
Towards automated prevention of rework in so�ware development

VIKTORIIA KONASHCHUK, University of Twente, The Netherlands

Redoing tasks in software development signi�cantly impacts project costs
and e�ciency and can take up to 50% of a project team’s time. Rework may
appear due to a variety of reasons like poor planning or incomplete require-
ments, and the longer root cause issues go undetected, the greater the price
for resolving the consequences. Information technologies (IT) are known for
assisting humans reliably thanks to their strict logic-based operating and,
therefore, may o�er promising solutions for automating rework detection
and prevention at various stages of the software development cycle. This
paper aims to compose an approach that helps IT organizations identify how
can the most frequently occurring rework in their operations be minimized.
The approach is presented in the shape of a framework that corresponds
rework cause categories with their early indicators, operational mitigation
strategies and potential automation solutions. The framework is developed
based on the academic literature review and validated by applying it to
the Dutch IT company context and interviewing IT experts. The results
demonstrate that the proposed framework has the potential to reduce re-
work load by around 9.67% and help organizations identify and prioritize the
most e�ective automation solutions. As a result, this may help businesses
shorten the development cycle and improve sustainability through optimised
resource use.

Additional Key Words and Phrases: Automation, Rework, Software Develop-
ment, Software Projects

1 INTRODUCTION

Rework in software development typically implies additional e�orts
required for redoing incorrectly implemented tasks. These tasks
can take up to 50% of a company’s development expenditures as
well as may negatively a�ect project outcomes, productivity, team
motivation, and customer satisfaction [3, 9]. Rework triggers can
appear at any stage of the software development life cycle (SDLC)
which consists of planning, de�ning, designing, building, testing
and deployment of the project [27]. This means that there are many
possible ways where the execution of the task may go wrong, result-
ing in an extended list of rework root causes. While rework cannot
be fully eliminated due to the dynamic and iterative nature of soft-
ware projects, its impact can be reduced by early fault detection
and appropriate mitigation strategy enforcement [7]. To minimize
rework and focus more on value-added tasks, information technol-
ogy (IT) companies are constantly seeking ways to optimize their
work�ows [4]. Wide adoption of agile and lean methodologies is a
good example for demonstrating e�orts of IT businesses to make
teams more responsive to changes and eliminate waste in work�ow,
therefore decreasing the probability of errors [10, 23].
At the same time, due to the abundance of possible pitfalls, hu-

mans may struggle to constantly monitor the accuracy of all pro-
cesses. This is where information technologies come into play. By
2020, around 67% of companies worldwide have already started

© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior speci�c permission and/or a fee.

adopting automation technologies [4] and according to [3], up to
30-50% of rework can be prevented through automation. In software
projects, nowadays the majority of error-prevention automations
are focused on testing and integration stages. For instance, Jenk-
ins helps to avoid problems with synchronization by establishing
automatic deployment [26], while Selenium helps to ensure that
applications are bug-free via automated testing [34]. Fast technolog-
ical advancements over the past decade have expanded the range
of IT tools, therefore potentially creating more automation options
for rework prevention, which might ultimately help IT companies
decrease rework load.

This paper attempts to systematically map the common categories
of rework in software projects, their early indicators, corresponding
prevention strategies and possible automated prevention solutions
into a framework. To note, the framework focuses on operational
improvements, emphasizing immediate, actionable steps rather than
long-term strategic solutions. The main research question (RQ) of
this work is:
“How can an approach be developed that e�ectively con-

tributes to proactive automated minimization of rework in

software development?”
This RQ can be broken down into the following sub-questions

(SQ):

• SQ1: What factors contribute to rework in software develop-
ment?

• SQ2: What early operational indicators signal potential re-
work?

• SQ3: What operational mitigation strategy can be applied at
each rework identi�cation stage?

• SQ4: What automation solutions can help proactively address
rework-causing factors?

The framework abridges the answers to the research sub-questions
with the aim of presenting the approach for assisting IT businesses
in exploring possible automation opportunities for reworkminimiza-
tion. As an additional bene�t, through categorization of company
rework issues, a framework may help organizations de�ne major
causes of rework, their frequency and, therefore, the priority for
addressing them.

The e�ectiveness and applicability of this framework are validated
in the context of the Dutch IT company but with the potential to be
applied to a wider range of software projects. This is because the
framework is based on academic research on global software devel-
opment processes, which often follow similar SDLC stages and have
common rework causes. Despite the di�erences in methodologies
adopted by IT organizations, the underlying processes are generally
comparable, therefore sharing the framework’s applicability.
The paper is organised as follows. Section 2 demonstrates the

research methodology of this work. Section 3 is split into �ve sub-
parts each addressing one of the steps towards automated rework
prevention with the �nal part presenting a total overview of the

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Viktoriia Konashchuk

framework with the guideline for its application. Section 4 show-
cases the framework application on the example of the software
development company. Section 5 includes the results of validat-
ing the framework along with a discussion of its implications and
practical limitations. Lastly, a conclusion can be found in Section 6.

2 METHODOLOGY

Figure 1 outlines the research methodology adopted for answering
research sub-questions.

Fig. 1. Research methodology. Search key values mentioned in [brackets]

are to be replaced with actual corresponding values.

The literature review shows that studies often address rework
causes and mitigation strategies jointly [5, 9, 14, 27, 28]. Papers
[14] and [27] are comprehensive summaries of existing research
on rework causes. This paper builds upon a combination of work
by Ramdoo and Huzooree who examine rework causes in an IT
company case [28] and a summary by Jain and Suman reviewing
existing academic literature on rework [14]. [14] was chosen over
[27] due to a more extensive rework causes list and demonstrating
mapping to mitigation strategies. The answer to the �rst research
sub-question consolidates the �ndings into a list of rework causes.
Similar rework reasons from both studies are merged to create a
more streamlined yet comprehensive scope.

The outline of early rework is based on [12], a summary of error
indicators identi�ed through interviews with IT experts. Although
not focused on early indicators, [15, 18, 19, 33, 35] provide additional
insights by exploring recommendations for the good practices of
process arrangement in software projects.
The majority of the suggested prevention strategies included in

the framework are derived from the papers exploring a wide range
of mitigation techniques for problems in software projects[1, 14, 28],
with additions from the more narrow mitigation strategies search
for speci�c scenarios i.e. [16, 29, 32].
Thereafter, the ways for automation are explored. Papers that

were used for automation possibilities analysis can generally be
classi�ed into the ones that focus on a single SDLC stage or a sin-
gle rework cause [6, 25, 26, 31, 34], and the ones that explore the

bene�ts of a single technology for rework prevention (i.e arti�cial
intelligence (AI) [17], machine learning [21] etc.). [30] has the most
comprehensive summary of how all stages of SDLC can be auto-
mated yet limited to the possibilities of AI, which might not always
be the most optimal solution. However [25] focuses mostly on the
development stage of the project, it provides insights into error
prevention approaches that are already utilized by development
teams and may be of bene�t for the mitigation of a wider range
of mistakes. To conclude this step, the outcome list of relevant IT
solutions is categorised into easy-to-implement o�-the-shelf �xes
(category I), more complex but readily available solutions (category
II), and solutions that require more advanced technologies (i.e. mod-
els with NLP capabilities) for rework prevention (category III). In
summary, while existing research e�ectively addresses speci�c ar-
eas, this paper bridges the gap by connecting the insights from these
works.

After the �ndings are summarised into a comprehensive frame-
work, the framework is presented to IT �eld experts for review
and recti�ed accordingly. Representatives of IT experts have more
than 5 years of experience in software projects and occupy di�erent
positions. Next, the framework’s e�ectiveness and applicability are
provisionally validated in an IT company operating in the �nance
sector in the Netherlands.
Finally, the survey consisting of two parts was conducted. The

�rst part includes questions about the applicability, usability and
expected e�ectiveness of the framework and was distributed among
audiences with di�erent levels of experience in IT such as students,
IT professionals, and researchers. The second section contains simi-
lar questions but was distributed only among the IT professionals
from the company the framework was tested on. Questions were
answered after outcomes of the framework’s application in their
company’s context are presented to survey participants.

3 REWORK PREVENTION FRAMEWORK

Appendix B depicts the research results, the correlation chain of
rework root causes - early rework indicators - prevention strategies
- and automation possibilities. These tables form the automated
rework prevention framework. The framework expands when SQ2
�ndings are examined. This is because each rework cause may
have multiple diverse early indicators. In the later stages, while the
table could be expanded further, this research attempted to match
�ndings one-to-one and generalize the �ndings to keep the outcome
comprehensive but to limit the work scope.
The following sections describe the necessary details of each

section.

3.1 Rework root causes

Through re�ning the works [28] and [14], the SQ1 is answered,
which forms Column 1 of the framework (Appendix B). The possible
root causes were classi�ed into 11 types:

(1) Inadequate requirements: Unclear or shifting project needs
(usually from the customer).

(2) Poor communicationwithin the team:Weak information shar-
ing internally.

2



Towards automated prevention of rework in so�ware development TScIT 41, July 5, 2024, Enschede, The Netherlands

(3) Poor communication with a client: Lack of clarity with the
customer.

(4) Synchronisation and integration challenges: Di�culties in
aligning di�erent components or systems.

(5) Internal changes: Changes inside of the company i.e. team
composition changes, transfer to a new tool etc.

(6) Poor planning: Inadequate or unclear initial project strategy.
(7) Inadequate domain knowledge: Lack of understanding in

relevant subject areas.
(8) Poor technical implementation: Defective execution of tech-

nical solutions.
(9) Unreliable documentation: Information that does not re�ect

current project status.
(10) Insu�cient testing: Ine�ective testing procedures.
(11) Poor risk identi�cation and management: Lack of prepared-

ness to mitigate potential issues in the project.

To reduce the scope, further sections are explored on the example
of the “Poor communication with a client” rework reason.

3.2 Early operational indicators

This part of the framework aims to answer how each of the rework
strategies from the previous part could be identi�ed early in the
software development process (SQ2). In other words, what can be
an early trigger showing that the project or its part might require
rework in the future? For example, for the rework reason “Poor
communication with a client”, the early might be:

• Inconsistent meeting attendance, client responses taking long
[24]

• Lack of domain knowledge (from any of the sides) [22, 33]
• No feedback or review of the main milestones of feature
development from the client [16, 18]

• Changes in requirements without notice [27, 35]

Apart from the operational indicators mentioned above, an early
signal for the current rework reason can be “Poor communication
channel choice”, but due to its strategy-orientedness, it is out of
scope for this work. To add, early triggers of other rework cases may
also apply to this rework cause. Hence, for the best e�ectiveness, it
is recommended to review also indicators of other rework reasons.

3.3 Operational prevention strategies

For each of the identi�ed indication moments, mitigation strategies
are mapped to illustrate how the issues can be prevented from being
ampli�ed into a rework task. For instance, when a customer changes
requirements without notice, the optimal preventive action would
be to get a review from the client on a full subject scope before
proceeding with implementation [14, 32]. Another example is when
a lack of domain knowledge (from any of the sides) is spotted, it
is advised to conduct a knowledge-sharing meeting with domain
experts [1]. Similarly, prevention strategies are mapped to each
of the identi�ed early operational indicators, making Column 3
address research sub-question 3. While there may be more than
one relevant prevention strategy, this work limits the scope to the
one most frequently mentioned mitigation strategy per trigger and
keeps prevention strategies applicable to a wider range of problems.

3.4 Automation of prevention strategies

Column 4 of the framework suggests an automated way to prevent
rework at its early indication moment (SQ4). After examining the
capabilities of various existing information technologies and exist-
ing good practices on automation, possible automation solutions
are mapped to each rework trigger. If existing, an example of the
�tting tool is also named. Potential automation solutions can be
divided into three categories (Column 5):

• Category I: Readily implementable o�-the-shelf solutions.
These are the solutions that are already present on the mar-
ket and commonly used by the software project team. This
can include Continuous Integration systems like Jenkins for
building, compiling and testing software [8], or project man-
agement tools like Jira or Trello for standardizing processes,
therefore, decreasing the error rate [31]. While existing tools
help to organize processes and to process structured infor-
mation, they are not suitable for working with unstructured
data.

• Category II: Existing solutions requiring advanced con�gura-
tions. These are usually add-ons on the Category I solutions,
that allow a higher level of customisation, hence normally
requiring technical skills for implementation [6]. An example
of a Category II solution is Jira Automation, which allows
users to add custom functionalities by building up custom
code parts on top of basic Jira functionality.

• Category III: Solutions requiring intelligence. This type of
tools has the capability to deal with a high amount of unstruc-
tured data, including the biggest challenge - understanding
the intricacies of the human language. According to Krutilla,
arti�cial intelligence models with NLP capabilities excel in
this area [17]. NLP models can execute in-depth analysis for
textual information such as requirements or context of sub-
ject analysis. Although Category III solutions can tackle a
wide range of advanced problems, their implementation is
typically resource-demanding, which may not always justify
the cost. Companies might be willing to opt for simpli�ed
versions of solutions from Categories I or II instead.

Continuing the previous example from the framework it can
be concluded that a solution is needed that detects a lack of do-
main knowledge and recommends a team member to conduct a
knowledge-sharing meeting with domain experts. Expertise track-
ing software such as Workday would be a potential solution for
this, as it allows deriving the expertise level of one based on the
historical projects the employee engaged in. It can also be con�g-
ured to trigger an alert once it suspects a lack of expertise in the
formed team for a new project. This automation solution falls under
category III. Category I alternative to it would be a task in work�ow
to verify the solution with a domain expert on each project stage.

3.5 Total overview

To sum up, the framework in Appendix B integrates all steps of
de�ning the advised automation per rework cause. To apply the
framework, an IT company can follow three steps:

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Viktoriia Konashchuk

(1) Gather historical data on rework tasks, focusing on frequency
and root causes. More than one rework reason is possible per
rework issue.

(2) Map out causal chains from rework causes to potential early
indicators, then to the prevention strategies and potential
automation tools for them suggested by the framework.

(3) Implement suggested tools and monitor their e�ectiveness,
adjusting them to the company’s needs. The priority for imple-
menting the automation should correspond to the frequency
of the rework cause. The higher the frequency - the higher the
potential expected bene�t from implementing the automa-
tion.

To validate the applicability, usability and expected e�ectiveness
of the framework the survey was conducted among people related
to IT but with di�erent pro�ciency levels (see Table 3). The aver-
age number of years of experience with software projects among
participants is 6.14 years. Participants were asked to choose a score
from 1 (strongly disagree) to 5 (strongly agree) for the given state-
ments. Validating the framework in a real-world context can yield
more accurate estimates; thus, the following section illustrates its
application and assesses the resulting outcomes.

4 FRAMEWORK APPLICATION TO IT COMPANY

To demonstrate the applicability of the framework, a Dutch company
that builds a �nancial IT platformwas selected. Documentation from
root-cause analysis (RCA) sessions held in the �rst half of 2024 was
used as a basis for analyzing the historical reasons for rework in the
organization. Documentation �les include a problem summary, the
adverse created for the customer, the root causes of the issue, and
an elaborated analysis of the rework impact on people, processes,
environments or con�gurations. After applying the framework to
the company context following the steps from the previous section,
the framework’s usability and applicability are assessed.
In the �rst step, rework reasons were identi�ed from 51 RCA

documents and classi�ed into 11 categories. Results are depicted in
Table 1. An AI assistant with NLP capabilities, speci�cally ChatGPT,
was utilized for categorization. Although the AI’s internal logic is
not fully transparent and may limit exact replication, the process
involved uploading the anonymized documents to the AI model
and instructing it to classify the root causes into 11 prede�ned
categories suggested by the framework. Con�dential information or
information that may help to identify the company was manually
removed beforehand. One-fourth of root-cause analysis documents
were also reviewed manually to help validate that the outcomes of
AI analysis are accurate enough could re�ect reality. To achieve the
highest accuracy, the manual review of RCA cases is advised, yet
might not be feasible due to the high volume of documentation in
combination with time constraints. The outcome showed that "poor
technical implementation" is the most frequent cause for rework in
the company, followed by "poor communication with a client" and
"Inadequate domain knowledge".

Given that these three root causes of rework occur with the great-
est frequency, addressing them is likely to yield the most signi�cant
impact in reducing rework. Thus, subsequent analysis focuses on
these three factors.

Table 1. Rework causes frequency in the studied IT company context.

Rework cause Frequency

Inadequate requirements 4
Poor communication within the team 5
Poor communication with a client 9

Synchronization and integration challenges 7
Internal changes 2
Poor planning 4

Inadequate domain knowledge 9
Poor technical implementation 11
Unreliable documentation 3

Insu�cient testing 7
Poor risk identi�cation and management 5

In step 2, relevant early indicators from Column 2 of the frame-
work were pinpointed based on the organizational expertise. Only
the selected indicators were included in Table 2.
Consequently, in steps 3 and 4, selected early indicators corre-

sponded with mitigation strategies and suggested automation solu-
tions.
As can be concluded from Column 4 of Table 2, setting up code

quality gates, making technical and functional reviews by the team
and client review stage mandatory, and setting up the expertise
tracking software may contribute the most towards minimization
of the rework in the organization. Thus, it is recommended that
the company implements the suggested automation solutions to
achieve a potential decrease in rework.

Notably, for better results, the project team should also consider
implementing the solutions suggested for the rework causes with
lower frequency scores following the same steps. In this way, the
percentage of the rework prevented is expected to be higher due to
more comprehensive coverage of rework issues.

The survey was conducted with software project team members
of the Dutch IT company to estimate the expected impact upon
framework recommendations implementation and the general ap-
plicability of the framework. The survey has a Likert scale format
from 1 (strongly disagree) to 5 (strongly agree) with the exception of
the last question that estimates the average of the expected decrease
in rework after implementing the �ve top priority automations at
the company (in percentage). The results of the survey are presented
in Table 4.
The precision of the estimation could be enhanced through the

practical implementation of rework prevention automation and
subsequent impact tracking. However, given time constraints, the
estimate relies on anticipated impacts derived from prior experience.

5 DISCUSSION

5.1 Performance of the framework

Responses to the similar survey statements asked in theory (Table 3)
and after a pilot study (Table 4) show a similar pattern. Results reveal
descent potential for the framework to minimize rework. From the
lowest yet still adequate score for easiness of rework categorization,
it can be concluded that it might be challenging to associate a re-
work reason with certain categories. The easiness and applicability

4



Towards automated prevention of rework in so�ware development TScIT 41, July 5, 2024, Enschede, The Netherlands

Table 2. Framework application to IT company context.

Rework

cause

Early indi-

cator

Prevention

strategy

Automation

solution

Type

P
oo

r
te
ch
n
ic
al
im

pl
em

en
ta
ti
on

Poor coding
practices

Conduct a
knowledge-
sharing
meeting
with domain
experts

Set up code
quality gates
(i.e. Sonar-
Qube)

III

No review of
work done
by a domain
professional

Ask domain
expert to
review the
work piece

A review by
a domain
expert as
a task in a
work�ow (i.e.
Trello)

I

P
oo

r
co
m
m
u
n
ic
at
io
n
w
it
h
a
cl
ie
n
t Lack of

domain
knowledge
(from any of
the sides)

Conduct a
knowledge-
sharing
meeting
with domain
experts

Expertise
tracking
software (i.e.
Workday)

III

No feedback
or review
of main
milestones
of feature
development
from the
client

Before pro-
ceeding with
implemen-
tation, get a
review from
the client

Adding the
client review
step to the
checklist,
automated
reminder if
missing (i.e.
Trello)

I

In
ad
eq
u
at
e

do
m
ai
n

kn
ow

le
dg

e No veri�ca-
tion of analy-
sis outcomes
with domain
professional

Ask domain
expert to
review the
work piece

A review
by domain
expert as
a task in
work�ow (i.e.
Trello)

I

Table 3. Survey results on general expected framework performance.

Question Average

(st.dev.)

General information

I have experience with identifying rework 3.57 (1.27)
I have experience with mitigating rework 3.57 (1.27)
I have experience with automating rework prevent. 3.14 (1.57)

Framework performance questions

The framework is easy to understand 4.71 (0.49)
It’s easy to categorize rework reasons to �t in the
framework

3.43 (0.98)

The framework is useful for identifying early indi-
cators of potential rework

3.71 (0.95)

The framework is useful for de�ning the prevention
strategy for identi�ed rework causes

4.29 (0.49)

The framework suggests reasonable automation so-
lutions

4.14 (0.38)

Table 4. Survey results on framework performance in IT company context.

Question Average

(st.dev.)

Application of the framework may bene�t my organi-
zation

4.67
(0.58)

It is clear how framework applies to my organization 5.00 (0)
The framework can be useful for categorizing and
prioritizing the rework in my organization

4.67
(0.58)

The framework can be useful for de�ning rework mit-
igation strategies for my organization

3.67
(1.15)

The framework provides reasonable suggestions for
automated rework prevention solutions

4.33
(0.58)

It can be bene�cial to implement suggested automa-
tions of Category I in my organization

4.67
(0.58)

It can be bene�cial to implement suggested automa-
tions of Category II in my organization

3.67
(0.58)

It can be bene�cial to implement suggested automa-
tions of Category III in my organization

2.67
(0.58)

If based on personal estimates, implementing the �ve
automations recommended by the framework could
lead to a potential decrease in rework within my orga-
nization, what percentage reduction can be expected?

9.67%
(5.03%)

of further steps of the framework application demonstrate higher
levels of expected e�ectiveness. The acceptability of the proposed
solutions is around 82%. The expected percentage of potential re-
work decrease is 9.67%, which shows a space for improvement as
according to [3] up to 50% of rework is feasible to be prevented.
Among the solution categories, Category I has a comparable ex-

pected impact to Category II. Category III, despite having the highest
share among the proposed automation on a framework (45% compa-
rably to 32.5% and 22.5% for categories I and II respectively), has a
lower score, which might be due to its cost-bene�t ine�ectiveness.

5.2 Practical Limitations and Implications

The company’s historical data on rework tasks of good enough qual-
ity is required for proper analysis and rework cause classi�cation
in the �rst step of the framework application. However, unlike [13],
which requires a su�cient number of records to identify action
patterns, this framework does not necessitate a minimum amount
of documentation for its successful application. Having met this
requirement, this framework is possibly generalizable to be applied
to various IT companies although the framework’s e�ectiveness
may vary based on project complexity, technology infrastructure,
and organizational culture. Sometimes the framework might not
account for the speci�cs of a certain company, for example, when
none of the key early indicators are feasible. In such cases, the fol-
lowing questions can guide in de�ning possible automated rework
prevention solutions:

(1) What is the root cause?
(2) What can be an early indicator that this cause is about to

happen?
(3) Having it early identi�ed, what would be the most e�ective

preventive action?

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Viktoriia Konashchuk

(4) How can that action be automated? Are there any existing
solutions that can be utilized?

To add, the current framework is mostly bene�cial for projects when
no consistent and quanti�able data is available. The current frame-
work also strives to o�er solutions that require manual input only
when a rework threat is identi�ed, but not for constant monitor-
ing as proposed by [20]. This is because having a structured input
event stream, a solution like Complex Event Processing might be
more bene�cial [36]. Moreover, rework prevention contributes to
sustainability by optimizing resource use. This means it does not
only boost team morale and customer satisfaction but also reduces
the environmental impact of software development activities.

6 CONCLUSION

To �nalise, this paper presents the approach aiming to help software
companies proactively reduce the amount of rework by advising the
automation to be implemented based on the frequency of rework
types. The study identi�es eleven causes of rework and maps each
category to their relevant early operational indicators, operational
mitigation strategies and possibilities for automation for the pre-
vention of the rework reason. Suggested information technologies
for automation represent three types: readily implementable o�-
the-shelf solutions (32.5%), existing solutions requiring advanced
con�gurations (22.5%) and solutions requiring intelligence (45%).
The �ndings are summarised into a framework, validated in the
Dutch IT company context. Results show that the proposed frame-
work has decent potential for minimization of rework with around
82% of automation solutions acceptability rate, therefore, potentially
helping spare the organization’s resources and improve project met-
rics.
Due to research time and scope constraints, this paper tends to

synthesize �ndings. In the future, the study can be extended to
provide a more comprehensive list of scenarios, make the scenarios
more narrow, and include a strategy-oriented direction for rework
prevention. The accuracy of framework performance assessment
can also be improved by increasing the number of survey partici-
pants, or for even higher precision, implementing and monitoring
the framework’s impact on various IT organizations. Finally, the
framework can be extended to focus on strategical prevention for
rework to contribute to more long-term solutions.

REFERENCES
[1] José L. Barros-Justo, Fabiane B. V. Benitti, and Je�erson S. Molleri. 2021. Risks and

risk mitigation in global software development: An update. Journal of software
33, 11 (2021). https://doi.org/10.1002/smr.2370

[2] Saskia Bick, Kai Spohrer, Rashina Hoda, Alexander Scheerer, and Armin Heinzl.
2018. Coordination Challenges in Large-Scale Software Development: A case
study of planning misalignment in hybrid settings. IEEE transactions on software
engineering 44, 10 (2018), 932–950. https://doi.org/10.1109/tse.2017.2730870

[3] B.W. Boehm and P.N. Papaccio. 1988. Understanding and controlling software
costs. IEEE transactions on software engineering 14, 10 (1988), 1462–1477. https:
//doi.org/10.1109/32.6191

[4] Camunda. 2023. The State of Process Automation Report 2020. https://camunda.
com/state-of-process-automation-2020/

[5] Aaron G. Cass, Stanley M. Sutton, and Leon J. Osterweil. 2003. Formalizing rework
in software processes. 16–31 pages. https://doi.org/10.1007/978-3-540-45189-1

[6] S. Chandrashekar, B. May�eld, and M. Samadzadeh. 1993. Towards automating
software project management. International journal of project management 11, 1
(1993), 29–38. https://doi.org/10.1016/0263-7863(93)90007-a

[7] R.N. Charette. 2005. Why software fails [software failure. IEEE spectrum 42, 9
(2005), 42–49. https://doi.org/10.1109/mspec.2005.1502528

[8] Levi Connelly, Melody Hammel, Benjamin Eger, and Lan Lin. 2022. Automated
Unit Testing of Hydrologic Modeling Software with CI/CD and Jenkins. Pro-
ceedings of the International Conference on Software Engineering and Knowledge
Engineering (2022). https://doi.org/10.18293/seke2022-074

[9] R.E. Fairley and M.J. Willshire. 2005. Iterative rework: the good, the bad, and the
ugly. Computer 38, 9 (2005), 34–41. https://doi.org/10.1109/mc.2005.303

[10] Simon Hacks, Hendrik Hofert, Johannes Salentin, Yoon Chow Yeong, and Horst
Lichter. 2019. Towards the De�nition of Enterprise Architecture Debts. https:
//doi.org/10.1109/edocw.2019.00016

[11] Muhammad Hamid, Furkh Zeshan, Adnan Ahmad, Saadia Malik, Muhammad
Saleem, Nadia Tabassum, and Muhammad Qasim. 2022. Analysis of software
success through structural equation modeling. Intelligent automation and soft
computing 31, 3 (2022), 1689–1701. https://doi.org/10.32604/iasc.2022.020898

[12] Douglas Havelka, T. M. Rajkumar, and Patrick Serve. 2004. Early indicators of
troubled IS development projects. Americas Conference on Information Systems
(2004), 115. https://aisel.aisnet.org/amcis2004/115/

[13] Fuqun Huang and Lorenzo Strigini. 2023. HEDF: a method for early forecasting
software defects based on human error mechanisms. IEEE access 11 (2023), 3626–
3652. https://doi.org/10.1109/access.2023.3234490

[14] Ritu Jain and Ugrasen Suman. 2021. Root causes and reduction techniques for
rework in global software development. International journal of computer applica-
tions 183, 43 (2021), 40–44. https://doi.org/10.5120/ijca2021921840

[15] Leon A. Kappelman, Robert McKeeman, and Lixuan Zhang. 2006. Early warning
signs of IT project failure: the dominant dozen. Information systems management
23, 4 (2006), 31–36. https://doi.org/10.1201/1078.10580530/46352.23.4.20060901/
95110.4

[16] Artem Katasonov and Markku Sakkinen. 2005. Requirements quality control:
a unifying framework. Requirements engineering 11, 1 (2005), 42–57. https:
//doi.org/10.1007/s00766-005-0018-1

[17] Zsolt Krutilla. 2023. Developing of NLP models by model based software devel-
opement. Gradus 10, 2 (2023). https://doi.org/10.47833/2023.2.csc.024

[18] Lina Abu Lebdeh, Amer Qasim, and Faten Kharbat. 2020. Implementing agility
in large software development projects. TEM Journal (2020), 1285–1294. https:
//doi.org/10.18421/tem93-58

[19] Timo O.A. Lehtinen, Mika V. Mäntylä, Jari Vanhanen, Juha Itkonen, and Casper
Lassenius. 2014. Perceived causes of software project failures – an analysis of
their relationships. Information and software technology 56, 6 (2014), 623–643.
https://doi.org/10.1016/j.infsof.2014.01.015

[20] Shaoying Liu. 2021. A three-step hybrid speci�cation approach to error prevention.
Journal of systems and software/The Journal of systems and software 178 (2021),
110975. https://doi.org/10.1016/j.jss.2021.110975

[21] Lukas Longard, Felix Brungs, Christian Hertle, Jochen Roeth, and Joachim Met-
ternich. 2021. Reduced rework through data analytics and machine learning
– a three level development approach. Social Science Research Network (2021).
https://doi.org/10.2139/ssrn.3859900

[22] David B. Lowe and John Eklund. 2002. Client needs and the design process in
web projects. Journal of web engineering 1, 1 (2002), 23–36. https://doi.org/10.
5555/2011098.2011103

[23] Peter Middleton, Philip S. Taylor, Amy Flaxel, and Ammon Cookson. 2007. Lean
principles and techniques for improving the quality and productivity of software
development projects: a case study. International journal of productivity and
quality management 2, 4 (2007), 387. https://doi.org/10.1504/ijpqm.2007.013334

[24] Nils Brede Moe and Darja Šmite. 2008. Understanding a lack of trust in Global
Software Teams: a multiple-case study. Software process improvement and practice
13, 3 (2008), 217–231. https://doi.org/10.1002/spip.378

[25] Bhaveet Nagaria and Tracy Hall. 2022. How software developers mitigate their
errors when developing code. IEEE Transactions on Software Engineering 48, 6
(2022), 1853–1867. https://doi.org/10.1109/TSE.2020.3040554

[26] P. Narang. 2023. Automated continuous deployment of software projects with
Jenkins through devops-based hybrid model. (2023). https://doi.org/10.21203/rs.
3.rs-3205341/v1

[27] Shiza Nawaz, Anam Zai, Salma Imtiaz, and Humaira Ashraf. 2022. Systematic
Literature Review: Causes of Rework in GSD. The international Arab journal of
information technology (2022). https://doi.org/10.34028/iajit/19/1/12

[28] Vimla Devi Ramdoo and Geshwaree Huzooree. 2015. Strategies to reduce rework
in software development on an organisation in Mauritius. International journal of
software engineering and applications 6, 5 (2015), 9–20. https://doi.org/10.5121/
ijsea.2015.6502

[29] Kenneth H. Rose. 2013. A Guide to the Project Management Body of Knowledge
(PMBOK® Guide)-Fifth Edition. Project management journal 44, 3 (2013). https:
//doi.org/10.1002/pmj.21345

[30] Hazrina So�an, Nur Arzilawati Md Yunus, and Rodina Ahmad. 2022. Systematic
mapping: arti�cial intelligence techniques in software engineering. 10 (2022),
51021–51040. https://doi.org/10.1109/access.2022.3174115

6



Towards automated prevention of rework in so�ware development TScIT 41, July 5, 2024, Enschede, The Netherlands

[31] Carsten Stechert and Hans-Patrick Balzerkiewitz. 2020. Digitalization of a lean
product development organization. Procedia CIRP 91 (2020), 764–769. https:
//doi.org/10.1016/j.procir.2020.02.232

[32] A. Takats and N. Brewer. 2006. Improving communication between customers
and developers. In Agile Development Conference (ADC’05). https://doi.org/10.
1109/adc.2005.30

[33] June Verner, Jennifer Sampson, and Narciso Cerpa. 2008. What factors lead to
software project failure? IEEE Xplore (2008). https://doi.org/10.1109/rcis.2008.
4632095

[34] Fei Wang and Wencai Du. 2012. A test automation framework based on WEB. In
2012 IEEE/ACIS 11th International Conference on Computer and Information Science.
683–687. https://doi.org/10.1109/ICIS.2012.21

[35] Terry Williams, Ole Jonny Klakegg, Derek H. T. Walker, Bjørn Andersen, and
Ole Morten Magnussen. 2012. Identifying and acting on early warning signs
in complex projects. Project management journal 43, 2 (2012), 37–53. https:
//doi.org/10.1002/pmj.21259

[36] Fuyuan Xiao, Cheng Zhan, Hong Lai, Li Tao, and Zhiguo Qu. 2017. New parallel
processing strategies in complex event processing systems with data streams.
International journal of distributed sensor networks 13, 8 (2017). https://doi.org/10.
1177/1550147717728626

A USE OF AI

During the preparation of this work the author(s) used (1) Gram-
marly, (2) chatGPT, (3) Scite and (4) Quillbot to (1) correct grammar
and spelling mistakes and paraphrase sentences for better read-
ability, (2) paraphrase sentences, help to de�ne general concepts,
categorize the input data from the company into rework causes
proposed by the framework, (3) assist in �nding academic sources
and (4) conduct AI detection check. After using this tool/service,
the author(s) reviewed and edited the content as needed and take(s)
full responsibility for the content of the work.

B AUTOMATED REWORK PREVENTION FRAMEWORK

See following pages.

7



TScIT 41, July 5, 2024, Enschede, The Netherlands Viktoriia Konashchuk

Table 5. Automated rework prevention framework.

Rework cause Early indicator Prevention strategy Automation solution Type

Inadequate
requirements
[14, 28]

Major solution direction or
requirements switching [19,
27, 28]

Refer to change control process [29] Requirements analysis software with
NLP capability (i.e. Jama Connect) [30]

III

The customer is not in-
volved in the process [28,
33]

Establish regular communication check-
points [1, 32]

Client involvement communication
multi-channel monitoring

III

Ambiguous, vague lan-
guage of requirements [35]

Review of requirements for clarity, non-
duality and completeness [16]

Requirements analysis software with
NLP capability (i.e. Jama Connect) [30]

III

Very di�erent scope/tasks
compared to the scope of
similar projects

Review completeness of gathered re-
quirements with stakeholders including
owners of similar projects [1, 14, 16, 28]

Projects comparison software integrat-
able with company wiki

III

Impact on pipeline applica-
tions is not inspected

Discuss impact on pipelinewith relevant
stakeholders [1, 14, 16, 28]

Requirements analysis software with
NLP capability (i.e. Jama Connect) [30]

III

No proper pre-analysis Gather requirements and discuss solu-
tion direction with domain experts

A pre-analysis as a task in work�ow (i.e.
Trello) [25]

I

Missing functional or non-
functional requirements (i.e.
performance metrics)

Contact domain experts [1, 14, 16, 28] Requirements analysis software with
NLP capability (i.e. Jama Connect) [30]

III

Poor communi-
cation within
the team
[14, 28]

Frequent missing of goals
(i.e. deadlines) [35]

Labelling and correction actions during
sprint reviews and retrospectives [1]

Missed deadlines alerting script moni-
toring through the project planning tool
(i.e. Trello bot)

II

Con�icting changes in
requirements (within the
story or within multiple
subjects that are currently
in development) [16]

Review the story for cohesion; contact
team members working on intersecting
work pieces [14]

Requirements analysis and tracking soft-
ware integrated with company wiki

III

Low participation in meet-
ings, long team members’
response times [35]

Label it and clarify expectations with
people involved [1]

Client involvement tracker for multi-
channel communication monitoring

III

Insu�cient documentation
[15, 22]

Conduct a meeting with domain profes-
sionals to document knowledge [1]

Automation script in the project man-
agement tool for tracking the presence
of documentation (i.e. Jira Automation)

II

Multiple teams working si-
multaneously on closely re-
lated tasks [2]

Contact team members working on in-
tersecting work pieces

Requirements analysis software for de-
tecting interdependent tasks (i.e. Jama
Connect)

III

Poor communi-
cation with a
client [14, 28]

Inconsistent meeting atten-
dance, client responses tak-
ing long [24]

Label it and clarify expectations with
people involved [1]

Client involvement tracker for multi-
channel communication monitoring

III

Lack of domain knowledge
(from any of the sides) [22,
33]

Conduct a knowledge-sharing meeting
with domain experts [1]

Expertise tracking software (i.e. Work-
day)

III

No feedback/review ofmain
milestones of feature devel-
opment from the client [16]

Before proceeding with implementation,
get a review from the client [1, 14, 28, 32]

Adding the client review step to the
checklist, automated reminder if miss-
ing (i.e. Trello) [25]

I

Changes in requirements
without notice [27, 35]

Get a review from the client on a full
subject scope [1, 14, 28, 32]

Approval of �nal subject scope signed
by a client as a task in work�ow (i.e.
Trello) [25]

I

Synchronization
and integration
challenges [14]

Absence of an integration
plan [29]

Make creation of a plan a mandatory
step in project step execution

A check for integration plan creation as
a task in a work�ow (i.e. Trello) [25, 29]

I

No intermediate integra-
tions [18]

Schedule code integration or split inte-
grations into smaller parts to �t sprints
for early validation

Automated merge checks (i.e. Jenkins) I

Internal
changes [14]

Received announcements of
changes

Analyze and note the impact of changes
on the work piece

Intelligent alerting of potentially af-
fected people

III

8



Towards automated prevention of rework in so�ware development TScIT 41, July 5, 2024, Enschede, The Netherlands

Rework cause Early indicator Prevention strategy Automation solution Type

Poor planning

[14]

Missed deadlines early on
[12, 35]

Review and adjust the planning or scope
with stakeholders [28]

Automation script in the project man-
agement or planning tool (i.e. Jira Au-
tomation or Trello bot)

II

Lack of detailed project plan
[35]

Make creation of a plan a mandatory
step in project step execution [29]

Project plan creation as a task in work-
�ow (i.e. Trello) [25, 29]

I

Frequent scope changes
[12]

Refer to change control process [29] Automation script in the project man-
agement tool for scope tracking (i.e. Jira
Automation)

II

Unrealistic project time-
lines or deadlines [11, 33]

Review and adjust the planning with
stakeholders [1]

Planning feasibility assessment tool III

Unreasonable planning in
comparison to past projects

Review and adjust the planning with
stakeholders [1]

Planning feasibility assessment tool III

Inadequate
domain
knowledge
[14, 28]

No veri�cation of analysis
outcomes with domain pro-
fessionals [33]

Ask domain expert to review the work
piece [28]

A review by domain expert as a task in
work�ow (i.e. Trello) [25]

I

Frequent corrections that
majorly change the solution
direction [35]

Conduct a knowledge-sharing meeting
with domain experts [1]

Requirements analysis software with
NLP capability (i.e. Jama Connect) [30]

III

Vague answers to critical
questions [35]

Conduct a knowledge-sharing meeting
with domain experts [1]

Requirements analysis software with
NLP capability (i.e. Jama Connect) [30]

III

No kick-o� done with stake-
holders who authorize solu-
tion (architects etc.)

Conduct a meeting with stakeholders to
verify solution

A review by domain expert as a task in
work�ow (i.e. Trello) [25]

I

Poor technical
implementa-
tion [14]

An unusually high number
of bug reports early in the
development process [12]

Conduct code review [1, 27] Automated alerts when bug tracking
tool detects high number of bugs (i.e.
Bugzilla) [25]

II

Poor coding practices [18] Conduct a knowledge-sharing meeting
with domain experts

Set up code quality gates (i.e. Sonar-
Qube)

I

High amount of technical
debt [10]

Address critical areas of technical debt
before new feature development [1]

Automate static code analysis to moni-
tor technical debt (i.e. SonarQube) [25]

II

No review of work done by
a domain professional [19]

Ask domain expert to review the work
piece [1, 28]

A review by domain expert as a task in
work�ow (i.e. Trello)

I

No toggles to turn function-
ality o� to test it on accep-
tance environments before
going to production

Check whether toggles might be bene�-
cial to implement

A check for toggles applicability as a
task in a work�ow (i.e. Trello) [25]

I

Unreliable
documentation
[14]

Discrepancies between the
documentation and the ac-
tual functionality [12, 27]

Conduct a meeting with domain profes-
sionals to document latest knowledge
[1]

Company wiki and code base analysis
for correspondence, intelligent search
for existing documentation

III

Old modi�cation dates of
the documentation or miss-
ing documentation

Conduct a meeting with domain profes-
sionals to document latest knowledge
[1]

Automation script in the project man-
agement tool for tracking presence of
documentation (i.e. Jira Automation)

II

Limited documentation [15,
22]

Conduct a meeting with domain profes-
sionals to document knowledge [1]

Automation script in corporate wiki to
alert about outdated documentation (i.e
Con�uence automation)

II

Insu�cient

testing [28]

Lack of test coverage for re-
quirements [19]

Verify completeness of tests for covering
all the functional requirements [1]

Requirements analysis and test scenar-
ios tracking software for coverage track-
ing (i.e. Cucumber)

III

Inconsistent or unstable
testing environments

Standardize and automate environment
provisioning

Automated environment provisioning
with infrastructure as code (i.e. Ter-
raform)

I

Poor risk
identi�cation
and mana-
gement [14]

Absence of risk register [12,
15, 29]

Develop a risk register [29] A check for risk register creation as a
task in work�ow (i.e. Trello) [25]

I

Old modi�cation dates of
risk register [15, 33]

Conduct a risk review and update the
register [29]

Automation script in the corporate wiki
(i.e Con�uence automation)

II

9


	Abstract
	1 Introduction
	2 Methodology
	3 Rework prevention framework
	3.1 Rework root causes
	3.2 Early operational indicators
	3.3 Operational prevention strategies
	3.4 Automation of prevention strategies
	3.5 Total overview

	4 Framework application to IT company
	5 Discussion
	5.1 Performance of the framework
	5.2 Practical Limitations and Implications

	6 Conclusion
	References
	A Use of AI
	B Automated rework prevention framework

