
1

Mechanical Engineering
Faculty of Engineering Technology

Design Optimization Strategies for
Geometrically Nonlinearly Deforming
Structures using Analytical Gradients

Tobias Posthumus
M.Sc. Thesis

July 2024

Exam commitee:
prof. dr. ir. A. H. van den Boogaard

dr. ir. G. T. Havinga
dr. ir. J. J. de Jong EngD

Nonlinear Solid Mechanics
Faculty of Engineering Technology

University of Twente





Abstract

Optimization of nonlinearly deforming structures requires solving the system state vari-

ables while searching for the optimal design variables. For large structures with numerous

state variables or a high number of design variables, using computationally efficient strate-

gies in the optimization process becomes crucial. Efficient gradient-based optimization

can be achieved by using analytical gradients. Creating an algorithm to systematically

compute analytical gradients can be cumbersome and time-consuming, but significantly

increases optimization speed.

In this work, two optimization strategies are investigated: nested and SAND (simulta-

neous analysis and design) optimization. In the nested approach, the state variables are

solved in a nested function for each optimization iteration. In the SAND approach, the

state variables are solved along with the design variables. The nested approach involves

an implicit relationship between state and design variables. Here, the direct and adjoint

methods are used.

The research shows that analytical gradient computation is several orders of magnitude

faster than the numerical approach using finite differences, with increasing effect for

optimization problems with more design variables.

Additionally, the work shows that using analytical gradients for both the nested and

SAND approaches yields feasible and efficient optimization results for complex structures

with up to hundreds of design variables and more than a thousand state variables.

Obtaining analytical gradients systematically proves to be a worthwhile investment, as

it enables the optimization of far more complex systems than current gradient-based

optimization using finite differences can achieve within a reasonable time.



Nomenclature

β Angle of an element with the x axis of the global coordinate system [-].

λ Lagrange multipliers

λe Lagrange multipliers, representing the elemental reaction forces [N].

λn Lagrange multipliers, representing the nodal reaction forces [N].

C Compliance matrix [m/N].

F External forces [N].

Fp Perturbation force [N].

g Constraint functions.

ge Element constraints [m].

gn Nodal constraints [m].

h Equality constraints.

J Jacobian of residual equations w.r.t the solution vector.

L The Lagrangian used in the adjoint method.

p0 Initial guess for the design variables.

p Design variables.

Q Prescribed displacements [m].

q Nodal displacements and element elongations [m].

qe Element elongations [m].

qn Nodal displacements [m].

r Residual equations.

4



u Solution vector of the residual equations.

∆L Change in length [m].

∆x Actual x difference between two nodes [m].

∆x0 Initial x difference between two nodes [m].

∆y Actual y difference between two nodes [m].

∆y0 Initial y difference between two nodes [m].

ϵ Strain [-].

L The Lagrangian used in the potential energy formulation [mJ].

Π Potential energy [mJ].

ρ Density [kg/m3].

σ Stress [Pa].

σmax Maximum allowable stress [Pa].

A Area [m2].

E Young’s Modulus [Pa].

f objective function.

K Stiffness matrix [N/m].

k Element stiffness [N/m].

L Actual length [m].

L0 Initial length [m].

Lx Length test structure [m].

Ly Height test structure [m].

M Mass [kg].

np Number of design variables.

ndivx Number of divisions of the test structure in x-direction.

ndivy Number of divisions of the test structure in y-direction.

5



nDOF Number of degrees of freedom.

nEl Number of elements.

nElCo Number of element constraint equations.

nElEq Number of element equilibrium equations.

nNo Number of nodes.

nNoCo Number of nodal constraint equations.

nNoEq Number of nodal equilibrium equations.

nUnknown Number of elements in the solution vector, u.

u Nodal displacement in x direction.

v Nodal displacement in y direction.

Wext External work [mJ].

Wint Internal work or strain energy [mJ].

X Actual x coordinate.

x Initial x coordinate.

Y Actual y coordinate.

y Initial y coordinate.

d Nodal displacement [m].

dmax Maximum nodal displacement [m].

ElCo Set of elemental constraint equation numbers w.r.t. the residual equations.

ElEq Set of elemental equilibrium equation numbers w.r.t. the residual equations.

NoCo Set of nodal constraint equation numbers w.r.t. the residual equations.

NoEq Set of nodal equilibrium equation numbers w.r.t. the residual equations.

6



Contents

1 Introduction 9

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Structures and elements . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.3 Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Flexible multibody approach 15

2.1 Problem introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Potential energy formulation . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Newton-Rahpson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Residual equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Truss definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Optimization 28

3.1 Nested approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 SAND approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 fmincon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Scaling and normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Theory of gradient computation 32

4.1 Numerical gradient computation . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Finite difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Analytical gradient computation . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Nested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7



4.2.2 SAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Implementation of analytical gradients 39

5.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Partial derivatives of the truss length . . . . . . . . . . . . . . . . . . . . 40

5.3 Partial derivatives of the residual function . . . . . . . . . . . . . . . . . 42

5.4 Objective and constraint functions . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Mass objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.2 Stress constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.3 Compliance objective . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.4 Displacement constraint . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Concluding remarks on the analytical gradients . . . . . . . . . . . . . . 50

6 Method 51

6.1 Test problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Results 54

7.1 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.1 Accuracy of gradients . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.2 Direct method vs finite difference . . . . . . . . . . . . . . . . . . 55

7.1.3 Direct method vs Adjoint method . . . . . . . . . . . . . . . . . . 57

7.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2.2 Increasing complexity . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.4 Failed runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.5 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.6 The problem solution . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3 Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3.1 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Conclusion 70

9 Recommendations 71

8



Chapter 1

Introduction

1.1 Context

Optimization allows engineers to explore a wide range of design possibilities and con-

figurations, leading to innovative solutions that may not be obvious through traditional

trial-and-error approaches. By iteratively improving designs based on specified objec-

tives and constraints, optimization methods can significantly enhance the performance

of structures, mechanisms and systems. This includes reducing costs, reducing weight,

improving structural strength, and increasing overall performance.

Numerical computing and the development of optimization algorithms allows optimiza-

tion problems to increase in complexity, thereby allowing models to more accurately

represent reality [1]. As optimization algorithms become more efficient, the computa-

tional resources can be allocated to optimize more detailed and complex models. This

increase in model detail and complexity enhances solution realism, ultimately leading to

more effective implementations in practical applications.

Gradient-based optimization algorithms use the gradient of the objective and constraint

functions to predict the direction of the next step in the solution space to eventually

converge to an optimal solution. The gradients are commonly computed using finite

differences, yet this approach proves inefficient due to the necessity of approximating

each design variable’s gradient individually.

Analytical gradients avoid this issue, since the gradients with respect to all design vari-

ables are computed at once. Hence analytical gradients can potentially offer increased

optimization efficiency. The challenge lies in obtaining these analytical gradients, as it

requires a thorough understanding of the model equations, design variables, and objec-

tive/constraint functions. In this report, the terms ”model equations” and ”residual

equations” will be used interchangeably to refer to the set of equilibrium and constraint

equations of the system. There are two types of constraint equations: the model con-

straint equations, and the optimization constraint equations. The context will make it

9



evident which set of constraint equations is being referred to. A set of analytical gra-

dients must be systematically determined, such that all structures within the defined

domain can automatically be optimized, regardless of variations in shape, size, loading

conditions, objectives, and constraints. Hence, the possible constraints, objectives, and

design variables must be selected in the beginning.

In this work, two main optimization approaches are used: nested and SAND (simultane-

ous analysis and design). The nested approach incorporates a nested function to solve

the model equations. Once the system is solved for a specific set of design variables,

the optimization solver evaluates the objective and constraint functions, along with their

gradients if needed, and decides whether to initiate another iteration or terminate the

optimization process.

The SAND approach solves the system state variables (for the model used in this work:

the nodal/elemental displacements and nodal/elemental reaction forces) together with

the design variables. The residual equations are integrated as equality constraints. This

results in a larger optimization problem compared to the nested approach. However,

the advantage lies in not needing to solve the residual equations for each optimization

step, providing greater flexibility during the optimization process. Both approaches are

expected to benefit significantly from using analytical gradients. The fundamental basis

for gradient computation is similar for both approaches. However, the nested optimization

is performed under the requirement that the model equations are satisfied, meaning that

the optimization gradients are to be determined conditionally to the residual functions

remaining constant. In other words, the optimization gradient must account for the

change in state variables caused by a change in design variables. The two methods used

in this research to achieve that goal are the direct and adjoint methods.

1.2 Problem definition

Optimizing structures that are able to capture nonlinear behavior, for example to allow

large displacements, are computationally expensive. This is because the nonlinear model

equations require iterative solution methods. When optimizing a structure a substantial

portion of computational time is devoted to solving these nonlinear model equations.

Determining optimization gradients using finite differences relies on evaluating the model

at its current design and a set of perturbations thereof. With the number or required

perturbations being equal to the number of design variables in the optimization problem,

the computational cost of gradient computational increases linearly with the number of

design variables.

This research investigates the potential computational efficiency gains of using analytic

gradients instead of finite difference approximations for gradient-based optimization in

the context of static nonlinear structural mechanics. To achieve these results, a spe-

10



cially designed flexible multibody model is presented. The flexible multibody approach

is validated by comparing the results with those generated using the specialized software

package SPACAR [2]. Two different approaches are tested: the nested approach and the

SAND approach. Additionally, two solvers incorporated in MATLAB’s fmincon function

are evaluated: sequential quadratic programming (SQP) and interior-point (IP). These

methods are tested on a series of test structures with increasing complexity. The methods

can be compared in terms of efficiency, robustness, ease of implementation, and practical

usability.

1.3 Research goals

In this research, the focus is on investigating how the computational efficiency can be

increased in gradient-based structural optimization for geometric nonlinear truss prob-

lems using existing optimization algorithms. To achieve this, a model is built that ac-

curately describes geometrically nonlinearly deforming truss behavior, and allows for

practical implementation of optimization techniques. The computational efficiency of

the optimization is increased by implementing analytical gradients. Two main optimiza-

tion approaches are investigated: the nested and SAND approaches. A set of problems

within the predefined domain can be optimized with both approaches using analytical

gradients. To implement analytical gradients in the nested approach, either the direct

method or adjoint method can be used. The goal of this study is to demonstrate the

circumstances and conditions under which each approach is most suitable, highlighting

that both approaches are significantly more efficient when analytical gradients are used

instead of numerical gradients. The gain in computational efficiency enables to optimize

more complex structures, allowing for more state and design variables.

1.4 Scope

To allow for practical results, the problems discussed are subject to certain assumptions

and simplifications. In this section the most important and impactful choices made to bal-

ance relevance and manageability are outlined. This enables the testing and comparison

of both the nested and the SAND approach.

1.4.1 Structures and elements

In this research, all structures are considered static. Consequently, the equilibrium equa-

tions are given by:

K(q)q = f , (1.1)

11



where K(q) is the total stiffness matrix of the system, q represents the displacements,

and f represents the external applied loads. The stiffness matrix depends on the displace-

ments, introducing geometric nonlinearities into the model equations. Further details on

the nonlinear behavior are provided in subsection 1.4.3. This is the general equation

for static structures. However, the method of obtaining the residual equations in this

research is different, and explained in Chapter 2.

The primary goal of this research is to demonstrate the efficiency of analytical gradients

in gradient-based optimization for structural mechanical problems. The flexible multi-

body approach is serving as a tool to obtain useful results. Consequently, only truss

elements are used. Truss elements can only take axial forces, while beam elements can

also capture bending moments. Systems consisting solely of trusses are generally insuf-

ficient for practical applications. Therefore, the high-level approach is generic, enabling

the implementation of beam elements with additional stiffness components and degrees

of freedom in future research.

Lastly, only 2D structures are used. In many real-life applications, transforming problems

to 2D does not significantly impact the accuracy of the results or limit the insights that

the model provides.

1.4.2 Gradients

For optimization, it is necessary to find the gradients of the objective and constraint

functions with respect to the design variables. To obtain these gradients analytically, a

selection of possible objective functions, constraint functions, and design variables must

be made. This selection limits the optimization possibilities but can always be extended

if required.

For the design variables (p), six basic types are chosen. These are:

p = [A(k), E(k), xi, yi, xj, yj]. (1.2)

A(k) is the cross sectional area, E(k) is the Young’s modulus. The superscript (k) refers

to element k. xi is the initial x position of the i-th node, yi is the initial y position of the

i-th node, xj is the initial x position of the j-th node, and yj is the initial y position of

the j-th node. Nodes are not element specific as multiple elements can share nodes.

The above variables constitute a complete set of variables in which any structure can be

defined within the scope of this work. Other high-level design variables may be defined,

such as the cross-section of a subset of elements, or a geometrical relation between the

initial coordinates of multiple nodes. The computations of the gradients to such design

variables will require the computation of the gradients of the basic variables, with the

additional application of the chain rule to account for the relation between the basic

variable and the design variable.

12



In the nested approach, the design variables p encompass all optimization variables.

However, in the SAND approach, p represents a subset of the optimization variables

since this approach includes the variables in the solution vector of the residual equations,

u, as additional optimization variables.

Converting between an objective function and a constraint function does not significantly

alter the gradient computation. In this research, four key objective and constraint func-

tions are selected: mass, stress, displacement, and compliance. An important function

for compliant mechanisms that is excluded here is eigenfrequency. This exclusion is due

to the additional requirement of introducing mass matrices, which is beyond the scope of

this research. However, future research can incorporate eigenfrequency as an objective or

constraint function, following a similar roadmap as used for the selected four objective

and constraint functions.

1.4.3 Nonlinearities

The contrast between using analytic and numerical gradients becomes significant for

nonlinear problems, where the solution of the model equations cannot be determined in

a single operation but requires multiple iterations. Therefore, this research is concerned

with nonlinear problems, meaning that the used system of equations accounts for large

deformations.

Several nonlinear factors are relevant for truss-like structures. A distinction can be made

between material nonlinearities and geometric nonlinearities. In this research only geo-

metric nonlinearities are included. This means that the element force is assumed to be

linearly dependent on the element elongations, meaning that the element stiffness is inde-

pendent of its elongation. Therefore, it is assumed that there is no transverse contraction

upon longitudinal loads (i.e. the element cross-section remains constant), and that the

stress-strain relation can be defined in terms of engineering strain:

σ = Eϵ, (1.3)

were σ denotes the stress and ϵ represents the engineering strain within an element, which

is equal to ∆L/L0. The constant stiffness k of a single truss can therefore be expressed

as

k =
A0E

L0

. (1.4)

A0 denotes the initial cross sectional area, and L0 is the original length of the element.

Both A0 and L0 do not depend on the deformation of the truss element [3].

The global stiffness of an element changes with the global orientation of that element,

meaning that the stiffness of the structure depends on the displacement. For large dis-

placements this effect becomes significant. This introduces nonlinearities in the equations.

13



These geometric nonlinearities are included in the model presented in this research.

1.4.4 Optimization

For optimization, MATLAB’s fmincon function from the 2023a version of MATLAB

is used. Two built-in solvers are tested: sequential quadratic programming (SQP) and

interior-point (IP). Unless specified otherwise, the default settings from fmincon are used.

The nested and SAND approaches supplied with analytical gradients are compared. The

SAND approach is expected to be more efficient for large structures than the nested

approach [4]. In the nested approach, analytical gradients are computed using the direct

or adjoint method. The comparison between the direct and adjoint methods, as well as

a comparison with finite difference is performed. This comparison measures the gradient

computation time and does not involve the optimization process.

1.5 Outline

The report begins with an explanation of the flexible multibody approach used to solve

nonlinear static structural problems. In Chapter 3, the general optimization problem for

both the nested and SAND approaches are outlined, and the MATLAB function fmincon

is shortly discussed. Following the definition of the optimization problem, the gradients

needed for optimizing are discussed. This starts with a theoretical exploration of the

methods to obtain these derivatives, including finite difference, the direct method, and

the adjoint method. Following this discussion, the generic derivation of the derivatives

is outlined. This includes the derivation of derivatives for four possible objective and

constraint functions: mass, stress, displacement, and compliance. Chapter 6 presents

sample problems used to test the impact of analytical derivatives and the efficiency of

the nested and SAND approaches. Chapter 7 visualizes the findings of the research using

meaningful graphs. The report concludes with a conclusion and recommendations for

potential further research.

14



Chapter 2

Flexible multibody approach

The assumptions and simplifications for the types of problems investigated in this research

are presented in Chapter 1. This chapter offers a general formulation of the flexible

multibody approach, facilitating extension to more complex problems and allowing for

greater flexibility in adjustments. In Section 2.5, a simple problem is solved using the

flexible multibody approach.

2.1 Problem introduction

All structures are considered static. Hence, the system is in equilibrium. The structures

are composed of nodes and elements. Each element is connected to two nodes, the i and j

nodes. At these nodes, multiple elements can be connected to each other. The multibody

model treats the displacements of nodes in x and y direction as degrees of freedom.

Furthermore, the elongation of the elements, ∆L(k), are defined as additional degrees of

freedom. The superscript k indicates the change in length of element k. This way a

pre-strain can directly be applied to an element. There are two equilibrium equations

per node and one equilibrium equation per element. The set of degrees of freedom per

element changes when using beam elements, introducing a rotational degree of freedom.

The equilibrium equations couple the reaction forces in the constraint nodes and elements

with the nodal displacements and elemental elongations. Therefore, the unknowns are

two displacements per node, elongation of each element, and the internal reaction forces in

each element and in restricted nodes. The equilibrium equations can only be solved when

additional boundary conditions and constraints are defined to assure the set of equations

is sufficiently defined and therefore solvable. Boundary conditions or constraint equations

can be applied at nodes, when nodes are physically restricted in one or multiple directions

or a displacement of a node in a certain direction is forced. Furthermore, a constraint

equation is defined for every element, to relate the element elongation ∆L(k) with the

nodal displacements of the connected degrees of freedom. The residual equations consists

15



of the equilibrium equations and the constraint equations.

2.2 Potential energy formulation

The equilibrium equations can be formulated based on the principle that, for static elas-

tic structures, the potential energy is minimized. This implies that the derivative of the

potential energy with respect to the displacements must be zero. A constraint mini-

mization problems arises when adding the constraint equations. The potential energy

equation with nodal constraints and element constraints is expressed in Lagrangian form

[5]. The variables included in each term are shown in parentheses as function arguments:

L(qn, qe,λn,λe) = Wint(qe)−Wext(qn) + gn(qn)
⊤λn + ge(qn, qe)

⊤λe (2.1)

where qn are nodal displacements, qe represent elemental displacements, gn are nodal

constraints, and ge are element constraints. Furthermore, λn are nodal reaction forces,

λe are elemental reaction forces. The displacement vector is given by

q =
[
qn qe

]⊤
, (2.2)

and the constraint vector:

g =
[
gn ge

]⊤
. (2.3)

When loads are applied to a body, the body will deform. Assuming no energy is lost in

the form of heat, the external work, Wext, done by the applied loads is converted into

internal work called strain energy, Wint. Hence, the potential energy, Π of a system can

be written as

Π(q) = Wint(qe)−Wext(qn). (2.4)

A general 3D formulation for the strain energy and external work is

Wint =
1

2

∫
V

σijεij dV, (2.5a)

Wext =

∫
V

fiui dV +

∫
S

tiui dS, (2.5b)

where σij and ϵij are the stress and strain tensor respectively. V is the volume, S the

surface, fi are body forces, for example gravity, ui is the deformation vector and ti

represents surface forces. The Einstein summation convention is used.

From now on, the function arguments are omitted. Equilibrium is found when the gra-

16



dients in all directions are equal to zero:

∇qnL = −∇qnWext +∇qng
⊤
nλn +∇qng

⊤
e λe = 0, (2.6a)

∇qeL = ∇qe (∇qeWint)
⊤ +∇qeg

⊤
e λe = 0, (2.6b)

∇λnL = g⊤
n = 0, (2.6c)

∇λeL = g⊤
e = 0. (2.6d)

The∇ operator is defined as a column vector. The first derivative terms of the Lagrangian

are all column vectors. As the model does consider geometric nonlinearity, these con-

ditions lead to a set of nonlinear model equations denoted as r(q,λ) = 0. Equation

(5.1a) corresponds to the nodal equilibrium equations, and equation (5.1b) both arising

from the minimization of the potential energy. Equation (5.1c) gives rise to the nodal

constraint equations, and equation (5.1d) represents the element constraints. To solve

the model equations with Newton-Raphson, the gradient of these equations with respect

to the variable set is needed. This will be the Hessian of the Lagrangian. Given that the

relation between the external work Wext and the nodal displacements qn is linear, the

term ∇qn∇qnWext is equal to zero. Taking the derivatives of equations (5.1a)-(5.1d) to

qn gives:

∇qn∇qnL = ∇qn

(
∇qng

⊤
nλn

)⊤
+∇qn

(
∇qng

⊤
e λe

)⊤
, (2.7a)

∇qn∇qeL = ∇qn

(
∇qeg

⊤
e λe

)⊤
, (2.7b)

∇qn∇λnL =
(
∇qng

⊤
n

)⊤
, (2.7c)

∇qn∇λeL =
(
∇qng

⊤
e

)⊤
. (2.7d)

In many situation the nodal constraints gn are a linear function of qn, if this is the case

the term ∇qn

(
∇qng

⊤
nλn

)⊤
= 0. The derivatives of equations (5.1a)-(5.1d) to qe gives:

∇qe∇qnL = ∇qe

(
∇qng

⊤
e λe

)⊤
, (2.8a)

∇qe∇qeL = ∇qe (∇qeWint)
⊤ +∇qe

(
∇qeg

⊤
e λe

)⊤
, (2.8b)

∇qe∇λnL = 0, (2.8c)

∇qe∇λeL =
(
∇qeg

⊤
e

)⊤
. (2.8d)

(2.8e)

In many cases the element constraints can be written as:

ge = f(gn)− ge. (2.9)

This results in: ∇qege = −1, a diagonal matrix with −1 on its diagonal entries. Taking

17



the derivative of equations (5.1a)-(5.1d) to λn gives:

∇λn∇qnL = ∇qng
⊤
n , (2.10a)

∇λn∇qeL = 0, (2.10b)

∇λn∇λnL = 0, (2.10c)

∇λn∇λeL = 0. (2.10d)

(2.10e)

Taking the derivative of Equations (5.1a)-(5.1d) to λe gives:

∇λe∇qnL = ∇qng
⊤
e , (2.11a)

∇λe∇qeL = ∇qeg
⊤
e , (2.11b)

∇λe∇λnL = 0, (2.11c)

∇λe∇λeL = 0 (2.11d)

This can be aggregated in matrix form as:
∇qn

(
∇qng

⊤
nλn

)⊤
+∇qe

(
∇qng

⊤
e λe

)⊤ ∇qe

(
∇qng

⊤
e λe

)⊤ ∇qng
⊤
n ∇qng

⊤
e

∇qn

(
∇qeg

⊤
e λe

)⊤ ∇qe (∇qeWint)
⊤ +∇qe

(
∇qeg

⊤
e λe

)⊤
0 ∇qeg

⊤
e(

∇qng
⊤
n

)⊤
0 0 0(

∇qng
⊤
e

)⊤ (
∇qeg

⊤
e

)⊤
0 0

 .

(2.12)

If all constraint equations are defined as linear equations in qn and qe, and the element

constraints are defined as: ge = f(gn)− ge then:

∇qe

(
∇qng

⊤
e λe

)⊤
= 0, (2.13a)

∇qn

(
∇qeg

⊤
e λe

)⊤
= 0, (2.13b)

∇qe

(
∇qeg

⊤
e λe

)
= 0⊤, (2.13c)

∇geg
⊤
e = −1, (2.13d)(

∇geg
⊤
e

)⊤
= −1⊤ = −1. (2.13e)

(2.13f)

The matrix form then simplifies to:

J =
∂r

∂u
=


∇qn

(
∇qng

⊤
nλn

)⊤
0 ∇qng

⊤
n ∇qng

⊤
e

0 ∇qe (∇qeWint)
⊤ 0 −1(

∇qng
⊤
n

)⊤
0 0 0(

∇qng
⊤
e

)⊤ −1 0 0

 . (2.14)

18



The second derivative terms of the Lagrangian are all matrices. The size of J is (nUnknown×
nUnknown), were nUnknown is the number of entries of the solution vector u. The term

∇qn

(
∇qng

⊤
nλn

)⊤
has a size of (nNoDOF × nNoDOF ), were nNoDOF are the number

of nodal degrees of freedom. The size of ∇2
qeWint is (nEl × nEl), with nEl the number

of elements. ∇qng
⊤
n has a size of nNoDOF × nNoCo, nNoCo is the number of nodal

constraints. Lastly, the ∇qng
⊤
n has a size of nNoDOF × nElCo, nElCo is the number

of element constraints.

Newton-Raphson uses this Jacobian to solve the residual equations. The total solution

vector of the state variables is defined as

u =
[
gn ge λn λe

]⊤
. (2.15)

2.3 Newton-Rahpson

There are various methods available for solving nonlinear equations, one of which is the

Newton-Raphson (NR) method. For a single nonlinear equation (r(u) = 0), the local

linearizaton of the system equation at position un can be use to define the next trial

solution un+1:

un+1 = un −
r(un)

r′(un)
, (2.16)

were r′ means the first derivative of r with respect to u. To solve a system of nonlinear

equations, the NR method employs the Jacobian of the residual equations with respect

to the solution vector to iteratively converge towards the solution [6]

un+1 = un − J(un)
−1r(un). (2.17)

In this equation, u is the solution vector, denoted as u = [q,λ]T , and r(un) is the

residual vector evaluated at the solution of iteration n. The Jacobian J , of the residual

equations and the solution vector is given in equation (2.18). Jacobians in this work use

this definition.

J =
∂r

∂u
=


∂r1
∂u1

∂r1
∂u2

· · · ∂r1
∂un

∂r2
∂u1

∂r2
∂u2

· · · ∂r2
∂un

...
...

. . .
...

∂rm
∂u1

∂rm
∂u2

· · · ∂rm
∂un

 (2.18)

The general Jacobian of the residual equations with the state variables is described in

Section 2.2 in (2.12) and (2.37).

The iterative process continues until one of the following conditions is met: either the

maximum number of iterations is surpassed, the absolute change between successive so-

lutions |uk+1 −uk| becomes smaller than the specified solution tolerance, or the residual

19



of the nonlinear equations r(q,λ) falls below the equation tolerance. There are multiple

ways to define the tolerances: for example when the absolute value of each component

of the vector r(un) falls below the equation tolerance. Alternatively, an L2 norm can

condense the residual vector into a single value. Consequently, it is expected that the

equation tolerance must be set tighter to achieve the same level of accuracy. Determining

the appropriate equation tolerance is problem-specific and depends on factors beyond the

NR procedure itself.

2.4 Residual equations

This research only includes truss elements. Subsequently, the equations and solution

vector will be further analyzed, specifically for truss elements.

As discussed in Section 2.1, the system of equations is defined with the following un-

knowns: nodal displacements, element deformations, nodal reaction forces and element

forces. A sufficient set of equations can be found by solving for the equilibrium of the

Lagrangian function, see equation 5.1. This yields a set of equations that can be cate-

gorized in four sets: nodal equilibrium equations, element equilibrium equations, nodal

constraint equations and element constraint equations. When determining the system

derivatives, each of these types of equations has to be treated differently. Therefore, it is

of utmost importance to properly track the position of each equation type in the system

of equations. To structure the notation, the following sets are defined, indicating the

equation numbering for each of the four sets of equations:

NoEq = {1, . . . , nNoEq}. (2.19a)

ElEq = {nNoEq + 1, . . . , nNoEq + nElEq}. (2.19b)

NoCo = {nNoEq + nElEq + 1, . . . , nNoEq + nElEq + nNoCo}. (2.19c)

ElCo ={nNoEq + nElEq + nNoCo + 1, . . . ,

nNoEq + nElEq + nNoCo + nElCo}.
(2.19d)

nNoEq are the number of nodal equilibrium equations, nElEq are the number of element

equilibrium equations, nNoCo are the number of nodal constraint equations, and nElCo

are the number of element constraint equations. Hence, the combination of the sets NoEq

and ElEq include all the equilibrium equations. The combination of the sets NoCo and

ElCo represent the constraint equations. The equations will always be ordered in the

order as presented above.

External forces can only be applied at nodes, affecting only equations in set (2.19a).

Forced displacements are imposed as nodal constraints, affecting only set (2.19c). Con-

sequently, the right-hand side in the linearized solution procedure includes both external

20



forces and prescribed displacements.

The solution vector u consists of both degrees of freedom (DOFs) q, and Lagrange

multipliers λ. However, both DOFs and Lagrange multipliers can be further categorized

into two distinct types of variables. The DOFs encompass nodal displacements and

element elongations, while the Lagrange multipliers include nodal reaction forces and

element reaction forces. To differentiate, between displacements and reaction forces,

subscripts are used. As explained in Section 2.2, qn signifies the nodal displacements, qe

are the element elongations, λn are the nodal reaction forces, and λe are the elemental

reaction forces.

As some residual equations are given in terms of forces, and other in terms of displace-

ments, it is necessary to scale the residual equations to avoid an ill-conditioned Jacobian.

In this report, the scaling of equations is not explicitly indicated, as it would introduce

many additional terms compromising the clarity of the fundamental equations presented.

However, to achieve accurate results, it is crucial that all equations in the matrix-vector

equations are of similar scale. After solving the equations, solutions can be scaled back

to obtain the correct results.

2.5 Example

A simple example of a truss structure is included to provide insights into the model

equations.

2.5.1 Truss definition

Trusses are the only elements that are used in this research. This section provides the

truss definition that is used, [7] served as inspiration. A single free floating truss with the

degrees of freedom (DOFs) indicated by arrows can be seen in Figure 2.1. The position

v_i

u_j

u_i

v_j

β

ΔL

y

x

Figure 2.1: Free floating truss

of the truss can in principle be described by the coordinates of each end point. The

initial coordinates are defined as (xi, yi) and (xj, yj). These are constant in the solution

21



procedure and are provided during the initialization. The final coordinates (after the

model is solved) are indicated with a capital letter and consists of the initial coordinate

plus the corresponding displacement.

Xi = xi + ui, (2.20a)

Yi = yi + vi, (2.20b)

Xj = xj + uj, (2.20c)

Yj = yj + vj. (2.20d)

Each truss is connected to five degrees of freedom: the nodal displacements ui, vi, uj

and vj, and the truss elongation ∆L. While the nodal displacements can be connected

to multiple bar elements, each truss elongation only belongs to a single bar element. ∆L

as a separate DOF introduces an element constraint equation for every element k:

L(k) − L
(k)
0 −∆L

(k)
0 = 0, (2.21)

were L(k) is the current length (being a function of Xi, Yi, Xj and Yj, and consequently

also a function of the nodal displacements), L
(k)
0 the initial length (a constant), and

∆L
(k)
0 the change in length of element k (he element elongation degree of freedom). This

expression is important because the derivatives are primarily constructed element-wise,

with most terms originating from these element constraints. Boundary conditions can be

added as nodal constraints.

2.5.2 Model equations

An example of the multibody approach is presented here. This is done in order to show

the implementation of the generic equations as described.

The structure can be seen in Figure 2.2. The structure consists of 2 trusses, 3 nodes,

and 8 degrees of freedom. 2 DOFs per node and 1 DOF per element. The displacement

of node 2 is zero in both directions, the displacement of node 1 is zero in x direction,

and in y direction a displacement, c of 0.1m is enforced. An external force of -1e7N in y

direction is applied at node 3.

22



u2

v2

L2 v3

u3

L1

u1

v1 = 0.1m F =-1e7N

x

y

Figure 2.2: Simple two truss system.

Before starting the explanation of the example some definitions used are provided. The

sine and cosine terms are abbreviated and given by:

cos β(k) = ck =
X

(k)
j −X

(k)
i

L(k)
, (2.22a)

sin β(k) = sk =
Y

(k)
j − Y

(k)
i

L(k)
, (2.22b)

where the superscript k refers to element k. Furthermore, the initial and current length

are given as:

L
(k)
0 =

√(
x
(k)
j − x

(k)
i

)2

+
(
y
(k)
j − y

(k)
i

)2

, (2.23a)

L(k) =

√(
X

(k)
j −X

(k)
i

)2

+
(
Y

(k)
j − Y

(k)
i

)2

. (2.23b)

The structure yields six constraint equations, g(q). The four boundary conditions or

nodal constraints are

u1 = 0, (2.24a)

v1 = c, (2.24b)

u2 = 0, (2.24c)

v2 = 0, (2.24d)

and the two element constraints are

L1 − L0
1 −∆L1 = 0, (2.25a)

L2 − L0
2 −∆L2 = 0. (2.25b)

23



The specific strain energy and external work depend on the element type. For 2D truss

elements:

Wint =
1

2

nEl∑
i=1

ki∆L2
i , (2.26)

and

Wext =
nNo∑
l=1

Fxlul + Fylvl. (2.27)

Here Fx and Fy are the external forces in x and y direction respectively. Furthermore, u

and v are the displacements of the corresponding node in x and y direction respectively

[8]. The loads are applied at the nodes.

The full Lagrangian becomes:

L =
1

2
k1∆L2

1 +
1

2
k2∆L2

2 − v3F + λn1u1 + λn2(v1 − 0.01) + λn3u2 + λn4v2

+ λe1(L1 − L0
1 −∆L1) + λe2(L2 − L0

2 −∆L2). (2.28)

The general residual equations are described in (5.1), and repeated here for readability.

∇qnL = −∇qnWext +∇qng
⊤
nλn +∇qng

⊤
e λe = 0, (2.29a)

∇qeL = ∇qe (∇qeWint)
⊤ +∇qeg

⊤
e λe = 0, (2.29b)

∇λnL = gn = 0, (2.29c)

∇λeL = ge = 0. (2.29d)

For this problem, the set of nodal displacements and element elongations is

q =
[
qn1 qn2 qn3 qn4 qn5 qn6 qe1 qe2

]
=

[
u1 v1 u2 v2 u3 v3 ∆L1 ∆L2

]
,

(2.30)

and the set of nodal and elemental reaction forces is

λ =
[
λn1 λn2 λn3 λn4 λe1 λe2

]
. (2.31)

In this example, u with a subscript represents the nodal displacement in x direction.

These are different variables than the solution vector u. Only in this example ui is used

in this context to provide insights into the physical meaning of the variables.

There are 8 equilibrium equations, and 6 constraint residual equations (r(q,λ) = 0).

The six nodal equilibrium equations, two per node (∇qnL)

∂L
∂u1

= λn1 − cos (β1)λe1 = 0, (2.32a)

24



∂L
∂v1

= λn2 − sin (β1)λe1 = 0, (2.32b)

∂L
∂u2

= λn3 − cos (β2)λe2 = 0, (2.32c)

∂L
∂v2

= λn4 − sin (β2)λe2 = 0, (2.32d)

∂L
∂u3

= cos (β1)λe1 + cos (β2)λe2 = 0, (2.32e)

∂L
∂v3

= sin (β1)λe1 + sin (β2)λe2 − F. (2.32f)

The two element equilibrium equations, one per element (∇qeL)

∂L
∂∆L1

= k1∆L1 − λe1 = 0, (2.33a)

∂L
∂∆L2

= k2∆L2 − λe2 = 0. (2.33b)

Four nodal constraint equations (∇λnL)

∂L
∂λn1

= u1 = 0, (2.34a)

∂L
∂λn2

= v1 − c = 0, (2.34b)

∂L
∂λn3

= u2 = 0, (2.34c)

∂L
∂λn4

= v2 = 0. (2.34d)

Two element constraint equations ( ∇λeL)

∂L
∂λe1

= L1 − L0
1 −∆L1 = 0, (2.35a)

∂L
∂λe1

= L2 − L0
2 −∆L2 = 0. (2.35b)

The residual equations are analytically known for every problem. The last step before

solving the problem is obtaining the Jacobian of the residual equations with respect to

the solution vector. Which yields the second order gradient of the Lagrangian function.

In this case the complete solution vector is

u = [q λ] = [u1 v1 u2 v2 u3 v3 ∆L1 ∆L2 λn1 λn2 λn3 λn4 λe1 λe2] .

(2.36)

There are 14 residual equations and the solution vector consists of 14 elements, hence

25



the Jacobian is a 14x14 matrix. To keep the equations organized and clear, the Jacobian

is not entirely written out, but instead sectioned into parts corresponding to different

types of residual equations and variables from the solution vector. The general form of

the Jacobian matrix (from Section 2.2) is repeated here for readability.

J =
∂r

∂u
=


∇qn

(
∇qng

⊤
nλn

)⊤
0 ∇qng

⊤
n ∇qng

⊤
e

0 ∇qe (∇qeWint)
⊤ 0 −1(

∇qng
⊤
n

)⊤
0 0 0(

∇qng
⊤
e

)⊤ −1 0 0

 . (2.37)

The Jacobian is the first derivative of the residual equations with respect to the state

variables, and it is also the second derivative of the Lagrangian with respect to the state

variables. In equation form:
∂L
∂u

= r, (2.38a)

∂2L
∂u2

=
∂r

∂u
= J . (2.38b)

The four distinct terms present in this Jacobian will be given. The geometric term

∇qn

(
∇qng

⊤
nλn

)⊤
=

λe1

L1
s21 −λe1

L1
s1c1 0 0 −λe1

L1
s21

λe1

L1
s1c1

−λe1

L1
s1c1

λe1

L1
c21 0 0 λe1

L1
s1c1 −λe1

L1
c21

0 0 λe2

L2
s22 −λe2

L2
s2c2 −λe2

L2
s22

λe2

L2
s2c2

0 0 −λe2

L2
s2c2

λe2

L2
c22

λe2

L2
s2c2 −λe2

L2
c22

−λe1

L1
s21

λe1

L1
s1c1 −λe2

L2
s22

λe2

L2
s2c2

λe1

L1
s21 +

λe2

L2
s21 −λe1

L1
s1c1 − λe2

L2
s2c2

λe1

L1
s1c1 −λe1

L1
c21

λe2

L2
s2c2 −λe2

L2
c22 −λe1

L1
s1c1 − λe2

L2
s2c2

λe1

L1
c21 +

λe2

L2
c22


.

(2.39)

The stiffness related term

∇qe (∇qeWint)
⊤ =

[
k1 0

0 k2

]
. (2.40)

The nodal constraint term is

∇qngn =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

 . (2.41)

The ones represent which direction in which nodes are constraints, in this case both

directions of node 1 and node 2. The quantity of the prescribed displacements will

appear in the right hand side of the final matrix equation. The element constraint term

26



is given by

∇qnge =

[
−c1 −s1 0 0 c1 s1

0 0 −c2 −s2 c2 s2

]
. (2.42)

The following form in the linearized equations can be recognized:
∇qn

(
∇qng

⊤
nλn

)⊤
0 ∇qng

⊤
n ∇qng

⊤
e

0 ∇qe (∇qeWint)
⊤ 0 −1(

∇qng
⊤
n

)⊤
0 0 0(

∇qng
⊤
e

)⊤ −1 0 0

 .


qn

qe

λn

λe

 =


Fext

0

Qext

0

 , (2.43)

were ∇qngn represents the nodal constraint equations, ∇qnge are the element constraint

equations,∇qn

(
∇qng

⊤
nλn

)⊤
are the element orientation related terms and∇qe (∇qeWint)

⊤

represent the stiffness per element, that contributes to the element equilibrium equations.

Fext represents the external applied forces and Qext represents the prescribed displace-

ments.

Newton-Rahpson is used to solve the equations:

uk+1 = uk − J(uk)
−1r(uk), (2.44)

were r(uk) and J(uk) are the residual equations and the Jacobian evaluated at uk re-

spectively. Newton-Raphson iterates towards the solution until the convergence criteria

are satisfied. From all the terms in the Jacobian only G and Ce depend on the state

variables u.

27



Chapter 3

Optimization

In this chapter, the general frameworks of the nested and sand approaches are described.

The differences between these methods are explained. Furthermore, a brief note on

the optimization solvers used, as well as the scaling and normalization of the involved

equations, is made.

3.1 Nested approach

The nested approach assumes that the residual equations are already solved, meaning

that r(p,u(p)) = 0 is solved for u for a set of design variables p using Newton-Raphson.

The general optimization problem can then be described as

minimize
p

f(p,u(p))

subject to g(p,u(p)) ≤ 0,

h(p,u(p)) = 0,

where:

• f(p,u(p)) is the objective function to be minimized,

• g(p,u(p)) ≤ 0 are inequality constraints, and

• h(p,u(p)) = 0 are equality constraints.

For every optimization iteration the residual equations need to be solved for that specific

set of design variables p. The computational cost of the Newton-Raphson iterations for

solving the residual equations at each optimization step is the main disadvantage of the

nested approach. Furthermore, it is required that the Newton-Raphson iterations con-

verge for each evaluated design, which may become problematic if the optimizer probes

28



certain structure designs. These issues could potentially be alleviated by using the so-

lution of similar designs as an initial guess for the Newton-Raphson iterations. That is

however not considered in this work. Instead, each sequence of Newton-Raphson itera-

tions starts at the same initial guess, being a vector full of zeros.

3.2 SAND approach

With SAND analysis and design the residual equations are solved at the same time as the

optimization is performed [9]. This means that the residual equations are implemented

as equality constraints. The SAND approach can outperform the nested approach as is

showed in [10] in for numerical gradients.

The advantage is that the implicit relation between p and u is no longer present. This

is the reason why for the analytical gradient computation the SAND approach does not

need to use the direct or adjoint method. The general optimization problem is described

as:

Minimize f(u,p) (3.1)

Subject to g(u,p) ≤ 0, (3.2)

r(u,p) = 0 (3.3)

h(u,p) = 0, (3.4)

where:

• f(u,p) is the objective function to be minimized,

• g(u,p) ≤ 0 are inequality constraints,

• r(u,p) = 0 are the residual equations, and

• h(u,p) = 0 are other equality constraints.

The initial guess for u is found by solving the model one time for the initial p, as in

the nested approach. This is a relatively realistic estimate for only a modest increase in

computing time.

3.3 fmincon

In the fmincon function in MATLAB the preferred optimization algorithm can be se-

lected. The three most relevant algorithms for gradient-based optimization with fmincon

are: sequential quadratic programming (SQP), active-set, and interior-point (IP). SQP

algorithms are similar to active-set algorithms. SQP algorithms are in most situations

29



preferred over active-set algorithms [11]. Interior-point algorithms differ from SQP and

active-set algorithms. IP algorithms incorporates barrier functions. This ensure that the

iterations remain within the feasible region, causing IP algorithms to be stable to find

the optimal solution. SQP algorithms solve a sequence of quadratic sub problems to ap-

proximate the original nonlinear problem. The steps taken by SQP can be in directions

that momentarily violate constraints. Therefore, SQP algorithms are generally faster but

can be less stable than IP algorithms [12]. The robustness and speed of each solver are

highly dependent on the specific problem. These are general assumptions, therefore, in

this research, both the SQP and IP algorithms will be tested across various problems.

This approach is taken because one algorithm might be better suited to the nested ap-

proach than the SAND approach and vice versa. The solvers will be evaluated based on

computational efficiency and robustness, specifically whether the solver can consistently

converge to the correct optimum, even with changes in initial guesses or slight variations

in the problem.

3.4 Scaling and normalization

It is important to note that in the residual equations being solved, the solution vector may

consist of entities with various different units and magnitudes. This can lead to poorly

scaled matrix equations, resulting in inaccurate solutions. Therefore, when implementing

the algorithm, it is crucial to ensure appropriate scaling of the equations is applied to

facilitate accurate solution finding.

Similarly, normalization of the design variables and objective/constraint functions is a

common practice to aid optimization algorithms in finding good solutions. It should be

recognized that these normalization factors affect the derivative terms and consequently

also affect the optimization search direction. For example, if t pn is a normalized design

variable, defined as pn = p ∗ c, with c a constant. Then

df(p)

dpn
=

∂f(p)

∂p

dp

dpn
=

∂f(p)

∂p
· 1
c
. (3.5)

In this work, only df
dp

is mentioned. While these factors are omitted from the equations

in this report for readability, it is essential to acknowledge that normalization is applied

and implemented for all examples and results presented herein, for both design variables

and objective/constraint functions.

For the nested approach, the residual equations are scaled to have roughly the same

magnitude, and these scaled residual equations are used in the SAND approach. This

means it is important to scale the residual equations back to sizes of the other objective

and constraint functions, which are normalized. The scaling of the residual equations in

the SAND approach can have such a large influence on the computational time that it is

30



investigated separately. This is explained further in Chapter 6 and Chapter 7.

31



Chapter 4

Theory of gradient computation

In this chapter the theory of gradient computation is detailed. The chapter begins with

an explanation of numerical gradient computation in Section 4.1, which is used by most

gradient-based optimization algorithms. The chapter then proceeds to explain analytical

gradient computation for both the nested and SAND approaches in Section 4.2. To obtain

analytical gradients using the nested approach, two methods are elaborated: the direct

method and the adjoint method. It is essential to clarify which gradients are being sought.

These are the derivatives of the objective and constraint functions with respect to the

design variables. The theory applies equally to both objective and constraint functions.

Therefore, throughout this explanation, g (or g for a single constraint) will be used, but

the exact same approach applies for an objective function, f or an equality constraint,

h. This chapter provides the theoretical explanation of the gradient computation. The

implementation of the analytical gradients is discussed in Chapter 5.

4.1 Numerical gradient computation

4.1.1 Finite difference

By default, fmincon utilizes finite differences for computing the derivatives of the objective

and constraint functions in MATLAB. The basic types of finite difference are central

difference, backward difference, and forward difference. Backward and forward difference

are O(h) accurate, while central difference is O(h2) accurate, with h the step size of the

discretization. However, central difference requires two extra function evaluations for

each gradient term to be determined, while forward and backward difference only require

one extra function evaluation.

The truncation error decreases as the step size decreases. However, a smaller step size

value may lead to larger rounding errors due to the subtraction in the finite difference

equation. Even tough there exists an optimal step size h. This trade-off is not further

discussed here and the default settings of fmincon are used. Forward difference is the

32



default derivative computation method in fmincon. The approximation of the derivative

of a function g to a design variable p using forward difference is

∂g

∂p
(p) =

g(p+ h)− g(p)

h
+O(h). (4.1)

This approximation has to be performed for every component of the design variables p.

Higher-order derivatives can also be obtained using finite differences, provided that the

function is differentiable to the required order.

Using finite difference the model is treated as a so-called black box, see Figure 4.1. This

means that only the input and output of the system determine the characteristics of the

problem. To compute the derivative of objective or constraint functions with respect to

the vector of design variables, each design variable must be perturbed, and the model

must be solved. This necessitates solving the model N+1 times, where N is the number of

design variables. Finite differences can be used for both the nested and SAND approach.

Optimizer
p

f, g, h

Figure 4.1: Finite difference: black box model.

4.2 Analytical gradient computation

To find the best design, an objective function and constraint functions are introduced.

The optimization algorithm needs the derivatives of the objective function, f , and con-

straint functions, g, to the design variables p. To obtain the analytical gradients for the

nested approach, either the direct or adjoint method can be used. In this section, both

methods are derived and explained. A comparison of the direct and adjoint methods is

included. Subsequently, the required gradients for both the nested and SAND approaches

are elaborated upon.

4.2.1 Nested

Although the derivations of the direct and adjoint methods differ, the outcomes are the

same. The primary distinction lies in the sequence of steps performed in each method,

33



and in which system of equations to solve first. Although it is not necessary for the

final result, both derivations are provided. These derivations offer different perspectives,

which can help in understanding the underlying processes.

Direct method

The direct method as described in [9] is a method that rewrites the derivative formulation

in such a way that the derivatives can be obtained in analytical form. The model can be

solved for a certain given set of design variables. The objective and constraint functions

depend on the design variables, but also on the solution of the model u,

g = g(p,u(p)). (4.2)

The derivation presented here is done for the constraint functions. Notice that u implicitly

depends on p. Hence, using the chain rule, the total derivative is given by:

dg

dp
=

∂g

∂p
+

∂g

∂u

du

dp
. (4.3)

The model is solved, thus r(p,u(p)) = 0. This means that any perturbation dp must be

accompanied by a perturbation du such that the governing equations remain satisfied,

meaning that dr should be 0. Therefore, the differential of the residuals is written as

dr =
∂r

∂p
dp+

∂r

∂u
du = 0. (4.4)

This equation can be rewritten into,

∂r

∂u

du

dp
= −∂r

∂p
. (4.5)

Given that the partial derivatives ∂r∂u and ∂r∂p are known from the residual function,

the total derivative du/dp can be found by solving the above linear system:

du

dp
= − ∂r

∂u

−1 ∂r

∂p
. (4.6)

Substituting expression 4.6 in equation 4.3 results in the expression for the total deriva-

tive,
dg

dp
=

∂g

∂p
− ∂g

∂u

(
∂r

∂u

)−1
∂r

∂p
, (4.7)

34



which can be solved in two steps. For the direct method first ϕ is found as the solution

of the linear system of equation (4.5), and then the full derivative is solved:

∂r

∂u
ϕ =

∂r

∂p
, (4.8a)

dg

dp
=

∂g

∂p
− ∂g

∂u
ϕ. (4.8b)

The partial derivatives of r and g to p and u may be obtained analytically, but can be

obtained by finite differences as well if needed.

Note that ∂r
∂u

is equal to the Jacobian of the residual function (equation (2.37)), and that

the system of equations with the Jacobian is already solved during the Newton-Raphson

iterations, see equation (2.44). The matrix decomposition that is determined while solving

the set of equations can be re-used, making that solving subsequent equations with the

same Jacobian matrix is relatively inexpensive.

Adjoint method

The adjoint method is similar to the direct method, the difference is in the order in which

the final derivative is calculated. The derivation of the adjoint method also differs, and

will be presented here [13]. The same names for the objective and constraint functions,

design variables, state variables and residual function as in the direct method derivation

are used. Suppose

L = g − λTr, (4.9)

were L is a Lagrangian (a different Lagrangian then the one used for the potential en-

ergy, L), and λ are Lagrange multipliers for the residual functions. This represents the

Lagrangian of the function to be differentiated under the constraint of residual function

satisfaction. Given that the residual equation r = 0 should remain satisfied, it can be

seen that the total derivative of the Lagrangian dL
dp

is equal to the total derivative of the

function of interest dg
dp
.

The total derivative of the Lagrangian is given as:

dL

dp
=

dg

dp
=

∂g

∂p
+

∂g

∂u

du

dp
− λT

(
∂r

∂p
+

∂r

∂u

du

dp

)
. (4.10)

The equation can be rearranged by grouping the terms with du
dp
:

dL

dp
=

∂g

∂p
+

(
∂g

∂u
− λT ∂r

∂u

)
du

dp
− λT ∂r

∂p
(4.11)

35



Now, select the Lagrange multipliers λ such that

∂g

∂u
− λT ∂r

∂u
= 0. (4.12)

As with the direct method, the total derivative of the function of interest can be deter-

mined in two steps. First, find λ by solving the following set of linear equations:(
∂r

∂u

)T

λ =

(
∂g

∂u

)T

, (4.13)

Then find the total derivative of the function of interest by substituting the Lagrange

multipliers in the following equation:

dg

dp
=

∂g

∂p
− λT ∂r

∂p
. (4.14)

Direct vs adjoint

The direct method ((4.8)) and the adjoint method (equations (4.13) and (4.14)) give

exactly the same result, with the only difference being the order of solving the set of

equations.

The direct and adjoint method are visualized in Figure 4.2. The model, r(u,p) = 0, has

to be solved only once to obtain analytical expressions for f , g and h.

Optimizer
p

Solve
r(u,p) = 0

f(u,p)
g(u,p)
h(u,p)

u
f, g, h

Figure 4.2: Implicit analytic differentiation using residuals.

The difference between the direct method and the adjoint method lies in the size of

the linear system that has to be solved. For the direct method that system is equation

4.8a, This means the right hand side depends on the number of the design variables.

In the adjoint method the linear system of equation 4.13 is solved, here the right hand

side depends on the total number of objective and constraint equations. To observe a

significant difference in computational efficiency between the direct and adjoint method,

there should be a substantial discrepancy in the size of the right-hand sides of both

36



methods:

Method =

Direct, if nf ≫ np

Adjoint, if np ≫ nf

, (4.15)

were nf is the number of objective and constraint equations and np is the number of

design variables.

To find analytical derivatives for the nested approach, it is necessary to determine the

partial derivatives of the objective and constraint functions with respect to the design

variables and state variables. Additionally, the partial derivatives of the residual equa-

tions with respect tot the design variables and state variables must also be obtained. In

symbols this mean the following analytical derivatives have to be found:

∂r

∂u
, (4.16a)

∂r

∂p
, (4.16b)

∂g

∂u
, (4.16c)

∂g

∂p
, (4.16d)

were g represents both objective and constraint functions. These are partial derivatives

so the implicit relation between u and p does not impact these terms.

4.2.2 SAND

In the SAND approach, the design variables are extended to include the state variables u.

This eliminates the implicit relationship between p and u. Consequently, the direct and

adjoint methods are no longer necessary, as the full gradients can be computed directly.

The primary difference now is that the full derivatives of the objective and constraint

functions need to be found with respect the state variables u and design variables p.

Another difference with the nested approach is that the residual equations now become

constraints. Therefore, the derivatives of the residual equations with respect to u and p

are also required. The final gradients to be determined in analytical form for the SAND

approach are:

∂r

∂u
=

dr

du
, (4.17a)

∂r

∂p
=

dr

dp
, (4.17b)

∂g

∂u
=

dg

du
, (4.17c)

∂g

∂p
=

dg

dp
, (4.17d)

37



Because the implicit relation between p and u is gone, these four partial gradients are

exactly equal to the four full gradients. For the nested and SAND approach the same

four analytical gradients have to be obtained.

38



Chapter 5

Implementation of analytical

gradients

In this chapter, the framework for obtaining the four gradient terms needed for opti-

mization is presented. The derivative terms are written as partial derivatives following

the nested approach. These are, in fact, exactly the same terms needed for the SAND

approach, equation (4.17). The chapter starts with the gradients of the residual function

and concludes with the gradients of the four chosen potential objective and constraints

functions: mass, stress, displacement, and compliance.

5.1 Theoretical framework

The general residual equations are given in equation (5.1). The gradients of the residual

equations to the state variables are already determined for the Newton-Raphson process,

see equation (2.12). Hence, only the gradients of the residual equations r to the design

variables p have to be obtained. Without specifying the type of design variable

∇p∇qnL = ∇p (−∇qnWext)
⊤ +∇p

(
∇qng

⊤
nλn

)⊤
+∇p

(
∇qng

⊤
e λe

)⊤
, (5.1a)

∇p∇qeL = ∇qe (∇qeWint)
⊤ +∇p

(
∇qeg

⊤
e λe

)⊤
, (5.1b)

∇p∇λnL = ∇pg
⊤
n , (5.1c)

∇p∇λeL = ∇pg
⊤
e . (5.1d)

This gradients depend on the choice of design variables. There are many combinations of

variables that can be used as design variables. The basis of these combinations consists

of six different types of design variables as outlined in Chapter 1. These are

p = [A(k), E(k), xi, yi, xj, yj]. (5.2)

39



A(k) is the cross-section of element k, E(k) is the Young’s modulus of element k. Further-

more, xi, yi, xj and yj are the initial nodal coordinates. It is assumed that Wext is linear

in qn. Therefore, ∇p (−∇qnWext)
⊤ = 0. Furthermore, when it is assumed that the nodal

constraint are linear in qn then ∇p

(
∇qng

⊤
nλn

)⊤
= 0 for any design variable. The nodal

constraints only depend on the nodal displacement qn hence ∇pg
⊤
n is also zero for all of

the basis design variables.

If the design variable is A or E the gradient is fully determined by the strain energy term,

∇qeWint. This is the only component that depends on A and E. All other terms will be

zero in this case. When the design variable is an initial nodal coordinate the gradients

involve more terms. Nodal constraint equations are considered to be linear in qn, meaning

that ∇p

(
∇qng

⊤
n

)
λn = 0. The second derivative terms that are not zero, involve either

L(k) or L
(k)
0 . Therefore, the next section is devoted to systematically derive the derivative

of L(k) with respect to the four nodal coordinates:xi, yi, xj, and yj. These derivatives are

equal to the derivatives of L(k) to the nodal displacements. The derivatives of L
(k)
0 to the

initial nodal coordinates are similar to the derivatives of L(k) to the nodal coordinates.

5.2 Partial derivatives of the truss length

In this section the general first, second and third order derivatives of L(k) and L
(k)
0 with

respect to the initial nodal coordinates are derived.

Recall the formulation of a truss. The four basic variables that define the truss are the

nodal coordinates (xi, yi, xj and yj). These coordinates are present in the full Lagrangian,

in L(k) and L
(k)
0 :

• L(k) = L(k) (xi, uiyi, vi, xj, uj, yj, vj),

• L
(k)
0 = L

(k)
0 (xi, yi, xj, yj).

The partial derivatives of the current length to the state variables ui, vi, uj and vj, and

to the design variables xi, yi, xj and yj will be used in multiple of the required partial

derivatives. These partial derivatives of the current element length will therefore be first

derived. Even tough elements can share nodes, the analytical derivatives can be obtained

per element. All contributions can be added to the correct entry. Before specifying which

derivatives are needed, the derivatives of the common factor L(k) with respect to the

nodal coordinates will be written out. First, some important definitions are stated:

∆x = xj + uj − xi − ui, (5.3a)

∆y = yj + vj − yi − vi, (5.3b)

∆x0 = xj − xi, (5.3c)

40



∆y0 = yj − yi, (5.3d)

L =
√
∆x2 +∆y2 =

√
(xj + uj − xi − ui)2 + (yj + vj − yi − vi)2, (5.4a)

L0 =
√

∆x2
0 +∆y20 =

√
(xj − xi)2 + (yj − yi)2, (5.4b)

cos (β) =
∆x

L
=

xj + uj − xi − ui√
(xj + uj − xi − ui)2 + (yj + vj − yi − vi)2

= s, (5.5a)

sin (β) =
∆y

L
=

yj + vj − yi − vi√
(xj + uj − xi − ui)2 + (yj + vj − yi − vi)2

= c, (5.5b)

were β is the angle between the truss in its deformed position, and the x-axis of the

global coordinate system. From this point onward these terms will not be fully written

out. It should be recognized that the derivatives of L(k) to the nodal displacements are

equal to the derivatives of L(k) to the nodal coordinates. This is helpful as the nodal

displacements are part of the solution vector u and these derivatives are desired. With

these definitions the derivatives can be built up.

The current length L(k) is present in the element constraints. The elements constraints

are implemented in the Lagrangian from Equation (2.1) in the following form

g(k)e λ(k)
e = λ(k)

e (L(k) − L
(k)
0 −∆L(k)) = 0, (5.6)

for every element k. Only the factor L(k) depends on the nodal displacements, qn. Notice

that for the derivatives to the nodal coordinates an extra term is present, the derivative

of L
(k)
0 .

The first derivative of λ
(k)
e L(k) with respect to the nodal displacements is

∇qng
(k)
e λ(k)

e =
[
∂λeL
∂xi

∂λeL
∂yi

∂λeL
∂xj

∂λeL
∂yj

]⊤
= λe

[
− cos β − sin β cos β sin β

]⊤
. (5.7)

For this and the following derivative terms the element indication k is left out for clearness.

Once more the derivatives can be taken, resulting in

∇qn (∇qngeλe)
⊤ =

λe

L


s2 −sc −s2 sc

−sc c2 sc −c2

−s2 sc s2 −sc

sc −c2 −sc c2

 (5.8)

In the definition of the compliance the second order derivatives of the Lagrangian are

present, this is explained the next section. Therefore, the third order derivatives are

necessary to obtain the derivatives of the compliance. The third order derivative to the

41



nodal displacements is a third order tensor. All four indices are written out as matrices.

∇qxi∇qn (∇qngeλe)
⊤ =

λe

L2


−3s2c −2c2s− s3 3s2c 2c2s+ s3

−2c2s− s3 2s2c− c3 2c2s+ s3 −2s2c+ c3

3s2c 2c2s+ s3 −3s2c −2c2s− s3

2c2s+ s3 −2s2c+ c3 −2c2s− s3 2s2c− c3

 , (5.9)

∇qyi∇qn (∇qngeλe)
⊤ =

λe

L2


2c2s+ s3 −2s2c+ c3 −2c2s− s3 2s2c− c3

−2s2c+ c3 −3c2s 2s2c− c3 3c2s

−2c2s− s3 2s2c− c3 2c2s+ s3 −2s2c+ c3

2s2c− c3 3c2s −2s2c+ c3 −3c2s

 , (5.10)

∇qxj∇qn (∇qngeλe)
⊤ =

λe

L2


−3s2c 2c2s− s3 3s2c −2c2s+ s3

2c2s− s3 2s2c− c3 −2c2s+ s3 −2s2c+ c3

3s2c −2c2s+ s3 −3s2c 2c2s− s3

−2c2s+ s3 −2s2c+ c3 2c2s− s3 2s2c− c3

 , (5.11)

∇qyj∇qn (∇qngeλe)
⊤ =

λe

L2


2c2s− s3 2s2c− c3 −2c2s+ s3 −2s2c+ c3

2s2c− c3 −3c2s −2s2c+ c3 3c2s

−2c2s+ s3 −2s2c+ c3 2c2s− s3 2s2c− c3

−2s2c+ c3 3c2s 2s2c− c3 −3c2s

 . (5.12)

The notation ∇qxi means the derivative to the x coordinate of the ith side of the element.

The notation takes the derivatives to the initial nodal coordinates. These expressions are

the same for the derivatives to the nodal displacements.

These are the first, second and third order derivatives of L(k). Derivatives of L
(k)
0 to the

nodal displacements are zero. However, derivatives of L
(k)
0 to the initial nodal coordinates

are not zero. These derivatives are not explicitly written out here because the expressions

are obtained in a similar way as the derivatives of L(k).

5.3 Partial derivatives of the residual function

The two derivatives of the residual equations needed for the implementation of the ana-

lytical derivatives are
∂2L
∂u2

=
∂r

∂u
, (5.13a)

∂2L
∂u∂p

=
∂r

∂p
. (5.13b)

42



The partial derivative ∂r
∂u

corresponds with the Jacobian J that is used in the Netwon-

Raphson procedure to solve the system of equations. The Jacobian matrix is given in

general terms in Section 2.2.

The general linearized equations are given in equation (2.43). The geometric term

∇qn

(
∇qng

⊤
nλn

)⊤
is obtained by assembling all the matrices ∇qn (∇qngeλe)

⊤, see Equa-

tion (5.8). The element contributions are added together in the correct entry of the

matrix. The term ∇qe (∇qeWint)
⊤ results in a diagonal matrix with on the diagonal the

stiffness ki of all elements. Hence, the size of this matrix is nEl × nEl. The nodal con-

straint term, ∇qng
⊤
n , is a matrix of size nNoDOF ×nNoCo and consists zeros, with ones

placed to constraint the desired nodal degrees of freedom. The element constraint term,

∇qng
⊤
e are the first derivatives of the the length L(k) as the other terms in the element

constraint do not depend on qn. Therefore these are given by ∇qng
(k)
e , without the λ

(k)
e

as in Equation (5.7). Every element constraint will be placed in a new column, and the

four terms correspond to the four nodal degrees of freedom of each element and should

be placed accordingly.

The final Jacobian found is the Jacobian one step before convergence is reached. It can

be argued to directly use this Jacobian from the NR procedure. Instead of creating the

updated Jacobian for the final solution vector, because during this procedure the decom-

position of the Jacobian is already made. This is computationally the most expensive

step in the solution algorithm. When the convergence tolerance is set ’high enough’ this

Jacobian can produce derivatives of the objective and constraint functions that are suffi-

ciently accurate. This prevents one calculation of the decomposition of the Jacobian for

every optimization iteration.

The derivative of the residual function to the design variables is more involved. This

derivative depends on the choice of design variables. The derivative ∂r
∂p

is built up element-

wise. This means there are six possibilities for every column, where the row represents

a residual equation, and the column the design parameter of interest, which can be of

one of the six above types. The values and placement in the columns may vary, but the

equations can generically be described in terms of element k. All other design variables

can be obtained from this basis and are left for the reader to construct. For example,

using the initial length of element k as a design variable: L
(k)
0 = L

(k)
0 (xi, yi, xj, yj).

The derivatives of the residual function to these six basis design variables are elaborated

here. If p is A or E then only the strain energy term, ∇qe (∇qeWint)
⊤ results in a nonzero

term. If, pi = A(k) then

(
∂r

∂pi

)
l,i

=


E(k)∆L(k)

L
(k)
0

if l = nNoEq + k

0 if l ̸= nNoEq + k
for l ∈ ElEq. (5.14)

43



If, pi = E(k) then

(
∂r

∂pi

)
l,i

=


A(k)∆L(k)

L
(k)
0

if l = nNoEq + k

0 if l ̸= nNoEq + k
for l ∈ ElEq. (5.15)

When p is one of the initial nodal coordinates, three terms result in nonzero derivative

terms. The geometric term ∇p

(
∇qng

⊤
nλn

)⊤
which is now a single row of the matrix

∇qn (∇qngeλe)
⊤ from Equation (5.8), as the derivative to just one nodal coordinate is

sought. If, pi = xi then,(
∂r

∂pi

)
[xiDof ,yiDof ,xjDof ,yjDof ],i

=
[
s2 −sc −s2 sc

] λ
(k)
e

L(k)
. (5.16)

The second nonzero term is caused by the L
(k)
0 present in the ki in the strain energy term:

∇qe (∇qeWint)
⊤.

(
∂r

∂pi

)
l,i

=


E(k)A(k)∆L(k) xj−xi(

L
(k)
0

)3 if l = nNoEq + k

0 if l ̸= nNoEq + k

for l ∈ ElEq, (5.17a)

The last nonzero term comes from the element constraint equations, ∇pg
⊤
e .

(
∂r

∂pi

)
l,i

=


− cos β(k) +

xj−xi(
L
(k)
0

)3 if l = nNoEq + nElEq + nNoCo+ k

0 if l ̸= nNoEq + nElEq + nNoCo+ k

for l ∈ ElCo.

(5.17b)

No matter which nodal coordinate is taken as design variable, the same components are

nonzero. The results are similar but not the same. If, pi = yi then(
∂r

∂pi

)
[xiDof ,yiDof ,xjDof ,yjDof ],i

=
[
−sc c2 sc −c2

] λ
(k)
e

L(k)
, (5.18a)

(
∂r

∂pi

)
l,i

=


E(k)A(k)∆L(k) yj−yi(

L
(k)
0

)3 if l = nNoEq + k

0 if l ̸= nNoEq + k

for l ∈ ElEq, (5.18b)

(
∂r

∂pi

)
l,i

=


− sin β(k) +

yj−yi(
L
(k)
0

)3 if l = nNoEq + nElEq + nNoCo+ k

0 if l ̸= nNoEq + nElEq + nNoCo+ k

for l ∈ ElCo.

(5.18c)

44



Lastly, it can be noticed that (
∂r

∂xi

)
= −

(
∂r

∂xj

)
(5.19a)

and (
∂r

∂yi

)
= −

(
∂r

∂yj

)
. (5.19b)

These are the derivatives for one element. Elements share nodes, resulting in multiple

contributions to the same entries of the final matrix. It is important that in that case

the contributions are added together. With this method both partial derivatives of the

residual function can be computed.

5.4 Objective and constraint functions

In this section the generic derivatives for four different objective and constraint functions

are described: mass, stress, compliance and displacement. The mass and the compliance

are treated as an objective function, the stress and displacement are set up as a constraint

function. However, all four functions can be used as objective and constraint functions.

5.4.1 Mass objective

The mass of the system is defined as the sum of the mass of all elements

M(p) =
nElements∑

k=1

ρ(k)A(k)L
(k)
0 . (5.20)

The mass is always independent of the solution vector u

∂M

∂u
= 0. (5.21)

However, derivatives with respect to p are not necessarily zero. A(k) can be a component

of p and L
(k)
0 = L

(k)
0 (xi, xj, yi, yj) may depend on components in p.

∂M

∂A(k)
= L

(k)
0 , (5.22a)

∂M

∂xi

= −A(k)xj − xi

L
(k)
0

, (5.22b)

∂M

∂yi
= −A(k)yj − yi

L
(k)
0

. (5.22c)

45



Again, the derivatives to nodal coordinates of the other side of the element (xj, yj) are

simply negated:
∂M

∂xi

= −∂M

∂xj

, (5.23a)

∂M

∂yi
= −∂M

∂yj
. (5.23b)

Lastly, the trivial derivative to E(k)

∂M

∂E(k)
= 0. (5.24)

5.4.2 Stress constraint

The stress constraint is set up in such a way that the stress in every element should be

below a certain threshold, σmax. It is not known beforehand whether a certain element

is in tension or compression. If the constraint would be defined in terms of the absolute

value of the stress, it is not continuously differentiable, which can become problematic

when using gradient-based optimization algorithms. Therefore, two constraint functions

are defined, separately for both maximum allowed compressive and tensile stress. The

stress constraint is given as

−σmax ≤ ∆L(k)E(k)

L
(k)
0

≤ σmax, (5.25)

or the way the stress constraint is implemented in the optimization algorithm

∆L(k)E(k)

L
(k)
0

≤ σmax, (5.26a)

−∆L(k)E(k)

L
(k)
0

≤ σmax. (5.26b)

The derivatives of these constraints to u and p need to be derived. It is evident that

the derivatives of constraint equation 5.26b equal the negative of the derivatives of 5.26a.

Therefore, only the derivatives of 5.26a are derived here.

(
∂σ(k)

∂u

)
l

=


E(k)

L
(k)
0

if l = nNoEq + k

0 if l ̸= NoEq + k
for l ∈ ElEq (5.27)

The term ∂σ
∂p

is a bit more involved.

If, pi = A(k) then
∂σ(k)

∂A(k)
= 0. (5.28)

46



If, pi = E(k) then

∂σ(l)

∂E(k)
=


∆L(k)

L
(k)
0

if l = k

0 if l ̸= k
for l = 1, 2, . . . , nEl. (5.29)

nEl are the number of elements in the structure.

If, pi = xi then

∂σ(l)

∂xi

=


∆L(k)E(k)∆x

(l)
0(

L
(k)
0

)3 if l = k

0 if l ̸= k

for l = 1, 2, . . . , nEl. (5.30)

If, pi = xi then all derivatives are the same as for pi = xi but multiplied by minus one.

If, pi = yi then

∂σ(l)

∂yi
=


∆L(k)E(k)∆y

(k)
0(

L
(k)
0

)3 if l = k

0 if l ̸= k

for l = 1, 2, . . . , nEl. (5.31)

If, pi = yj then all equations are the same as for pi = yi but with a minus in front of the

added terms.

5.4.3 Compliance objective

Obtaining the compliance is more involved than the other objective and constraint func-

tions. The derivation is presented here. Compliance is the inverse of stiffness, being the

derivative of displacement with respect to force at a certain degree of freedom. The rele-

vant degrees of freedom in the context of compliance are node displacements in x and y

directions. Meaning the perturbation forces, Fp are added to the nodal equilibrium equa-

tions. Therefore, change in the applied perturbation force dFp results in a corresponding

reaction du to assure the residual equations are still satisfied. The perturbation forces

are added to nodes but all residual equations have to hold after the perturbation, hence

the reaction du are not only the nodal displacements.

This results in the following equation:

∂r

∂Fp

dF +
∂r

∂u
du = 0. (5.32)

This expression follows from the chain rule after the derivative of r(u(Fp),Fp) with

respect to Fp is taken. The du term can be isolated:

du = −
(
∂r

∂u

)−1
∂r

∂Fp

dFp. (5.33)

47



The compliance is the inverse of the stiffness. Using expression 5.33 for du, the compliance

can be written as

C =
1

K
=

du

dFp

= −
(
∂r

∂u

)−1
∂r

∂Fp

. (5.34)

∂r
∂Fp

is an identity matrix with size nUnknown× nNoEq. This means the matrix is not

square. Consequently, the bottom half consists completely of zeros. This is because the

force perturbations are only applied at the nodal degrees of freedom.

For optimization the derivatives of the compliance with respect to the solution vector,

u and to the design variables, p have to be computed. With some matrix algebra both

derivatives can be described as

∂C

∂u
=

∂

∂u

(
− ∂r

∂u

−1 ∂r

∂Fp

)
=

∂r

∂u

−1

· ∂
2r

∂u2
· ∂r
∂u

−1

· ∂r

∂Fp

, (5.35a)

∂C

∂p
=

∂

∂p

(
− ∂r

∂u

−1 ∂r

∂Fp

)
=

∂r

∂u

−1

· ∂2r

∂u∂p
· ∂r
∂u

−1

· ∂r

∂Fp

. (5.35b)

Recognize that: ∂r
∂u

= J , the Jacobian of the residual equations with respect to the solu-

tion vector, this term is already used in the Newton-Raphson procedure. The term, ∂2r
∂u2 is

a third order tensor. Two different forms of this third order tensor can be distinguished.

When the derivatives are taken to a nodal displacement ∇qn (J). As an example the

derivatives to the nodal coordinate xi are taken, to show the general structure of the

tensor, ∇qxi
(J). The derivatives to the other nodal coordinates are similar. the form is

given by:

∇qxi

(
∂r

∂u

)
=

∇qxi
∇qn (∇qngeλe)

⊤
(
∇qxi

(∇qngeλe)
⊤
)⊤

∇qxi
(∇qngeλe)

⊤ 0

 , (5.36)

When the derivatives of J are taken to an element elongation qe or a nodal reaction force

λn that entire matrix corresponding to the index equals zero. For the derivative to an

elemental reaction force λe an example is used, the derivative is taken to λ
(k)
e . A similar

expression holds for the other elements.

∇λ(k)
e

(
∂r

∂u

)
=

[
1

λ
(k)
e

∇qxi
(∇qngeλe)

⊤ 0

0 0

]
. (5.37)

The terms used in the above equations were derived in Section 5.2.

It should be noted that these matrices are constructed element-wise, with each element

contributing to the final tensor. All contributions should be assigned to the corresponding

degree of freedom within that element.

The ∂2u
∂u∂p

term is obtained in a similar fashion when the design variables are nodal coordi-

48



nates. The third-order derivatives of the Lagrangian with respect to the nodal coordinates

are equal to the derivatives with respect to the nodal displacements, with one exception:

the ∇qn (∇qeWint) term. When the design variable is xi:

∂2r

∂u∂p
(nNoEq + k, nNoEq + k, i) = E(k)A(k) xj − xi(

L
(k)
0

)3 . (5.38)

The expression for the other nodal coordinates are similar. There are two exceptions were

the internal work term is the only nonzero term. These are when the design variable is

A(k) or E(k).

If, pi = A(k)

∂2r

∂u∂p
(nNoEq + k, nNoEq + k, i) =

E(k)

L
(k)
0

. (5.39)

If, pi = E(k)

∂2r

∂u∂p
(nNoEq + k, nNoEq + k, i) =

A(k)

L
(k)
0

, (5.40)

were nNoEq are the number of nodal equilibrium equations. In both cases all other entries

of ∂2r
∂u∂p

equal zero.

5.4.4 Displacement constraint

Displacements can also be used as constraints. In this case it makes most sense to pinpoint

certain important node displacements to restrict. Every node can be constraint in x and

y-direction. A single constraint would look like

di ≤ dimax, (5.41)

di contains all ui and vi, i is the number of nodes, were ui and vi are the nodal displace-

ments in x and y direction respectively. The derivatives for a single displacement are

trivial

∂d

∂u
=

1 if d = ul

0 if d ̸= ul

for l = 1, 2, . . . , nNoDOF. (5.42)

nNoDOF the number of nodal degrees of freedom. The relationship between u and p is

implicit. Hence, the partial derivatives of u with respect to p are

∂g

∂p
= 0. (5.43)

49



5.5 Concluding remarks on the analytical gradients

In this chapter the general analytical expressions needed for optimization were derived.

The gradients described in Equation (4.16a) and Equation (4.17) can now be implemented

in analytical form for optimization problems. The limitations are the chosen four objec-

tive and constraint functions. These four functions already allow to test a wide range

of optimization problems, but in future research analytical gradients of other objective

and constraint function can be obtained in the same way, allowing to solve even more

optimization problems.

50



Chapter 6

Method

6.1 Test problem formulation

One of the goals of this research is to see how well the different optimization strategies

perform. This has to be tested for a range of problems varying in complexity. Therefore,

the truss structure that is used is designed in such a way that the complexity of the

system is easily changed. The structure is defined in 2D with dimensions: total length Lx

and height Ly. These dimensions are discretized into ndivx and ndivy parts respectively,

allowing for simple modification of the structure’s complexity. The test structure for a

chosen set of input variables is presented in Figure 6.1.

In the tested problems, the design variables only consist of cross-sectional areas. This

approach ensures that the problems remain similar and comparable while increasing in

complexity. For example, increasing the number of elements will make the structure

stiffer, assuming the initial guesses for the cross sections are the same. This change will

affect the computational time needed to optimize the structure, depending on how close

the initial guess is to a local minimum. To address this, random guesses are implemented.

However, since the lower and upper bounds are the same for all problems, the optimization

algorithm might attempt a set of design variables that deforms the structure in such a

way that the residual equations cannot be solved within the allowed Newton-Raphson

iterations. This issue is not unique to the nested approach. The SAND approach can

encounter a similar problem when the optimization algorithm gets stuck at an incorrect

solution, causing the solver to stop prematurely without reaching a local minimum. In

Chapter 7, a problem with other types of design variables is optimized to demonstrate

that it is possible. The complexity of the system is increased in two different ways:

1. Increasing the number of design variables, np.

2. Increasing the number of elements, nEl.

In the first scenario the number of elements is kept constant while the number of design

51



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Figure 6.1: Example of the deformed truss test structure. The input variables are:
Lx = 0.1m, Ly = 0.001, ndivx = 4, numdivy = 1 and a forced tip displacement of
−0.05m.

variables is increased. The elements are grouped in sets with the same cross sectional

area. Increasing the number of groups, increases the number of design variables, up to the

point where every cross section is a separate design variable. In the second scenario the

number of elements are increased while keeping the number of design variables constant.

In this scenario the stress constraints will also increase. The elements are added by

increasing ndivx and ndivy.

6.2 Gradients

The accuracy of the gradients is checked by comparing the analytical gradients with

numerical gradients obtained with finite differences. The computational time to compute

the numerical gradients is compared with the computational time of the direct and adjoint

methods. To do this, the analytical and numerical gradients of the mass, stress and

displacements are computed. The compliance will be tested on accuracy but is not

included in the gradient efficiency study because computing the entire compliance matrix

will cost too much computer storage. In reality, only the compliance of a single or couple

52



of nodes would be of interest. Furthermore, a displacement of the tip of the structure in y

direction is prescribed. Two cases are tested: a more linear one with a tip displacement of

10% of the length of the structure, and a more nonlinear case in which the tip displacement

is 50% of the total length of the structure.

6.3 Optimization

In optimization, comparing methods within MATLAB is more challenging due to the

presence of numerous, often uncontrollable variables and settings within the optimization

algorithm. The nested and SAND approach differ in the way the methods solve the

problems. This causes comparison problems, considering tolerances, standard fmincon

settings in MATLAB, and chosen settings for the Newton-Raphson scheme implemented

in the nested approach. The choice to use either the nested or the SAND approach, with

SQP vs IP, can heavily depend on the specific problem. Nevertheless general trends and

behavior of the different optimization strategies can be observed.

The optimization comparison is conducted only for situation where the gradients are

analytically available, excluding comparisons with finite differences. The efficiency differ-

ences between analytical and numerical gradients is already investigated with the gradient

computation. Using the same two scenario’s: either adding design variables or elements.

The four main solution procedures compared are: Nested-SQP, Nested-IP, SAND-SQP,

and SAND-IP.

In the optimization problems the mass is the objective function, the stresses are constraint

functions and a constraint on the tip displacement of 40% of the length of the structure

is enforced. In the optimization runs the initial guess for the design variables will be

randomly selected between chosen upper and lower bounds, to test the robustness of

both methods and solvers.

53



Chapter 7

Results

7.1 Gradients

In this section some variables have the same value for all problems. Unless mentioned

otherwise these following values are used: a prescribed tip displacement of either 0.01m

or 0.05m, E = 210GPa, Lx = 0.1m, and Ly = 0.001m.

7.1.1 Accuracy of gradients

The analytical gradients of the mass, stress, compliance and displacement are compared

to the numerical gradients obtained with finite difference. This is done using the test

structure from Chapter 6. In Figure 7.1 the accuracy of the gradients is visualized. The

maximum error for each derivative is plotted. The error is the difference between the

direct method and finite differences. Different values of perturbation h are tried for finite

differences.

54



10-15 10-10 10-5 100

10-15

10-10

10-5

100

Mass
Stress
Compliance
Displacement

Figure 7.1: Finite difference vs direct method for different discretization values. ndivx =
25, ndivy = 2, np = 2, nEl = 227, and nDOF = 616.

From Figure 7.1, it becomes clear that the optimal value of h lies around h =1e-8, which

is therefore the value used throughout this work.

7.1.2 Direct method vs finite difference

In this section, the efficiency of the direct method is compared to the conventionally

used finite differences. The algorithm will compute the gradients of the mass, stress per

element, and all nodal displacements with respect to the design variables, p.

The computational efficiency of both methods is measured by the CPU time needed to

compute the gradients. To mitigate the effects of potential noise or disturbances during

the measurements, the derivatives using finite differences and the direct method are

calculated 5 times in alternating order. The average time of these runs is then taken to

represent the computational time needed to calculate the gradients. The two scenario’s

described in Chapter 6 are performed. The results of the first scenario (increasing the

number of design variables) can be seen in Figure 7.2.

55



100 101 102 103
10-1

100

101

102

Figure 7.2: Direct method vs finite difference. Increasing the number of design vari-
ables. Mean of 5 runs. Gradient computation time and function evaluation time
plotted for a tip displacement of 10% and 50% of the total length of the structure.
np = [1, 5, 10, 20, 50, 100, 300, 452], nDOFs = 1216 and p0 = 0.0025m2 for all design
variables.

As the number of elements is constant the function evaluation time is expected to be

constant. The additional time required to compute the gradients using the direct method

is marginal. This allows rapid gradient computation of 452 design variables. As expected,

the difference between the direct method and finite difference is approximately a factor

np. For problems of this size the computational time of the matrix operations used in the

direct method do not have significant influence on the computational time of the gradients.

The largest portion of the computational time is used to solve the residual equations.

The more linear tip displacement of -0.01m requires 4 Newton-Raphson iteration while

the more nonlinear tip displacement of -0.05 requires 5 Newton-Raphson iterations to

converge. This explains the extra time needed to compute the gradients for the tip

displacement of -0.05m.

The results of the second scenario (increasing the number of elements) are given in Figure

7.3. Computing the gradients using the direct method requires, as in the first scenario,

almost no additional time beyond the computational time of the function evaluations.

56



Increasing the number of elements does increase the computational time of the function

evaluations. In this case the number of design variables is six. The difference between

the direct method and finite differences is indeed approximately a factor six for all data

points.

101 102 103 104
10-3

10-2

10-1

100

101

102

Figure 7.3: Direct method vs finite difference. Increasing the number of elements and
constraints. Mean of 5 runs. Gradient computation time and function evaluation time
plotted for a tip displacement of 10% and 50% of the total length of the structure. np = 6,
nDOFs = [24, 150, 496, 976, 1788, 2228, 4428] and p0 = 0.0025m2 for all design variables.

7.1.3 Direct method vs Adjoint method

In this section the direct method is compared to the adjoint method. In Figure 7.5 the

results of scenario 1 are presented. The time to compute the gradients slightly increases

with increasing number of design variables. However, the computational time remains

very low. The direct method performs marginally better than the adjoint method, which

is expected as there are more constraint functions than design variables.

57



0 100 200 300 400 500 600 700 800 900

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Figure 7.4: Direct method vs adjoint method. Increasing the number of design vari-
ables. Mean of 200 runs. Gradient computation time and function evaluation time
plotted for a tip displacement of 10% and 50% of the total length of the structure.
np = [1, 50, 100, 200, 500, 854], nDOFs = 2228 and p0 = 0.0025m2 for all design vari-
ables.

The results of the second scenario are presented in Figure 7.5. Increasing the number of

elements causes the computational time to increase. Both the direct and adjoint methods

perform well, as the computational time is almost equal to the function evaluation time.

58



101 102 103 104
10-3

10-2

10-1

100

101

102

Figure 7.5: Direct method vs adjoint. Increasing the number of elements and constraints.
Mean of 5 runs. Gradient computation time and function evaluation time plotted for a
tip displacement of 10% and 50% of the total length of the structure. np = 6, nDOFs =
[24, 150, 496, 976, 2228, 4428, 5434] and p0 = 0.0025m2 for all design variables.

7.2 Optimization

Some variables used in the optimization problems presented here are most of the time the

same. Unless mentioned otherwise the following values are used. The maximum allowed

tip displacement is 0.04m. The force applied at the tip in y direction equals -1e4N.

Furthermore, Lx = 0.1m, Ly = 0.001m, E = 210GPa and lb = 0.0001m2, ub = 0.01m2

are the lower and upper bounds for all design variables.

7.2.1 Scaling

In the SAND approach the residual equations are implemented as equality constraints.

These constraints should be scaled to have magnitudes comparable to the other constraint

equations to increase the optimization performance. The effect of scaling the residual

equations for different scaling factors is visualized in Figure 7.6. Applying no scaling to

the residual equations significantly increases the computational time. Furthermore, the

59



amount of scaling within the range of this plot does not greatly influence the computation

time. Finding the best scaling factor is extensive and beyond the scope of this work. In

the following optimizations, a scaling factor equal to the inverse of the magnitude of the

applied tip force is used, as this will result in the residual equations approximately having

a magnitude between 0 and 1. Which is in the same order of magnitude as the other

constraints.

10-6 10-5 10-4 10-3 10-2 10-1 100
0

5

10

15

20

25
SAND SQP
SAND IP

Figure 7.6: Average optimization time using SAND with SQP and IP with varying scaling
factors for the residual equations. nRuns = 20, nDOFS = 150, nEl = 51, np = 51,
ndivx = 10, ndivy = 1. The error bars plot the 25th and 75th percentiles, the minimum
and maximum outliers are represented by asterisks.

7.2.2 Increasing complexity

The two scenario from Chapter 6 to systematically increase the complexity are also used

for the optimization results. The optimization runs using SQP are conducted with only

the first four sample problems. This is because solving problems that are more complex

using SQP results in computation times that are too long. The graphs in Figures 7.7

and 7.8 show that using interior-point for both the nested and SAND approach allows

optimizing with hundreds of design variables and thousands of degrees of freedom within

a reasonable timeframe.

60



The IP method performs better than SQP, possibly because IP methods prioritize main-

taining feasibility, which leads to more stable progress. In contrast, SQP can suffer from

constraint violations due to large steps in the solution space, requiring more frequent

adjustments. Furthermore, for simple problems, SAND performs slightly better than the

nested approach. However, for more complex problems, the nested approach significantly

outperforms the SAND approach.

0 5 10 15 20 25 30 35 40 45 50
Number of design variables: p (-)

100

101

102

103

104

Av
er

ag
e 

tim
e 

sp
en

t (
s)

Nested SQP
SAND SQP

(a) SQP, nRuns: nested: 60, SAND: 55.

0 50 100 150 200 250 300 350 400 450 500
Number of design variables: p (-)

100

101

102

103

Av
er

ag
e 

tim
e 

sp
en

t (
s)

Nested IP
SAND IP

(b) IP, nRuns: nested: 55, SAND: 55.

Figure 7.7: Increasing the number of design variables. The error bars plot the 25th
and 75th percentiles, the minimum and maximum outliers are represented by asterisks.
ndivx = 50, ndivy = 2, nDOF = 1216, nEl = 452. For SQP: np = [1, 10, 20, 50] . For
IP: np = [1, 10, 20, 50, 100, 150, 200, 300, 400, 452] .

150 200 250 300 350 400 450 500
nDOFs (-)

100

101

102

103

Av
er

ag
e 

tim
e 

sp
en

t (
s)

Nested SQP
SAND SQP

(a) SQP, nRuns: nested: 90, SAND: 85.

0 500 1000 1500 2000 2500
nDOFs (-)

100

101

102

103

104

Av
er

ag
e 

tim
e 

sp
en

t (
s)

Nested IP
SAND IP

(b) IP, nRuns: nested: 86, SAND: 86.

Figure 7.8: Increasing the number of elements. The error bars plot the 25th and 75th
percentiles, the minimum and maximum outliers are represented by asterisks. np = 50.
For SQP: ndivx = [10, 20, 30, 20], ndivy = [1, 1, 1, 2], nDOF = [150, 290, 430, 496],
nEl = [51, 101, 151, 182]. For IP: ndivx = [10, 20, 30, 20, 30, 40, 50, 40, 50], ndivy =
[1, 1, 1, 2, 2, 2, 2, 4, 4], nDOF = [150, 290, 430, 496, 736, 976, 1216, 1788, 2228], nEl =
[51, 101, 151, 182, 272, 362, 452, 684, 854].

61



These results are problem specific, meaning it cannot be concluded that the nested ap-

proach using IP always outperforms the SAND approach for complex problems. The most

important conclusion from these results is that by using analytical gradients and the right

optimization strategy, problems with hundreds of design variables can be optimized in

less than 15 minutes.

7.2.3 Convergence

Zooming in and analyzing the results of individual problems helps to understand the

performance of the different optimization strategies. In this section four problems are

analyzed: a simple problem, a medium complex problem and two complex problem. The

complex problems are only performed using the interior-point method, as SQP is not used

for this level of complexity. The convergence of the optimization algorithm is plotted,

with on the y axis the objective found at that point minus the best objective found, and

on the x axis the time spent. The objective used in the plots is the minimum viable

objective at that point in time, meaning that all the constraint equations are satisfied.

Some of the optimization runs do not reach the best objective but a higher local minimum,

or no minimum at all. These failed runs are deleted from the data, this is also done for

the graphs in Section 7.2.2. Some remarks concerning the number of failed runs per

optimization approach are presented in Section 7.2.4.

Simple problem

The convergence of the simple problem is presented in Figure 7.9. Interior-point outper-

forms SQP and the combination of SAND and IP converges the fastest. This is in line

with the conclusions from Section 7.2.2 as this is a simple problem.

62



0 10 20 30 40 50 60

10-4

10-3

10-2

10-1

100

(a) The mean convergence of the nested and
SAND approach using SQP or IP.

0 5 10 15 20 25 30
10-6

10-4

10-2

100

(b) The mean convergence of the nested and
SAND approach using IP. The shaded area in-
dicates the minimum and maximum conver-
gence.

Figure 7.9: Convergence of the objective function. ndivx = 10, ndivy = 1, nDOF = 150,
nEl = 51, and np = 50.

Medium complex problem

In Figure 7.10 the results of the medium problem can be seen. Already the nested

approach converges significantly faster than the SAND approach.

0 100 200 300 400 500 600 700 800 900 1000 1100

10-4

10-3

10-2

10-1

100

101

(a) The mean convergence of the nested and
SAND approach using SQP or IP.

0 100 200 300 400 500 600 700
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b) The mean convergence of the nested and
SAND approach using IP. The shaded area in-
dicates the minimum and maximum conver-
gence.

Figure 7.10: Convergence of the objective function. ndivx = 50, ndivy = 2, nDOF =
1216, nEl = 854, and np = 50.

Complex problems

In Figure 7.11 the convergence of two complex problems is visualized. Figure 7.11a

shows the most complex problem obtained from scenario 1 (increasing the number of

63



design variables), while Figure 7.11b shows the convergence of the most complex problem

obtained from scenario 2 (increasing the number of elements). The difference between

the nested and SAND approach is the largest in Figure 7.11b, for that problem the nested

approach converges almost three times faster than the SAND approach.

0 100 200 300 400 500 600 700 800 900 1000 1100

10-6

10-4

10-2

100

(a) The mean convergence of the nested and
SAND approach using IP. The shaded area in-
dicates the minimum and maximum conver-
gence. ndivx = 50, ndivy = 2, nDOF = 1216,
nEl = 452, and np = 452

0 500 1000 1500 2000 2500 3000

10-8

10-6

10-4

10-2

100

(b) The mean convergence of the nested and
SAND approach using IP. The shaded area in-
dicates the minimum and maximum conver-
gence. ndivx = 50, ndivy = 4, nDOF = 2228,
nEl = 854, and np = 50

Figure 7.11: Convergence of two complex problems

7.2.4 Failed runs

The optimization runs are performed with random initial guesses. Therefore, it can

happen that runs converge to a different local minimum, or not converge at all. If the

objective found by a certain run is not within 1e-3 of the best objective found the run

is classified as a failed run and deleted from the data. The optimization approach used

should not only be time efficient but also robust, meaning the percentage of failed runs

is low. The percentages of failed runs for the different optimization approaches used are

presented in Table 7.1. SQP has more failed runs than IP, but the percentages of failed

runs are low. The combination of SAND and IP for complex problems causes many failed

runs. It becomes clear that for complex problems the SAND approach is not only less

time efficient but also less robust than the nested approach.

64



Category Increasing np, failed runs (%) Increasing nEl, failed runs (%)

nested SQP [0, 0, 0, 13.33] [1.11, 3.33, 7.78, 2.22]

nested IP [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0]

SAND SQP [0, 0, 0, 3.64] [1.18, 0, 5.88, 4.71]

SAND IP [0, 0, 0, 0, 0, 0, 0, 52.73, 43.64, 76.36] [0, 0, 0, 0, 0, 0, 0, 0, 2.33, 4.65]

Table 7.1: Percentage of failed runs

7.2.5 Constraints

The optimization approaches and solvers use different ways of searching for a minimum,

which can be visualized by examining the behavior of the constraints. In Figure 7.12, the

displacement constraint during the optimization process is plotted.

0 20 40 60 80 100 120 140 160
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.12: Displacement constraint of the Nested and SAND approach. ndivx = 10,
ndivy = 1, nDOF = 150, nEl = 51, and np = 50.

The SAND approach does not violate the constraint. This is because in the SAND

approach the residual equations are implemented as constraints, meaning the residual

equations do not have to be satisfied for every iteration. This provides the SAND ap-

65



proach with some flexibility allowing for small changes in the state variables to stay closer

to the previous found objective. For the nested approach, the state variables must be

solved at every optimization iteration. This can cause larger constraint violations.

The differences between SQP and IP, as outlined in Chapter 3 are also visible in the

constraint behavior. SQP allows larger constraint violations than the interior-point algo-

rithm.

7.2.6 The problem solution

After analyzing the optimization results, it is interesting to look at the optimal solution

found. The solution of the complex problem from Figure 7.11a can be seen in Figure

7.13. The mass is minimized, with stress constraints and a constraint on the maximum

tip displacement. The optimal cross-sectional areas are plotted using a color bar. As

expected, the cross-sectional areas are largest at the beginning and gradually reduce

towards the end of the structure. The outside elements seem to bear most of the forces,

as the other elements are close to the minimum cross-sectional area.

0 0.02 0.04 0.06 0.08 0.1
-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

2

3

4

5

6

7

8

9

D
es

ig
n 

Va
ria

bl
e 

Va
lu

e 
(m

^2
)

10-4

(a) The optimal cross sections are plotted using
a color bar.

0 0.002 0.004 0.006 0.008 0.01
-1

-0.5

0

0.5

1

1.5

2 10-3

2

3

4

5

6

7

8

9

D
es

ig
n 

Va
ria

bl
e 

Va
lu

e 
(m

^2
)

10-4

(b) Zoomed in.

Figure 7.13: Optimized truss problem. ndivx = 50, ndivy = 2, nDOF = 1216, nEl =
452, and np = 452.

7.3 Bridge

In this section, a problem with different types of design variables is optimized. Until now,

only the cross-sectional areas have been used as design variables for the optimization

results. In the following example, it is demonstrated that analytical gradients can also

be used with other types of design variables.

66



7.3.1 Optimization problem

The optimized structure and the results can be seen in Figures 7.14 and 7.15. The

optimization problem is described by

Find:

p = {A1, A2, ..., A53, x2, x5, ..., x28, y3, y5, y7, y9, y11, y13, y15, y17, y19, y21, y23, y25, y27}

Minimize:

M(p) =
nElements∑

i=1

ρiAiL
0
i .

Subject to:

0.0025 ≤ (A1, A2, ..., A53) ≤ 0.02 m2

|u28| ≤ 0.5 m

− 5 ≤ ∆LiEi

L0
i

≤ 5 GPa ∀i = 1, . . . , nElements

Furthermore, the design variables yi are limited between 0.5m and 5m, while the design

variables xi are constrained to have a maximum change from their initial positions of

-0.5m and 0.5m to prevent overlapping coordinates. An external force of -1e7N is applied

at node 14 in y direction. The nodes are numbered from left to right with even numbers

assigned to the low nodes and odd numbers assigned to the high nodes, except for node

1.

7.3.2 Results

The bridge consists of 53 elements, 165 degrees of freedom and is optimized for 92 design

variables within 1 minute. In Figure 7.14 the initial guess of the bridge structure is plotted

in gray, the undeformed optimal solution is plotted in color. The color scheme represents

the optimal values of the cross-sectional areas for the elements. The cross sections of

the elements in the middle are larger, indicating that these elements are subjected to the

highest forces.

67



0 2 4 6 8 10 12 14
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

2.50e-03

2.79e-03

3.07e-03

3.36e-03

3.65e-03

3.94e-03

Figure 7.14: The optimal solution visualized.

In Figure 7.15 the deformed bridge is showed. The optimal undeformed structure is

plotted in gray. The color scheme now indicates the stresses in the elements. These are

the normalized stress constraints, meaning that the maximum value is 0 and the minimum

value is -1. The stresses in the horizontal elements are the highest, these elements bear

the most forces.

68



0 2 4 6 8 10 12 14
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 7.15: The stresses in the elements of the deformed bridge.

69



Chapter 8

Conclusion

The flexible multibody approach introduced in Chapter 2 is verified with SPACAR. The

Jacobian J = ∂r
∂u

, required to solve the nonlinear residual equations resulting from the

flexible multibody approach, is decomposed into components based on the different types

of residual equations and variables in the solution vector. The components are written as

generic analytical expressions. This Jacobian is one of the four gradient terms required

for optimization, as is explained in Chapter 3 and Chapter 4. Analytical expressions

for the other three gradient terms are derived in Chapter 5. This chapter also details

analytical expressions of the gradients with respect to the state variables and design vari-

ables of four possible objective and constraint functions: mass, stress, compliance, and

displacement.

In Chapter 7, the results of the research are presented. The comparison between the

computational time of numerical and analytical gradients demonstrates that when using

the direct or adjoint methods, gradients of the objective and constraint functions can be

computed with minimal additional computation time beyond the time required for the

function evaluations. This results in a significant computational efficiency advantage of

computing analytical gradients over numerical gradients. This advantage increases for an

increasing number of design variables.

The reduced computational time enables optimizing problems with hundreds of design

variables and thousand of degrees of freedom within a reasonable timeframe. For the

types of problems tested in this research, the IP solver outperforms the SQP algorithm.

IP converges faster than SQP and is able to reliably find feasible optimal solutions, even

for the most complex problems. Furthermore, for complex problems, the nested approach

performs better than the SAND approach. The nested approach shows faster convergence

and fewer failed runs, indicating that the nested approach finds the optimal solution more

reliably than the SAND approach. However, both approaches demonstrate the capability

of solving complex optimization problems with hundreds of design variables.

70



Chapter 9

Recommendations

This research shows that using analytical gradients for optimizing geometrically nonlinear

deforming structures can significantly reduce computational time. The nested and SAND

approaches are compared, along with two solver, IP and SQP, that are available in the

fmincon function in MATLAB. However, for the most efficient implementation of the

optimization approaches, specialized solvers tailored to the specific approach and problem

may perform better. Additionally, the scaling of the residual equations in the SAND

approach specifically, and the scaling of any objective and constraint functions, has only

been explored to a limited extend.

Both the nested and SAND approaches have advantages and disadvantages. The per-

formance of an optimization approach is highly problem-specific, so the SAND approach

should not be discarded for complex problems based on this work. For each type of op-

timization problem, it is recommended to test multiple approaches, solvers, and scaling

methods.

Furthermore, it is interesting to extend the list of objective and constraint functions, to

increase the range of problems that can be optimized. The eigenfrequency is commonly

used in compliance mechanisms and could provide optimization of a new set of problems.

To compute the eigenfrequency, stiffness and mass matrices should be established. The

compliance matrix obtained in this work is not square, meaning the inverse cannot be

taken to obtain the stiffness matrix. Additionally, the implementation of beam elements

as an additional element type will increase the optimization possibility’s. Beam elements

will increase the number of degrees of freedom and reaction forces in the solution vector,

influencing all gradient terms. However, by following the same systematic approach as is

provided in this work for truss elements, it would be possible to include beam elements.

71



Bibliography

[1] U. Kirsch, Engineering Design Optimization. Springer-Verlag, 1993.

[2] J. B. Jonker and J. P. Meijaards, “Spacar-computer program for dynamic analysis

of flexible spatial mechanisms and manipulators,” Multibody Systems Handbook,

pp. 123–143, 1990.

[3] N. Vasios, “Nonlinear analysis of structures,” The Arc-Length method. Harvard,

2015.

[4] R. Haftka and M. Kamat, “Simultaneous nonlinear structural analysis and design,”

Computational Mechanics, 1989.

[5] J. H. He, “A tutorial and heuristic review on lagrange multiplier for optimal prob-

lems,” Nonlinear Sci. Lett. A, vol. 8, no. 2, pp. 121–148, 2017.

[6] S. Hartmann, “A remark on the application of the newton-raphson method in non-

linear finite element analysis,” Computational Mechanics, vol. 36, no. 2, pp. 100–

116, 2005.

[7] J. B. Jonker, R. G. K. M. Aarts, and J. P. Meijaard, Flexible multibody dynamics

for design purposes, Lecture Notes, 2022.

[8] S. Ohkubo, Y. Watada, and F. Toshio, “Nonlinear analysis of truss by energy

minimization,” Computers & Structures, vol. 27, no. 1, pp. 129–145, 1987.

[9] J. R. R. A. Martins and A. Ning, Engineering Design Optimization. Cambridge

University Press, 2021.

[10] O. N. Ghattas and C. E. Orozco, “A sparse approach to simultaneous analysis and

design of geometrically nonlinear structures,” AIAA Journal, 1991.

[11] J. ten Hagen, “Optimization of flexure mechanisms using gradient-based methods,”

M.S. thesis, University of Twente, 2023.

[12] Z. Xiao, “A comparative analysis of an interior-point method and a sequential

quadratic programming method for the markowitz portfolio management problem,”

Honors Papers. No. 248, M.S. thesis, Honors Papers, 2016.

[13] J. Havinga, Computational optimization, lecture 6: Gradients, PowerPoint presen-

tation, 2023.

72


	Introduction
	Context
	Problem definition
	Research goals
	Scope
	Structures and elements
	Gradients
	Nonlinearities
	Optimization

	Outline

	Flexible multibody approach
	Problem introduction
	Potential energy formulation
	Newton-Rahpson
	Residual equations
	Example
	Truss definition
	Model equations


	Optimization
	Nested approach
	SAND approach
	fmincon
	Scaling and normalization

	Theory of gradient computation
	Numerical gradient computation
	Finite difference

	Analytical gradient computation
	Nested
	SAND


	Implementation of analytical gradients
	Theoretical framework
	Partial derivatives of the truss length
	Partial derivatives of the residual function
	Objective and constraint functions
	Mass objective
	Stress constraint
	Compliance objective
	Displacement constraint

	Concluding remarks on the analytical gradients

	Method
	Test problem formulation
	Gradients
	Optimization

	Results
	Gradients
	Accuracy of gradients
	Direct method vs finite difference
	Direct method vs Adjoint method

	Optimization
	Scaling
	Increasing complexity
	Convergence
	Failed runs
	Constraints
	The problem solution

	Bridge
	Optimization problem
	Results


	Conclusion
	Recommendations

