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Abstract

Introduction:

With over one billion people suffering from obesity, addressing energy imbalance be-
tween calories consumed and expended is critical. A tailored and dynamic model is
essential for providing personalized insights into energy expenditure patterns, espe-
cially for development of personalized obesity interventions. In this study, we aimed
to develop a simplified physiological computing model to accurately estimate physical
activity energy expenditure (PAEE).

Methods:

An observational study was conducted at the eHealth House, University of Twente,
involving 10 participants aged 23 - 49. Participants performed various activities of
daily living monitored by multiple wearable sensors. A simplified three-compartment
model was utilized, incorporating the lungs, circulation system, and muscle tissue.
The model estimated PAEE using heart rate and inertial measurement unit (IMU)
data as inputs. Two model variations were tested: model 1 utilized pelvis IMU data,
and model 2 integrated IMU data from both the pelvis and thighs. Performance
metrics were coefficient of determination (R2) and root mean square error (RMSE).

Results:

Model 1 exhibited a significantly lower mean R2 compared to model 2 (0.256 ± 0.302
vs. 0.375 ± 0.312, p=0.05). No significant difference was found between model 1 and
model 2 in terms of RMSE (0.112 ± 0.035 kJ/min/kg vs. 0.100 ± 0.037 kJ/min/kg, p
= 0.08). In terms of RMSE, both models performed significantly worse on the cycling
activity for each participant, compared to the other activities.

Discussion/Conclusion:

In this study, we presented a promising approach for PAEE estimation using a simpli-
fied physiological computing model, accounting for individual physiological differences
and the dynamics of energy expenditure. By integrating wearable sensor data with
physiological principles, our method might offer a significant advancement in per-
sonalized health monitoring and obesity research, paving the way for more effective
interventions and lifestyle improvements.

Keywords: Physical Activity Energy Expenditure; Energy Expenditure; Physical Ac-
tivity; Wearable Sensors; Personalized Health; Activities of Daily Living.
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1 Introduction

In 2020, over 38% of the world population aged over 5 years was classified as overweight
and 14% were diagnosed with obesity. According to the World Obesity Atlas, these num-
bers are expected to increase to 51% and 24% in 2035, respectively [1]. The fundamental
cause of obesity and overweight lies in the energy imbalance between calories consumed
and expended. The imbalance is fuelled by the widespread consumption of energy-dense,
ultra-processed foods along with rising physical inactivity [2]. Insight into energy expen-
diture (EE) could help people increase physical activity (PA) and improve their lifestyle.

Total daily EE (TEE) encompasses the sum of energy expended by the body during a
24-hour period, reflecting the energy expenditure of several components. Basal metabolic
rate (BMR) is responsible for 60-70% of TEE and refers to the energy required to main-
tain essential bodily functions. Physical activity energy expenditure (PAEE) is the energy
expended during PA, representing 15-30% of TEE. Diet-induced thermogenesis (DIT) rep-
resents 10% of TEE and reflects the energy required to digest, absorb, and metabolise
eaten food [3]. TEE can be measured using the doubly-labeled water (DLW) method or
calorimetry (direct or indirect) [4], while the BMR can be estimated by calorimetry (direct
or indirect) under fasting and resting conditions [5]. It is important to gain information
about an individual’s PAEE, as it is the most variable component of TEE. Using esti-
mations of these components, PAEE can be calculated as TEE minus BMR and DIT.
However, these methods are expensive and unusable in daily life [6].

As a result, there is an increased focus on the development of sensor-based monitoring
tools for PAEE. Such tools offer a tailored approach for PAEE estimation by using one
or multiple accelerometers, sometimes in combination with anthropometric characteris-
tics, gyroscopes or a heart rate sensor [7, 8]. The spectrum of existing approaches spans
from simple linear models to complex non-linear models [7, 9]. The systematic review by
Jeran et al. revealed a variance in activity-related EE explained by accelerometer-assessed
physical activity ranging from 12.5-86% under free-living conditions [8]. Furthermore, it
highlighted that 22 out of 28 selected papers employed a linear prediction model, with a
majority of the models using counts/interval as the input. The variance in TEE during
activities of daily living (ADL) explained by IMU and HR data ranged from 38-85%, ac-
cording to Hedegaard et al. [7]. Linear models performed worse compared to non-linear
models, such as a cubic model or an artificial neural network. Notably, studies have shown
that combining accelerometer, gyroscope, and heart rate data increases EE estimation
accuracy [10, 11, 12]. To further enhance the performance of these models, a common
strategy involves combining an estimator with an activity recognition algorithm, due to
the inability of single estimators to generalize on different activity types [11, 13].

However, the above-mentioned studies utilized PAEE estimation models that often lack
explainability and personalization capabilities. These models, while effective in predict-
ing PAEE to a certain level, fail to provide insights into the underlying physiological
mechanisms governing PAEE variability among individuals. These limitations hinder the
interpretability and trustworthiness of the models, which is a critical requirement for their
practical application in real-world healthcare settings. Without explainability, healthcare
professionals may find it challenging to fully trust the predictions made by these models,
potentially limiting their adoption. Furthermore, the lack of personalization capabilities
in currently published models limits the capacity to reflect the unique physiological char-
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acteristics of each user, leading to less accurate PAEE estimations. This is especially the
case during ADL, where variability in PAEE can be large and context-specific.

To address these limitations of existing PAEE estimation models, we propose a novel ap-
proach that integrates a physiological model of energy expenditure, laws of physics, and
sensor data through a simplified physiological computing model. This approach accounts
for individual differences in physiology, activity levels, and body composition, leading to
more accurate and interpretable PAEE estimates for individuals. In addition, the integra-
tion of sensor data, such as accelerometers and heart rate, enables real-time and accurate
monitoring of PAEE during ADL [7]. We aim to develop a personalized PAEE estima-
tion tool that can be used during ADL, providing users with accurate insights into their
energy expenditure patterns. The main focus of my master’s project was the exploration
of PAEE modelling during ADL and developing a model that is both transparent and
understandable.
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2 Methods

2.1 Study design

We conducted an experiment to collect a realistic and diverse dataset with multiple sensors
and high sampling frequency, providing an accurate and realistic representation of energy
expenditure during ADL. This observational study was conducted at the eHealth House,
University of Twente. Participants were observed performing various activities of daily
living for 50 minutes.

2.1.1 Study population

We recruited 10 participants (30% female) for this study. Inclusion criteria were: (1) aged
between 18 and 60 [14]; (2) have a Body Mass Index (BMI) lower than 40 kg/m2 [15];
(3) free of cardiovascular diseases, respiratory diseases, metabolic disorders; (4) not being
pregnant; (5) free of physical disabilities that impact daily living. Participants agreed to
the use of their anonymized recorded data for scientific research.

2.1.2 Data collection

The experiment was ethically approved by the Ethics Committee Computer & Information
Science of the University of Twente (reference number 230728). Informed consent was
obtained from all individual participants included in the study. The eHealth House was
equipped with cameras and microphones to monitor and record participants’ activities [16].
A map of the facility is provided in Figure 1.

Figure 1: Floor map of eHealth House [16]

Participants performed a series of activities of daily living, categorized into sedentary (low
whole-body motion (LWBM)) and non-sedentary (walking, biking, and high whole-body
motion (HWBM)) activities for approximately 50 minutes [17]. Static data such as age,
sex, height, and weight, were collected. Body composition was estimated using a Bioelec-
trical Impedance Analysis (BIA) scale (Omron BF511). Quality of Life (QoL) information
was collected using the 36-Item Short Form Survey (SF-36) and information about recent
physical activity levels was collected using the International Physical Activity Question-
naire (IPAQ) [18, 19]. Emotional states and mood over the past week were measured using
the Positive and Negative Affect Schedule (PANAS) questionnaire.
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Figure 2: Distribution of the used sensors.

Objective data was captured using different wearable sensors. IMU data was collected at
30 Hz at ten body locations, e.g. left shoulder, right shoulder, chest, sternum, pelvis, left
thigh, right thigh, left wrist, right wrist, and on the shoe at the dominant leg [11] (Movella
Xsens DOT [20]). Single-lead ECG data was collected (CardioBan Kit [16]) at 80 Hz, and
additional physiological data, including photoplethysmogram (PPG), electrodermal activ-
ity (EDA), 3-axis accelerometer and skin temperature, were measured using a smartwatch
(Empatica E4 [21]). Also, glucose levels were continuously recorded (Freestyle Libre 3 [22])
Breath-by-breath respiratory data, serving as ground truth, was collected (COSMED K5
[23]) and activity labels were added using the OMNIA COSMED software. The sensor
distribution is shown in Figure 2.

2.1.3 Pre-experimental conditions

To estimate the Rest Metabolic Rate (RMR) as accurately as possible, it was necessary
to get as many body systems as possible at rest, such as systems for digestion and muscle
recovery. Due to this, participants were asked to refrain from eating 7 hours before the
experiment. They were allowed to eat a small meal (<300 kcal) at most 2 hours before the
experiment, so the participants received a couple of example recipes of meals containing
less than 300 kcal. To make the Diet-Induced Thermogenesis (DIT) component approach
zero, participants were asked to avoid caffeine and other stimulants for at least 4 hours
before the experiment and avoid nicotine for at least 2.5 hours before the experiment.
Finally, the participants were asked to refrain from vigorous physical activities for at least
24 hours before the experiment. This was done to make sure that the PAEE component
approached zero in absolute rest [24]. These instructions are the minimal requirements for
reliable RMR estimation. During the entire session, the thermostat was set to 22° Celsius
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Table 1: List of activities with corresponding duration. x represents variable activ-
ity duration.

Cluster Activity Duration in seconds
LWBM Sitting resting 300

Sitting reading 300
Standing still 180
Working on a laptop x

HWBM Emptying dishwasher x
Mopping x
Stacking shelves with books x

Walking Climbing stairs (5 times) x
Treadmill (3 km/h) 300
Treadmill (5 km/h) 300

Cycling Cycle at 125 Watt 300

to reduce the energy expenditure of cold-induced thermogenesis [24].

2.1.4 Experimental procedure

The session commenced with a 30-minute quiet rest in supine position to estimate rest
metabolic rate (RMR) [25]. This was followed by a series of daily living activities. Most
activities were performed for at least 5 minutes to reach steady-state EE, as recommended
by [26]. For HWBM activities, climbing stairs, and working on a laptop, the participants
were instructed to execute the activities at their own speed, which made the duration of
these activities variable. The surveys were filled in on the laptop during the ’working on
a laptop’ activity. Breaks between activities were not predetermined and were up to the
participant. Each participant performed the activities in randomised order to prevent the
introduction of bias in the dataset [9]. The randomization and the variable duration of the
HWBM activities help to simulate real situations of daily living. The activities and their
duration are presented in Table 1. The order of activities for each participant is presented
in the appendix in Section A.4.

2.2 Data preprocessing

To estimate the RMR in terms of V O2 and V CO2, the initial 5 minutes of the RMR
measurement were excluded to eliminate any transient effects from the onset of the rest-
ing period. The average V O2 and V CO2 were calculated from the remaining data, as
instructed by Compher et al. [27]. These averages were considered representative of the
participant’s RMR. The measured TEE during the ADL consists of the components PAEE
and RMR. The average RMR V O2 and V CO2 were subtracted from the TEE, which is
the preprocessed V O2 and V CO2 measurements during the ADL. PAEE was then derived
using the following equation:

PAEE = TEE − RMR (1)

Where PAEE denotes physical activity energy expenditure, TEE denotes total energy
expenditure, and RMR denotes rest metabolic rate energy expenditure. All components
have the unit kJ.
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For heart rate detection, a modified Pan & Tompkins detection algorithm by Thoonen et al.
was used [28]. The heart rate signal was smoothed using a first order Savitzky-Golayfilter
with a 20-second window length. This window length was chosen empirically, as it provided
the best balance between noise reduction and preservation of signal details. Then, the
heart rate signal was resampled to 1 Hz. The breath-by-breath V O2 and V CO2 data was
first resampled to 1 Hz, as the sampling rate was equal to the breathing rate and thus
variable. To remove noise and correct for artefacts caused by talking, the breath-by-breath
signals were smoothed using a first order Savitzky-Golayfilter with a 20-second window
length. The raw acceleration data collected from the IMU sensor includes the influence
of gravity. To isolate the participant-generated acceleration, we first defined a standard
gravity vector [0, 0, 9.81] m/s2 representing the gravitational acceleration. The vector was
inversely rotated using the quaternion representation of the sensor’s orientation to align
it with the IMU coordinate system. The resulting vector was subtracted from the raw
acceleration data to correct for the gravitational acceleration. Subsequently, a Butterworth
8th-order bandpass filter with cut-off frequencies between 0.5 and 5 Hz was utilized to filter
the acceleration data, as the performed ADL are expected to have acceleration within the
range of 0.5 and 5 Hz. The velocity was estimated for each direction by cumulatively
integrating the signal using the composite trapezoidal rule. As velocity might not get to
zero at rest after integration due to remaining noise in the filtered linear acceleration, the
velocity is set to zero whenever the filtered linear acceleration is zero for a period of 5
consecutive samples [29]. The magnitude of the velocity vector was calculated to represent
the velocity of the IMU sensor. Finally, all signals were synchronized and resampled to 1
Hz. The preprocessing workflow of all signals is shown in Figure 3.
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Figure 3: Preprocessing workflow of acceleration, ECG, and breath-by-breath data.
The breath-by-breath data for the RMR measurement follows the same processing
pipeline as the breath-by-breath data during the ADL. The ’Estimate PAEE’ block
represents Equation 1. HR denotes heart rate, RMR denotes rest metabolic rate,
and PAEE denotes physical activity energy expenditure.
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2.3 Model formulation

Energy expenditure can be estimated through indirect calorimetry, which estimates the
amount of energy using the volume of inhaled and exhaled oxygen (O2) and carbon diox-
ide (CO2). O2 and CO2 are moved via the blood circulation system to the muscles, which
determine the demand of O2 and the production of CO2. Therefore, the model to estimate
physical activity energy expenditure from movement data is composed of three compart-
ments, representing the lungs, the circulation system and muscle tissue.

2.3.1 Qualitative model description

This three-compartment control system was built upon a simplification of the model in-
troduced in [30]. A schematic diagram of the controlled three-compartment system is
demonstrated in Figure 4.

The lung compartment represents the exchange of O2 and CO2 between the air in the
lungs and the bloodstream, facilitated by the pulmonary alveoli. The lung was modelled
as a collection of alveoli in which the alveolar gas volume (VA) represents the available
space in the alveoli for gas exchange. The total ventilation (V̇A) dictates the air volume
flowing in and out of the lungs in liters per second. The total ventilation was adjusted
using a respiratory controller when levels of O2 and CO2 deviated from basal values. The
differences between partial pressures of O2 (PI,O2) and CO2 (PI,CO2) of the inhaled air
and the partial pressures of O2 (PA,O2) and CO2 (PA,CO2) in the alveoli results in changes
of the partial pressures in the alveoli.

The circulation system represents the transport of O2 and CO2 from the arteries in the
lungs to the tissue and back. The cardiac output (Q) determines the diffusion rate of O2

and CO2 between the blood and the alveoli or tissue by regulating the volume of blood
flowing through the pulmonary and systemic circulations, where gas exchange occurs. A
small fraction of the venous blood does not reach the lungs but passes through the pul-
monary shunt. This fraction of blood is described as the pulmonary shunt fraction ps. The
blood going through the pulmonary shunt with venous concentration (Cv) and through the
lungs with end-capillary concentration (Ce) comes together at the arteries. The arterial
concentration (Ca) was described as the weighted sum of Cv and Ce.

The tissue compartment represents the skeletal muscle tissue that generates force for move-
ment during physical activities. The skeletal muscle tissue has a volume (VT ) and a con-
centration of O2 and CO2. The concentration in the tissue was altered by the metabolic
production rate (RM ) of O2 and CO2, which represents the required energy for the gener-
ated force in terms of O2 demand and CO2 production. RM was estimated using inertial
measurement unit (IMU) data and converted using laws of physics to physiological inter-
pretable values.

2.3.2 Assumptions and symbols

The model was built upon several key assumptions:

1. The system consists of three compartments: the lungs, the circulation system, and
the tissue.

2. The system consists of two reservoirs: the lungs, and the tissue.
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Figure 4: Functional block diagram of the three-compartment respiratory system.
PI,O2 denotes partial O2 pressure of inspired gas in mmHg; PI,CO2 denotes partial
CO2 pressure of inspired gas in mmHg; V̇A denotes total ventilation in L/s; VA

denotes alveolar gas volume in liter; PA,O2 denotes alveolar partial O2 pressure in
mmHg; PA,CO2 denotes alveolar partial CO2 pressure in mmHg; ps denotes the
dimensionless pulmonary shunt fraction; Ce denotes end-capillary concentration in
liter O2 or CO2 per liter blood; Cv denotes venous concentration in liter O2 or
CO2 per liter blood; Ca denotes arterial concentration in liters O2 or CO2 per liter
blood; Q denotes cardiac output in L/s; VT denotes tissue volume in liters; Cv,O2

denotes venous O2 concentration in liter O2 per liter blood; Cv,CO2 denotes venous
CO2 concentration in liter CO2 per liter blood; RM denotes metabolic production
rate in L/s.

3. Lung and tissue volumes remain constant.

4. The reservoirs have uniform tissue composition with a homogeneous concentration
and partial pressure distribution.

5. Pressure and concentration changes within the reservoirs occur uniformly and instan-
taneously.

12



6. Blood flow within the circulation system is steady and continuous with uniform
concentration distribution.

7. Gas behaviour within the lungs adheres to the principles of the ideal gas law.

8. Gas exchange at the alveoli occurs without limitation.

9. Alveolar ventilation is controlled by peripheral chemoreceptors using Ca,O2 and PA,CO2 .

10. Blood pH is maintained within the physiological range, allowing for normal gas ex-
change.

11. Dissociation curves are equal for arterial and venous blood.

12. The respiratory quotient is constant.

It is neither practical nor necessary to include specific details about the process of energy
expenditure as the complexities of physiological responses and biochemical pathways are
beyond the scope of the measured data. Instead, the model focuses on the macroscopic
view of energy dynamics, relying on measurements that reflect overall system behaviour.
Assumptions 1 to 3 ensure that the model does not need to account for variable changes in
size or heterogeneous distributions, which would significantly complicate the mathematical
representation and computational requirements. Assumptions 4 and 5 help to avoid the
need for differential equations that would otherwise be required to describe gradients or
time delays in gas exchange. Assumption 6 is necessary to avoid the complexities of
pulsatile flow and the resulting gas variations in gas transport rates. This allows for O2

and CO2 transport. Assumption 7 is a well-established principle in physics which allows
us to simplify the equations that describe gas behaviour. In reality, gas exchange can
be influenced by many factors, which would add very complex details. Using assumption
8, the model can focus on the primary factors that drive gas transport. Assumption 9
simplifies the complex regulatory mechanisms of the respiratory systems. The peripheral
chemoreceptors are sensitive to changes in Ca,O2 and PA,CO2 , which are the primary stimuli
that affect breathing. Assumption 10 allows the model to avoid the need to account for
the effects of acid-base balance on gas transport and metabolism, which simplifies the
model. Assumption 11 simplifies the model by not differentiating between the O2 and CO2

carrying capacities of blood. In reality, these curves differ due to various physiological
factors, but treating them as equal allows for a more straightforward calculation of gas
exchange without the need for additional data. Finally, assumption 12 is a standard
simplification in metabolic studies, as the respiratory quotient can vary with diet, type of
cellular respiration, and other factors. With our current measurements, it is not possible
to estimate this value for each individual, as it requires more complex data.

2.4 Mathematical model

This section describes the equations governing each subsystem of the model, starting with
the introduction of the balance equations for the lung and tissue compartment, which
describe how gases are transported and utilized within the body. Following this, the
respiratory controller is described. Subsequently, the used methods for estimating output
ventilation values and calculating energy expenditure are discussed. Next, the utilization
of IMU data to compute the metabolic production rate of O2 and CO2, serving as model
input, is explained. The final subsection describes adjustments to tailor the model for
performance enhancement.
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A full list of the used symbols and associated units are given in the appendix in Table 8.
All empirical constants are defined in the text.

2.4.1 Balance Equations for Lung and Tissue Compartment

Balance equations describe the conservation of mass for O2 and CO2 in a compartment.
The equations serve as a mathematical representation of how gases are transported and
utilized within the body. The balance equations are identical for O2 and CO2. For clarity,
a subscript indicating the chemical species (either O2 or CO2) is omitted in Equations 2
to 4. In developing equations 2 to 4, we have utilized the equations presented by Chiari et
al. in [30], with modification to the notation for consistency with the framework used in
this report.

The bloodstream in the pulmonary capillaries and gas flow in the lungs are assumed to be
continuous and unidirectional in the lung compartment. Changes in PA can result from
differences between partial pressures in the inhaled air and alveolar partial pressures, scaled
by alveolar ventilation, and from differences between venous and end-capillary concentra-
tions, scaled by the blood flow. Alveolar ventilation determines the exchange of gases in the
lungs, influencing the pressure gradient across the alveolar membrane. Meanwhile, blood
flow regulates the transport of substances in the bloodstream, affecting the concentration
gradient between venous and end-capillary blood. The magnitude of the change in PA is
dependent on the volume of the compartment and therefore proportionally scaled by the
alveolar volume. The following equation describes the alveolar partial pressure PA:

VA · dPA

dt
= V̇A · (PI − PA) + λ ·Q · (1− ps) · (Cv − Ce) (2)

Where VA is the alveolar gas volume and PI is the partial pressure of O2 or CO2 in the
inspired gas. Cv and Ce are venous and end-capillary concentrations of O2 and CO2. λ is
a coefficient that converts blood concentrations into alveolar partial pressure, Q is the car-
diac output, and ps represents the pulmonary shunt, giving a constant fraction of venous
blood that does not reach the alveoli.

The concentration in the tissue compartment is assumed to be equal to the concentration
in venous blood. The concentration in tissue changes when there is a difference in concen-
trations in venous and arterial blood, or when RM is not zero. Non-zero RM represents
elimination of O2 or production of CO2 in the tissue compartment, resulting in a change of
concentration in tissue. The blood flow affects the concentration gradient between venous
and end-capillary blood, similar to the relationship observed in the lung compartment.
The magnitude of the change in Cv is dependent on the volume of the compartment and
therefore proportionally scaled by the tissue volume. The equation below governs the mass
balance in the tissue compartment:

VT · dCv

dt
= Q · (Ca − Cv) +RM (3)

Where VT and Cv are the volume and gas concentrations in the tissue, respectively. Ca

represents the arterial concentration. RM is the metabolic production/elimination rate of
gas, which is positive for CO2 and negative for O2.

The venous blood flowing through the pulmonary shunt and blood flowing through the
lungs come together, resulting in arterial blood. It is assumed that venous blood concen-
trations are constant when flowing to the lungs. Arterial gas concentration is calculated
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by the shunt equation:

Ca = (1− ps) · Ce + ps · Cv (4)

Where Ca, Ce and Cv denote the arterial blood concentration, end-capillary concentration
and venous blood concentration, respectively. ps represents the fraction of blood flowing
through the pulmonary shunt and (1−ps) represents the fraction of blood flowing through
the lungs.

2.4.2 O2 and CO2 Dissociation Curves

To solve equations 2 to 4, the concentrations O2 and CO2 in blood were deduced from the
partial pressures. It is assumed that alveolar pressure is equal to end-capillary pressure
(PA = Pe). Dissociation curves from Fincham et al. [31] were used to convert partial
pressures to concentrations:

CO2 = K2(1− e−K3·PO2 )2 (5)

CCO2 = K4 · PCO2 (6)

Where CO2 and CCO2 represent a concentration of O2 and CO2, respectively. PO2 and
PCO2 represent corresponding partial pressure of O2 and CO2. K2, K3 and K4 represent
constants determined through a linear best fit.

2.4.3 The Respiratory Controller

The respiratory control system adjusts alveolar ventilation based on deviations from basal
levels of O2 and CO2. The physiological respiratory control centre consists of several linked
controllers, processing many different inputs. The actions of the controller mainly depend
on the contribution of the peripheral chemoreceptors, which respond rapidly to changes in
PA,CO2 and Ca,O2 , and the central chemoreceptors, which are sensitive the medullary CO2

tension. For simplification, we accounted only for the influence of peripheral chemorecep-
tors, given that they respond faster than the central chemoreceptors and are sensitive to
changes in both O2 and CO2.

The contribution of peripheral chemoreceptors to V̇A depends on both Ca,O2 and PA,CO2 .
Based on experimental observations, it has been found that ventilation is a linear function
of PA,CO2 at a constant level of Ca,O2 , and that ventilation is a linear function of Ca,O2 at
a constant level of PA,CO2 [32].

The contribution of peripheral chemoreceptors to V̇A is described using the following equa-
tion, which is a simplified version of the controller presented by Chiari et al. in [30]:

dV̇A

dt
= −Gp,O2 · Ca,O2 +Gp,CO2 · PA,CO2 +K1 (7)

Where V̇A represents the alveolar ventilation, and Gp,O2 and Gp,CO2 represent the pro-
portional gains in the controller. Parameter K1 was assigned to have V̇A = V̇0 in basal
conditions, where V̇0 denotes the basal alveolar ventilation value.

15



To prevent ventilation from reaching negative values, as this is physiologically unattainable,
ventilation is automatically set to zero whenever its value falls below zero.

V̇A =

{
V̇A, V̇A ≥ 0

0, V̇A < 0
(8)

2.4.4 Ventilation

For energy expenditure estimation, the exhaled V O2 and V CO2 per second, V̇O2 and V̇CO2 ,
needs to be estimated. The exhaled gas volumes can be estimated using gas volumes of
alveolar ventilation. The exhaled gas volumes by alveolar ventilation can be estimated as
the product exhaled volume and the difference in gas fraction of inhaled and exhaled air,
for O2 and CO2. The gas fraction of exhaled air was estimated using the alveolar gas
equation [33], which is substituted in Equations 9 and 10. To estimate the exhaled V̇O2

and V̇CO2 per second, we utilized the following equations:

V̇O2 = V̇A · (FI,O2 −
PA,O2

Patm − PH2O
) (9)

V̇CO2 = V̇A · (FI,CO2 −
PA,CO2

Patm − PH2O
) (10)

Where FIO2 and FICO2 are the partial gas fractions of inhaled air, PA,O2 and PA,CO2 are
the alveolar pressures of O2 and CO2. Patm denotes the atmospheric pressure at sea level
and PH2O denotes the partial pressure of water in the alveoli, which is used to correct for
the humidity levels in the alveoli.

Weir’s formula [34], considered the gold standard for energy expenditure estimation using
indirect calorimetry, estimates TEE and RMR using measurements of V̇O2 and V̇CO2 . It
utilizes fundamental principles of metabolism and a regression model to estimate energy
expenditure. The equation has served as a reference method to assess the accuracy of other
methods for energy expenditure estimation, such as accelerometers or predictive equations
for resting energy expenditure [35].
The measured TEE consists of the components PAEE and RMR. PAEE was derived using
the following equation:

PAEE = TEE − RMR (11)

Where PAEE denotes physical activity energy expenditure, TEE denotes total energy
expenditure, and RMR denotes rest metabolic rate energy expenditure. All components
have the unit kJ.
A critical assumption for Weir’s formula is the negligible contribution of anaerobic metabolism
for the duration of the measurement, an assumption that holds for low- and moderate-
intensity activities but may not be accurate for high-intensity exercises. Given this limi-
tation, Weir’s formula was used to estimate TEE and BMR:

EE = 3.9 · VO2 + 1.1 · VCO2 (12)

Where VO2 denotes the net volume of O2 per second, and VCO2 denotes the net volume of
CO2 per second.
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2.4.5 Metabolism

For the estimation of RM , we estimated the amount of energy that it takes to move
the body with a certain velocity. The estimated energy is converted to metabolic de-
mand/production of O2 and CO2 using the respiratory quotient (RQ). This approach
holds under the assumption that metabolic demand and production approach zero after a
period in which none of the body components was moved. This can be assumed because
PAEE is estimated, which does not include the maintenance energy cost of tissue.
Several IMUs were connected to different segments of the subject’s body. Using this
approach, the required energy to move a body segment was estimated. The velocity v
of the centre of mass (CoM) of a segment was estimated by integrating the IMU data,
under the assumption that the IMU is attached to the CoM. The required energy to move
the body within a timestep was calculated using the equation for kinetic energy. As the
muscles are not 100% efficient, the kinetic energy will be an underestimation of the actual
energy used. To correct the kinetic energy for human muscle efficiency, the energy is scaled
by the human muscle efficiency factor.

E(t) =
1
2 ·MB · v2(t)

µ
(13)

Where MB is the total mass of the body, v is the total velocity of the CoM of the segment,
and µ denotes the human muscle efficiency percentage.

The energy was then converted to the metabolic demand of O2 using the conversion factor
of 19.6 kJ, given that one litre O2 produces 19.6 kJ of heat [36]. For this, it was assumed
that activities of daily living fall within aerobic energy expenditure levels. The metabolic
production rate of CO2 was calculated using the RQ, which is the ratio of carbon dioxide
(V CO2) production to oxygen (V O2) consumption. RQ is an indicator of metabolic fuel
use in tissues and typically ranges between 0.7 and 1.0. We assumed an RQ of 0.8, which
summarizes a mixture of consumed substrates (carbohydrates, fat, and protein). The
metabolic production rate of oxygen (RM,O2) and carbon dioxide (RM,CO2) were estimated
as follows:

RM,O2(t) =
E(t)

19.6
(14)

RM,CO2(t) = 0.8 ·RM,O2(t) (15)

Where RM,O2 and RM,CO2 represent the metabolic demand of O2 and the metabolic pro-
duction of CO2, respectively.

2.4.6 Model tailoring approach

As energy expenditure has a high variability between humans, tailoring the model was
expected to improve the performance. Certain constants in the model were assigned values
obtained from individual-specific measurements. In addition, one variable was estimated
using machine learning to optimize model performance.

Subject-dependent constants The body mass (MB), the muscle volume (VT ), and the
cardiac output (Q) were made subject-dependent and based on collected data. The mass
MB used to calculate the kinetic energy equalled the mass of the subject.
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The muscle volume VT was calculated using the density of skeletal muscle as follows:

VT = MSM · ρ (16)

Where MSM dentes the measured skeletal muscle mass, and ρ denotes the density of skele-
tal muscle mass.

The cardiovascular compartment was included in the circulation system and modelled as
the cardiac output Q. The cardiac output was not controlled by values in this model but
was estimated using the measured heart rate. Q was estimated using the product of the
measured heart rate and the stroke volume:

Q = HR · SV (17)

Where HR is the continuously measured heart rate and SV is the stroke volume. SV
is assumed to be constant over time. Different SV values were used for male and female
subjects to account for physiological variations in SV between genders [37], but a constant
SV was assumed for all individuals within the same gender group. Therefore, the value
was the same for all male subjects and was the same for all female subjects.

2.5 Model variations

For estimation of metabolic production, as explained in Section 2.4.5, two different ap-
proaches were utilized.

2.5.1 Model 1

The first approach used the IMU at the pelvis to estimate the kinetic energy, as this
location is closest to the actual centre of mass of the participant. It was expected that this
location provided a good approximation of the body’s overall movement. This approach is
referred to as ’model 1’ and is represented by the following equation:

E(t) =
1
2 ·MB · v2pelvis(t)

µ
(18)

Here, E(t) represents the estimated kinetic energy at time t in kJ, MB is the total body
mass in kg, vpelvis is the velocity of the pelvis in m/s, and µ is the dimensionless muscle
efficiency factor.

2.5.2 Model 2

The second approach estimated the kinetic energy for the left leg, right leg, and upper body
using IMUs at both thighs and the pelvis. The energies from these three body parts were
summed to estimate the total kinetic energy. This approach is referred to as ’model 2’.
It was expected that this approach would improve the model predictions during activities
where the legs move significantly but the pelvis experiences limited movement, such as
during cycling on an ergometer. The equation for Model 2 is:

E(t) =

1
2 ·

(
MU · v2pelvis(t) + ·ML · v2left_thigh(t) + ·ML · v2right_thigh(t)

)
µ

(19)

Where MU represents the mass of the upper body in kg, ML and MR represent the mass
of the left and right leg in kg, respectively. vpelvis, vleft_thigh, and vright_thigh represent
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the velocity of the pelvis, left thigh, and right thigh in m/s, respectively. µ represents the
dimensionless muscle efficiency factor.
The mass of each segment (e.g. MU , ML, and MR) was calculated as a fraction of the
total body mass. Average mass percentages for each body segment were determined by
Plagenhoef et al. [38]. On average for men, one leg consists of 16.68% of the total weight
and the remaining part of the body consists of 66.64% of the total weight. For women, one
leg consists of 18.43% of the total weight and the rest of the body consists of 63.14% of the
total weight. These percentages were multiplied by the total body mass of the individual
to get an estimation of the mass of the upper body, left leg, and right leg.

2.6 System solver and parameter estimation

Numerical integration was performed using the Scipy Python library [39]. The dopri5 in-
tegrator was employed, which is an explicit runge-kutta method with stepsize control. The
maximum step size was set to 1 second and the number of steps was limited to 10,000
steps, ensuring a comprehensive exploration of the solution space.

The computations were performed on a PC equipped with an Intel Core i5 4570 3.2 GHz
CPU, 12.0 GB dual-channel DDR3 RAM, and an NVIDIA GeForce GTX 750 Ti GPU.
This setup provided sufficient computational power for the calculations required in this
study.

Some parameters strongly influence the dynamics of body systems and are individual de-
pendent, but are difficult to measure. The muscle efficiency value, denoted as µ in the
mathematical model description, is a critical parameter in determining the metabolic pro-
duction rate. In our model, we estimated µ using parameter estimation techniques. A
leave-one-out (LOO) approach was employed for parameter estimation and model evalu-
ation. A grid search was performed to optimize the predictive model by minimizing the
root mean squared error (RMSE).

Typically, human muscle efficiency spans from 15% to 35%, reflecting the variability
observed across different muscles and contraction types [40, 41]. However, the current
methodology for estimating metabolic production is simplified and likely underestimates
actual metabolic rates, as it only includes velocity and ignores energy expenditure from
acceleration and holding posture. To address this, the permissible range for µ was broad-
ened. 50 equally spaced values within the range of 0.1% and 5% were evaluated, aiming
to minimize the difference between the actual energy expenditure and the model’s predic-
tions. This range was determined after an initial exploration of a broader set of values,
which indicated that the optimal µ value fell within this narrower interval.

2.7 Model evaluation

For evaluation, we first calculated the Pearson correlation coefficient between ground truth
V O2 and the velocity and kinetic energy of each IMU to investigate the relationship between
the input of the model and the ground truth. Also, the correlation coefficient between V O2

and the kinetic energy using model 2 was estimated. The Pearson correlation coefficient
was calculated as follows:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(20)
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Where r denotes the correlation coefficient, xi denotes the value of the x variable, x̄ denotes
the mean of the x variable values, yi denotes the value of the y variable, ȳ denotes the
mean of the y variable values.

Furthermore, the normalized velocity (v) and squared velocity (v2) were visualized for the
pelvis, right thigh and left thigh and compared to the ground truth V O2 for participant 7.
Performance over the full recording and also per activity was evaluated using the RMSE,
expressed in terms of kJ/min/kg:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(21)

Where n represents the total number of values, ŷi represents the ground truth PAEE in
kJ/min/kg at time index i, and yi represents the predicted PAEE in kJ/min/kg at time
index i.

Furthermore, the R-squared over the full recording was calculated to evaluate the capacity
of the model to capture the variations in energy expenditure due to different activities:

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
(22)

Where n represents the total number of values, yi represents the predicted PAEE in
kJ/min/kg at time index i, ŷi represents the ground truth PAEE in kJ/min/kg on time
index i, and ȳ represents the mean of the ground truth PAEE values. When the numerator
is greater than the denominator, meaning that the model performs worse than the average
line, the R2 will be negative.

The predicted energy expenditure was plotted for the participant with the highest R2 for
both models and compared to the ground truth to visualize the differences between the
models.
Consequently, we analyzed the effect of a preceding activity on the RMSE of the succes-
sive activity. This was done by grouping all activities by their preceding activity type, e.g.
LWBM denotes activities whose preceding activity type is LWBM. Then, we employed a
t-test to compare the RMSE values of these grouped activities.

Finally, we investigated the effect of the assumption of a constant RQ on the error of the
model, as the RQ significantly impacts the quality of the model’s input. Our model utilizes
RM,O2 and RM,CO2 as input, making the accuracy of these values crucial for the model’s
performance. According to Equation 15, RM,CO2 is the product of RQ and RM,O2 , which
is the part where the error would be introduced. Normally, the RQ is individual-dependent
and activity-dependent, so the value of the RQ changes with every time step. However,
with a constant RQ, there will be an error in the estimation of RM,CO2 even when RM,O2 is
estimated without any error. For this analysis, we assumed a perfect model except for the
value of RQ. This was done by setting the RM,O2 equal to the ground truth V O2. Using
this, the RM,CO2 was estimated using a constant RQ and energy expenditure was estimated
using Weir’s formula accordingly, which is mentioned in Equation 12. This predicted energy
expenditure was then compared to the ground truth energy expenditure using the RMSE
metric. As the model was assumed to be perfect, all errors in terms of RMSE can be
assigned to the assumption of the constant RQ. The results of this analysis are presented
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as the error percentage between the RMSE from the so-called ’perfect model’, as described
in this paragraph, and the RMSE from either model 1 or model 2. This was done to clearly
show the magnitude of the error originating in the constant RQ assumption in comparison
to the predictions of the regular models. The error percentage was calculated using the
following equation:

error = 1−
∣∣εRQ − εmodelj

∣∣
εmodelj

(23)

Where the error denotes the contribution of the constant RQ on the total RMSE of the
models. εRQ represents the error of the so-called ’perfect model’ in RMSE, εmodelj rep-
resents the error of the models described in Section 2.5 in RMSE, where j represents the
model approach number.
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3 Results

We initially recruited 7 men and 3 women to participate in the experiment. The data
of participant 4 (male) was unusable due to disconnected sensors, so this participant was
excluded. The demographic information of the nine remaining participants is shown in
Table 2. Notably, the data reveals a lower average weight and muscle percentage among
the female participants, compared to the male participants. The table highlights the
diversity in body composition within the group, as reflected by the range of BMI, muscle
percentage, and fat percentage values.

Table 2: Main demographics of the study population. Rest metabolic rate (RMR)
was calculated using the Weir equation [34].

Participant Sex Age (years) Weight (kg) Height (cm) BMI (kg/m2) RMR (kcal) Muscle (%) Fat (%)
1 Female 23 54.6 170 18.9 2154 31 24.1
2 Male 24 83.5 187 23.9 2124 41 17
3 Male 23 84.5 175 27.6 2307 35.7 28
5 Male 49 70.7 186 20.4 1945 36.3 18
6 Male 29 92.2 178 29.1 2364 34.1 29.5
7 Female 23 65.5 177 20.9 1923 28.9 30.4
8 Male 23 73.4 183 21.9 2247 41 17.3
9 Male 23 77.2 187 22.1 3259 38.3 21
10 Female 23 61.9 169.5 21.5 1423 26 34.3

3.1 Correlation analysis

The Pearson correlation coefficient between the measured V O2 and both velocity and ki-
netic energy was calculated. The mean and standard deviation of the correlation coefficient
are shown in Table 3. For all locations, the kinetic energy has a weaker correlation with
V O2 compared to the velocity. Both the right and left thighs have the highest mean corre-
lation coefficients with V O2 for both velocity and kinetic energy, while the wrists show the
lowest correlation coefficients. Generally, the lower body locations (thighs and dominant
shoe) have higher correlation coefficients compared to the upper body locations (shoulders,
sternum, chest). The velocity and squared velocity of the IMU on the pelvis, right thigh,
and left thigh are plotted with the ground truth V O2 in Figure 5. For each location,
the squared velocity shows a decreased value compared to the velocity. As the velocity is
smaller than 1 m/s at most timestamps, the quadratic relationship returns a decrease in
the squared velocity compared to the velocity. It can be observed that the thigh IMUs
capture more movement during the cycling and walking activities, compared to the pelvis
IMU. However, the ground truth V O2 shows a larger relative increase during cycling than
the IMUs can capture in terms of velocity.

In light of the model’s required explainability, the primary focus is placed on the estimated
kinetic energy. A notable correlation exists between kinetic energy and V O2 for the thighs,
indicating potential enhancements through the addition of the IMUs on the thighs. The
mean and standard deviation of the correlation coefficient between V O2 and the weighted
average of the left thigh, right thigh and pelvis are 0.559 and ±0.162, respectively. Given
that this correlation is stronger than that of using only the pelvis IMU, both approaches
were analysed.

22



Figure 5: Normalized V O2 and normalized velocity (v) and v2 of the IMUs located
at the pelvis, right thigh, and left thigh on participant 7.
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Table 3: Pearson correlation coefficient between V O2 and velocity of IMU, and
between V O2 and kinetic energy.

IMU location V O2 and velocity V O2 and kinetic energy
Left shoulder 0.437 ± 0.141 0.305 ± 0.131
Right shoulder 0.419 ± 0.180 0.310 ± 0.158
Sternum 0.468 ± 0.136 0.316 ± 0.131
Chest 0.446 ± 0.141 0.255 ± 0.213
Left wrist 0.311 ± 0.196 0.272 ± 0.191
Right wrist 0.265 ± 0.191 0.227 ± 0.177
Pelvis 0.478 ± 0.152 0.350 ± 0.157
Right thigh 0.697 ± 0.115 0.627 ± 0.152
Left thigh 0.654 ± 0.156 0.571 ± 0.199
Shoe (dominant leg) 0.539 ± 0.148 0.417 ± 0.176

3.2 Model performance

On average, the model’s numerical integration took approximately 0.48 seconds, with a
standard deviation of 0.12 seconds. Considering 9 participants, 50 sets of parameters, and
2 models, this integration process was performed a total of 7218 times. When examining
the estimated muscle efficiency values, model 1 had a median value of 0.013 and an in-
terquartile range of 0.011. Model 2 exhibited a higher median muscle efficiency value of
0.028, with an interquartile range of 0.018. This suggests that the approach of model 2
utilizing multiple IMUs provides a more precise approximation of the input magnitude as
the model input is scaled using the muscle efficiency value.

To assess performance, the aggregate R2 and RMSE values for the complete dataset for
each participant are shown in Table 4. Furthermore, a detailed analysis of the RMSE for
individual activities per model is presented in Table 5. More detailed results per partici-
pant are presented in Section A.2 in the appendix, in which Table 9 contains the RMSE
for each activity per participant utilizing Model 1, which relies solely on the kinetic energy
from the pelvis IMU, and Table 10 contains the RMSE values for the same activities using
Model 2, which incorporates a weighted average of the thighs and pelvis.

Model 1 exhibits a significantly lower mean R2 compared to model 2 (0.256 ± 0.302 vs.
0.375 ± 0.312, p=0.05). Regarding the overall RMSE, model 1 demonstrates a similar
mean value compared to model 2 (0.112 ± 0.035 vs. 0.100 ± 0.037, p = 0.08). Moreover,
participants 1, 2, 6, and 7 show a higher R2 for model 1 compared to model 2. In addition,
participants 1, 2, and 7 have a smaller RMSE for model 1 compared to model 2, indicating
that model 1 performs better for these participants. The results indicate a considerable
variability among individuals. Notably, both models yield a negative R2 for participant
10. Above all, participant 6 exhibits superior performance for model 2 compared to the
other predictions, showing an R2 value of 0.734.

In terms of the mean RMSE per activity, cycling and standing exhibit the largest mean
RMSE values for both models. No significant difference was found in the performance of
model 1 and model 2 for any of the activities. When examining the sedentary activities of
standing and sitting, which involve minimal to no movement, a distinction can be found.
The RMSE of model 1 is significantly higher for standing compared to sitting (0.116 ±
0.050 vs. 0.055 ± 0.020, p < 0.01). No significant difference was found between these
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activities for model 2 (0.103 ± 0.051 vs. 0.057 ± 0.034, p = 0.06).

Table 4: The aggregate R2 and RMSE (kJ/min/kg) of the predictions using either
model 1 or model 2.

Model 1 Model 2
Participant Overall R2 Overall RMSE Overall R2 Overall RMSE

1 0.197 0.166 0.126 0.173
2 0.634 0.049 0.532 0.056
3 0.005 0.099 0.197 0.089
5 0.529 0.102 0.705 0.081
6 0.583 0.070 0.768 0.052
7 0.385 0.104 0.381 0.105
8 0.335 0.139 0.734 0.088
9 -0.068 0.127 0.098 0.116
10 -0.296 0.148 -0.162 0.141

Mean±std 0.256±0.302 0.112±0.035 0.375±0.312 0.100±0.037

Table 5: Mean and standard deviation of RMSE (kJ/min/kg) for each activity
using either model 1 or model 2.

Activity Model 1 Model 2
Treadmill 3 km/h 0.048 ± 0.027 0.057 ± 0.029
Treadmill 5 km/h 0.054 ± 0.027 0.069 ± 0.027

Cycling 0.255 ± 0.107 0.213 ± 0.115
Stacking shelves 0.079 ± 0.059 0.061 ± 0.027

Standing 0.116 ± 0.050 0.103 ± 0.051
Sitting 0.055 ± 0.020 0.057 ± 0.034
Reading 0.068 ± 0.036 0.059 ± 0.037

Dishwasher 0.069 ± 0.034 0.057 ± 0.030
Stairs 0.058 ± 0.031 0.064 ± 0.034

Mopping 0.071 ± 0.042 0.064 ± 0.030
Survey 0.065 ± 0.052 0.054 ± 0.037

The predictions by both models on the data of participant 6 are shown in Figure 6. Both
models overestimate most of the activities, except for the cycling activity, which is under-
estimated. Model 1 shows a very fast response to the HWBM activities, which include
emptying the dishwasher, mopping, and stacking books, but overshoots the ground truth
value. After the HWBM activities and walking at 5 km/h activity, the model responded
very slowly, resulting in an overestimated prediction. Similar to model 1, model 2 has a
slow response after walking at 5 km/h activity, which results in an overestimation. How-
ever, the spikes at the beginning of the reading and dishwasher activity for model 1 are
not visible in model 2. The predictions for all participants are visualized in the appendix
in Section A.3.
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(a) Ground truth and predicted PAEE using model 1.

(b) Ground truth and predicted PAEE using model 2.

Figure 6: Comparative PAEE predictions for participant 6 using the two different
models.
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3.3 Introduced error by constant RQ

Table 6 presents a comparison of the percentage of error induced by the assumption of
constant RQ in the two different predictive models across the participants. The error
percentages per model represent the contribution of the constant RQ on the total RMSE
of the models from Table 4. It can be observed that the error percentages for model 1
and model 2 are relatively close across participants. The smallest error percentages are
observed at participant 10 (2.9% for model 1 and 3.1% for model 2). The largest percentage
for model 1 is observed in participant 2 at 6.9%, and the largest percentage for model 2 is
observed in participant 6 at 8.0%. This analysis indicates that the assumption of constant
RQ introduces approximately between 2.9% and 8.0% of the total error.

Table 6: Percentage of error induced by constant RQ in predictive models.

Participant Model 1 RQ Error (%) Model 2 RQ Error (%)
1 5.8 5.5
2 6.9 6.1
3 3.6 3.9
5 5.3 6.7
6 5.9 8.0
7 6.0 6.0
8 4.8 7.6
9 3.0 3.3
10 2.9 3.1

3.4 Effect of preceding activity

The results of pairwise comparisons between RMSE values, grouped by preceding activity
type (LWBM, HWBM, walking, and cycling), are presented in Table 7. The LWBM group,
consisting of RMSE values of activities that had an LWBM activity as preceding activity,
showed a significantly lower RMSE on average in kJ/min/kg compared to the other groups
combined for both model 1 (0.062 vs 0.093, p=0.02) and model 2 (0.055 vs 0.086, p <0.01).
The other groups did not show a significant difference compared to the other groups.

Table 7: Student’s t-test p-values for pairwise comparisons between RMSE values of
one group and all others combined. The groups consist of low whole-body motion
(LWBM) activities, high whole-body motion (HWBM) activities, walking activi-
ties, and cycling. Asterisks denote the level of significance, where one asterisk (*)
indicates p < 0.05.

Group n p-value (Model 1) p-value (Model 2)
LWBM 31 0.02* < 0.01*
HWBM 25 0.64 0.98
Walking 20 0.21 0.07
Cycling 8 0.68 0.72
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4 Discussion

In this thesis, we introduced a novel approach for PAEE estimation by combining a phys-
iological model and sensor data within a simplified physiological computing model. Our
method stands out by integrating real-time sensor data measurements with a physiolog-
ical understanding of the dynamics of energy expenditure, offering a more detailed and
personalized framework compared to traditional methods. By employing the power of
both domains, we provide a tool that opens new avenues for energy expenditure modelling
techniques.

4.1 Discussion and interpretation of results

The correlation analysis revealed that the predictive power of velocity and kinetic energy
varies with the placement of the IMU. Notably, the lower body locations, specifically the
thighs, demonstrate higher mean correlation coefficients with V O2. This suggests that
movement in the lower body is more reflective of V O2 levels, which is consistent with the
understanding that the lower body is typically more involved in activities that elevate V O2.
The pelvis showed a weaker predictive relationship, likely because it experiences minimal
movement during treadmill and ergometer exercises. The thighs capture significant move-
ment during walking and cycling activities. The significant movement observed in the
thighs during walking and cycling activities accounts for the notably stronger correlation
observed between the velocity and kinetic energy at this location and V O2.

Model 1 exhibited a significantly lower mean R2 compared to model 2 (0.256 ± 0.302 vs.
0.375 ± 0.312, p=0.05), even though model 1 shows a higher R2 for four subjects. Regard-
ing the overall RMSE, model 1 demonstrated a similar mean value compared to model 2
(0.112 ± 0.035 vs. 0.100 ± 0.037, p = 0.08). The performance difference is presumably
caused by the inclusion of the thigh IMUs, as this makes the model less dependent on the
movement of one single body component. The stronger correlation between V O2 and the
weighted average of the left thigh, right thigh, and pelvis compared to using only the pelvis
IMU, in addition to the improved predictions, supports the use of a multi-sensor approach
over a single-sensor model.

In the evaluation of the models, it is important to consider both quantitative and qual-
itative aspects. While the R2 shows relatively poor performance, the figures in Section
A.3 demonstrate that the model captures the changes in PAEE quite well by following the
trends in the ground truth PAEE values. The R2 may not always be the most appropriate
metric for evaluating how well the model captures the underlying pattern, or variance, in
PAEE. This is because R2 measures the proportion of explained variance rather than the
magnitude of the prediction error. Therefore, a model could have a low R2 but still make
predictions that are close to the ground truth values. This is especially the case if the scale
of the output is small. For this study, we used RMSE and R2 to facilitate comparison with
other studies. However, we recognize the limitations of these evaluation metrics on this
application.

In the appendix in Section A.3, it can be observed that the model predictions have a large
variation between participants. The quantitative metrics do not match with the qualitative
analysis of the predictions for all participants, as mentioned in the previous paragraph. For
example, participant 10 exhibits poor R2, while the predicted graph does follow the trend
of the ground truth PAEE quite well. We recognize the variations in predictions, but it ap-
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pears difficult to suggest a clear explanation for each individual. Overall, the origin of the
variations in performance probably lies in the physiological differences between individuals
and how each participant approached the activities. However, we might be able to explain
the enhanced performance of both models in the case of participant 6. This participant
chose to cycle with a low cadence, leading to a comparatively lower PAEE during cycling,
which contrasts with the higher expenditures of other participants. Typically, the models
tend to underestimate PAEE during cycling as the resistance of the bike is not reflected in
the IMU data. However, due to the slower cycling pace by participant 6, the performance
of both models for this participant improved. This is supported by the data presented in
Table 9 and Table 10, where the RMSE for cycling by participant 6 is nearly half of the
RMSE for the other participants during the same activity.

The analysis of the impact of the preceding activity on the accuracy of PAEE estima-
tion provides valuable insights into the dynamics of PAEE and the influence on predic-
tive modelling. The findings suggest that preceding LWBM activities significantly affect
the estimation performance of consequent activities in terms of RMSE, as activities with
preceding LWBM activities exhibit significantly lower RMSE values compared to other
preceding activities. In other words, the characteristics of LWBM activities may lead to
physiological changes that impact subsequent metabolic rates. For example, engaging in
sedentary activities results in a more stable and predictable metabolic rate and physical
state. Because of this, the energy expenditure might be easier to predict when transitioning
to a more active task. This contrasts with transitions from more variable activities, such
as HWBM or walking, where the abrupt changes in metabolic rate can introduce greater
variability and challenging predictions. Thus, the more stable and predictable transition
from LWBM activities may lead to better model performance.

It can be observed that both models have difficulties in estimating the change in PAEE
in between activities. This could be caused by the simplified control system, as it only
includes a linear dependency on arterial O2 concentration and alveolar CO2 pressure. It
could also be caused by the simplified approach for estimating metabolic production using
kinetic energy, as changes in kinetic energy might not fully capture the required muscle
contractions for posture and activity changes. This is supported by the significant dif-
ference in RMSE between the sitting and standing activity. Even though both activities
involve minimal to no movement, the actual energy expenditure differs due to the required
muscle contractions for holding posture. The model estimates a similar PAEE for both
activities due to the similar movement intensity, resulting in a significantly larger RMSE
for the standing activity.

4.2 Comparative evaluation with existing literature

In comparing our findings with those of Heil et al. [42], who reported an R2 of 0.71 us-
ing a hip-mounted IMU, our study achieved a lower R2 of 0.375. This difference may be
attributed to our use of 1-second epochs, which provide a more specific view of PAEE
but also introduce greater variability in the data, compared to their 60-second epochs. In
addition, Heil et al. did not account for time dynamics between activities by treating each
epoch as an independent data point, which could lead to errors in short periods with large
variations in activity type.

Similarly, Bouten et al. found a strong relationship between the accelerometer output and
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PAEE (r=0.95). Their equation underestimated individual PAEE during sitting, writing
and arm work by 35-140%, while sitting down/standing up was overestimated by 70%.
These findings are in agreement with our findings, showing the difficulty of estimating
energy expenditure during sedentary activities and transitions between activities. They
found that the forward direction of acceleration intensity was a better predictor of PAEE
than the upward direction during walking, running and stepping exercises. Importantly,
they did not find a clear relationship between PAEE and kinetic energy calculated using
the velocity of the lower back, which is in agreement with our findings that the velocity
has a stronger correlation with V O2 than kinetic energy with V O2.

Van Hees et al. estimated PAEE in participants for 23 hours in a respiration chamber while
performing a set of activities such as walking, standing, sitting and lying [43]. Using an
accelerometer at the lower back and a best-fit linear equation, the activity type was derived.
Using an equation for each activity type, the PAEE was predicted for each individual using
30-minute averages, achieving an R2 with PAEE of 0.81±0.06. The superior performance
of their approach compared to ours could be explained by their small number of activity
types and the 30-minute epochs, which neglects the need for accurately estimating the
transitions between activities. However, this approach underscores the need for activity
type derivation in the model.

4.3 Contribution to the field

The inferior performance of our model compared to published models does not diminish
the contribution of this research to the field of PAEE and obesity prevention. Firstly, we
have collected a diverse dataset consisting of a large number of sensors. This dataset is
more realistic and contains limited bias when compared to published datasets, mainly due
to the variation of ADL and the randomized order of the activities. This, in combination
with the relatively high sampling frequency, allows for a realistic evaluation of the model.
It is expected that models which are evaluated on a more realistic dataset give worse re-
sults compared to a less realistic dataset. Nevertheless, training and evaluation using our
dataset would represent real-life performance, which is after all essential for effective in-
terventions for obesity prevention.

Secondly, to our best knowledge, we are the first to include dynamics into a PAEE esti-
mation model. An explainable and thus physiological and dynamic model is essential as
PAEE has a high inter-individual variation. Our model allows the insertion of measur-
able individual-specific parameters, such as muscle mass percentage and weight, which are
implemented in the model using physiological knowledge. Also, more complex parame-
ters, for example, the ones in the ventilatory control system, could be trained within a
physiologically realistic range to make the model personalized while keeping it explainable.
Additionally, in comparison to a black box model approach, our simplified and compu-
tationally efficient approach ensures that the model can easily adapted and scaled for
real-world applications. Because of the explainable and personalized characteristics of the
model, this approach allows to transcend current existing models that are being used for
PAEE estimation. In the end, personalized estimations of energy expenditure are needed
to reduce the gap between consumed energy and expended energy.
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4.4 Limitations and recommendations

While the assumptions and simplifications made in this study are essential to make the
project manageable, it is important to recognize their limitations. These simplifications
may affect the performance of the model in terms of generalizability and could introduce
certain biases. Specifically, the assumption of constant RQ overlooks the complex interplay
of different energy systems in the body. As discussed in Section 3.3, the constant RQ intro-
duces approximately between 2.9% and 8.0% of the RMSE when the estimated V O2 equals
the ground truth. However, it could be hypothesized that the error percentage increases
when the error between the estimated and ground truth V O2 decreases. In addition, the
number of estimated parameters was set to one due to limited time and computational
power. It is recommended to estimate more parameters to make the model more person-
alized. In addition, the leave-one-out approach is not optimal for tailoring the model as
parameters are not optimized on the leave-one-out participant, but on the remaining group
of participants. For future research, it is recommended to start each measurement with a
series of fixed activities which could be used for within-subjects parameter estimation.

For the breath-by-breath analyser, three calibration steps needed to be performed. One of
the calibration steps was performed using a gas tank with known concentrations of O2 and
CO2 to make sure that the analyser measured the air concentrations correctly. Unfortu-
nately, we were not able to perform the concentration calibration before each measurement
day, given the current regulations on storing gas tanks. Due to this, we performed this
calibration step once a week which could have introduced errors in the ground truth data.
It is unknown whether the limited calibration results in an under- or overestimation of
energy expenditure. For the future, it is recommended to perform all calibration steps on
every measurement day to ensure correct ground truth data.

Currently, the metabolic production estimation is explainable but also extremely simpli-
fied. The current approach assumes no metabolic production when there is movement.
This ignores the energy expenditure of holding posture, which differs significantly between
standing and sitting positions. Francisco et al. found the mean difference in PAEE between
standing and sitting positions to be significant (0.52 ± 1.01 kJ/min, P<0.001) [44], which
could explain the inferior performance for standing activity compared to sitting activities.
For future research, it is recommended to improve the metabolic production estimation by
incorporating energy expenditure caused by holding posture. The use of activity classifiers
for ADL, as already done with high accuracy by several studies [45, 46, 47], could be a
useful approach to determine PAEE for different activities with corresponding postures.

In addition, our approach neglects the direction of the movement by using the magnitude
of the velocity vector. According to the findings of Bouten et al., it is recommended for
future research to make a distinction between forward and upward movement. According
to the findings of Van Hees et al., making the model dependent on the activity type might
enhance the performance. This could be done by determining an efficiency factor for each
activity separately to further improve the estimation of metabolic production.
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5 Conclusion

In this thesis, we presented an innovative approach for PAEE estimation by integrating
physiological models with sensor data in a simplified physiological computing model. The
proposed method demonstrates the potential to provide more detailed and personalized
PAEE estimations during ADL compared to traditional models. Through the integration
of real-time sensor data in a physiological dynamic system, this research has made strides
towards future advancements in terms of the accuracy and usability of PAEE estimators.
This approach shows the potential to play a role in addressing the global obesity pandemic
by enabling individuals to better understand and manage their energy expenditure.
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A Appendix

A.1 Glossary table

Table 8: Glossary of used symbols. subject-specific represents subject-specific val-
ues, which were measured or estimated for each individual. All used values were
taken from [30], except values for K2, K3, K4, ρ, SVm, and SVf .

Symbol Subscript Species Definition Unit Basal value
C [Concentration] L / L

a O2 Arterial 0.192
CO2 0.572

e O2 End-capillary 0.193
CO2 0.570

T O2 Muscle tissue 13.0 · 10−4

CO2 0.605
v O2 Venous 0.144

CO2 0.610
P [Partial pressure] mmHg

A O2 Alveolar 100.2
CO2 40.28

I O2 Inspired air [48] 160
CO2 0.3

ps Pulmonary shunt fraction 0.024
λ Conversion coefficient mmHg 863

V̇ [Ventilation] L/s
0 Basal value 0.0713
A Alveolar 0.0713

G [Peripheral gain]
p,O2 L · s−1 2.45
p, CO2 L · s−1 ·mmHg−1 0.0316

K
1 −0.783
2 Oxygen [31] (mmHg)−1 0.2
3 Oxygen [31] (mmHg)−1 0.046
4 Carbon dioxide [31] 0.016

V [Volume] L
A Alveolar 3.28
T Tissue 38.74

ρ Skeletal muscle density [49] kg/dm3 1.06
R M [Metabolic production rate]

O2 L/s 0
CO2 0

SV [Stroke volume] [37] L
m Male 0.08975
f Female 0.06932

v Velocity m/s 0
E Energy J 0
HR Heart rate beats/min subject-specific
Q Cardiac output L/s subject-specific
M [Mass] kg

B Body subject-specific
SM Skeletal muscle subject-specific
U Upper body subject-specific
L Leg subject-specific

µ Human muscle efficiency % subject-specific
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A.2 Performance of models per participant per activity

Table 9: RMSE (kJ/min/kg) per participant for each activity using model 1.

Participant Treadmill
3 km/h

Treadmill
5 km/h Cycling Stacking

shelves Standing Sitting Reading Dishwasher Stairs Mopping Survey

1 0.071 0.076 0.369 - 0.146 0.061 - 0.109 0.067 - -
2 0.019 - - 0.044 - 0.019 0.024 0.058 0.108 0.089 0.058
3 0.028 0.032 0.259 0.024 0.075 0.063 0.091 0.085 0.026 0.031 0.031
5 0.093 0.058 0.122 0.076 0.157 0.043 0.101 0.041 0.086 0.079 0.137
6 0.087 0.022 0.069 0.072 0.127 0.087 0.058 0.124 0.034 0.057 0.019
7 0.021 0.063 0.261 0.022 0.013 0.053 0.116 0.040 0.056 0.042 0.012
8 0.043 0.027 0.341 0.216 0.085 0.056 0.039 0.057 0.019 0.088 0.093
9 0.043 0.046 0.229 0.113 0.173 0.081 0.099 0.091 0.028 0.161 0.152
10 0.024 0.109 0.389 0.069 0.148 0.031 0.017 0.014 0.095 0.020 0.021

Mean 0.048 0.054 0.255 0.079 0.116 0.055 0.068 0.069 0.058 0.071 0.065
Std 0.027 0.027 0.107 0.059 0.050 0.020 0.036 0.034 0.031 0.042 0.052

Table 10: RMSE (kJ/min/kg) per participant for each activity using model 2.

Participant Treadmill
3 km/h

Treadmill
5 km/h Cycling Stacking

shelves Standing Sitting Reading Dishwasher Stairs Mopping Survey

1 0.079 0.072 0.398 - 0.104 0.047 - 0.080 0.095 - -
2 0.038 - - 0.037 - 0.024 0.023 0.073 0.111 0.103 0.058
3 0.029 0.068 0.208 0.039 0.065 0.063 0.098 0.121 0.024 0.030 0.025
5 0.092 0.035 0.110 0.075 0.130 0.021 0.084 0.042 0.087 0.078 0.077
6 0.087 0.023 0.064 0.063 0.066 0.080 0.019 0.038 0.027 0.047 0.021
7 0.034 0.091 0.255 0.022 0.014 0.030 0.113 0.058 0.084 0.037 0.014
8 0.051 0.108 0.105 0.114 0.119 0.121 0.033 0.021 0.021 0.075 0.086
9 0.093 0.065 0.194 0.074 0.191 0.100 0.083 0.061 0.036 0.109 0.126
10 0.010 0.095 0.371 0.070 0.137 0.030 0.017 0.019 0.089 0.031 0.029

Mean 0.057 0.069 0.213 0.061 0.103 0.057 0.059 0.057 0.064 0.064 0.054
Std 0.029 0.027 0.115 0.027 0.051 0.034 0.037 0.030 0.034 0.030 0.037
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A.3 Predictions of the models for each participant

(a) Participant 1, model 1. (b) Participant 1, model 2.

(c) Participant 2, model 1. (d) Participant 2, model 2.

(e) Participant 3, model 1. (f) Participant 3, model 2.

(g) Participant 5, model 1. (h) Participant 5, model 2.

(i) Participant 6, model 1. (j) Participant 6, model 2.

Figure 7: Predictions for participant 1 up to 6 using either model 1 or 2.
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(a) Participant 7, model 1. (b) Participant 7, model 2.

(c) Participant 8, model 1. (d) Participant 8, model 2.

(e) Participant 9, model 1. (f) Participant 9, model 2.

(g) Participant 10, model 1. (h) Participant 10, model 2.

Figure 8: Predictions for participant 7 up to 10 using either model 1 or 2.
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