research are described.

7.1 Conclusions

This section draws conclusions of the research and answers the main research question:

"How can the forecasting methods and the inventory policies of seasonal spare parts
be changed to improve the performance of the SCO department at NS?"

To solve the main research question, we will discuss all research questions one by one. In
Chapter 2, we perform a context analysis to solve the research question "What does the current
forecast process and inventory control of SCO look like?". The forecast and inventory control in-
volves corrective and preventive maintenance which is divided per train series. For maintenance,
there are exchange and wear spare parts that differ in inventory management. Currently, SCO
identifies 59 spare parts as seasonal. Those parts show seasonal variation in either winter or
summer. However, this list needs a reclassification because of unclear seasonal demand patterns,
the lack of demand, and unknown lead times. Also, SCO tracks whether these parts are critical,
indicating that when they fail, trains are not allowed to drive any further. The forecast process
does not use many extensive forecast methods and is often manually adjusted to cover seasonal
demand. However, the performance of the forecasts including manual adjustments is worse than
the forecasts excluding manual adjustments which indicates that the supply chain planner of-
ten forecasts the demand too high. Furthermore, the network service level performance of the
inventory control for the seasonal spare parts is similar to the performance for all spare parts.
The service level is above the norm of SCO, while the BWOM is below the norm. However, if
we let the fill rate get worse, the average train units waiting on materials KPI would also get
worse. Another service level measure, like the order line fill rate, would be more appropriate as
the shortage of one spare part within an order causes a delay of the complete order. The order
line fill rate will be lower than the fill rate and therefore the order line fill rate would represent
the average train units waiting on materials KPI better.

In Chapter 3, we perform a literature study to solve the research question "What are possi-
ble forecast methods and inventory policies for the spare parts to apply in the context of SCO?"
We find that multiple regression is a time-efficient method to identify the presence of seasonal
variations in comparison to an exploratory data analysis. When seasonal variations are present,
forecast methods, like the Holt Winters’ trend-seasonal method, or (S)ARIMA can be used while
the Croston method performs well when observing an intermittent demand pattern. Other men-
tioned methods, like the moving average, SES, and Holt method could be relevant in case of
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smooth demand. Also, we conclude that we will be controlling inventory using the (s,Q)-policy
as this is the most used policy in an overview of examples of combining forecast methods with
inventory control policies. Lastly, the literature confirms the approach of first classifying spare
parts, then forecasting, inventory, and ending with performance assessment.

In Chapter 4 and 5, we describe the model and present the results of this model to solve
the research question "What are the best fitting forecast methods and inventory policies for the
seasonal spare parts at SCO?" We use multiple regression to determine whether the demand
pattern of a spare part is correlated to the months of the year. We find that the demand pattern
of 88 spare parts is correlated to the months of the year. We call these the seasonal spare
parts. Only nine out of the 59 original seasonal spare parts reappear in this list. With use of
the ABC- and XYZ-classification, we gave guidance in choosing the target service levels. The
classification method based on ADI and CV helps choosing fitting forecast methods as specific
forecast methods perform well on specific demand patterns. Furthermore, we tuned parameters
and forecasted demand using eight different forecast methods with the use of growing-window
forward validation. We interpret the results for each demand class. The following conclusions
are drawn based on the forecast performance:

• Smooth: The Croston forecast method performs the best,

• Intermittent: The (S)ARIMA forecast method performs the best,

• For erratic demand, the SES forecast method performs the best,

• For lumpy demand, the (S)ARIMA forecast method performs the best.

For smooth and erratic demand, the outcomes are in line with the theoretical hypotheses.
However, for intermittent and lumpy demand, this is not the case. This is probably due to the
difference between train and test data and some noisy, unrealistic demand patterns. When we
compare forecast performances, we can conclude that our model performs better than the current
forecast process. Several forecast methods like the moving average, Croston and (S)ARIMA score
better than the current forecast performance. Therefore, we recommend to keep on testing all of
our forecast methods and using them according to the corresponding performance. Additionally,
the inventory control model calculates the reorder points, and order quantities which are used to
simulate the inventory performance with unseen test data. After simulating the inventory model
for several years, the performance stabilizes with an average e846,654.80 of inventory costs and a
service level of 96.6%. When we compare inventory performances, our inventory model performs
better on average stock value (28.6% less) and the usage/value ratio and is closer to the service
level KPI. Therefore, we can conclude that our model is better. NS performs too high on service
level. So, decreasing towards the norm will save costs.

Lastly, the identification of seasonality and classification methods have proved added value.
But, choosing our best performing forecast methods based on sMAPE, as input for our inventory
model, does not give guarantee for the best inventory performance. This means that another
forecast performance measure might have been more appropriate.

7.2 Recommendations

In Chapter 6, we make an implementation and evaluation plan to solve the research questions
"What should SCO do to implement the forecast and inventory tools?" and "How should SCO
evaluate the new forecast methods and inventory control policies?" This section describes all rele-
vant recommendations to the SCO department of NS as they are the problem owners. These are
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recommendations based on the results of the research and the lessons learned during the research.

It is interesting to see that forecast methods including seasonal factors do not necessarily
perform well on our selection of seasonal spare parts. Possibly, the demand patterns are too
volatile to predict accurately. The question arises as to whether the identification of seasonal
spare parts is necessary. We think it is beneficial to identify and monitor them as there are inven-
tory decisions where this characteristic is helpful. First of all, the SCP could have information
in advance of the season that demand will increase or decrease. This could have a crucial impact
on the inventory performance if SCO is not prepared for this. Besides, knowledge of seasonal
spare parts is interesting for supplier agreements. SCO can make agreements about decreasing
lead times in the summer which can decrease the mean and variance of the lead times. This
results in less uncertainty in the supply chain. Less uncertainty means less safety stock and less
holding costs while achieving the same service level.

As suggested in Section 6.1, we recommend identifying seasonal spare parts twice a year just
after the summer and winter seasons. Currently, there is no fixed identification process and
the seasonal spare part list is outdated. Using the identification tool will help to analyse a big
population of spare parts at once and is an addition to the current procedure. Combining the
outcomes of this tool together with the technical knowledge of reliability engineers, we found 11
new seasonal spare parts.

Furthermore, use a classification method based on the previous 12 or 24 months of demand
data as this is more appropriate for seasonal spare parts. The current use of 18 months of de-
mand data gives a distorted view as a peak season can appear once or twice within the 18 months
depending on the time the classification takes place.

Additionally, we recommend implementing measurements for the forecast and inventory pro-
cess of seasonal spare parts. The problem of SCO is about the forecast and inventory process of
seasonal spare parts. As we analysed the current situation in Chapter 2, we concluded that there
is no forecast performance evaluation available for any spare part. This way supply chain plan-
ners can’t see in the long term which forecast methods perform well for which kind of spare parts.
Because there is no insight into this performance, supply chain planners will manually adjust the
forecast methods which increases the forecast error. A supply chain planner will not learn from
mistakes as they have no insights into their performance. The inventory control performance for
seasonal spare parts is also not present. This makes the consequences of the actions of supply
chain planners invisible. Forecasting too many spare parts has become a common practice as
there are no triggers that there is too much inventory. On the subject of which forecast methods
to use, we see no single forecast method performing the best. Also, forecast methods including a
seasonal factor are no guarantee for success for the seasonal spare parts of NS. We recommend to
keep on testing all forecast methods and using them according to the corresponding performance.

Lastly, we recommend learning the supply chain planners how forecast and inventory con-
trol parameters work and how to use these. Currently, supply chain planners can not access
parameters and do not know how these work. In the fixed working environment of supply chain
planners, it is difficult to be adaptive to changes. When being more adaptive and proactive, the
KPIs will be easier to manage.

7.3 Limitations and Further Research

In this section, we will highlight the limitations of this research and areas of improvement or
further research.
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Currently, we identified seasonal spare parts based on monthly correlation. For further re-
search, it is more accurate to look at quarterly seasonality as this is more in line with the climate
and weather conditions. Also, it may be interesting to see if including weather variables within
the model as we think the weather is the biggest influencing factor of seasonality. Furthermore,
we assumed that seasonality is deterministic while seasonality can be non-stationary and evolve
over time. Testing and considering whether seasonality is deterministic or stochastic, as pro-
posed by the HEGY test procedure, could lead to better forecasting performance. Hence, this is
something for further research.

Furthermore, we forecasted with several forecast methods that are available in RStudio. Pos-
sibly, another programming language can test different forecast methods more effectively. For
example, there are Croston variations that are improved and can perform better than the current
implemented method in RStudio. Also, we did not evaluate machine learning methods as there is
little demand data available. In the future, when there is more demand data available, it would
be interesting to see whether machine learning methods would perform better than the methods
we evaluated in this research.

In the inventory model, we assumed the total system with one inventory and one demand.
In reality, the system is a multi-echelon system with multiple locations in hierarchy as Chapter
2 explains. Considering a multi-echelon system would give a more realistic view of the inventory
process. Additionally, we used a basic inventory model. In practice, there are interventions like
emergency orders to speed up the delivery process decreasing the backorders. Lastly, we did not
include the inventory process of exchange parts within our model while this is a characteristic
of a large proportion of the spare part population. Including the flow of exchange parts, will
generate a more realistic model and more realistic performance measures.
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Appendix A

Demand Graphs Seasonal Spare Parts

In this appendix, we will show two demand graphs of seasonal spare parts which are classified
by NS. Figure A.1 shows an example of a seasonal spare part which is prone to failures in the
summer months. However, this demand pattern is not very clear as in some winter months the
demand is also higher than the trendline.

Figure A.1: Demand of a NS Summer Seasonal Spare Part over Time

Figure A.2 shows the demand pattern of a seasonal spare part, identified by NS, which does
not have a clear seasonal demand pattern. During summer and winter months, the demand is
higher and lower than the trendline. Evaluating the seasonal spare parts of NS showed that most
spare parts do not have a clear seasonal demand pattern, only six seasonal spare parts do.

82



Demand Graphs Seasonal Spare Parts

Figure A.2: Demand of a NS Winter Seasonal Spare Part over Time
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Appendix B

Transposing ESPRC Calculations

In this appendix, we show transposing the expected shortage per replenishment cycle (ESPRC)
for the binomial and negative binomial distributed demand. We need the formula for the ESPRC
shown in Equation B.1.

ESPRC(s) =

∫ ∞

s
(x− s)f(x) dx (B.1)

B.1 ESPRC Binomial Distribution

For binomial distributed demand, we use the summation of the binomial probability mass func-
tion. Using Equation B.1, we get Equation B.2. However, we want to simplify this equation to
make the ESPRC calculations easier.

ESPRC(s) =
∞∑
s

(x− s)

(
n

x

)
px(1− p)n−x (B.2)

To make the ESPRC calculations easier, we transform the Equation B.2:

ESPRC(s) =
∞∑
s

(x− s)

(
n

x

)
px(1− p)n−x

=

∞∑
s

x

(
n

x

)
px(1− p)n−x − s

∞∑
s

(
n

x

)
px(1− p)n−x

= 1−
s∑
0

x

(
n

x

)
px(1− p)n−x − s

(
1−

s∑
0

(
n

x

)
px(1− p)n−x

)

The second summation is in the form of the cumulative distribution function of a binomial
distribution F (s;n, p). We also aim to transform the first sum:

s∑
x=0

x

(
n

x

)
px(1− p)n−x

to the form involving the cumulative distribution function of a binomial distribution F .
Therefore, we will zoom in on the transformation of this sum.
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B.2. ESPRC Negative Binomial Distribution

Recall that the binomial coefficient is defined as:

(
n

x

)
=

n!

x!(n− x)!

Then, the sum can be rewritten as:

s∑
x=0

x

(
n

x

)
px(1− p)n−x =

s∑
x=0

x
n!

x!(n− x)!
px(1− p)n−x

=

s∑
x=0

n
x

n

n!

x!(n− x)!
px(1− p)n−x

= n
s∑

x=0

x

n

n!

x!(n− x)!
px(1− p)n−x

= n
s−1∑
x=0

x+ 1

n

n!

(x+ 1)!(n− x− 1)!
px+1(1− p)n−(x+1)

= n
s−1∑
x=0

(n− 1)!

x!(n− 1− x)!
px+1(1− p)n−x−1

= np
s−1∑
x=0

(n− 1)!

x!(n− 1− x)!
px(1− p)n−1−x

= np
s−1∑
x=0

(
n− 1

x

)
px(1− p)n−1−x

= np× F (s− 1;n− 1, p)

Thus, we have shown that:

s∑
x=0

x

(
n

x

)
px(1− p)n−x = np× F (s− 1;n− 1, p)

where F (s− 1;n− 1, p) is the cumulative distribution function of the binomial distribution.

This means that we can rewrite Equation B.2 to the following:

ESPRC(s) = np× [1− F (s− 1;n− 1, p)]− s× [1− F (s;n, p)]

which we use in Subsection 3.3.3.

B.2 ESPRC Negative Binomial Distribution

For negative binomial distributed demand, we use the summation of the negative binomial prob-
ability mass function. Using Equation B.1, we get Equation B.3. However, we want to simplify
this equation to make the ESPRC calculations easier.

ESPRC(s) =

∞∑
s

(x− s)

(
x+ r − 1

x

)
(1− k)xkr (B.3)
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B.2. ESPRC Negative Binomial Distribution

To make the ESPRC calculations easier, we transform the Equation B.3:

ESPRC(s) =
∞∑
s

(x− s)

(
x+ r − 1

x

)
(1− k)xkr

=
∞∑
s

x

(
x+ r − 1

x

)
(1− k)xkr − s

∞∑
s

(
x+ r − 1

x

)
(1− k)xkr

= 1−
s∑
0

x

(
x+ r − 1

x

)
(1− k)xkr − s

(
1−

s∑
0

(
x+ r − 1

x

)
(1− k)xkr

)

The second summation is in the form of the cumulative distribution function of a binomial
distribution F (s; r, k). We also aim to transform the first sum:

s∑
x=0

x

(
x+ r − 1

x

)
(1− k)xkr

to the form involving the cumulative distribution function of a binomial distribution F .
Therefore, we will zoom in on the transformation of this sum.

Recall that the binomial coefficient is defined as:

(
x+ r − 1

x

)
=

(x+ r − 1)!

x!(x+ r − 1− x)!
=

(x+ r − 1)!

x!(r − 1)!

Then, the sum can be rewritten as:

s∑
x=0

x

(
x+ r − 1

x

)
(1− k)xkr =

s∑
x=0

x
(x+ r − 1)!

x!(r − 1)!
(1− k)xkr

= r
s∑

x=0

x

r

(x+ r − 1)!

x!(r − 1)!
(1− k)xkr

= r
s−1∑
x=0

x+ 1

r

(x+ r)!

(x+ 1)!r!
(1− k)x+1kr

= r

s−1∑
x=0

(x+ r)!

x!r!
(1− k)x+1kr

= r
1− k

k

s−1∑
x=0

(x+ r)!

x!r!
(1− k)xkr+1

= r
1− k

k

s−1∑
x=0

(
x+ r

x

)
(1− k)xkr+1

= r
1− k

k
F (s− 1; r + 1, k)

Thus, we have shown that:

s∑
x=0

x

(
x+ r − 1

x

)
(1− k)xkr = r

1− k

k
F (s− 1; r + 1, k)
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B.2. ESPRC Negative Binomial Distribution

where F (s− 1; r + 1, k) is the cumulative distribution function of the negative binomial dis-
tribution.

This means that we can rewrite Equation B.3 to the following:

ESPRC(s) = np× [1− F (s− 1; r + 1, k)]− s× [1− F (s; r, k)]

which we use in Subsection 3.3.3.

87


	Contents
	Introduction
	Company Introduction
	Problem Statement
	Problem Context
	Core Problems

	Research Design
	Analysing the Problem
	Formulating Solutions
	Choosing a Solution
	Implementing and Evaluating the Solution
	Research Scope

	Report Structure

	Description of the Current Situation
	Supply Chain Operations
	Spare Parts of SCO
	Product Group
	Seasonality
	Criticality
	Custom Classification

	Forecasting and Inventory Control
	Current Performance
	Conclusion of the Current Situation

	Literature Study
	Spare Part Classification
	ABC-Classification
	XYZ-Classification
	Other Classification Methods

	Forecast Methods
	Mathematical model
	Moving Average
	Single Exponential Smoothing
	Holt Method
	Holt Winters' Method
	Other Forecast methods
	Identifying Trend and Seasonality
	Forecast Accuracy

	Inventory Control
	Policies
	Performance Measures
	Reorder Point & Safety Stock
	Order Size

	Combining Forecast Methods with Inventory Control
	Conclusion of the Literature Research

	Model Design
	Identifying Seasonality
	Classification
	Forecasting
	Inventory Control
	Forecasting Demand over Lead Time
	Demand Distribution Division
	Normally Distributed Demand
	Other Distributed Demand
	Order Quantity
	Material Resource Planning

	Conclusion of the Model Approach

	Results Analysis
	Determine Seasonal Spare Parts
	Identified Seasonal Spare Parts
	Validation Statistical Identification Method

	Classification Analysis
	Forecast Analysis
	Forecasting Smooth Demand
	Forecasting Intermittent Demand
	Forecasting Erratic Demand
	Forecasting Lumpy Demand
	Comparing Forecasting Demand
	Extra Validations Forecasting Demand

	Inventory Analysis
	Performing Inventory Analysis
	Validation Inventory Analysis
	Comparison Inventory Control

	Individual Value of Model Components
	Identification Seasonality
	Classification
	Forecasting
	Inventory Control

	Conclusion of Comparing Solutions

	Implementation and Evaluation Plan
	Adjust Procedure Seasonal Spare Parts
	Adjust Classification Seasonal Spare Parts
	Adjust Forecasting Seasonal Spare Parts
	Adjust Inventory Control Seasonal Spare Parts
	Conclusion of Implementation and Evaluation Plan

	Conclusions and Recommendations
	Conclusions
	Recommendations
	Limitations and Further Research

	Bibliography
	Demand Graphs Seasonal Spare Parts
	Transposing ESPRC Calculations
	ESPRC Binomial Distribution
	ESPRC Negative Binomial Distribution


