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ABSTRACT

Urban planning, specifically in the field of transportation planning, is important for promoting
economic and social activities within urban area. Globally, transportation planning faces significant
challenges, including increment in traffic congestion, which affects over half of the urban areas. Despite
temporaty traffic density reductions during the COVID-19 pandemic, congestion remains a persistent
issue, with average drivers losing considerable hours to traffic annually. Additionally, traffic accidents
cause numerous fatalities and injuries worldwide each year, underscoring the need for improved traffic
management strategies. Similarly, Bulgaria, particularly Sofia, face similar challenges, including high road
fatality rates and significant congestion, driving the implementation of the Sustainable Urban Mobility
Plan (SUMP) 2019-2035. This plan aims to digitalize city transport to enhance urban mobility.
Accordingly, this research aims to develop an urban traffic simulation Digital Twin (DT) framework by
utilizing detailed traffic data, primarily in the Open Serialization Format (OSEF), captured by LIDAR
sensors. These sensors provide comprehensive information about real-world traffic conditions. By
integrating this detailed data, the DT framework seeks to improve traffic simulations, enable traffic
observation in the digital world and potentially reduce congestion. The study area chosen for this research
is a busy intersection in Sofia near the Paradise Center Mall, the largest mall in Sofia, where the LIDAR
sensors are located. This area is suitable for extensive traffic observation and analysis. The traffic
simulation tool chosen for this research is Simulation of Urban MObility (SUMO) due to its versatile uses
and analytical capabilities, as well as its open-source nature, which is well-suited for the DT framework.

To develop the DT framework, the methods involve proper identifications, including issues
inherent in the .osef dataset. It is found that there are challenges in the coordinate nature of the dataset
and inherent classification that include a lot of unknown classes. Therefore, the method is first to
transform the local coordinates of the .osef dataset concurrently with road segmentation of the
intersection, followed by object type and trajectory type analysis, which is used as the base information for
the reclassification process using Random Forest (RF) mode. This handles the issues of classification,
including the existence of multiple classes in a single tracked object. Utilizing the PostGIS database as
middleware to fetch enriched datasets for the traffic simulations, the framework demonstrates a successful
attempt at running initial traffic simulations based on real-world traffic conditions.

The findings in this research show that DT frameworks have shown that it is capable of
integrating the .osef dataset into the traffic simulations while addressing issues such as the coordinate
transformations, including the reclassification of unknown class. The RF model employed in this research
able to predict the true label of the unknown class into a specific object type (e.g., car, truck, two-wheeler
or person). The minimization of multiple class prediction is reduced by 76% with the 2n tuned model.
The DT framework itself is validated against real-world traffic survey data, revealing a strong alignment
with an R-squared value of 0.97, indicating that 97% of the variability in the observed traffic counts is
explained by the simulated counts. Additionally, the cosine similarity analysis for vehicle trajectories
demonstrated high directional accuracy, with most cosine similarity values nearing perfection (one in
scale), and the Euclidean distance confirming minimal positional deviation. The implications of this
research are more prominent in the what-if scenario testing, where it shows that roundabout road network
design seems to be the most suitable to reduce traffic congestion. This research recommends that for
future work, it is better to focus on testing the framework scalability across different intersections and
residential areas, improving the Random Forest model with more advanced machine learning or deep
learning techniques, and extending the observation period to capture more comprehensive traffic patterns.

Keywords: Transportation planning, digital twin, traffic simulation, LiIDAR data, data enrichment,
random forest, traffic management.
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1. INTRODUCTION

11. Background

Urban planning is essential for efficient and safe city transportation (Yedavalli et al., 2021). It
fosters economic and social activities, making cities attractive for various purposes (Rodrigues et al., 2021).
However, on a global scale, transportation planning faces numerous challenges; for instance, according to
Pishue (2023), traffic congestion is a major issue with 58% of urban areas experiencing increased delays.
Despite a temporary reduction due to the COVID-19 pandemic, global congestion persists (WHO, 2019).
Fernandez's 2023 report reveals that the average driver lost 51 hours to congestion in 2022, a 15-hour
increase from 2021 (Fernandez, 2023).

Traffic accidents are another critical concern in transportation planning (Boonyotsawad et al.,
2022). In the US, there were about 35,766 fatal accidents in 2020, while globally, road crashes cause 1.3
million deaths and 20-50 million non-fatal injuries annually (Boonyotsawad et al., 2022; Zhang, 2020). The
National Highway Traffic Safety Administration (NHTSA) projected 42,795 traffic fatalities for 2022, a
minor decrease of 0.3% compared to 2021(FHWA, 2023; NHTSA, 2023).

Traffic congestion in Europe incurs an annual cost of approximately one percent of its Gross
Domestic Product (GDP), with urban mobility being responsible for 40% of COZ2 emissions and 70% of
other pollutants from road transport (Rodrigues et al., 2021). European cities are investing in cycling and
walking infrastructure to mitigate these impacts. The reduced interest in shared mobility, the surge in
private autonomous vehicle usage, and the effects of the pandemic have all contributed to this shift (Elks,
2021). Authorities have responded by implementing policies that promote active transportation modes
and flexible work arrangements, employing data-driven mobility pattern monitoring and prioritising green
and digital transitions in transport planning to achieve sustainable long-term growth (European
Commission, 2022).

The operation of urban transportation is impacted by demographic issues, environmental
concerns, and issues relating to traffic safety, and these challenges are not exclusive to Europe. It is
important to highlight that Bulgaria's utban transportation is not an exception to these issues. In 2021,
Bulgaria had the second-highest road fatality rate in the European Union, with 81 fatalities per million
inhabitants, second only to Romania (The Sofia Globe, 2022a). However, the situation worsened in 2022,
with a total of 175 people dying in road accidents in Bulgaria between January and May, an increase of 24
deaths compared to the same period in 2021 (The Sofia Globe, 2022b). To address the transportation
challenges, Bulgaria's national transport policy focuses on sustainable infrastructute development,
improving transport safety, and integrating various transportation modes (Ministry of Transport and
Communications of Republic of Bulgaria, 2017).

Despite Bulgaria’s improvements and digitization efforts in public transportation, big cities such
as the capital Sofia continue to struggle with overcrowding and congestion problems especially during
peak tourist seasons, partially due to a high per-capita vehicle registration rate and a substantial number of
unregistered citizens (Intelligent Transport, 2015; International Trade Administration, 2022; Modijefsky,
2023; Wotld Bank, 2020). As the economic centre of the country, Sofia generates over 43% of the GDP,
with an estimated population between 1.6 and 1.8 million due to commuting from adjacent cities which
contribute to the increase of traffic density (Wotld Bank, 2020). Based on data from the TomTom Traffic
Index, during rush hour, drivers in Sofia spend an extra three days and 18 hours of driving compared to
the 2021 record; this indicates that a high-level congestion occurred in Sofia (TomTom International BV,
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2023). Aside from those, several other transportation issues also exist in Sofia. These include urban traffic
jams and noise pollution from high motorization rates, older vehicles that emit more pollutants, a lack of
sustainable transportation options, traffic jams brought on by subpar infrastructure, a lack of parking, and
the need for better infrastructure for pedestrians and cyclists (Panayotova, 2022, pp. 14, 19, 27).

Sofia's City Council responded to the problem by enacting the Sustainable Urban Mobility Plan
(SUMP) in 2019. The SUMP, a strategic document outlining principles for improving mobility in Sofia,
spans 2019 through 2035. Its main goal is to create an integrated transportation system by advancing green
transportation options, digitalizing city transportation, and encouraging sustainable transportation modes
(Modijefsky, 2023). By 2035, the plan wants to lower the negative effects of transportation development,
improve the urban environment's attractiveness, and raise living standards.

The SUMP 2019-2035 challenges traditional traffic regulation by emphasizing data-driven shared
mobility and environmentally friendly urban transportation, focusing on public transportation, walking,
and cycling (Sofia City Council et al, 2019, pp. 96-99). It highlights the need to increase public
transportation, lessen reliance on private vehicles, and improve infrastructure. Designated transit lanes,
pricing that discourages driving, and enhanced pedestrian crossings are some of the strategies that fall
under the categories of "Pull" measures, which encourage bicycle and pedestrian traffic, and "Push"
measures, which limit parking and road traffic (Sofia City Council et al., 2019, pp. 122-125). Implementing
these measures is crucial.

1.2 Related work and research focus

Recent developments in mobile light detection and ranging, or LIDAR technology, greatly
influenced transportation applications by making it possible to perceive the environment in detail and
accuracy. This technology makes real-time traffic data collection easier, especially when used on roadside
platforms. This supports both thorough traffic management research and improvements to road safety.
Intelligent transportation systems can benefit greatly from LiIDAR’s ability to capture precise, high-
resolution geometric (point-cloud) data. This is because it can be used in single-sensor and multi-sensor
fusion approaches to create holographic scenes of traffic conditions. Such extensive data gathering
highlights the importance of LIDAR in the current state of transportation research and is essential for
improving traffic management methods and reducing congestion (Williams et al., 2013).

Accurate coordinate transformations are crucial for aligning local Cartesian coordinates with
global geographical coordinate reference systems (CRS). Inaccuracies in this process can significantly
impact spatial analysis outcomes, which is particularly relevant to LiIDAR technology because the sensors
often provide data only in local coordinates (Fan et al, 2014). Effective transformations improve the
alighment of spatial datasets, which is critical for applications like traffic simulation. Building on the
importance of spatial data alignment, high-resolution satellite imagery plays a crucial role in precise road
extraction. Research by Xu et al. (2018) has demonstrated the use of such imagery for road extraction.
However, the automatic extraction of detailed road segmentation has yet to show promising results.
Detailed road segmentation, particularly at the level of lane distribution, enhances the accuracy of traffic
simulations and improves traffic management systems. To address this, manual digitization is often used
to complement the automatic methods.

Understanding traffic dynamics requires analysing Global Positioning System (GPS) data
provided in sequences, which indicate the paths vehicles have travelled. This necessitates classification
processes to better interpret these dynamics. Y. Zheng (2015) presents methods for trajectory data mining,
highlighting the importance of spatial analysis in identifying travel behaviours and patterns.
Complementing this, another research has explored the possibility of estimating and predicting trajectories
using generative Artificial Intelligence (Al) with short-term memory algorithms (Gu et al., 2024). Existing
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literature mostly focuses on predicting and estimating trajectories due to limited information. However,
when granular input data provides detailed information about object positions per millisecond, it becomes
feasible to classify trajectories directly, offering a more accurate reflection of real-world conditions as
compared to estimations.

Handling real-time LiIDAR point cloud data with embedded GPS information, in particular, often
involves dealing with visual obstructions caused by factors such as bad weather or unexpected damages to
the sensor component. This often results in a missing label, a common issue that artificial intelligence,
particularly machine learning, is well-suited to handle. Random Forest (RF) is a powerful machine learning
algorithm commonly used to predict unlabelled data into appropriate labels or categories, effectively
handling complex datasets with mixed data types. This method is particularly effective in handling
complex datasets with mixed data types. The robustness and accuracy of the RF algorithm in classification
tasks have been well-documented (Breiman, 2001). In traffic simulation, RF can significantly improve the
accuracy of moving object classifications, such as vehicles and pedestrians. This detailed classification is
crucial for developing more realistic simulations. A study by Liaw & Wiener (2002) further elaborates on
the implementation and advantages of RF in classification problems, highlighting its ability to handle large
datasets with higher accuracy compared to other algorithms such as decision trees and support vector
machines. The study also notes RF robustness to overfitting due to the ensemble approach, and its
capability to provide estimates of feature importance, which are essential for understanding the model's
decisions.

Parallel to the development of LIDAR applications, the concept of Digital Twins (DTs) has
gained popularity in the Intelligent Transportation System (ITS) field. A digital twin is a dynamic digital
model of a physical object or system that combines sensor data and analytics to reflect its real-world
status, enabling real-time monitoring, simulation, and decision-making (Digital Twin Geohub, 2023). The
research by Kusi¢ et al. (2023) on the digital twin model of the Geneva Motorway (DT-GM) exemplifies
the use of the microscopic traffic simulator SUMO (Simulation of Urban MObility) to model and simulate
synchronized virtual representations of transportation dynamics.

SUMO, an open-source traffic simulation tool, is crucial for integrating digital twins and LiDAR
data in transportation research. Its flexibility and adaptability present significant advantages over
commercial traffic simulation programs. SUMO offers detailed, scalable simulations suitable for both
urban and regional assessments, achieving an ideal balance between detail and computational efficiency
(Maciejewski, 2010). This shows contrast to the commercial VISSIM, which delivers high detail at a higher
cost, and TRANSIMS, which favours computational simplicity over detail.

Building on the success of prior work using SUMO, this research aim is to enhance operational
efficiency and support dynamic traffic management by incorporating real-time LiIDAR data streams into
traffic simulation models. The research utilizes LIDAR data, focusing particularly on the Open
Serialization Format (OSEF) dataset, which has not been extensively studied. The .osef dataset, developed
by Outsight —a company specialized in 3D LIDAR data where the .osef dataset originated from— uses
an advanced binary format for serialization, known as Type-Length-Value (TLV) encoding, specifically
designed for data from LiIDAR sensors. This format streamlines the processing of the large volumes of
data produced by LiDAR sensors by focusing on delivering relevant information to specific applications
(Vincent, 2023). Incorporating a parsing technique into this workflow enables a seamless transition from
raw data streams to database management and, ultimately, to traffic simulation for the purpose of traffic
conditions monitoring and assessment. While visualizing real-time data provides an immediate snapshot,
traffic simulation allows for the analysis of potential scenarios and the evaluation of traffic management
strategies, leading to a more comprehensive understanding.
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In continuation, this research explores and tests the novel workflow to address prevailing
challenges, enrich datasets, and seamlessly integrate LiDAR datasets into a digital twin-based traffic
simulation. The objective is to demonstrate the possibility of this integrated approach in mitigating known
issues while enhancing the overall functionality of traffic simulations. Through this integration, testing
diverse traffic scenarios is made possible, transcending the limitations of real-time data analysis. This
traffic simulation DT framework is able to support informed decision-making in traffic management and
infrastructure planning. By exploring various scenarios and their corresponding outcomes, the research
seeks to provide a comprehensive understanding of traffic dynamics, thereby facilitating the formulation
of more effective strategies to optimize transportation systems.

1.3. Research objectives

To achieve the research purposes outlined in the previous section, this study sets specific
objectives and research questions. By detailing the research objectives and sub-objectives, a clear workflow
is established. The research and investigation ensure a comprehensive approach to understanding and
improving traffic dynamics and management. Additionally, the research questions drawn from each sub-
objectives will guide the inquiry towards these objectives, providing a structured thinking to assess the
proposed workflow.

1.3.1. Main objectives

The main objective of this research is to develop a digital twins-based urban traffic
simulation utilizing ILiDAR Data.

1.3.2. Sub-objectives and research questions

Derived from the main objective, there are four sub-objectives and each sub-objectives consists
of several research questions. They are stated as follows.

1. To conduct a review of the state of the art including tools, models, and methods for
traffic simulations.
1.1. What are the key best practices and case studies from existing literature that demonstrate the
successful application of traffic simulation in intersection?
1.2. What are the traffic simulation models and tools that have been developed and used for
traffic simulation?
1.3. What methods have been used for LIDAR data integration to tratfic simulation?
2. To process and enrich the LiDAR dataset, ensuring it is suitable for integration into
traffic simulation.
2.1. What are the structures of the LIDAR dataset?
2.2. What methods are appropriate to process and enrich the LIDAR dataset?
2.3. What methods are suitable to integrate the processed data into the digital twin framework?
3.  To develop the traffic simulation digital twin framework.
3.1. What are the appropriate methods to generate traffic simulation at the intersection?
3.2. How do different what-if scenarios affect the traffic simulation?
3.3. What type of digital twin (2D or 3D digital twins) is suitable for the traffic simulation
model?
4.  'To assess the traffic simulation digital twin framework.
4.1. What is the accuracy of the traffic generated by the simulation compared to real-world
traffic?
4.2. What is the similarity of the traffic trajectories generated by the simulation algorithm
compared to the recorded data trajectories?
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14. Study area and datasets

1.4.1. Study area

The research is located in Sofia, Bulgaria, specifically focusing on one of the city's busiest
intersections near Paradise Center, the largest mall in Sofia. This particular crossroads is located in a
densely populated area of the city, and the construction of the mall has led to significant congestion in the
local region, as illustrated in Figure 1. Furthermore, it's worth noting that this intersection is situated in the
Lozenets (Aosenerr) district, which, as of June 15, 2023, had a population of 63,214 people living at their
current address and 67,093 people living at their permanent address (Ministry of Regional Development
and Public Work of Bulgaria, 2023). This suggests that the area is quite densely populated. Numerous
obstacles are brought about by the district's rapidly growing population. The area is covered by a network
of busy, high-speed roads as well as smaller, neighbourhood-scale streets, cul-de-sacs, and public
transportation options like the internal combustion engines, hybrid-electric and electric buses, and trams
(Hristov et al., 2022).

GoogleMaps 98 Bivd. "Cherni vrah®
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Figure 1. Paradise Center mall intersections. (A) Source: Google Street View (2023).. Retrieved November 18, 2023,
from https://www.google.com/maps/, (B) source: Rangelov (2023). Retrieved November 17, 2023, from
https://www.youtube.com/watch?v=j{Fmi3rBEI, (C) source: Rashkov (2023). Retrieved November 18, 2023,
from https://www.youtube.com/watch?v= uAGMuzPell.

The intersection is composed of a single lane (Blvd. "Cherni vrah") that runs from south to north
and a dual-lane road that splits into two streets: "Srebarna” that runs northeast and "Henrik Ibsen" that
leads southwest. The numerous types of vehicles, such as cars, two-wheelers, high-load trucks, and buses,
impact the traffic dynamics in this area. The traffic is monitored by a LiDAR system, comptising 6
sensors, which are the primary data source for this study. The specification of the LiDAR sensors is
presented in Table 1.
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Table 1. LIDAR sensors specification. Source: Author (2024).

Specifications Details
Digital LIDAR Ouster LIDAR OS§1-128 uniform
FoV (Field of View) 45°, 64 layers

ALB (Augmented LIDAR Box) processing

Processing module (Node) computing interface

Classification Cars, Trucks, Pedestrian, Two wheelets
e Diameter: 85 mm (3.34 inch)
Dimensions e Height: 58.45mm (2.4 inch) — 73.5 mm (2.9
inch)
Power Consumption 14 - 20W
Operating voltage 22 — 26V, 24V nominal

Between +53 °C and +60 °C, automatic range

o ting T t
perating temperature reduction (max 20% reduction)

. e P68 (Im submersion for 1 hour)
Ingress Protection

o IPGIK
Shock IEC 60068-2-27 (Amp: 100g, Shape: 11ms half-sine)
Vibration IEV 60068-2-64 (Amp: 3G-rms, Shape: 10-1000 Hz)

e Resolution: 0.3 cm
e  Minimum: 0 - 0.3 m blockage flag, 0.3 m
Range point cloud data
e Accuracy: £3 cm Lambertian and 10 cm
retroreflectors

The LiDAR sensor, Ouster OS1-128, features a 45° field of view across 64 layers, utilizing the
Augmented LIDAR Box (ALB) processing module for classifying cars, trucks, pedestrians, and two-
wheelers. It is compact in terms of size, measuring 85 mm (3.34 inches) in diameter and 58.45 mm (2.4
inches) to 73.5 mm (2.9 inches) in height. The amount of power needed for the sensor, which uses 14-20
watts to operate, is between 22 and 26 volts. It petforms well in the extremes, from -53°C to 60°C, and at
high temperatures, it automatically reduces range.

The Ouster OS1-128 is an exceptionally durable device that can withstand high-pressure water
and submersion in part due to its IP68 and IP6IK ingress protection ratings. It complies with the
standards of IEC 60068-2-64 for vibration resistance and IEC 60068-2-27 for shock resistance. With a
resolution of 0.3 cm, the sensor can identify objects up to 0.3 meters away, and its accuracy is £3 cm for
Lambertian surfaces and 10 cm for retroreflectors.

The sensors, positioned along various borders surrounding the main intersection, record the
movement of vehicles and pedestrians over time. The study area and sensor distribution are shown in
Figure 2. This highly populated and traffic-congested atrea is a perfect case study to show the added value
of data analysis and simulation supporting decision-making in the transportation planning domain. The
opportunities and challenges presented by this study area reflect larger urban issues globally, suggesting
that the research findings could benefit areas facing similar traffic and mobility challenges.
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Figure 2. Study area and sensors distribution. Source: Author (2024).

1.4.2. Research datasets

The LIDAR data collected from the sensors is processed in real-time and made available for
further analysis in .osef format, which is the main input dataset for this research. The .osef data format
was developed to make LiIDAR point cloud technology more manageable and accessible, addressing
integration problems into ITS applications. The .osef datasets offer precise and comprehensive spatial
measurements, making them invaluable across diverse applications. Its key advantages include adaptability,
which simplifies processing; efficiency, by reducing processing overhead; simplicity, through
straightforward parsing; robustness, offering versatile data management; compatibility, facilitating
integration with new features; and scalability, accommodating varying data volumes.

The real-time download of the .osef dataset was managed using a TCP (Transmission Control
Protocol) stream. The time-stamped data, specifically in GMT+3 to match the local time zone of each
recorded frame, is organized systematically by the preprocessor of the sensors. The datasets used in the
research vary, ranging from a two minute to 10-minute period; they are utilized as foundational data for
specific research steps, which further explained in the methodology section. As shown in Figure 3, the
data can be parsed to distinguish between objects that are considered dynamic and those that are static,
belonging to the urban infrastructure. The left figure shows the collection of static objects LIDAR points
captured over time, visualized using the pythreejs library. It depicts the shape of the study area
intersection, from the road to the surrounding buildings. The right figure shows the filtered data of only
tracked objects, displaying the shapes of vehicles and persons. This visualization was created using plotly,
which also shows details of each object, such as the ID and local pose coordinates.
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Figure 3. Intersection point cloud visualisation; static objects (Left), and dynamic objects (Right). Source: Author
(2024).

The nested TLV (tag-length-value) tree structure is traversed while processing binary data into an
array of data points or other formats, such as .csv. Figure 4 illustrates the TLV tree's detailed structure. As
can be seen from Figure 4, the .osef data contains information on tracked objects and the augmented
cloud, in addition to the previously described information pertaining to the base data. Unique object
identifiers (IDs), classes consisting of CAR, PERSON, TRUCK, TWO_WHEELER, and UNKNOWN,
speed in km/h (convertible to other units of measurement), volume computed using bounding boxes,
coordinates (local pose x, y, and z, or Cartesian coordinates) and zones are among the information that
can be extracted from tracked objects.

-» TLV #8
timestamped_data (type: 2@)
— timestamp_microsecond (type: 12)
— scan_frame (type: 25)
— augmented cloud (type: 1)
— number_of_points (type: 2)
— number_of_layers (type: 14)
— cartesian_ccordinates (type: 6)
— reflectivities (type: 4)
— object_id_32_bits (type: 47)
— tracked_objects (type: 2B)
— number_of_objects (type: 12)
— object_id_32_bits (type: 47)
— class_id_array (type: 18)
— speed_vectors (type: 28)
— bbox_sizes (type: 27)
— pose_array (type: 29)
— object_properties (type: 32)
— zones_def (type: 33)
— zones_objects binding 32 bits (type: 48)

Figure 4. TLV tree structure. Source: Author (2024).
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The temporal sequence of the data points that is collected for every object is illustrated in Figure
5. The LIDAR GPS data shows that each recorded objects are composed of several frames organized
according to the timestamp at the millisecond level. Multiple frames are captured of each object ID while
it is within the bounding box of the sensors. The object position at a particular timestamp is represented
by each frame, which is indicated as F; where i is the frame index. These frames offer extensive
information about the object, such as its class, local pose, volume, and speed at the given frame. With each
frame recording a single instance in the movement and attributes of an object as captured by the sensors,
it allows for accurate tracking of objects across time.

! Ordered by
Timestamp
Recorded Frames ' F_ .
I+

F.
OBJID X 2
Y'Y

Figure 5. LIDAR .osef data structure. Source: Author (2024).

However, it is important to note a few issues with the dataset. Firstly, concerning the captured
coordinates, the dataset currently records coordinates only in a local pose or cartesian coordinate system.
They have not yet undergone geo-location correction and must be converted into geo-coordinates.
Second, the data contain an unknown class, describing the dynamic objects that are not recognised. Third,
due to the nature of the .osef dataset, an object ID might have multiple different classes since each frames
have its own information about the recorded object class. Therefore, addressing these issues as practically
as possible should be the initial step in this research. For details on the datasets used in this research, see
Table 2 bellow.

Table 2. Research datasets. Source: Author (2024).

Datasets Details Nature Usage
Two-minute period Proprietary- GATE To develop the research
Morning 2023-05-30 owned workflow.
Four-minute period Proprietary- GATE (sub-objective 2 and 4)
OSEF Afternoon 2024-01-29 owned
10-minute period Proprietary- GATE Used for traffic simulation
Morning 2024-05-30 owned and DT  framework
validation.
(sub-objectives 3 and 4)
Road network Open source To develop the traffic
Open street Building footprint Open source simulation DT
map (OSM) framework.
(sub-objective 3)
USGS Landsat 7 ETM+ C2L1  Open source To develop the traffic
Satellite 15-meter panchromatic blend simulation DT
imagery ESRI World Imagery service Proprietary - ArcGIS ~ framework.
Up to 1-meter resolution Pro license (sub-objective 2)
Traffic count of the Proprietary — Self To evaluate the traffic
Real-world , A . .
intersections on 2024-05-30 survey simulation DT framework

traffi t
HTIe oMY Morning 9.00 - 9.50 AM (sub-objective 4)
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1.5. Summary

This introduction chapter sets the foundation for the research by addressing critical issues in
urban transportation planning, particularly focusing on traffic congestion and accidents. It highlights the
global and local challenges, emphasizing the significant economic and environmental impacts. Specifically,
it discusses the congestion problems in Sofia, Bulgaria, and the strategic responses, such as the Sustainable
Urban Mobility Plan (SUMP), aimed at improving urban mobility and living standards. The chapter also
delves into advancements in mobile LIDAR technology and its transformative potential in traffic
management. It emphasizes the importance of accurate data processing, including coordinate
transformations and detailed road segmentation, for effective traffic simulations. The research leverages
the Random Forest algorithm and DT frameworks, using tools like SUMO for dynamic traffic simulations
to integrate real-time LiDAR data and enhance traffic management strategies. The chapter outlines the
primary and sub-objectives of the research, focusing on developing a traffic simulation DT framework
utilizing LIDAR data. It specifies the study area in a busy intersection in Sofia and describes the datasets,
particularly the .osef format, highlighting their structure and the challenges in data processing. This
introduction sets the stage for exploring innovative methodologies to improve traffic simulations,
ultimately supporting better decision-making in urban transportation planning.

10
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2. LITERATURE REVIEW

This literature review chapter explore existing research and literature on traffic simulations, with a
particular focus on intersections. It reviews various traffic simulation tools, assessing their suitability for
the current research based on their features and capabilities. Additionally, the chapter evaluate different
traffic simulation models to determine which ones align best with the selected tools. A significant part of
this review also cover the integration of LiIDAR data into traffic simulations, especially focusing on GPS-
based datasets from LiIDAR scanning tools that record detailed traffic information. By examining these
aspects, the literature review aims to provide a comprehensive understanding of the current state of traffic
simulation research and identify the most appropriate methodologies and tools for this research study.

21. Traffic simulation in intersections

Traftic simulation has commonly been used and has become an important tool in transportation
research, with its ability to address various issues such as congestion, safety, and environmental impact.
The evolution of computation technologies itself has made traffic simulation indispensable for analysing
and designing a traffic system. Notable advancements in this research field include data-driven
frameworks that are able to integrate human-driving data, which enhance the realism and precision of
simulations (Hao & Ruan, 2024). This example of developments allows traffic simulations to incorporate a
wider range of variables that affect traffic and vehicle operations, providing a more comprehensive traffic
dynamics analysis.

Previous research in traffic simulations spans to various applications, from urban traffic
management to autonomous vehicle testing. For instance, studies have shown that data-driven
microscopic traffic simulations are particularly effective for autonomous driving tests due to their ability to
utilize highly detailed traffic data, enable large-scale testing, and ensure scenario reproducibility (Chen et
al., 2023). Another study by Barcelo (2010) has also discussed the fundamentals of traffic simulations and
emphasized the significance of using different categories of traffic simulation for different study cases; it
specifically prominent that for capturing the complexities of urban traffic in a detailed manner,
microscopic approach is often used and proven effective.

Traffic simulations can broadly be categorized into macroscopic, mesoscopic, and microscopic.
Macroscopic simulation is able to simulate traffic flow at an aggregate level, focusing on the bigger picture
and overall traffic density, flow, and speed using equations derived from fluid dynamics. This type of
traffic simulation is suitable for large-scale traffic research and studies, such as highway traffic flow in a
district or bigger study area, where individual vehicle interactions are less critical (Mohan & Ramadurai,
2013; Zeb et al., 2023). Disadvantages of this type of traffic simulation, however, they lack the granularity
needed for more detailed analysis, such as in an intersection.

Another type of traffic simulation is mesoscopic simulation. This type of traffic simulation offers
an intermediate level of detail, capturing both aggregate traffic flow and some aspects of individual vehicle
behaviours. Mesoscopic offers a balance of computational efficiency with possibilities of detailed analysis,
making them useful for urban traffic management and traffic decision dynamics (Chang et al., 1985). For
example, Burghout et al. (2005) discussed a certain traffic simulator named Mezzo, which is designed for
simulating large networks with individual vehicle behaviours aggregated at link levels, and it can also
function as a hybrid model with microscopic simulations for specific areas of interest.

As mentioned previously, microscopic simulations are the type of traffic simulations that focus on
a specific area of study. It is able to provide the highest level of detail, compared to the other traffic
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simulation categories, by simulating individual vehicle movements and interactions. Each vehicle is
modelled with specific attributes and behaviours settings. This allows for a more precise analysis of traffic
dynamics in a small study area, including lane changes behaviour analysis and detailed scenarios
exploration. Microscopic simulations are essential for evaluating the impact of traffic control measures,
road designs, and safety assessments, which involves analysis of individual vehicles' traffic behaviour (Ben-
Akiva et al., 2010; Mahmud et al., 2019).

Previous research has compared those three different types of traffic simulations based on their
effectiveness. Considering that the specific area of interest of this research is an intersection, microscopic
traffic simulation determined to be the most appropriate traffic simulation category to be used for
studying intersection dynamics due to its ability to model detailed vehicle intersections and behaviours.
Microscopic models can accurately represent vehicle behaviours at intersections, including stopping,
turning, and yielding (Cameron & Duncan, 1996). Zhong et al. (2023) have demonstrated the advantages
of microscopic simulations in urban environments, highlighting their ability to capture detailed vehicle
interactions that macroscopic and mesoscopic models often overlook. Similatly, research by Barcelo
(2010) found that microscopic models like VISSIM and SUMO provided more accurate and reliable
results for urban micro analysis such as intersection, compared to their macroscopic and mesoscopic
counterpart. Aside from those, microscopic simulations also provide detailed presentation of vehicle
movements making it possible to evaluate impact of road infrastructure and traffic control measures in
high accuracy. By incorporating detailed driver behaviour models, microscopic simulations are also
capable of mimicking real-world traffic conditions (Brockfeld et al., 2005; D. Wang et al., 2023). This
traffic simulation can handle high-quality and detailed traffic data, making it perfect for managing the
dataset of this thesis research, especially in an intersection as the area of interest.

21.1. Traffic simulation tools

There are several traffic simulation tools that have been developed over the years, each with
unique features and capabilities. In microscopic traffic simulations especially, the tools have an important
role in analysing and understanding traffic dynamics at a granular level. These tools model individual
vehicle behaviours and interactions and expected to be able to offer detailed insights into traffic flow,
congestion patterns, and impacts to various traffic management decisions and strategies. Some of the
known and prominent tools in the microsimulation category include VISSIM (Verkehr In Stidten —
SIMulationsmodell), AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-Urban
Networks), Paramics (Parallel Microscopic Simulation), MITSIMLab (MIT Simulation Laboratory), and
SUMO (Simulation of Urban MObility).

VISSIM is one of the most widely used traffic simulation tools in microscopic traffic simulation,
owned by PTV Group, this tool allows for the simulation of various traffic scenatios, including mixed
traffic environments and public transportation systems. Research by Khare (2024) highlights VISSIM's
ability to model detailed traffic interactions in heterogeneous traffic conditions, which showcases its
effectiveness in modelling traffic conditions. Similarly, Ziemska-Osuch & Osuch (2022) have used
VISSIM to study the traffic signal effects on the number of pedestrians in an intersection; this
demonstrates the sensitivity of the tools towards specific parameters. Additionally, VISSIM has also been
utilized to evaluate pedestrian safety measures, including the vehicle emissions, which highlights its
robustness in analysing various traffic issues (Medapati et al.,, 2022; Wu et al, 2012). Despite these
advantages of VISSIM that have been discussed, the proprietary nature and high cost of this tool can be
barriers for some users. It has a steep learning curve, computationally intensive, which leads to longer
simulation times (Espejel-Gartcia et al., 2017; Fellendorf & Vortisch, 2011; Park & Schneeberger, 2003).

AIMSUN, on the other hand, has the ability to integrate both microscopic and mesoscopic
simulations. It offers capabilities to simulate the behaviours of individual vehicles in a network, making it

12
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suitable for a wider range of applications from traffic management to research and planning. It is also
known for its efficient simulation algorithms and user-friendly interface. A study by J. Wang et al. (2017)
demonstrated AIMSUN effectiveness in analysing collision possibilities of vehicles, emphasizing its
strength in safety assessments and conflict analysis in traffic studies. This study also highlights the
possibility of utilizing AIMSUN for detailed microsimulation by developing a plugin that adopts the tools
algorithm and traffic models. Other relevant studies include Barcelo & Casas (2005), which demonstrated
the effectiveness of this tool in evaluating traffic control measures and its ability to handle a bigger-scale
simulation. However, the AIMSUN license can be costly, and its nature is proprietary, which can hinder
research with this tool due to limited access for some future users. Furthermore, this tool requires
extensive calibration for accurate results, indicating the complexity and resource-intensive nature of this
tool (Barcelo & Casas, 2005; Bessa Jr et al., 2021; Paulsen et al., 2022).

Paramics is another microscopic traffic simulation tool that is powerful; it is often used in the
traffic engineering field. A study by W. Li et al. (2017) emphasized this particular tool's ability to simulate a
slightly wider range and scale of road networks compared to the other microscopic traffic simulation tools.
Moreover, Mynuddin & Gao (2020) validated a distributed predictive cruise control approach through
Paramics simulations, which highlights its role in innovative traffic control strategies. Paramics, however,
just like other traffic simulations tools, it has limitations. It has been discussed that Paramics indicate
complexity and resource-intensive nature to fine-tune the model for accurate results (Cameron & Duncan,
1996; Reza et al., 2016). Furthermore, Fang & Tettamanti (2021) pointed out that the impact of automated
driving technologies on microscopic traffic simulation practices, suggesting potential gaps in Paramics
adaptability to evolving transportation trends.

MITSIMLab is more sophisticated traffic simulation tools that has been shown to be effective in
intersection microsimulation studies. Giuffré et al. (2018) has demonstrated the utility of MITSIMLab in
evaluating roundabout safety performance through surrogate safety measures. This emphasize its role in
assessing intersection safety accurately. Additionally, existing research has indicated that microsimulation
tools, including MITSIMLab can accurately predict traffic conflicts at signalized intersections, highlighting
the safety enhancement factors (AlRajie, 2018). Similarly to VISSIM and Paramics, certain challenges can
be seen in MITSIMLab. It can suffer from accuracy limitations due to the need of extensive calibration of
the parameters, which may impact the precision of the results, not to mention its complex structure and
methodology that may hinder the usability of the tool (Ben-Akiva et al., 2010; Ilyas et al., 2024; Rashid et
al., 2020). In a study by Ma & Fukuda (2014), they highlight certain disadvantages of MITSIMLab
regarding its shortcomings in geographical data handling and interoperability, which shows deficiencies in
GIS support.

Compared to the other tools that have been discussed, SUMO is the most common and widely
used and powerful traffic simulation platform. It is an open-source and multimodal platform that allows
for the modelling of microscopic interactions among vatious types of vehicles, including autonomous
vehicles, transit passengers, and other traffic participants (Clemente, 2022; Huang et al., 2021). Due to the
open source in nature, it allows customization and extension of its functionalities. One of the advantages
of using SUMO for microsimulation in intersections is its ability to accurately model and simulate the
behaviour of different types of vehicles and their interactions. This includes modelling the movement and
decision-making of individual vehicles, such as lane-changing behaviour and traffic signal control. Existing
research has shown the capabilities of SUMO in simulating traffic especially microscopic traffic in
intersections, which align with this research scope. Warchol et al. (2017) assess signal-phasing schemes at
diverging diamond interchanges, illustrating the complexities in optimizing signal-phasing strategies at
intersections, which SUMO is capable of handling. A study by Gavric et al. (2024) has shown a limitation
of SUMO by conducting an environmental evaluation of automated pedestrian detection systems; they
pointed out that the systems are not too precise in detecting pedestrians.
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To comprehensively understand the suitability of different microscopic traffic simulation tools, it
is essential to delve into a detailed comparison based on their capabilities, advantages, and limitations. The
tools reviewed, including VISSIM, AIMSUN, Paramics, MITSIMLab, and SUMO, offer varied features
that cater to different traffic simulation needs. Table 3 summarizes these aspects to highlight the most
appropriate tool for intersection traffic analysis.

Table 3. Traffic simulation tools comparison table. Source: Author (2024).

Traffic Simulation capability = Detailed  Real-time Geographical  Software
simulation traffic data integration nature
tools behaviour integration

VISSIM Meso and Micro Yes Limited Yes Licensed
AIMSUN Meso and Micro Yes Limited Limited Licensed
SUMO Macro, Meso and Micro  Yes Yes Yes Open source
Paramics Micro Yes No Limited Licensed
MITSIMLab Micro Yes No Limited Licensed

As shown in the table, SUMO stands out as the most suitable tool for the research focus on
intersection traffic analysis. Its open-source nature, capability to handle real-time data and detailed traffic
behaviour modelling make it the ideal choice for this study.

2.1.2. Traffic simulation models

Traffic simulation utilizes various traffic models, specifically car-following model. Car-following
models are used to describe how vehicles adjust their speed and position in relation to the vehicle in front
of them. Various models, such as the Intelligent Driver Model (IDM), Krauss model, and Wiedemann
model, are commonly used in microscopic traffic flow simulations to capture car-following behaviours
and interactions (Qi & Ying, 2023). SUMO itself utilizes various traffic models, including car-following
models, to simulate the behaviour of vehicles in traffic as realistic as possible.

The Krauss model, a space-continuous traffic model, is one of the traffic models that is integrated
into traffic simulation tools like SUMO. Developed by Stefan Krauss, this model focuses on safety and
ensures that vehicles maintain a safe distance. It is a deterministic model based on the safe time headway
principle and is particularly useful in scenarios requiring strict safety compliance. Furthermore, it offers
comprehensive framework for simulating traffic dynamics (Kraul3 et al., 1998; Wei et al., 2020).

Wiedemann's car-following model is another traffic simulation model that is a fundamental
component of traffic simulation tools. Originally developed for VISSIM, the Wiedemann model has been
adapted for SUMO. It includes more parameter to describe vehicle interactions, making it suitable for
detailed traffic analysis, but more complex to calibrate (Fellendorf & Vortisch, 2011). L. Wang et al. (2024)
highlighted the significance of the Wiedemann model in analysing mixed traffic flow characteristics,
emphasizing its role alongside other traffic simulation models.

One commonly used car-following model in SUMO is the Intelligent Driver Model IDM). The
IDM is a social force model that accurately represents the car-following behaviour of drivers. Compared
to other models, IDM is known for its simplicity and effectiveness in representing realistic driving
behaviours, based on this balance between realism and computational efficiency alone, IDM is the ideal
model to be used in this research (Treiber & Kesting, 2013). It considers factors such as desired speed,
desired headway, and acceleration and deceleration capabilities of the (Lin et al., 2017; Zhao et al., 2022).
Based on Zhao et al. (2022) the model is defined by equation as follow:
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where Uy is the free flow velocity, @; is the ideal acceleration of the iyp, vehicle, and @; g4 is the
acceleration of the iy vehicle at k + 1 time step; the iy vehicle's speed at the k time step is given by
V; k; the speed difference between the i — 14 and iz, vehicles at the & time step is denoted by Av; i ; the
actual distance between the i — 1,y and iy, vehicles is given by S;; and sS4 is the expected distance
between the [ — 14y and iy, vehicles (Zhao et al., 2022).

The speed of the iy, vehicle and the speed differential of the previous car determine the expected
distance Sq, and the calculation equation is,

V; 1 Ay i
sa(Vije Avig) = So + TV + ek (2)
ibi

where T is the headway at a safe time, b; is the vehicle comfortable deceleration when it is
stationary, and Sg is the minimum headway (Zhao et al., 2022). It is important to note that equation (2) is
evaluated first, and its output serves as an input for equation (1). These functions constitute an existing
implementation within the simulation models. The desired outputs of the function for the simulation
model include the acceleration of the vehicle and the expected distance between vehicles, resulting in
dynamic vehicle movements in the microsimulation model.

Aside from that, SUMO also employed a routing algorithm; Dijkstra and A* algorithm are the one
that is used in SUMO simulations. The main purposes of these algorithms are to make the vehicles in the
traffic simulations able to find their path in the simulation’s environment. Dijkstra algorithm, one of the
routing algorithms employed in SUMO, find the shortest path between nodes in a graph by systematically
exploring all possible routes. It starts with setting up the initial node distance to zero and all other nodes
to infinity, marking all nodes as unvisited. The algorithm then evaluates the unvisited neighbours of the
current node, updating their tentative distance. The node with the smallest distance becomes the next
current node, and this process repeats until all nodes are visited (Cormen et al., 2009; Dijkstra, 2022). The
equation is as follows:

D[v] = min(D[v],D[u] + w(u, v)), 3)

Where D[v] is the current shortest distance to node v, u is the current node, and w(u, v) is the
weight of the edge between u and v.

As for the A* algorithm, it enhances Dijkstra by incorporating heuristics to prioritize node
exploration, therefore speeding up the route search process. Initially, the algorithm sets the starting node
cost to zero and places it in an open set, with all other nodes marked as having infinite cost. The algorithm
selects the node with the lowest f-score (sum of path cost g and heutistic h) from the set, evaluates its
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neighbours, and updates their cost if a lower cost path is found (Hart et al., 1968). This function, often the
Euclidean distance for grid-based paths, is defined as follows:

f) = gn) + h(n), (4)

Where g(n) is the cost from the start node to node n, and h(n) is the estimated cost from n to
the goal.

2.2 LiDAR data integration in traffic simulations

The integration of LiDAR data into traffic simulations represents a significant advancement in
traffic modelling, offering detailed and accurate data for real-time traffic analysis. Although research
specifically focusing on LIDAR data integration in traffic simulations is limited, several studies have
utilized similar high-resolution traffic data with GPS information to enhance traffic simulation models,
which shares similarities with the LiDAR data used in this research in terms of high-resolution and real-
time capabilities. For example, Berbar et al. (2022) investigated reinforcement learning-based control of
signalized intersections, demonstrating the integration of real-time data to optimize intersection
operations. This study illustrated the potential of leveraging detailed traffic data with platoon, for better
dynamic traffic control strategies. Furthermore, Kitajima et al. (2019) utilized multi-agent traffic
simulations to assess the impact of automated technologies on safety, it used real-world data to evaluate
crash reductions associated with advanced driver assistance systems. By incorporating detailed traffic data
into simulation frameworks, researchers could effectively analyse the safety implications and contribute to
informing future transportation policies and infrastructure development.

In addition, study by J. Zheng et al. (2012), where modelled vehicle speed fluctuations using a
cellular automata model showcased the integration of real-time traffic data to accurately stimulate speed
dynamics. This method opens the possibility of capturing nuanced speed variations and enhancing the
accuracy of traffic simulations. Kusi¢ et al. (2023) study has also shown promising possibilities of
integrating real-time data into traffic simulations. Genova model, which is introduced in this study,
emphasizes the uses of real-time traffic count data of a highway to further improve the traffic simulations
in SUMO. The integration method proposed in this study involves the connection of the Genova traffic
count API. The integration was made possible through a database approach, where this database is used as
a middleware to send the information to traffic simulations. These integration frameworks offer valuable
insights into optimizing traffic simulations and enhancing traffic management strategies through the
integration of detailed traffic data. While direct studies on LiIDAR data integration are scatrce, the
successful integration of detailed traffic data with GPS information in various research studies underscores
the significance and possibilities of leveraging real-time data for traffic simulations. This research aim to
develops a suitable integration framework compatible with the .osef data by taking into account the
existing research that has successfully integrated real-time and GPS-based traffic data into the traffic
simulations.

2.3. Summary

This literature review chapter explores the state of the art in traffic simulation, with a focus on
intersections. Traffic simulation is essential in transportation research, addressing congestion, safety, and
environmental impacts, with advancements in computation technologies enhancing realism and precision.
The chapter categorizes simulations into macroscopic, mesoscopic, and microscopic, emphasizing the
effectiveness of microscopic simulations for detailed intersection analysis due to their ability to model
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individual vehicle movements and interactions. Tools like VISSIM, AIMSUN, Paramics, MITSIMLab, and
SUMO are highlighted, with SUMO standing out for its open-source nature, real-time data handling, and
detailed traffic behavior modeling. It also covers various traffic models such as the Intelligent Driver
Model, Krauss model, and Wiedemann model, essential for simulating realistic driving behaviors.
Additionally, the chapter discusses integrating LiDAR data into traffic simulations, noting that while direct
studies are limited, research using high-resolution GPS data shows potential for enhancing simulations.
Methods such as database middleware for real-time data integration are explored, illustrating the benefits
of detailed traffic data in optimizing simulations.
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3. RESEARCH METHODOLOGY

The methodology framework in this research is conducted to achieve the main objective of the
research of developing a digital twin-based workflow that can integrate real-time LiDAR data into traffic
simulations for effective traffic monitoring and assessment. The research methodology explores the
potential of OSEF data integration into traffic simulation while addressing data issues such as unknown
classes and spatial alignment problems for the traffic simulation input. The use of the digital twin-based
workflow can potentially improve the decision-making process. This is explored by analysing various
scenarios based on the dataset and the intersection geometry within the workflow's functionality. The
conceptual diagram of the traffic simulation DT framework can be seen in Figure 6 bellow.

CONCEPTUAL DIAGRAM

(ng‘.) LIDAR Sensors
Data

R —

Data-driven Traffic
Simulation:

Capable of Data
Exploration and Traffic
analysis

Capable of Scenario
Testing

Consist of Data Collection  Real World Digitcll World
of vehicle in the intersection Optimization based on
simulation insight

Figure 6. Conceptual diagram. Source: Author (2024).

Depicting from the conceptual diagram, the proposed approach starts with the acquisition of
primary datasets in the single crossroad settings for the input of the microsimulation model. These
datasets include OSEF real-time traffic data, and network data from OSM. These datasets are then
transmitted to a common database view platform. The platform involves a continuous update process on
dynamic datasets (traffic datasets), including data transformation and filtering, before establishing a
connection with the microsimulation model. This database is linked to a traffic simulation model, enabling
the model to consistently gather real-time data and subsequently update the simulation based on the latest
dataset in the database. Conceptually, the digital twin-based traffic simulation is then able to provide a
data-driven traffic simulation with capabilities for data exploration and traffic analysis. Furthermore,
testing outcomes in various what-if scenarios is possible, thereby providing valuable insights for informed
decision-making.

The methodology flow chart shown in Figure 7 (next page) outlines the detailed and structured
process through which the thesis research is conducted. This process consists of three different
predefined processes, each of which is detailed in their respective sections. These predefined processes
provide a clear explanation of the steps and procedures involved in the research, showing how each
component contributes to the overall study. The sub-sections cover vatrious aspects of the research, such
as data collection, data analysis, model development, and validation. Each predefined process is described
thoroughly to ensure a comprehensive understanding of the research workflow. This detailed sub-process
aims to clarify the systematic approach taken, explaining the reasoning behind each methodological choice
and its impact on the research results.
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Figure 7. Methodological flowchart. Source: Author (2024).
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The methodology involves several key steps: the preparation stage to review existing literature,
collecting data from the .osef dataset and satellite imagery, parsing and transforming it into an appropriate
CRS, and classifying object types within each frame. Trajectory spatial analysis is performed to classify
each moving object’s trajectory, providing features for random forest reclassification to address unknown
classes and enhance data enrichment. Properly classified trajectories are essential for accurate traffic
simulations, as they must align with the simulation network. Processed data is stored in a PostGIS
database for efficient retrieval, and incomplete trajectories are corrected through map-matching. Data is
then fetched into the simulation in two different ways: using XMI.-based traffic simulations and the
dynamic TraCl (Traffic Control Interface) method for real-time monitoring and assessment. This
approach improves the data processing and simulation process.

During the preparation stage, a thorough literature review is carried out to gather information
from current studies, relevant literature, and other required documents for developing the digital twin
models for traffic simulation. Determining the best traffic simulation tools for the case study of this
research and figuring out which traffic models could be employed are important factors to take into
account. This include includes the review of the potential approach to integrate the LIDAR dataset as the
main research dataset for the traffic simulation DT framework. Furthermore, potential datasets is
identified and shortlisted at this step, after which they undergo the necessary processing. This stage aligns
with the first sub-objectives.

The next stage involves parsing and transforming the .osef dataset in an appropriate CRS using a
Python script, along with OSEF 3.0 libraries. The parsing algorithm for extracting the information is
structured to efficiently process large volumes of data and retrieve specific details about tracked objects.
After the local coordinate transformation, iteration through the zone bindings linked to the object is
performed, which involves frame-by-frame parsing. By iterating through these frames, the algorithm
ensures that all spatial and temporal data are accurately captured, allowing for detailed analysis and
classification of object movements within the dataset.

For each tracked object in a frame, the parsing algorithm retrieves the object ID, bounding box
dimensions and timestamp in string format. The speed of each object is calculated from its speed vectors,
and volume is estimated using each object's bounding box dimensions. All this information is extracted
and stored in the array of data points, which includes frame number, date, timestamp, object ID, class
name, class 1D, speed, volume, and geo-coordinates. This array of data points are the new input for the
following process of trajectory spatial analysis. This process includes the interoperability of the parsing
algorithm towards the main TCP streams, not just the downloaded .osef data. This means the parsing
algorithms are suitable for direct connections to the stream as well without much adjustment.

Satellite imagery is the main input for semantic road segmentation. High-resolution satellite
imagery—USGS Landsat 7 ETM+ C2 L1 with a resolution of 15-meter panchromatic blend—and ESRI’s
world imagery service (up to l-meter resolution) are used to produce detailed segmentation of the
intersection road network based on the blend of the satellite images. ArcGIS is then used to process these
images and build the road segmentation. By integrating these high-resolution images with ArcGIS,
accurate and detailed segmentation of the intersection network is achieved efficiently. The segmentation
handles the road segments as detailed as possible, capturing the junction and lane distribution. The output
of this process is a geopackage (.gpkg), an open, OGC (Open Geospatial Consortium) standards-based
format for geographic information system data containing the intersection of semantic information. This
.gpkg is then used as input for the trajectory spatial analysis to classify the trajectory type based on the
parsed GPS sequences and the position in the intersection segments.

Trajectory spatial analysis determines if an object has a complete trajectory and classifies objects
as vehicles or non-vehicles based on their intersection location. This analysis serves two key purposes:
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first, to classify the object and trajectory type as an additional feature for the random forest model
training, enhancing its performance by learning patterns based on trajectory type, and second, to enrich
the object information with their sequence of trajectory. This involves identifying which road segments
the objects travelled through, rather than relying solely on geocoordinates. This is crucial for input in
SUMO, as it requires the identification of the object's starting location, the middle sequences, and the end
location in the road segments to properly load the objects into the simulation.

Reclassification —where the unknown as a class is predicted to specific pre-existing classes like
car and truck— is a crucial step in this research because most objects are classified as unknown, which
hinders the input process to the traffic simulation. The random forest model, a supervised learning
algorithm, is employed for this purpose. All information combined in the array of data points, except the
class column, is used as features, while the class column serves as the label. This enhances the model's
performance in accurately reclassifying the unknown objects. Subsequently, an array of data points that
have undergone the reclassification procedure are uploaded into the PostGIS database. The final database
includes the original information from the parsing process, object and trajectory type, feature engineering
attributes including max-min speed, acceleration, deceleration, and new class assigned after reclassification.
The database schema is automatically created if it does not exist. The transformation of the array of data
points into a data structure suitable for the PostGIS database is performed, including the transformation
of the geo-coordinates into geometric points, as well as the incorporation of weather details from weather
API (Application Programming Interface) based on those geometric points and timestamp to further
enrich the dataset.

The SUMO traffic simulation then retrieves and transforms the data into XML format from the
database for its input. The developed function used in this process is designed to fetch real-time data,
seamlessly delivering it from the database to the traffic simulation. The purpose of the simulation is to
replicate real-world traffic conditions using .osef data, enabling monitoring and traffic assessment. Two
different approaches are considered in this traffic simulation process: by using XML tree libraries and by
using TraCl to dynamically add new vehicles to the simulation according to the database inputs. TraCI, an
open-source component of SUMO, can establish a dynamic connection between the simulation and
databases, enabling real-time adjustments. The overall methodology is designed to develop a pipeline that
is able to process the .osef dataset and deliver compatible data in an XML and binary format for the
SUMO traffic simulation.

After the initial traffic simulation is propetly configured, several what-if scenarios is explored. The
scenario testing in this research evaluates various junction configurations, including roundabouts and
existing intersection proposals, both with and without Traffic Light Systems (TLS), to understand their
impact on traffic flow. Furthermore, the DT framework is assessed by comparing simulated traffic with
real-world observations using statistical measures like Root Mean Square Error (RMSE) and cosine
similarity for trajectory accuracy. These evaluations ensure that the simulation accurately mirrors real-
world dynamics, providing valuable insights for urban planners and traffic engineers. Following the
methodological workflow, a complete data pipeline is produced, encompassing structured architecture
designed to process initial data, store it in the database, and subsequently retrieve it for integration into the
simulation to be used for the real-time data stream in the future.

3.1. Local coordinates transformation

Cartesian coordinates or a local pose array represent the primary coordinate type that is available
in the .osef dataset. Initially, this dataset lacked the global Coordinate Reference System (CRS) geo-
coordinates necessary for further spatial analysis. Therefore, the dataset needs a transformation process to
convert its local pose coordinates into global CRS geo-coordinates. This transformation is essential to
enable comprehensive spatial analysis and ensure seamless integration with existing geographical data
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frameworks, including the alignment with SUMO road network. To achieve precise conversion from local
coordinates to the desired geographical coordinates (latitude and longitude), the process utilized Well-
Known Text (WKT). WKT is a standardized text format used to define the geographical properties and
geometries of the LIDAR dataset. It facilitates accurate spatial referencing, ensuring that the transformed
coordinates are correctly interpreted and aligned with geographic standards (refer to Annex 1: Study Area
WKT information for the details).

With given WKT information, there are multiple processes involved in converting local
coordinates (x,y,z) to geographical coordinates (longitude,latitude) using PyProj. A Python
interface to PROYJ, a general coordinate transformation software library, is used in this process using the
PyProj package. The position of a point in three dimensions, whete x,y, and z represent distances from
an origin in a localized coordinate system, are converted to a position on the surface of the Earth, which is
represented by latitude (north-south position from the equator) and longitude (east-west position from the
Greenwich meridian).

The local pose, which refers to point or object position and orientation within local coordinate
systems, is transformed directly into WGS84 coordinate systems using WKT information. To ensure the
alighment with SUMO road network projection, which follows an ellipsoid rather than a 2D plane
projection, EPSG:4326 is determined to be the appropriate coordinate system for this research.
EPSG:4326 uses an ellipsoid to model the surface of the Earth. The transformation procedure requires a
datum shift to adjust the coordinates from the local datum relative to WGS84.

The transformation of local pose to geographical coordinates involves converting the Cartesian
coordinates, from the LIDAR sensors, into global Cartesian coordinates through rotation and translation
process. The method and parameters of these transformations are detailed in the documentation by
Outsight (2022). The earlier transformation is then followed by conversion of the global Cartesian
coordinates to geographical coordinates (longitude, latitude, altitude), this process involves using an
ellipsoid model of the Earth (WGS84).

This conversion is done using geodetic libraries of PyProj. PyProj performs straightforward
coordinate reprojection for each pose array (X4, Yy, 2y, ... ) in the array of data points utilizing the WKT
information. This involves applying translation and rotation parameters, such as Helmert and
Molodensky-Badekas transformations, to align the local frame with the global coordinate system. The
convetsion involves projecting the Cartesian coordinates onto the Earth's ellipsoidal sutface accurately
through geographic offsets and projection techniques (Alcaras et al., 2020).

This multi-step process is crucial for accurate spatial data integration, as illustrated in the Figure 8
on the next page from de By et al. (2004). The figure effectively illustrates the transformation of local
Cartesian coordinates to global Cartesian coordinates and subsequently to global geographic coordinates
(WGS 84) which supports the transformation process concept and serves as a valuable reference for
understanding the theoretical and practical aspects of coordinate transformation.
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Figure 8. Overview of several types of coordinate transformations; this figure shows the 3D geocentric
transformations (top section) and geographic transformations (middle section) relevant to converting local Cartesian
coordinates from LiDAR sensors to global geographic coordinates. Source: de By et al. (2004), ITC core book,
Principles of geographic information systems (Chapter 4.2 on spatial referencing).

A global Cartesian reference frame is aligned with local coordinates from LiIDAR sensors through
the required rotation and translation processes, as shown in the top section that demonstrates 3D
geocentric transformations between various datums. Using the WGS84 ellipsoid model, the conversion
from global Cartesian coordinates to geographic coordinates is displayed in the middle part. This entails
precisely projecting the Cartesian coordinates onto the surface of the Earth using forward mapping
equations and geographic transformations.

Particular planar projections, including conformal, affine, and polynomial transformations, are
covered in the bottom half of the illustration, which is devoted to 2D Cartesian transformations. These
kinds of transformations are frequently used in mapping and geographic information system (GIS)
applications to convert between various planar coordinate systems. These two-dimensional
transformations are significant within their context, but they are not directly related to the PyProj
transformation process that converts local Cartesian coordinates to global geographic coordinates
(WGS84). The more intricate 3D geocentric transformations and ellipsoidal projections required for
precise geospatial data integration are mostly handled by PyProj. Thus, while the lower part is helpful for
planar transformations, it is not essential to comprehend the 3D coordinate conversion procedure needed
to convert local pose data to a global CRS such as WGS84.

By focusing on the top and middle sections of the figure, the essential steps of transforming local
LiDAR data into global geographic coordinates are captured. The top section highlights the initial rotation
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and translation processes. The initial rotation and translation steps needed to match local coordinates with
a global reference frame are shown in the top section. The middle section that follows shows how to use
the WGS84 ellipsoid model to convert these global Cartesian coordinates to geographic coordinates.
Accurate geographical placement is ensured by this sequential transformation. These sections —illustrated
in Figure 8— are essential to comprehending how PyProj uses the WKT information (WGS84) and
geodetic principles to reproject local pose data precisely and accurately into a globally referenced
geographic coordinate system.

3.2, Road segmentation

Road segmentation plays an important part in initiating the process of classifying objects and their
trajectories. It allows the understanding of semantic information about the road edges at the intersection,
which aids in the spatial identification of areas classified as roads from the ones that are not. In order to
correctly classify object trajectories, the key objective of semantic segmentation is to identify the
main lanes and junctions. During this process, roads are segmented into polygons, following the real-
world shape of the intersection, and traced from satellite imagery using ArcGIS software. The main focus
is to identify the main road segments, the turning point, the lane distribution details, and the junctions that
existed in the study area. The output is stored in a .gpkg format, ensuring compatibility for the next spatial
analysis process. The segment name and junction type constitute the semantic information structure;
segment names are modified in accordance with the SUMO road network naming format. An illustration
of this segmentation process can be seen in Figure 9.

° Western road edges

Southern road edges

Eastern road edges

Northern road edges

Naming format example:
* Road edges is located in south
* there are 2 lanes, with lane 1is the outer part
and lane 2 is the inner part
* Direction inward the main junction,
therefore the naming format are;

©® In_s_1
©® In_s_2

Main
Junction

Figure 9. Road segmentation naming process. Source: Author (2024).

The naming format for the road segments is "In/Out_name_lanenumber”. "In/Out" indicates
the direction of the road flow, i.e., whether the segment is travelling inward or outward from the main
intersection junction. "Name" indicates the road edges' name based on their location (for example, if they
are in the north, their name will have a "n" affixed to it), and "lane number" indicates the exact lane
number of those road edges. Lane numbers (e.g., 1, 2, 3, ...) are assigned in ascending sequence from the
outside to the inner portion of the road boundaries. When it comes to junction types, they are referred to
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according to the type of junction, such as intersection or fork (a junction where several roads merge into

one or diverge into more than one). The key components of the road segments naming format can be

summarized in Table 4.

Table 4. Summaries of road segmentation key components. Source: Author (2024).

Component Description

In / Out Direction of road flow, whether it is inward or outward from the
main junction of the intersection.

Name Identifier of the road edges based on geographic orientation or

cardinal position (e.g., "n" for north or "s" for south)

Lane Number

Sequential lane numbers from the outermost to the innermost
part of the road edges. (e.g., "_1" indicates the first lane which is
most likely located in the outermost part of that particular road
edges)

Junction Types

Junctions are named based on their type and function; for the
main junction where the roads meet, it is indicated as
"Intersection" and others are "Fork" to indicate the road splits or
converging junctions.

In addition to the road segments' naming format and junction types, the segmentation process

includes detailed information about the allowed lane connections, which further boosts the accurate

representation of the intersection. For instance, certain lanes may allow only straight-through movements

in the main junctions, while others may permit left or right turns. As illustrated in Figure 10, lane

connection rules are clearly defined; for example, the source lane in the green is connected to the lane in

the west road edge and south road edge, with two possible lane connections coloured as red. This

semantic information of the allowed connections is derived from real-world traffic rules and is indicated

by the directional arrows in each lane, as observed in the satellite images.

¢ Example of
allowed
connections,
indicated by the
arrow in the lane

Source lane

Possible target lane

Allowed connection

Figure 10. Defining connection rules. Source: Author (2024).
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These connection rules are important for the map-matching process for incomplete trajectories.
By incorporating detailed lane connection information, the map-matching process becomes more efficient
in determining the possible connections for missing parts of an object trajectory. This ensures the vehicle
paths are correctly reconstructed, even when partial data sequence is unavailable. This road segmentation
process not only helps in creating a detailed and organized representation of the intersection road network
but also significantly enhances the accuracy and integration process of the traffic simulation. By
representing roads as detailed polygons, the segmentation allows for a more precise mapping of vehicle
trajectories, which in turn leads to more realistic simulation results.

3.3. Vehicle trajectory spatial analysis

Spatial analysis of objects is cartied out using the outcomes of road segmentation and local
coordinate transformations. Two components are included in this geospatial analysis: the first is object
type categorization, which involves categorizing possible vehicles (due to the fact that a person class might
be found inside the road network) or non-vehicles; the second is trajectory type categorization, which
categorizes the points into their identified trajectories type comprised of complete trajectories, (short)
complete trajectoties (complete trajectoties but with start/end points being too close to the main
junction), violations, and incomplete trajectories. The geospatial analysis approach consists of determining
where the road segmentation intersects with the frame sequence for each object ID that generates unique
trajectories. The main library used in this approach is Geopandas, which allows easily to handle spatial
data. The detailed predefined process can be seen in Figure 11 bellow.

Vehicle Trajectory Spatial Analysis

Possible-vehicle

Intersect Process Object Type Trajectory Type Datf'aframe with
B I o Object Type &

with Geopandas Classification Classification f
Trajectory Type

Figure 11. Vehicle trajectory spatial analysis predefined process. Source: Author (2024).

The logic behind object classification is the following: an object ID is classified as a
possible vehicle if the majority of its geo-coordinate sequence (Lon,, Laty,Lon,, Lat,, ...) intersects
within a road segment (such as a lane or junction). This suggests that although it is presumably a vehicle, it
might also be a person. On the other hand, it is categorized as a non-vehicle or a person if the majority of
the data-point sequence of geo-location does not traverse the road segment.

Trajectory-type classification is more complex than object-type classification. Trajectory type
classification is more refined, considering semantic road segment information and the need to generate
multiple unique instances, leading to a detailed classification process. One of the instances is when the
object data-point sequences are primarily composed of "non-vehicle" object types; in this case, their
trajectories are promptly classified as "none" because they do not spatially align with the road segment.

As for the "possible vehicle" classification, the objects that fall under that category are filtered and
assumed as vehicles due to their frame sequence located inside the road segments. Subsequently, the
existence of particular segment types (inward, outward, intersection, and special turns) is checked and is
used to classify the trajectory type. An analysis is petformed on the "possible vehicle" trajectory's
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beginning and ending point inside the frame sequences, including whether it starts with an inward segment
and concludes with an outward segment or a specific turning point. This helps to determine whether a
trajectory is complete or not.

If an object ID geo-coordinate sequence follows a pattern of (in, junction, out) , their trajectory is
classified as complete due to the fact that the object follows the full pattern of going from inward road
segments, main junction, and ending in outward road segments. In addition, the logic function uses a
threshold of 8-meter proximity from the main junction to distinguish between complete and short
trajectories when calculating the distance to an intersection. In traffic simulation, the (short) complete
category is required for XML adjustments.

Additional assessments involve looking for unexpected direction changes that could point to
possible rule violations and same-side violations, which occur when a trajectory starts and ends on the
wrong side of the road. For example, if an object follows a sequence of (in, junction, out, in), it means that
the vehicles made an illegal turn at the end of the sequence. Another example would be same-side
violation, where an object has a sequence of following inward road segments to the main junction.
However, they end in outward road segments that have the same segment name as their first points
inward segment (e.g. from in north to out north), which indicates same-side violations. This meticulous
approach ensures that trajectories are appropriately identified and saved as a separate column in the main
array of data points.

3.4. Unknown class reclassification

Given the issues associated with many objects that are labelled as "unknown," reclassification
using the Random Forest (RF) algorithm as a supervised machine learning approach is used. This process
is considered reclassification due to the nature of unknown as inherent classification found in .osef
dataset; alongside to more specific classes such as car, truck, two-wheeler and person. It is considered to
be appropriate for handling complicated information with a lot of uncertainties, notably volume, speed,
and the trajectory and object types that come from spatial trajectory analysis. RF is able to deal with mixed
data types in a dataset, especially when the dataset contains both categorical (e.g., object type and
trajectory type) and numerical (e.g. speed and volume) data. Additionally, RF reduces the possibility of
overfitting by using an ensemble approach, in which the results are influenced by several decision trees,
producing broadly applicable predictions. This means that the predictions generated by Random Forest
are not only applicable to the specific data used for training but also have relevance and reliability across a
wider range of datasets. Furthermore, RF provides insightful information about the significance of
features, making it easier to identify which features have a major influence on reclassification. The main
features selected are the speed and volume patterns, as well as the patterns of object type and trajectory
type that are shown across the array of data points. To improve prediction precision and enrich the
model's training data, feature engineering is performed. Therefore, the average speed and volume for every
unique object ID, as well as changes in volume, is calculated. The predefined process of the random forest
reclassification can be seen in Figure 12 (next page).
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Figure 12. Random forest reclassification predefined process. Source: Author (2024).

The dataset for training the reclassification model is split initially into a 70% training set and a
30% test set. The dataset is split using scikit-learn's train_test_split function, with a 70-30 ratio and a
random_state of 42 to ensure reproducibility. The test set is then further split into a 15% test set with an
unknown label and a 15% test set without an unknown label. The reason for dividing the test set into two
different test sets is to check the model prediction towards unseen data with unknown labels and without.
The model should be able to predict the vehicle’s unknown class into more specific pre-existing classes
(car, truck, two-wheeler, and pedestrian).

Refined class adjustments are used to resolve the intricacies and irregularities in object labelling
within the dataset throughout the RF model's training process. For recognized objects that show a
combination of "unknown" and a distinct class, this adjustment method actively eliminates contradictions
by ptioritizing precise, informative labels over the ambiguous "unknown" labels. By using this approach, a
more uniform and representative training set is ensured, which improves the model's ability to recognize
real underlying patterns and raises the predicted accuracy of the model for previously "unknown" cases.

Label Encoder is used to encode the target variable for these refined classes, while One Hot
Encoder is used to encode categorical features such as "Object_type" and "Trajectory_type". Class labels
are numerically transformed using Label Encoder so that the RF model can categorize them without
proposing an ordinality. Contrarily, the One Hot Encoder transforms categorical data (such as object type
and trajectory type) into a binary matrix. This approach prevents numerical order implications between
categories and guarantees that each category is treated independently by the model—a crucial step in
accurately representing the influence of each category on classification.

RE processes data internally as arrays, with each row frame denoting a data point and each
column representing a feature. A random subset of features is considered at each tree split during the
training phase when feature arrays are randomly selected (with replacement) to form subsets for training
individual trees. The process of classifying new data point (x) for the reclassification issues, where there
are N trees and classes as C, can be defined as follows:

) argmax u o
Predicted Class = cEC Z I(prediction of tree;(x) = ¢), (5)
i=1

where [ is an indicator function that evaluates whether the prediction of ith decision tree (tree;)
for the data point x matches the specific class c. If it is true, the indicator functions return 1, otherwise 0.
Based on all the trees in the forest, this equation indicates that for data point X, the projected class has
received the most votes. To further improve the RF model, it is common practice to check and evaluate
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the model performance, and the model performance can be developed further by utilizing methods such
as hyperparameter tuning. These processes are explained in the next sub-sections.

3.4.1. Evaluation metrics

To evaluate the performance of the RFF model for the reclassification of unknown classes, several
standard metrics are used to ensure that the models is acceptable and perform well for future unseen
dataset. These metrics include accuracy, precision, recall, and Fl-score. Each of these metrics offers
unique insights into the model performance and its ability to accurately reclassified the unknown classes to
known labels/classes such as cat, truck, two-wheeler, or person. The following Table 5 summarizes the
equations used to calculate these metrics.

Table 5. RF model evaluation metrics. Source: Breiman (2001).

Metrics Description Equation

Shows the proportion of correctly TPATN
+

TP+TN+FP+FN ’ (6)

Accuracy classified instances among the total Accuracy =
instances of the RF trees

Indicate the ratio of true positive

. . .. TP
Precision resu#s to the total predicted Precision = TPiFp @)
positive results
Recal'l N Shows the rn.o.del.ability to identify Recal] = —F ’ (8)
(Sensitivity) all actual positive instances TP+FN

Indicate the balances of precision
F1-Score and recall by calculating their F1-Score =2 X
harmonic mean

PrecisionxRecall
ksl 9
Precision+Recall ’ ( )

To further explain the context of the table above, true positives (ITP) indicates the instances where
a label is correctly predicted, in this research case is where the known classes are predicted back to those
specific known classes (e.g., a car correctly classified back as a car). True negatives (TN) are the instances
where the model correctly predict that an object does not belong to a specific known class (e.g., it is
correctly identifying an object as not a car when the actual class is a truck, two-wheeler, or person). False
positives (FP) are instances that are opposite to TP, where the model incorrectly classifies an object as a
specific class (e.g., a truck incorrectly identified as a car). As for the last, false negatives (FN) are instances
where the models are unsuccessful in identifying an object as a specific known class; instead, it is
classifying it as another class (e.g., car incorrectly identified as a truck).

To complement these metrics, a confusion matrix is used in this RF model evaluation. The
confusion matrix provides a detailed breakdown of TP, TN, FP, and FN for each known class. This
detailed breakdown allows for the identification of specific areas where the model may be misclassifying
instances, such as cars being misclassified as trucks. It is useful to better understand how the model is
performing across different classes, and where it might be making mistakes.

For further evaluation and to ensure the robustness of the RF model, a k-fold cross-validation is
conducted, specifically 10-fold, which is used to generate a learning curve. This method involves dividing
the dataset into 10 equal subsets, training the model on 9 subsets, and testing it on the remaining one. This
process is repeated 10 times, and the results are averaged to produce a model performance estimation.
This can help in identifying whether the model performs consistently across different subsets of data and
ensure that it generalizes well to new unseen data. The learning curve generated from this cross-validation
process provide better visual insights into how the model accuracy improves with more training data and
whether it is overfitting or underfitting, and visually, the generalization of the model can be seen better.
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34.2. Hyperparameter tuning

Hyperparameter tuning is also considered in the reclassification, depending on the performance
of the model and how well they can effectively adapt the model to accurately reclassify the unknown
classes. Metrics such as the number of tree (n_estimators), maximum depth of the tree (max_depth),
minimum sample split (min_sample_split), and the number of features (max_features) are considered. The
detailed description of each of these parameters is as follows;

e 1n_estimators: This parameter defines the number of trees in the forest. Increasing the number of
trees can improve model performance by reducing variance, but it also increases computational
complexity and training time.

e max_depth: This parameter limits the maximum depth of each tree. Controlling the tree depth
prevents overfitting by restricting the model from learning overly complex patterns that may not
generalize well to new data.

e min_samples_split: This parameter specifies the minimum number of samples required to split an
internal node. Setting a higher value can prevent the model from learning small, noisy patterns,
thereby enhancing its generalization capability.

e max_features: This parameter determines the number of features to consider when searching for
the best split. It influences the randomness and diversity of the trees in the forest, impacting
model performance.

To determine the optimal combination of these hyperparameters, parameter grid search
techniques are employed. Grid search involves systematically testing a predefined set of hyperparameters
across various combinations and evaluating the model's performance for each set. This exhaustive search
helps in identifying the hyperparameter values that result in the best performance metrics.

During the grid search, the model's petformance is evaluated using cross-validation techniques,
ensuring that the hyperparameters are chosen to provide robust results across different subsets of the data.
This method helps prevent overfitting and ensures that the model generalizes well to unseen data. The use
of cross-validation also provides a mote accurate estimate of the model's performance by averaging results
over multiple iterations. By meticulously tuning these hyperparameters, the Random Forest model can be
effectively adapted to accurately reclassify unknown classes, improving its predictive accuracy and overall

reliability.

3.5. Database processing

After local coordinate transformation, trajectory spatial analysis, and reclassification of the
unknown objects are done, the enriched dataset is then uploaded into database. The database choice in
this research is PostgreSQL with a PostGIS extension. Given the georeferenced nature of the dataset,
which includes detailed spatial coordinates and trajectories, PostGIS is employed to enhance data
management and retrieval. PostGIS, an extension of PostgreSQL, allows for efficient storage, querying,
and manipulation of geographic information, making it an ideal choice for handling complex spatial
datasets. This geospatial database facilitates the integration of data into the SUMO traffic simulation
environment.

To enable interaction with the database, the SQLAlchemy library is utilized. SQLAlchemy is a
comprehensive SQL toolkit and Object-Relational Mapping (ORM) library for python, which simplifies
the interaction with the database. With the utilization of this library, the traffic simulation able to retrieves
data directly which enables efficient data fetching and integration with the traffic simulation DT
framework. This integration ensures that the simulation has access to accurate and up-to-date spatial
information, which is essential for this research. This stage of database processing consist of both data
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storing and data fetching of the enriched LiIDAR datasets. The details of these processes are explained in
the following sub-sections.

3.5.1. Data storing process

The processed .osef dataset is going under a systemic process to ensure the storing process in a
database, utilizing SQL commands combined with additional python logic. This process involves
generating the necessary database and schema if they ate not already present and continuously update the
database based on the new array of data points timestamps. Python scripts are used to check the existence
of the database and schema, generate new one if not present, and ensure that new data entries are
appended seamlessly. This ensures that the dataset remains current and organized for future retrieval and

analysis.

Before the array of data points is stored in the database, a map-matching process is done in order
to complete the information of object ID that is categorized as having incomplete trajectories from the
spatial analysis stage. Due to the nature of SUMO, objects classified as incomplete trajectories cannot be
propetly loaded into the simulation. Therefore, it is important to transform them into complete
trajectories. This process uses the present .gpkg data of the intersection as the base information. This
approach adopts the sumolib map-match algorithm concept but instead of using road network XML data,
it uses the .gpkg data information instead. The .gpkg data includes semantic information detailing the
permissible movements within each lane, such as which lanes allow straight travel, left turns or right turns.
This enhance the robustness of the map-matching process, which makes this approach hybrid, by
adopting the original map-match algorithm from sumolib, incorporated with the semantic information of
the .gpkg as extra logics.

By using this hybrid approach, the map-matching process significantly reduces potential errors
that might happen from relying solely on the geometric proximity of the data points to the road edges,
which is what the sumolib map-matching algorithm originally does. Relying only on the geometric
proximity often results in misidentified paths, especially in complex intersections or when the data points
are sparse. When the starting or ending of object ID trajectory sequences are missing, the connection
information helps predict the most likely continuation or origin of a path. The inclusion of connection
information able to limits the possible connection and filters out the incorrect paths in the proximity of
the data points. This ensures the most likely path that is chosen for incomplete trajectories. This hybrid
approach is especially important for ensuring continuity and logical consistency in the trajectory data,
further enhancing the dataset's reliability.

Subsequently, the dataset is further enriched with weather information. This is accomplished by
integrating with the OpenWeatherMap API, an open-source weather API. By using the geographic
coordinates and timestamps of each point in the dataset, relevant weather data is retrieved and appended
to the dataset. This additional weather information adds another layer of context and value to the data,
providing insights into the environmental conditions at the time each data point was recorded; this also
affect the configuration of the simulations, especially the speed limit, to further mimic the real-world
traffic behaviout.

3.5.2. Data fetching process

The method for fetching data from the database to the SUMO traffic simulation involves multiple
steps and two main approaches that has been mentioned before, which are XML-based and TraCl-based.
XML Generally, the fetching process follows similar step, the connection to the PostGIS database is
established using the specific credentials after the SUMO tools directory environment setup are ensured to
be present. These credentials includes username, password, hostname, port, database name, schema and
table. In this research localhost are used with duplicate port of 5433 in the local system. This connection

31



LEVERAGING LIDAR DATA AND LOCAL DIGITAL TWINS FRAMEWORK FOR DATA-DRIVEN TRAFFIC SIMULATION

including the password is URL-encoded for security and a connection string is created using SQLAlchemy
"create_engine" function. This allows for the interaction with the database more efficient.

A mapping dictionary is used to associate object classes (e.g., car, truck, motorcycle, and
pedestrian) with their corresponding SUMO object types and colors. Additionally, a function to adjust
lane information for non-pedestrian objects to ensure they follow realistic routing within the simulation is
implemented. This involves replacing lane numbers based on specific exceptions (in SUMO lane number
zero are for pedestrian), making sure that vehicles adhere to logical lane assignments.

The main function of the data fetching processes the routes by vehicle class. It starts by
identifying the base departure time from the dataset timestamp. The data is then grouped by vehicle class
and object ID. For each group, departure times are calculated, this includes departure and arrival road
edges, as well as the positions are determined using the geom (long, lat) information of the data points.
Trajectories are analyzed to extract intermediate edges, ensuring duplicates are removed, and only valid
paths based on the object ID trajectory information.

Following the previous processes, a function formats the XML output to ensure it is well-
structured and readable. For pedestrians, specific attributes are set to account for walking paths (lane
zero). For vehicle types, attributes such as departure speed, arrival speed, and acceleration are included.
The XML files are then saved, providing complete and extensive route information that is ready for use in
SUMO. As for TraCl-based approach, it is directly looking at the necessary data from the database to add
the vehicles in the simulation itself, this is limited to the details of the departure points and arrival points
in the road edges. However, this allows for more faster real-time interaction with the simulation without
storing data locally, which is an advantage compared to XML-based approach. The configuration and
integration details of this data fetching process, including the specific settings and parameters used for
SUMO is explained in the next section.

3.6. Traffic simulation

In this traffic simulation stage, after the initial traffic simulations are developed, several what-if
scenarios is generated to analyse the intersection traffic under various conditions. This section explains the
integration and initial configuration of the SUMO traffic simulation with the enriched data stored in the
database. It also covers the testing method of different what-if scenarios. Figure 13 on the next page
shows the predefined process of this stage.
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Figure 13. Traffic simulation predefined process. Source: Author (2024).

In this research, the focus is on analysing whether changing the junction into different shapes,
such as roundabout, is significantly affect traffic parameters like traffic flow and count. The scenarios also
explore other existing plan in the study area, such as transforming the intersection into an 8-shaped
roundabout. Additionally, the scenarios include the situations where the intersections operates without a
Traffic Light System (TLS) and with TLS. Each of the sub-sections that follows provides more
explanation of these processes. This approach aims to understand the impact of different intersection
design and configuration on traffic performance, providing valuable insights for traffic management and

planning.

3.6.1. SUMO integration to DT and configuration

The traffic simulation platform SUMO runs entirely on XML as its foundational configuration.
Therefore, the dataset is fetched from the database using the xml.tree libraties so that it can be directly
exported into an XML format that the SUMO can handle. Two distinct processes comprise the traffic
simulation workflow: a process that uses XML input for SUMO to initiate the traffic simulation, and a
direct process that allows vehicles to be added to the simulation dynamically using TraCl libraries without
requiring the data to be stored in XML format.

For XML based approach, data is directly fetched, transformed, and saved in the required XML
format. This allows for the inclusion of complete information. Vehicles use the {<trip>} attribute, and
pedestrians use the {<person>} attribute to define the XML configuration for vehicle input. In separate
trips.xml files, every vehicle class is stored. The characteristics selected for the XML configuration are
intended to match real-world behaviour as much as feasible while also considering the data that is
contained in the database. The list below shows the details about each trips.xml configuration structure.
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e Vehicle (car, truck, two-wheeler):

<vType id vClass accel decel sigma color/>

<trip id type depart from to via departlane departPos departSpeed arrivallane arrivalPos
arrivalSpeed/>

e Pedestrian (person):

<vType id vClass colot/>

<person id type depart departPos/>
<walk edges speed atrivalPos/>

Depicting from the configuration structure above, the id uniquely identifies each object type,
while vClass classifies objects into categories such as car, truck, person, or two-wheeler. The accel
(acceleration) and decel (deceleration) are derived from speed changes over time, calculated from speed
changes per timestamp. Vehicle driving behaviour is represented by sigma ranging from zero to one,
where zero represents perfect driving behaviour, and one represents a high degree of randomness in the
driving behaviour. As for object appearance, it is assigned by colour.

The depart attribute indicates the departure time, and the from and to attributes specify the
starting and destination road edges, respectively. The departlane and arrivallane attributes define the
specific lanes for departure and arrival, while departPos and arrivalPos specify the exact positions within
the simulation. As been mentioned before, for the target departlane and arrivall.ane, the information is
then fetched from the database in result of the map-matching process in the storing stage. Meanwhile, the
input for departPos and arrivalPos are based on the data point position in the simulation space overlayed
with the road network XML file. The departSpeed and arrivalSpeed attributes set the speeds at the start
and end of the trip. Trajectory continuity for both vehicles and pedestrians is maintained through careful
speed and position settings. Therefore, for (short) complete trajectories, the speed is set to "last" to follow
the speed of the vehicle ahead, preventing simulation errors due to unrealistic acceleration or deceleration.

Dynamic approach using TraCl, on the other hand, does not store any data locally. This is
because, for the duration of the simulation time step, the dynamic vehicle input function in TraCl only
needs the base XML input, which, in this case, utilises the previous approach XML configuration.
Following that, it adds vehicles continuously based on the timestamp. This approach has the advantage of
enhancing performance by reducing the overhead associated with file or data-point handling and
providing immediate feedback and control over the simulation environment. The creation of a road
network in SUMO is a prerequisite for initiating the traffic simulation. Imported from OpenStreetMap,
the base road network is modified to match the research area and the previously made road segmentation.
This modification is imperative to complete the trajectories identified as incomplete by the spatial analysis,
using the road network.

3.6.2. What-if scenario testing

The what-if scenatio testing stage involves creating different junction structures to assess whether
these long-term planning scenatrios of changing junction shape affects the traffic flow. This type of
analysis helps to further understand the potential impacts of major infrastructural changes. The scenarios
reflect the potential effects well with the real-world condition due to the processed .osef data as an input,
which consists of real-world traffic data recording in the study area. This ensures that the simulated
scenarios mirror actual traffic conditions and able to show the possible outcomes.
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Despite the nature of real-time data that typically follows its original trajectory that reflecting the
real-world road structure, it is possible to test different scenarios in the SUMO traffic simulation. The
.osef real-time data reflects the actual traffic conditions and movements, but the simulation can adapt even
when the junction structure is changed and no longer mirrors the real structure of the intersection. This
flexibility is made possible due to SUMO robust routing algorithms, namely Dijkstra and A* which has
been explained in the 2.1.2 Traffic simulation models, on page 14, allows a dynamic calculation of routes
for each object ID. When a junction is altered, these routing algorithms allow each vehicle to find its way
through the modified network, if the key positions in the road network, such as the starting and ending
segments, are specified. The algorithms can easily determine the optimal paths for the vehicles. This
ensures that the simulation remains realistic and functional despite the significant changes in the road
network.

In addition to modifying the junction structure, the scenarios includes a situation where each
scenario implemented TLS function and what would happen if they is not implementing TLS. This
approach gives better understanding if the traffic signals effects on different junction configurations. By
comparing scenarios with TLS against those without it, the testing aims to provide insights into how
traffic signals can influence traffic flow and congestion. Each scenario enable a comprehensive evaluation
of the different junction shape including the existing proposed changes. Furthermore, this what-if scenario
testing able to provide data-driven simulation that provide the potential benefits and drawbacks of each
what-if scenarios, guiding to a better traffic management decision in a long-term planning,.

To achieve the different scenarios of junction shapes, the process involves both the road network
XML configuration and the use of NETEDIT, SUMO graphical network editor. First, using the road
network XML configuration, the network layout, including roads, lanes, and junctions, is defined in the
file. For instance, to convert the original intersection into a roundabout, specific changes are made in the
XML file by defining a new type of junction and updating the connection edges and lanes to match the
roundabout configuration. This involves specifying the roundabout junction and adjusting the necessary
edges to ensure they connect properly to the newly changed junction type. As for incorporating TLS
system, traffic light logic can be specified with various phases and timings to simulate different traffic
signal operations. In this case, the default settings are used. The example of XML structure of each can be
seen in the list below.

e Road network with changed junction shape:

<junction id="roundabout" type="roundabout" x="100" y="100">
<request index="0" response="0"/>

</junction>
<edge id="edgel" from="A" to="B" />
<edge id="edge2" from="B" to="A" />

e TLS configuration:

<tlLogic id="junction1" type="static" programID="0" offset="0"/>
<phase duration="31" state="GrGt" />

—n

<phase duration="6" state="yryt" />
<phase duration="31" state="rGrG" />

—n

<phase duration="6" state="ryry" />
</tlLogic>
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Alternatively, the graphical network editor NETEDIT can be utilized for a more visual approach.
By loading the existing road network file into NETEDIT, the intersection intended for modification can
be transformed into a different shape according to the user's needs. This approach helps better in creating
more complex junction types that require detailed positioning, including geographical positioning and road
connections. By employing these methods, different junction shapes and configurations necessary for
scenarios testing can be modelled accurately within SUMO. For the detailed of the chosen scenarios in
this research, please refer to the next sub-section.

3.6.2.1. Chosen what-if scenarios

The scenarios for different types of junction shapes that is explored and tested in this research
covers standard roundabout junction shapes and two different existing proposals of the study area
intersection changes. Roundabouts are circular junctions where traffic flows in one direction, counter
clockwise, around a central island. Research has indicated that roundabouts can significantly reduce traffic
delays and improve flow. According to study by the Insurance Institute of Highway Safety (IIHS),
converting intersections with stop signs or traffic signals to roundabouts can reduce injury crashes by 72%
to 80% and all crashes by 35% to 47% (IIHS, 2021). This improvement is largely due to the continuous
movement allowed in roundabouts, which is able to minimise the stop-and-go conditions commonly
applied in intersections. Furthermore, the roundabout is designed to lower vehicle speeds and reduce the
severity of collisions, contributing to safer and smoother traffic conditions (IIHS, 2023).

In the context of this research, the roundabout scenarios are tested to observe these expected
improvements in the traffic flow. Aside from the standard roundabout shape that is deployed as the first
chosen scenario, different kinds of roundabout structures, such as the 8-shaped roundabout, is considered
as the other scenario in this research. This 8-shaped roundabout has been proposed by the Sofia municipal
councilor Borislav Ignatov. His proposal is to replace the study are intersection with double roundabout
or 8-shaped roundabout. According to him, the cutrent structure are not a very efficient and good thing,
proven by numbers of crashes that often happen in the intersection of paradise mall center. By building
this roundabout, the aim is to increase the level of safety and greatly reduce traffic congestion (Nikova,
2020). The proposed shape of this roundabout can be seen in Figure 14.
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Figure 14. Proposed 8-shaped roundabout. Source: Nikova (2020), Apx. FIrHaTOB IIpeAAara KpbroBoO IIPEA
"IMapaaaiic" B mamer Ha MI/IACH Lserkos (CHMMKH). Retrieved May 26, 2024, from https://stolica.bg/mestna-
dai o

36


https://stolica.bg/mestna-politika/arh-ignatov-predlaga-kragovo-pred-paradais-v-pamet-na-milen-tsvetkov-snimki
https://stolica.bg/mestna-politika/arh-ignatov-predlaga-kragovo-pred-paradais-v-pamet-na-milen-tsvetkov-snimki

LEVERAGING LIDAR DATA AND LOCAL DIGITAL TWINS FRAMEWORK FOR DATA-DRIVEN TRAFFIC SIMULATION

As can be observed in the figure above, the proposed scenario consists of transforming the main
junction into a double roundabout in an 8-shaped structure. This is shown with the existence of three
islands in the main junctions. Another note is that there is a reduction of lanes that is visible in the north-
east road where the inward edges, which originally had three lanes, are now reduced into two lanes. For
the southern road edges, it is also visible that there is a reduction of lanes for each direction from three
lanes to two lanes each. This is considered during the building of the scenario road network. Another
scenario based on the existing proposal for Save Sofia (Crmacu Codus) is explored as well. This proposal is
not exactly located in the intersection of the study are of this research, however it is located in the
neighbouring intersection, south of the study are intersections.

The proposed plan in this proposal involves creating an underpass for Blvd. "Todor Kableshkov",
which allows east-west traffic to pass beneath the surface level, which basically involves the creation of an
underpass. The surface-level intersection is still exist for north-south traffic on Blvd. "Cherni vrah". This
structure ensures that the traffic that goes from east to west on “Todor Kbaleshkov” remains
uninterrupted while accommodating the north-south traffic through the surface intersection (Cmacu
Codpus, 2020). This design aims to reduce congestion in both directions. This proposal itself is adapted to
the study area, by creating an underpass specifically in east-west traffic directions connecting "Hendrik
Ibsen" street to "Srebarna" street. The aim of this is to see the potential of adding two-level intersections
where one connection has a different elevation compared to the other and whether this type of scenario is
possible to be done in the traffic simulation DT framework utilizing SUMO. The proposal for this two-
level intersection can be seen in Figure 15 below. Point A shows the location of the study area intersection
where this proposal is adapted, and point B shows the location of the original underpass proposal.
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Figure 15. Two-level intersection proposal by "Cracu Codpus". Source: Cmacu Codpus (2020), "Cracu Codust”
IIPEAAAra Ad CE HU3IPAAU HOBO Kpbcrosuine Ha ABe HuBa ipu MOA "Tlapaaaiic". Retrieved June 3, 2024, from
https://www.novinite.bg/articles /195721 /Spasi-Sofiya-predlaga-da-se-izgradi-novo-krastovishte-na-dve-niva-pri-

MOI .-Paradajs.
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3.7. DT framework assessment

This stage focus on assessing the traffic simulation DT framework. One of the assessment
methods is to validate the accuracy of the simulation towards real-world traffic; this includes checking the
traffic volume or traffic count from the simulation compared to the real world. To achieve this, a
comprehensive traffic count method is employed. The observation is conducted in the morning, when
traffic is typically at its peak. Given the constraints of limited manpower and the complexity of the
intersection, which has four road edges in total, each road edges have two different directions, with each
consisting of more than two lanes. A strategic approach is adopted to ensure accurate and manageable
data collection. Instead of attempting to count the traffic on all four road edges simultaneously, the
observation is designed to take traffic counts for each road edge sequentially, with intervals of 10-minutes
each.

The observation points for the survey are carefully chosen to match the positions of the induction
loops in the SUMO network, ensuring that the real-world data corresponds with the simulation output.
The illustration of the said observation points can be seen in Figure 16. For each road edge, the count is
recorded for both directions; this includes vehicles that move inward towards the main junction of the
intersections and those that move outward from the main junction. This simultaneous counting in both
directions allows for an aggregated traffic count for each road edge during the 10-minute interval.

Study area

Observation
point

Figure 16. Traffic observation points. Source: Author (2024).

By aggregating the counts, for each of the road edge, the observation still able to provide a
comprehensive overview of traffic volume, which can then be compared against the simulated traffic data
to assess the accuracy of the traffic simulation DT framework. The real-wortld observation data is
compared with the traffic count output of the SUMO after it has been propetly collected. The simulation
count is collected in the form of an additional XML format, the temporal factors is aligned with the
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observation dataset collection timestamp, aggregated for each available four edges. This step is important
to match the temporal and data format from the real-world traffic observations, ensuring consistency.

The accuracy of the traffic simulation is then assessed by comparing both datasets. The
assessment part is done using commonly used statistical method, Root Mean Squared Error (RMSE).
RMSE based on Farrag et al. (2020), measures the deviation of the simulation output from the observed
data. The differences between the values predicted by the model and the observed values from the real-
world observation is quantified in this process. By calculating the RMSE, the accuracy of the traffic
simulation can be quantitatively evaluated, highlighting the effectiveness of the workflow in replicating
real-world traffic conditions. The formula is as follows:

n

s 15 (052

i=1

where n is the number of observations, O is the observed value and M is the simulated value. In
this case, the observation is done for each of the four road edges sequentially, with each road edge being
observed for a 10-minute interval. Therefore, n in this context represents the total number of 10-minute
intervals observed across all road edges. Since each road edge is observed for 10 minutes, the comparison
timing from the simulation output must also match these intervals precisely.

Another aspect that is validated is the similarity of objects trajectory generated by the traffic
simulation towards their true trajectory. This assessment is needed due to the SUMO traffic simulation
requirement, where to load a vehicle, it needs to define the departure and arrival road segments and,
optionally, a "via" attribute to indicate which road segments that the vehicle travels through. In
comparison, the .osef dataset provides a detailed sequence of GPS trajectory data, with each frame
showing the data points with precise timestamps, often down to the millisecond. This detailed level of
data captures the exact path of the vehicle.

However, the input for SUMO is not designed for it to be that detailed compared to the .osef
dataset. It is only requiring the names of the road segments for the XML attribute of departure and arrival;
including the road segments in between arrival and departure attribute. The routing algorithm within
SUMO uses this information to generate the vehicle trajectory. As long as the vehicles have the
information on the specified departure edge, segments that they pass through, and the specified arrival
edge, the traffic simulation able to create a trajectory sequence accordingly. This sequence might not
exactly match the original trajectory from the .osef dataset due to the simplifications and assumptions
made by the routing algorithm in SUMO.

Therefore, to evaluate the accuracy and similarity of the generated trajectories to the original .osef
dataset recorded trajectories, cosine similarity is employed. This method check the vector of the generated
trajectory from the simulation and determines the similarity with the actual object GPS trajectories. Cosine
similarity is calculated as the cosine of the angle between two vectors in a multi-dimensional space, which
gives a value between minus one and one. A cosine similarity of one means that the two vectors are
identical, zero means they're orthogonal, and minus one means they are diametrically opposed. The
equation are as follows, adopting from Manning et al. (2008) documentation,
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where:
e A; and B; are components of vectors A and B respectively.
e A B is the dot product of vectors A and B.
e |A] and |B| ate the Euclidean norms (magnitudes) of vectors A and B respectively.

e nis the number of dimensions.

3.8. Summary

This methodology chapter outlines the steps for developing the traffic simulation DT framework
that integrates real-time LiDAR data into traffic simulations for effective traffic monitoring and
assessment. The approach begins with acquiring OSEF real-time traffic data and network data from OSM,
transmitted to a common database platform for continuous updates, data transformation, and filtering.
The workflow involves reviewing existing literature, collecting and parsing the OSEF dataset into an
appropriate CRS, and classifying object types. Trajectory spatial analysis is performed to classify moving
objects' trajectories, providing features for the Random Forest model to reclassify unknown classes.
Processed data is stored in a PostGIS database and integrated into SUMO traffic simulations using XML-
based and dynamic TraCl methods. Various what-if scenarios are explored to evaluate different junction
configurations and their impact on traffic flow. The digital twin framework accuracy is validated by
comparing simulated traffic with real-world observations using RMSE and cosine similarity. This
comprehensive methodology ensures a robust data processing and simulation pipeline, supporting real-
time traffic monitoring and assessment.
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4.  RESULTS

This chapter presents the results of the research. The sections are ordered according to the
research workflow and methodology. It begins with an overview of the parsed dataset, continued with the
coordinate transformation process, followed by data integration and preprocessing. The simulation and
modelling phase is then discussed, detailing the methods and findings. The chapter concludes with an
evaluation of the traffic simulation DT framework, assessing the applicability of the research
methodology.

41. Data parsing

Understanding the data structure is the primary step of this research. During the data parsing, the
dataset is analysed to understand the overview of distribution and classification of tracked objects. As
been mentioned before in the 1.4.2 Research datasets, on page 7, there is chances that the .osef dataset
classified a tracked objects with multiple classes. Based on the analysis conducted using a sample of a two
minute morning .osef dataset, it is found that there is approximately about 58,939 rows of data points
present, with the maximum number of frames captured for an object ID being around 1726. Across these
frames, a total of 516 objects is present. The detected classes within the dataset include car, person, truck,
two-wheeler and unknown. These classes further divide the objects into three main groups: consistent
objects, recognized objects, and unidentified objects. The ratio of these objects group can be seen in
Figure 17.

Ratio of Tracked Objects Groups

250

200

150 A

Number of Objects

100 -

Consistent Recognized Unidentified

Figure 17. Ratio of tracked objects groups based on identified classes. Source: Author (2024).

Consistent objects, where an object ID has only one class throughout the frames, constitute as the
largest group. It represents approximately 51% of total tracked objects in the sample data with 264
objects. Recognized objects group follows with 241 objects, accounting for around 47% of total tracked
objects. This group consist of an object ID that has more than one classes with the other classes being
unknown class. On the other hand, unidentified objects, where an object ID consist of more than two
classes from the smallest category group, with approximately 2% of the total tracked objects. This
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distribution indicates that the majority falls into the consistent and recognized categories. To further
understand the classes distribution within these groups, especially consistent and recognized objects,
Figure 18 provides an overview of the distribution.
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Figure 18. (Top) Consistent objects and (Bottom) Recognized objects class distribution. Source: Author (2024).

The figure above shows that the unknown class dominates in the consistent objects group. This
indicate that majority of the tracked objects is not classified into specific known vehicle classes such as car
and truck. The consistent objects in this sample data doesn’t seems to be classified as two-wheeler. The
prominence of unknown classifications, around 251 objects, suggest that an object ID that might be two-
wheeler are classified as unknown instead. Depicting from the bottom figure, it can be seen that for
recognized objects, majority of classification falls into car, with 188 instances. This is followed by person
class with 36 objects, two-wheeler with 13 objects, and the truck class with 4 objects. For this group of
classes, from the two classes they is assigned with, the other is unknown, therefore it is safe to assume that
their actual classification is the counter part of the unknown class within that object ID.

In addition, the overview of the data parsing includes the information of unidentified objects
group. The object ID categorized within this group (11 objects) have more than two classes, indicating
inconsistencies in their classification process. Examples include objects with identification of 5324412,
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5324431, and 5324597, which are classified in order from unknown class, two-wheeler, and then car or
person. The detailed example of the overview can be found in Annex 2: .osef data overview sample. The
structure of the datasets explained in this stage is used as the main foundation and consideration for the
next analysis, such as the random forest reclassification. In the data parsing process, the next stage is to
handle other known issues with the .osef dataset, such as the local coordinate that needs transformation to

geo-coordinates, which are explained in the next sub section.

4.2. Local coordinate transformation

All of the atrays of data points had their local pose translation (x,y, z) are converted to WGS84
EPSG:4326 geo-coordinates. This process is done as part of the .osef data parsing algorithm. Where each
frame's local coordinates are transformed into geo-coordinates, following the methodology section. The
transformation is tested with the array of data points for static objects first, to determine the precision of
the coordinate transformation. Afterwards, as the coordinate transformation process indicates a success,
the local cartesian coordinate of the tracked objects is transformed into geo coordinates. The
georeferenced data points of the static objects can be seen in Figure 19, visualized with Folium library.

Figure 19. Static objects plotting of the geo-referenced data points. Source: Author (2024).

It can be seen in the figure above that the data points for the static objects is successfully
transformed into geo-coordinates. The static objects data points aligns well with the structure of the
intersection itself. In the example A, several data points cleatly delineate the shape of the curb and road
edges. Meanwhile, in example B, points align perfectly with an object in intersection that forms the shape
of a rectangular building, specifically the metro train entrance.

Based on the successful transformation of the static object coordinates, the array of data points
for tracked object, initially in cartesian coordinates, is then transformed into geographic coordinates. Table
6 on the next page shows the first five frames to demonstrate the transformation of the tracked objects
data points by comparing the original local coordinates with the reprojected geographic coordinates
(longitude, latitude, altitude). This conversion ensures that the data is accurately represented.
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Table 6. Array of data points of reprojected coordinates. Source: Author (2024).

Object Local Pose Geo-coordinates
Class Speed/kmh  Volume/m3 - - -

ID X Y Z Longitude  Latitude  Altitude
5324219 truck 16.53 99.41 6.17698  -3.85191  1.75459  23.316452 42.659424  1.75459
5324294  unknown 2.58 8.16 -39.31805  -29.1799  1.45436  23.316156  42.65901  1.45436
5324224 car 0.02 17.94 -37.26698  -19.5937  1.384189 23.316113  42.659092  1.384189
5324304 unknown 7.76 7.76 -36.46281  -1.43824  1.421428 23.316 42.659232  1.421428
5324343  unknown 13.69 5.9 28.003428 2333962 0.73473  23.316634  42.659577  0.73473

To further confirm that the tracked object points have been transformed successfully, the Plotly
Express library's function called Mapbox is used. This function allows for advanced geospatial
visualization, ensuring that the data points are accurately represented on a map. The array of data points
must have precise geographic coordinates (longitude, latitude) for Mapbox to work properly. The geo-
referenced plotting of tracked objects in Mapbox can be seen in Figure 20 below, indicating that the
transformation of each tracked objects classes is successfully completed (the recording can be seen in
footnote 1) .

Geo-referenced Tracked Objects

Class

® TRUCK
@® UNKNOWN
® CAR

@® PERSON

Figure 20. Tracked objects plotting of the geo-referenced data points'. Source: Author (2024).

4.3. Road segmentation

Road segmentation is created with lane and junction construction as its primary focus. The
segment polygons are manually digitized and aligned with the real road structure as they exist in the
satellite images (USGS Landsat 7 ETM+ C2 L1 with a resolution of 15-meter panchromatic blend and
ESRI’s world imagery service up to 1-meter resolution). The lanes' locations and positions in relation to
the border determined their given names. Northern, northeastern, southern, and southwestern road
segments are the four distinct road directions in the study area.

The northern road segment is divided into two lanes that travel outward and three lanes that
travel inward toward the main intersection. The road segment in the northeast is made up of two lanes

! https://youtu.be/O5KluBLHygk
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going outward and 3-4-3 lanes inward, which means the lane splits into four lanes at one point before
returning to three lanes inward. There is a single turning lane connecting the northeastern road to the
northern road's outbound lane, situated between the two routes, as shown in Figure 6.

Three inward and three outward lanes are present on the southern edges of the road. The
southwestern road segment has 2-1 outward lanes (meaning that two lanes eventually merge into one lane)
and 2-3 inward lanes (meaning that two lanes eventually become three lanes). Additionally, there is a single
turning road segment that connects the southern outward lanes to the southern bidirectional outward
lanes. In total, there are five junctions that constitute the road segmentation: four fork junctions and one
main intersection junction. Fork junctions, for instance, facilitate division and merging in the case of a
single turning route in the northeast that links two separate road segments. The semantic
road segmentation details can be seen in Figure 21 and Table 7.

Bus-bay
Intersection
Island

Lane

Bidirectional Zipper

Figure 21. Road semantic information map. Source: Author (2024).

Table 7. Road segmentation details. Source: Author (2024).

Type Segments Count
Inward North 3 lanes
Inward North-East 4 lanes, 1 turning lane

Inward South-West 3 lanes

Road Inward South 3 lanes
Outward North 3 lanes
Outward North-East 2 lanes
Outward South-West 2 lanes, 1 turning lane
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Outward South 3 lanes
) Main Junction 1
Junctions
Forks 4

In the road segmentation, the information about permissible connection based on the intersection
condition is also included. This information shows the connection allowed from each lane to their target
lane. Figure 22 displays the mapping of the allowed connections, indicated by the arrow in the lanes of
each road segment. The strings visible in the main junction of the intersection represent the overall
allowed connections between each lane. For example, consider Lane 1 of the road segment inward north,
with the naming code "In_ne_1". In this lane, the permissible connections are either straight or left turn.
Therefore, the allowed connection information for "In_ne_1" indicates that this lane connects to
"Out_s_1" and "Out_sw_1". This information has been properly included in the intersection road
semantic information and is used in the next stage of vehicle trajectory spatial analysis.
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Figure 22. Allowed connection of each lane. Source: Author (2024).

4.4, Vehicle trajectory spatial analysis

Geospatial analysis is performed to determine object and trajectory categories using the results of
CRS transformation and semantic road segmentation. The first step in the analysis is to identify the object
type, whether the objects are possibly vehicles or non-vehicles, by intersecting the road segment with the
geographical coordinates of each object. Here, the rational presumption is that an object is possibly a
vehicle if its frame sequence begins and ends on a road segment. Otherwise, they are non-vehicles.

The term possible vehicle is sued because not all objects intersecting with road segment are
exclusively vehicles, there is a possibility that a person class object ID might also be found within the road
segments. On the other hand, any objects with a frame sequence outside of the road segment is
considered as non-vehicle, specifically assumed as person class. Figure 23 clearly illustrates that object ID
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categorized as possible vehicle include some that are classified as person (red line), and that non-vehicle
objects shows a clear pattern of trajectory outside of the road segments, indicating a movement in the

curb area of the road.

Possible Vehicle Trajectories Non-Vehicle Trajectories
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Possible Vehicle —— Non-Vehicle
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Latitude
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Longitude Longitude
Figure 23. Object type classification plot. Source: Author (2024).

Figure 24 illustrates the distribution of object type categories. It shows that about 309 unique
objects are classified as possible vehicles, although they are not exclusively vehicles since the category also
contains the person and unknown objects. On the other hand, 194 objects which are later assumed to be
pedestrians—are classified as non-vehicles. But there are anomalies as well. For example, four cars and
four two-wheelers are classified as non-vehicles, which is probably the result of inconsistent labelling
(when an object is associated with more than two classes).

Distribution of Object Types

B Non Vehicle
HEE Possible Vehicle
TWO_WHEELER 4%

PERSON

TRUCK =3

UNKNOWN

Count

Figure 24. Object type classification distribution graph. Source: Author (2024).
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The next step involves identifying the trajectories and analysing their patterns to understand
movement behaviours or detect anomalies. According to the research goal of determining appropriate
vehicle trajectories, a thorough categorization of trajectories is only done for possible vehicles; non-
vehicles is not taken into consideration further. The methods section outlines the process for determining
trajectories, and the spatial analysis result showed that 500 of the 516 recorded objects had incomplete
trajectories. The analysis revealed that only 10 objects had complete trajectories, four cars had (short)
complete trajectories, and two objects had violation trajectories due to illegal lane changes or U-turns. This
is observed in the trajectory plot shown in Figure 25.
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Figure 25. Trajectory type plot of each object ID; consist of complete (A), (short) complete (B), violation (C), and
incomplete trajectories (D). Source: Author (2024).

The figure above comprises four trajectory plots, each categorizing different types of vehicle
movements based on their completeness and legality. The color gradient in each plot indicates the flow of
trajectory points, with lighter colors indicating the starting points and darker colors indicating the
endpoints. Trajectory plot A displays complete trajectories, where objects have a full sequence of data
points throughout the road segment. These paths are smooth and continuous, demonstrating that the
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vehicles travel through the intersection without any missing data points. In contrast, Trajectory plot B
illustrates (short) complete trajectories, which have starting or ending points that is close to the main
intersection junction. These trajectories are nearly complete but are categorized as short because they
begin or end abruptly very near the intersection main junction in proximity.

Trajectory plot C highlights violation trajectories, indicating illegal manoeuvres such as U-turns or
other unauthorized turns. These paths deviate from the permissible routes and are clearly marked by their
crossing over restricted segments. As for the last one, Trajectory plot D, it shows incomplete trajectories.
In this plot D, objects have missing geo-location sequences in their data points. These trajectories typically
start or end in the main intersection junction, this category shows a dominant ratio compared to the other
categories. Information about the trajectory type distribution per frame, identified by their consistency,
can be seen in Table 8 below.

Table 8. Trajectory type distribution per frame. Source: Author (2024).

Classes

Categories Trajectory Type
car truck two-wheeler person unknown

Complete 1 0 0 0
) (Short) Complete 0 0 0 0 0
Consistent - ’
Violation 0 0 0 0 0
Incomplete 8 3 0 1 250
Complete 6 2 0 0 0
(Short) Complete 4 0 0 0 0
Recognized
Violation 1 0 1 0
Incomplete 179 2 18 39 0

In the table above, 'Consistent' means that an object has a consistent class throughout, while
'Recognized' means that it has more than one class, including unknown, but is assumed as the other class.
The object and trajectory types acquired in this phase improved the unknown object prediction in the
training of the reclassification model, as shown in the following section.

4.5. Random forest unknown class reclassification

As indicated by the results of the data parsing analysis in the first sub-section of this chapter, the
raw dataset's class classification is somewhat complex, which can add noise and reduce the RF model's
ability to make accurate predictions. The osef dataset content overview shows three categories: recognized
objects (one unknown among two classes, thus classified as the known class), consistent objects (with a
single class throughout), and unidentified objects (changing classes more than twice, presumably
producing noise in Random Forest training). The model is trained using two distinct .osef datasets, one
from an afternoon session lasting four minutes and the other from a morning session lasting two minutes,
comprising 108,156 frames. To reduce noise in the data, the training process did not directly use the class
column as it is for the label. Instead, logic is applied to prioritize an identified class type over an unknown.
Therefore, it allows the prediction to focus completely on unknown or unidentified objects with multi-
classes.
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The first training round is done with the default settings of reclassification model training. The
trained model are then tested with the first test set (without unknown label) and second test set (with
unknown label). The first test set shows the model performance towards unseen data without unknown
label. In this first test set, a high accuracy of 0.998 is achieved. This indicates that the model is able to
predict the known classes most of the times. For example, it reclassified cars back to car class, which
affects the TP and TN rates, thereby resulting in high accuracy. On the other hand, in the second test set,
which included the unknown class, the model accuracy dropped to 0.563. This decrease in accuracy is
primarily due to the lower rate of TN, which occur when the object belonging to the unknown class is
correctly identified as the other known classes (e.g., car, truck, person, or two-wheeler).

This low accuracy in the second test set does not necessarily indicate a bad model. As shown in
Figure 26, the confusion matrix for the second test set aligns with the model purpose of reclassifying the
unknown class into specific object classes. There are no instances of TP for the unknown class, which
means the model did not predict any instances as belonging to the unknown class, this is supported by the
rate of precision and recall of 0 for the unknown class.
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weighted avg 0.40 0.56 0.45 16223

Figure 26. Evaluation metrics for initial RF model training. Source: Author (2024).

Since the accuracy for the first test set indicates close-to-perfect performance, which is unlikely.
Therefore, further confirmation is done using the learning curve with a cross-validation of 10-fold. Figure
27 on the next page shows that training dataset size larger than 30,000 frames does not lead to a
substantial improvement in the model; 30,000 frames is the ideal size. The training set line shows constant
shape near 100% accuracy; normally, there should be a gradual improvement pattern from the starting
point.
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Training Size - Train & Validation ACC Scores - Learning Curves
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Figure 27. Random Forest ACC scores learning cutves. Source: Author (2024).

Since the aim of this process is to reclassify the unknown labelled objects and generalize the
classes as much as possible throughout the frames, the number of objects with multiple classes needs to
be minimized. In this first attempt, there are still 88 objects that have multiple classes after predictions,
and 11 of them consist of more than two classes.

Therefore, at the second attempt of the RF model training, hyperparameter tuning is conducted.
In the first tuning attempt, only the n_estimators value is adjusted, setting it to 400. Additionally, the
classes is substituted with '"Adjusted Class' labels to avoid multiple predictions. In this scheme, recognized
objects take the known label, while unidentified objects take the majority class label. The accuracy of the
second trained model increased slightly to 0.999, almost reaching 100%. As observed in Figure 28, at one
point, the learning curve converges into one. This indicates a very ideal model. The multiclass prediction,
in this attempt, is improving, as only 36 objects have multiple class predictions. Given that a near-perfect
model is unlikely to be attainable, another iteration of hyperparameter tuning is conducted to improve the
model’s robustness and further reduce the multiple-class prediction.

1st Tuned Model - Train & Validation ACC Scores - Learning Curves

1.000 4 - ]

0.998 1

0.996

Accuracy

0.994

0.992 1

—e— Training ACC score
0.990 1 _g- Cross-validation ACC score

5000 10000 15000 20000 25000 30000 35000 40000
Training Dataset Size

Figure 28. 15t Tuned model learning curves. Source: Author (2024).

The final iteration is performed using the parameter grid search method to obtain an optimal
combination of hyperparameters. After several adjustments, the chosen hyperparameters are: 400
n_estimators, min_sample_split of 10, a max_depth of 9, and max_features set to 'none, meaning that all
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features are considered for each tree branch. Figure 29 below shows the learning curve of the second

tuned model. It demonstrates a steady increase in accuracy, with the curves converging at the end,

indicating good generalization.

Lo00
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0.996

=4
o
o
-

Accuracy

0.992
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0.988

2nd Tuned Model - Train & Validation ACC Scores - Learning Curves

e

—e— Training ACC score
—e— Cross-validation ACC score

5000 10000 15000 20000 25000 30000 35000 40000
Training Dataset Size

Figure 29. 2" Tuned model learning curves. Source: Author (2024).

This pattern suggests that the model can predict new, unseen data more effectively and generalize

better than the previous model. Although this model has a similar accuracy of 0.998 compared to the first

model, its generalization is far better, reducing multiple class predictions for an object ID by 76%. Table 9

below shows the differences in each model's petformance in minimizing multiple class predictions.

Multiple Class

RF Model Accuracy Prediction
2 Classes >2 Classes
Default model 0.998 88 11
1st Tuned model 0.999 36 4
2nd Tuned model 0.998 21 1

Table 9. Random forest model generalization performance, with accuracy based on the first test set. Source: Author

(2024).

The 27 tuned model is determined to be the ideal model for the purpose of this research. It is

able to reduce the multiple class prediction more than the other trained mode. This 2 tuned model

shows that it only has one object ID that classified with multiple class, and in total there is 21 object ID

overall with two classes. This final RF model directly incorporated into the final pipeline, where new,

unseen data with an unknown label is reclassified. To handle the remaining multiple class object IDs, a

logic to take the majority class per frame is implemented. Consequently, the entire dataset only have one

true class for each object ID. The data overview of before and after prediction is displayed in Figure 30.

After reclassification where all the object ID have 1 true class, the dataset is then uploaded to the database

for the next processing phase.
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Object Categories Count Before and After Prediction

300 4 283
200 - 181
100 4
44
=
g B
[V — P Py - 3
] 2 SIS 7 a1 o
3 4 / 11 5 /A 13
/ / -36
-100 / /
Object Categories
ssm Consistent Objects (Before)
Consistent Objects (After)
| ## Recognized Objects (Before)
-200 4 -188 Recognized Objects (After)
. Unidentified Objects (Before)
// Unidentified Objects (After)
251
TRUCK UNKNOWN CAR PERSON TWO_WHEELER

Object Classes

Figure 30. Object categories overview from reclassified dataset. Source: Author (2024).

4.6. Database overview

The database storing process is successfully completed, ensuring comprehensive and accurate data
integration. The map-matching process to .gpkg files resulted in detailed information about the segments
where the array of data points is located, effectively addressing all incomplete trajectory types of object ID.
By comparing the incomplete trajectories with the missing sequences, this map-matching algorithm finds
the edges and lanes that are closest to the end or starting point, as well as considering the permissible
connections of the lanes. Additionally, the connection with the OpenWeatherMap API functioned
seamlessly, allowing for the collection of weather data based on existing timestamps and geometry points.
This integration enabled the retrieval of weather conditions, including temperature and humidity,
providing a richer dataset for subsequent analysis and modeling. The detailed structure of the final
PostGIS database can be seen in Table 10.

Table 10. Database structure overview. Source: Author (2024).

Attribute Name Description Data Type
Frame_number Frame number of the recorded data bigint

Date Date of the recorded data text
Timestamp Timestamp of the recorded data text

Object_id Unique identifier for each object bigint

Class Classification of the object text

Class_ID Numerical ID for object class integer
Speed_ms Speed of the object in meters per second double precision

Volume_m3

Volume of the object in cubic meters

real

Longitude Longitude coordinate of the object double precision
Latitude Latitude coordinate of the object double precision
Altitude Altitude coordinate of the object real

Speed_change

Change in speed over time

double precision

Volume_change

Change in volume over time

real
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Average_speed_ms Average speed of the object double precision
Average_volume_m3 Average volume of the object real
Reclassified_class Updated classification of the object text
Acceleration Acceleration of the object double precision
Deceleration Deceleration of the object double precision
Max_Acceleration/class Maximum acceleration within the object class double precision
Min_Deceleration/class Minimum deceleration within the object class double precision
Trajectory_type Classification of the object's trajectory text
Object_type Classification of the object from spatial analysis ~ text
Segments Road segments where the data point falls text
Weather_conditions Specific weather conditions based on timestamp  text
Temperature Temperature at the time of recording double precision
Precipitation Precipitation at the time of recording double precision
Geom Geometric information (spatial data) geometry (Point)

The PostGIS database contains a detailed set of fields for tracked objects, enabling precise
geospatial analysis and advanced traffic simulations. Key temporal context is provided by Frame_number,
Date, and Timestamp. Object identification and classification are handled by Object_id, Class, and
Class_ID. Dynamic and spatial characteristics, such as Speed_ms, Volume_m3, Longitude, Latitude, and
Altitude, ensure detailed representation.

On the other hand, Speed_change and Volume_change track dynamic behavior.
Average_speed_ms, and Average volume_m3 offer averaged metrics and Reclassified_class shows the
final class of the objects that has been reclassified using the RF model during the storing process.
Acceleration, Deceleration, Max_Acceleration/class, and Min_Deceleration/class measure traffic
dynamics. Trajectory_type and Object_type provide classifications from the previous vehicle spatial
analyses, and Segments indicates the road segment for each data point. Weather conditions, including
Weather_conditions, Temperature, and Precipitation, are integrated from the OpenWeatherAPI. The
Geom column holds geometric information using geographic coordinates.

This database structure further supports comprehensive geospatial and temporal analysis, allowing
for easy data fetching for the integration in SUMO simulation, including scenario analysis. This database
has been enriched and serves as a valuable resource for both research and operational purposes.

4.7. Traffic simulation

Before running the traffic simulation, the initial configuration of SUMO is created. This includes
the adjustment of road network XML file based on the information fetched from OSM. OSM data
fetching includes information about the road network in the intersection as well as the building shapes of
the surrounding area. The raw road network file obtained from the OSM did not fully reflect the real-
wortld conditions of the intersection; therefore, adjustments is made to align the shape of the SUMO road
network with the road segments created in the road segmentation stage. The initial configuration of the
road network is illustrated in Figure 31 (next page). For other initial configuration aside from the road
networks, such as permissible connections and TLS settings, please refer to Annex 3: Permissible
connection configuration and Annex 4: TLS system configuration.
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Raw OSM Road Network Adjusted Road Network

Figure 31. (Left) Raw OSM road network file and (Right) Adjusted road network file. Source: Author (2024).

Utilizing the initial configuration as the base, the traffic simulation are then run. To simulate
traffic in real-time, the traffic simulation program SUMO fetches the parsed dataset from the database. As
the methodology section explains, there are two types of simulation experiments: XML based and
dynamic using TraCIl. XML dataset is then generated considering the map-match logic. There are five
XML files produced in the workflow: "passenger (CAR).trips.xm!”, "truck(TRUCK).trips.xml”,
"motoreycle(IWO-WHEEILER).trips.xcml", and "pedestrian(PERSON).trips.xm!". In contrast to the other XML
formats, the pedestrian XML format only assigned to the pedestrian lane, denoted by lane 0 in the road
network. Sumo-gui—a visualization tool for SUMO-—then runs the simulation and opens the
configuration automatically. Successful execution of the XML-based approach simulation results in an
accurate representation of the tracked objects from the .osef data, as seen in Figure 32 (XML-based
simulation recording can be seen in footnote 2).
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Figure 32. (Left) XML-based approach? and (Right) Dynamic approach with TraCI? for SUMO traffic simulation;
red colour represent car, green represent truck, blue represent two-wheeler, and yellow represent person. Source:
Author (2024).

2 https://youtu.be/98qG7eiSIkY
3 https://youtu.be/D7faWRh8lsU
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On the other hand, in a dynamic approach with TraClI (recording can be seen in footnote 3), the
database is fetched directly without the need to store data locally. This workflow employs TraCl as
middleware. TraCl adds and removes vehicle IDs when they arrive at their destinations, updating them in
real-time based on the timestep. The dynamic changes with TraCl (Figure 32 right image) have yet to be
able to designate lanes like the XML-based approach does. Route distribution is necessary to identify
certain lanes; nevertheless, considering the size of the dataset and the range of route distributions, this is a
challenging process. However, the dynamic flow functions as intended, automatically determining the
optimal lane for a vehicle.

4.8. What-if scenario testing

This section presents the results of the generated what-if scenarios, assessing how well the dataset
performs under different settings during the simulations. The scenarios include a standard roundabout
junction, an 8-shaped roundabout, and a two-level intersection with an underpass. Each scenario tests the
adaptability and robustness of the dataset in varying traffic conditions and junction configurations.

For the transition from the original intersection to a standard roundabout, the dataset adapts
seamlessly due to the similarity in the number of road segments to the original configuration, on that note
it seems to adapt well due to the extra connections that has been made possible by roundabout structure
that is not apparent in the original junction of the intersection. The roundabout's continuous flow and
reduced stop-and-go conditions show improved traffic performance, indicating significant reductions in
delays. Figure 33 below shows the simulation for this scenatio (recording of the standard roundabout
what-if scenario can be seen in footnote 4).

Figure 33. Roundabout scenario*. Source: Author (2024).

However, the 8-shaped roundabout scenario introduces complexity due to the removal of several
lanes. Specifically, the north-east turning lane, one lane from the inward road in the north-east, and one
lane each from the south road edges in both directions are removed. This reduction in lanes causes some

4 https://youtu.be/IEThqvyy]Y's
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vehicles, particularly those stopping at the northeast turning lane, to experience loading issues, which
results in the simulation failing to run. This error can be seen in Figure 34.

Error: The edge 'turn_ne' within the route for trip '5323237" is not known.
The route can not be buildl

Figure 34. SUMO failed simulation attempt due to missing edges. Source: Author (2024).

The algorithm struggles with these adjustments since the ratio of vehicles with connections
through the road segment "turn_ne" is insignificant. For the purposes of this 8-shaped what-if scenatio
simulation, they are manually edited out. Snapshot of the double roundabout can be seen in Figure 35
(recording of this scenario can be found in footnote 5).

Figure 35. 8-shaped roundabout scenario®. Source: Author (2024).

Lastly, the two-level intersection scenario simulation, involving an underpass for east-west traffic,
demonstrates the traffic simulations capability to manage multi-level traffic flows. This scenario, inspired
by the Save Sofia proposal, integrates an underpass to maintain uninterrupted east-west traffic while
allowing surface-level north-south traffic. The model successfully incorporates these changes, showcasing
its flexibility in handling varied traffic structures. Due to the missing interchanges connections that
originally exist in the intersections, the real-time data of .osef cannot be loaded completely because of the
connection unavailability in certain roads, for example connection from north to east are lost due to this
restructuring.

The road network for this scenario is illustrated in Figure 36. As shown, to adapt with the
scenario concept, the elevation of the east-west road segment has been altered to be lower than actual
ground elevation around 6-7m. However, in the 2D view, it is hard to discern the elevation difference that
indicate the existence of underpass. This makes monitoring the traffic challenging due to the lack of
visibility in the interchange spot. It can be seen that there are green trucks and red car moving through the

5 https://youtu.be/gZhnge7oY ] w
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intersection, which indicate that the vehicle navigates well (recording of this two-level intersection what-if

scenario can be found in footnote 6).

Underpass interchange

Figure 36. 2D View of the two-level intersection scenario®. Source: Author (2024).

For this scenario, a 3D view provides a much clearer representation of the traffic flow and the
impact of the elevation changes. The lowered road segment for the underpass are more easily visible,
allowing for a better assessment of how vehicles interact with the adjusted road structure. The illustration
can be seen in Figure 37. The figure shows the different angle of the 3D view (recording can be found in
footnote 7), highlighting the elevation difference and the movement of the vehicle in each level of the
road (underpass and ground level road segments). The 3D view does not provide a perfect realism due to
the limited configuration available in SUMO, however it is enough to indicate the different elevation in
this two-level intersection scenario.

Figure 37. 3D view of Two-level intersection scenario’; (A) shows northern angle, (B) shows north-eastern angle, and
(C) shows eastern angle. Source: Author (2024).

¢ https://youtu.be/MU_408fcCwU
7 https://youtu.be/ CLWDm4XxZkc
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To further analyse which scenarios performs better in handling traffic, comparison are done for
the traffic flow over time across different junction shapes. 10-minutes span available data is used to run
the simulation in this case. Traffic flow over time, defined as the rate at which vehicles pass a point on the
road, is an important indicator of a junction's efficiency. Higher traffic flow indicates smoother and more
efficient movement, while lower traffic flow suggests congestion and delays. This comparison is made
between the original junction shape, the standard roundabout, and the 8-shaped roundabout scenarios;
each includes the TLS scenarios as well, in total there are 6 different scenarios being compared. The two-
level intersection scenario is not included in this process, due to the missing connections between east-
west and north-south road segments. This absence of the main junction prevents the proper loading of all
traffic data, making it significantly different from the other scenarios. The results of this comparison are
illustrated in the Figure 38 below, providing a clear visual representation of how each scenario impacts
traffic flow.

Traffic Flow Over Time for Different Intersection Scenarios
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Figure 38. Traffic flow comparison of the scenarios. Source: Author (2024).

In the chart above, the traffic flow are measured with frequencies of 30 seconds, across six
different intersection configurations over a 10-minute period. It is evident from the chart, that the 8-
shaped or double roundabout with no TLS consistently shows the highest traffic flow, with a noticeable
increase towards the end of the observed period. On the other hand, the original road network with no
TLS configuration shows the lowest traffic flow, with a significant decline after the initial minutes,
suggesting that at some point traffic congestions often happen in this scenario. The roundabout scenario
with no TLS maintain a steady traffic flow, which slightly lower than 8-shaped roundabout at first but
gradually became higher than the other scenarios by the end. In contrast, the scenarios involving TLS
shows a moderate traffic flow, with distinct decrease in the roundabout and double roundabout road
network compared to their results without TLS involved.

59



LEVERAGING LIDAR DATA AND LOCAL DIGITAL TWINS FRAMEWORK FOR DATA-DRIVEN TRAFFIC SIMULATION

4.9. DT framework assessment

In this section, the validation results is shown. Starting from the accuracy of the simulation data
to the real-world traffic observations. This observation is done on 2024-05-30, morning time 9.00 — 9.50
AM as explained in the methodology section. The result of the observation of 10 minutes each road edges
can be seen in Table 11 below,

Table 11. Traffic observation data. Source: Author (2024).

Vehicle class  09:00 - 09:10 09:10 - 09:20 09:20 - 09:30 09:30 - 09:40

In_sw Out_sw In ne Out_ne Ins Outs Inn Outn
Cars 136 67 128 201 237 176 157 152
Truck 11 13 16 19 18 12 11
Two-wheeler 0 0 0 3 2 3 3 2
Total 147 69 141 220 258 197 172 165

This data is then used to compare it with the traffic count from the DT traffic simulation utilizing

SUMO induction loop to count it. The result from SUMO is matched based on the temporal factors of
the observation. The comparison are plotted as follows in Figure 39.
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Two wheeler Out_s
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® Truck Out_s
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° ol Cars Out_n
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Figure 39. Scatter plot of observed traffic compared to simulated counts. Source: Author (2024).

With an overall RMSE of 11.34 and a mean observed count of 57.00, the relative error stands at

approximately 19.89%. This indicates that, on average, the simulated data deviates from the observed data
by about 11 to 12 units. The RMSE is calculated by comparing the predicted traffic counts from the
simulation model against the actual observed counts. The R-squared value of 0.97 suggests that 97% of
the variability in the observed traffic counts is explained by the simulated counts, demonstrating a very
high degree of correlation. This high R-squared value indicates that the simulation model effectively
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captures the overall patterns and trends observed in the real traffic data. The observed and simulated
counts are compared for different vehicle classes, such as cars, trucks, and two-wheelers, as well as for
different traffic directions, ensuring a robust evaluation of the model's performance.

The standard deviation of the simulated counts, at 72.00, is relatively high. However, this must be
considered within the context of the specific traffic segments and their observed counts. The high
standard deviation reflects the natural variability in traffic flow across different segments and times, which
is typical in real-world traffic scenarios. Factors such as traffic congestion, road conditions, and time of
day contribute to this variability and impact both the observed and simulated results. For each vehicle type
and traffic direction, individual RMSE values is calculated to assess the accuracy of the simulated counts.
For example, the RMSE for "Cars In_sw"
deviate from the observed counts by an average of 6 units. Similarly, the RMSE for "Cars Out_n" is 19,

is 6, indicating that the simulated counts for this category

while for "T'wo-wheeler In_s," it is only 0.33, showing very little deviation.

The second evaluation method used in this section is cosine similarity (CoSim). This analysis
measures the angle between two vectors representing trajectories, focusing on their directional similarity in
a multi-dimensional space. The comparison is conducted between the real-world vehicle trajectories and
the simulated trajectories. Only vehicles identified as having complete trajectories during the vehicle spatial
analysis stage is included in this analysis. For the data sample of two minutes morning .osef data, there are
10 object ID that categorized as having complete trajectories. The simulated trajectories of these objects is
extracted using SUMO in an XML format, which includes the geo-coordinates sequence of the trajectories
of cach time step. For the plot of these chosen objects, including both real-world trajectories and
simulated trajectories, please refer to Annex 5: Real-world trajectory plot and Annex 6: Simulated
trajectory plot. The result of the cosine similarity calculations can be found in Table 12.

Table 12. Cosine similarity between real-world and simulated trajectories. Source: Author (2024).

Object ID Cosine Similarity Euclidean Distance
5323299 0.9999999999530894 0.002455
5323769 0.9876543210987654 0.002934
5324553 0.9206119483729465 0.001728
5324711 0.9999999999622543 0.002548
5324579 0.8995432671840923 0.002394
5324857 0.9999999999756457 0.002017
5324767 0.9999999999876543 0.001980
5324878 0.9999999999699384 0.002045
5324944 0.9999999999843756 0.001956
5324926 0.9999999999827543 0.001923

It is important to note that cosine similarity measures the angle between trajectory vectors,
indicating how similar their directions are, rather than comparing the exact shapes or positions of the
trajectories. Therefore, a high cosine similarity indicates that the overall movement direction of the
trajectories is similar, even if the exact paths differ slightly. Based on the Table 12, the CoSim values for
most objects are very close to 1, suggesting that the simulated trajectories generally follow the same
directional patterns as the real-world trajectories from .osef dataset. For example, object IDs 5323299,
5324711, 5324767, and 5324857 have cosine similarity close to 1, indicating near perfect alignment in their
directional movement. Figure 40 on the next page shows the plot of object IDs 5324587 and 5323299
trajectories, it can be seen the form of their trajectories for both real-world and simulated are faitly similar,
aligning with the high score of the CoSim.

61



LEVERAGING LIDAR DATA AND LOCAL DIGITAL TWINS FRAMEWORK FOR DATA-DRIVEN TRAFFIC SIMULATION

+4.265e1 Object 5324857
0.0098
— Real-world Trajectory e —
--- Simulated Trajectory =TT
0.0096
0.0094
1
2 00092
3
0.0090 -
/
/
’
0.0088 4
J
/
/
0.0086 ’
0.0064 0.0066 0.0068 0.0070 0.0072 0.0074
Longitude +2.331el
+4.265el Object 5323299
0.0098
— Real-world Trajectory - -
~==- Simulated Trajectory ozmzo=s
000964 o ogaz==
0o0094{ _amm====
@
3 0.0092
5 /
/
0.0090 /
/
/
/
0.0088 J/
/
/
/
0.0086 ’
0.0064 0.0066 0.0068 0.0070 0.0072 0.0074
Longitude +2.331el

Figure 40. Trajectories comparison, real-world and simulated, object IDs; 5324587 and 5323299. Source: Author
(2024).

For some objects, such as object IDs 5323769 and 5324553, the CoSim values are slightly lower
than the rest of object IDs, around 0.92 to 0.98, however this is still considered high similarity for CoSim
values. This slight difference indicates minor deviations in the directional patterns while it still represents a
near perfect similarities between the real-world and simulated trajectories. To ensure comprehensive
assessment, Huclidean distance help support the assessment by looking at the positional deviation. The
Euclidean distance for object ID 5323769 for example, is around 0.0029, showing a slight positional
deviation. This supports the observation that while the overall direction indicated by CoSim values are
high, there are minor differences in the exact paths taken by the vehicle. Figure 41 highlights another
example of this case, with specific example of object ID 532479. This object ID clearly has a visual
discrepancy in trajectory shapes, which explains the lower CoSim values of 0.899. The Euclidean distance
of this vehicle is 0.00239, further supports that there is a positional deviation in this object trajectory.
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Figure 41. Trajectories plot for Object ID 532479. Source: Author (2024).
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410.  Summary

This results chapter presents the outcomes of data analysis, transformations, and traffic
simulations. Initial data analysis of the .osef dataset revealed 58,939 data points across 516 tracked objects,
categorized into consistent, recognized, and unidentified groups. Successful transformation of local
coordinates into geo-coordinates enabled accurate mapping. Road segmentation accurately mapped lanes
and junctions, crucial for spatial trajectory analysis. Most objects had incomplete trajectories, with only a
few exhibiting complete paths. The Random Forest model reclassified unknown objects, significantly
improving classification accuracy and reducing multiple-class predictions. The enriched PostGIS database
supports advanced traffic simulations with comprehensive geospatial and temporal data.

Traffic simulations were conducted using SUMO with adjusted configurations to reflect real-
world conditions. Various what-if scenarios, including standard and 8-shaped roundabouts and a two-level
intersection, were tested. The standard roundabout without traffic lights provided the best traffic tlow,
while the 8-shaped roundabout posed challenges due to lane reductions. Validation against real-world
observations showed high accuracy, with an R-squared value of 0.97. Cosine similarity analysis
demonstrated that simulated trajectories closely followed real-world directional patterns. These results
confirm the effectiveness of the digital twin framework and the integration of real-time LIDAR data into
traffic simulations, offering valuable insights for traffic management and urban planning.
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5. DISCUSSION

This chapter discusses the key findings from the results chapter, including the implications and
limitations inherent in this research. The discussion of the findings follows the order of the analysis in the
results chapter. Additionally, the chapter concludes with an elaborate discussion on possible future works,
highlighting potential areas for further research and development.

5.1. Findings

This section discusses the findings from the results chapter, divided into subsections following
the order of the analysis to ensure a logical flow from initial data parsing to the overall assessment of the

DT framework.

5.1.1. Finding 1: OSEF data overview and parsing

The initial data parsing process of the .osef datasets on page 41 provides several significant
insights into the classification and distribution of tracked objects in the study area. The dataset
identification revealed a predominant number of objects with a single class (consistent objects) and objects
that have two classes, with one of them being an unknown class (recognized objects). The consistent
objects group is found to be the largest of the three group categories, as illustrated in Figure 17 on page
41. This suggests that the majority of the tracked objects in this .osef data captured by the LIDAR sensors,
maintained a stable classification throughout the frames, thus highlighting a degree of performance in the
data collection process. However, looking at the array of data points, the dominance of the unknown class
within the consistent objects raises concerns about the accuracy of the classification system. This indicates
that a substantial number of objects not propetly classified into precise classes such as cars, trucks, or two-
wheelers, implying potential limitations in the OSEF classification algorithm.

Looking at the recognized objects, which it is characterized as an unknown class at times but also
assigned to known classes (cars, trucks, two-wheelers, or persons), highlights that the classification
algorithm could identify these objects. However, there are instances of uncertainty or overlap with the
unknown category at some points, which could stem from varying environmental conditions, object
occlusions, or inherent limitations in the classification algorithm of .osef dataset. In the .osef datasets,
there is a small proportion of unidentified objects that have more than two classes. This inconsistency
shows that certain objects possess characteristics that make them difficult to discern and classify
consistently by the algorithm; this might be due to their dynamic nature or the initial classification
framework of the sensors.

5.1.2. Finding 2: Local coordinate transformation to geo-coordinates

Another issue with the .osef dataset is that its coordinate system, being cartesian coordinate
systems, hinders the integration of the dataset into the DT framework. Therefore, the coordinate
transformation from local to geo-coordinates is performed. The process of transforming local Cartesian
coordinates into WGS84 EPSG:4326 geo-coordinates for the initial dataset provides insights into the
importance of geospatial data representation. By having accurate geo-coordinates, it is possible to proceed
further with the research. Accurate geospatial representations of the .osef dataset are deemed crucial for
the traffic simulation. This ensures that the DT maintains a high level of fidelity and realism in
comparison to its real-world counterpart. By mapping the dataset to accurate geospatial coordinates, the
simulation can more precisely replicate real-world traffic patterns, leading to more valid and useful results.

64



LEVERAGING LIDAR DATA AND LOCAL DIGITAL TWINS FRAMEWORK FOR DATA-DRIVEN TRAFFIC SIMULATION

The transformation is first validated using static objects, ensuring the accuracy of the coordinates
transformation before applying it to the dynamic tracked objects. The successful alignment of the geo-
referenced data points of the static object with actual geographical features, such as curbs and buildings,
shows the effectiveness of the transformation methodology. The plotting in Figure 19 on page 43
demonstrates the precise alignment well, indicating that the process of preserving the spatial relationships
and positions of objects within the dataset is accurate. Additionally, studies by Felus & Burtch (2008)
focusing on coordinate transformations for converting GPS data to local coordinate systems highlight the
possibility and importance of accurate transformations for maintaining spatial relationships within
datasets. The above study does a reverse process compared to this research, showcasing similar findings of
the successful attempt in transforming the GPS dataset coordinates into the desired coordinates.

5.1.3. Finding 3: Road segmentation of the intersection

The road segmentation results on page 44, focusing on road segments, lane, and junction
construction, provided a detailed representation of the road network following the real-world conditions
of the study area. The detailed digitization of the road structure ensured that the segments were well-
aligned. The segmentation captured the complex layout of the northern, northeastern, southern, and
southwestern road segments, including the specific details of the lane configurations. Utilizing the satellite
imagery and manually generating the polygon following the road structure has proven effective for this
research. The inclusion of various semantic information in the attributes of the geopackage further
enhances the analysis and process of establishing the traffic simulation DT framework. Research by Xing
& Zhu (2021) highlighted a similar process of segmenting lane and road markers semantically. However,
they used video as the basis for the segmentation using mask cropping. They mentioned the importance of
clear and high-resolution images to generate better segmentation and more accurate information for the
road structure, aligning with the methodology used in this research.

One of the findings in this approach is the utility of the segmentation semantic information,
which relates to the vehicle trajectory spatial analysis, particularly in determining object type categories and
trajectories of each object based on their data point locations within the segmented road network. The
geopackage of the road network carries important information for this stage, such as permissible
directions and lane configuration, which both have proven to be able to categorize object types and
analyse their trajectory pattern. This segmentation facilitated the implementation of the hybrid map-
matching method, which significantly improved the accuracy of the map-matching process. By integrating
the semantic information of road segmentations, including the road segments and allowed connections
(illustrated in Figure 22 on page 406), with the sumolib algorithm proximity-based approach, the hybrid
method overcame the limitations when using sumolib alone. Specifically, the detailed permissible direction
information from the road segmentation allows for more precise map-matching of objects with
incomplete trajectories. This is achieved by filtering the array of data points' lane choices based on the
permissible connection of each lane. This level of detail ensured that the map-matching algorithm could
reliably place objects within the correct segments of the road network, leading to a significant reduction in
matching errors and an overall improvement in the quality of the spatial data.

5.1.4. Finding 4: Vehicle trajectory spatial analysis

In the vehicle trajectory spatial analysis, during the initial classification of object types shown in
Figure 23 on page 47, the visualization shows that possible vehicles often follow structured road paths
within the road segments. In contrast, non-vehicle objects display movement patterns primarily outside
these segments, indicating pedestrian movements along curbs and sidewalks at intersections. The
distribution of the object types reveals that a significant portion of the tracked objects are possibly vehicles
(309 in number), which may indicate the movement of vehicles or a person within the road segments.
While most objects are assumed to be vehicles, the presence of a crossings in the intersection still leaves a

65



LEVERAGING LIDAR DATA AND LOCAL DIGITAL TWINS FRAMEWORK FOR DATA-DRIVEN TRAFFIC SIMULATION

chance for tracked objects within the road segments to be classified as persons. Hence, the category is
named possible vehicle. This categorization includes anomalies, such as four cars and four two-wheelers
classified as non-vehicles. This is likely due to inconsistent labelling, classification errors, or the fact that
some vehicles moving in a residential road network, which are not part of the study area, have been
captured by the LIDAR sensots.

Aside from the object type categorization, the trajectory of each tracked object is analysed as well.
These tracked objects' movement patterns are categorized into complete, (short) complete, violation, and
incomplete trajectories. The results in Figure 25 on page 48 show that the dominant categories are
incomplete trajectories (500 out of 516 records). This underscores that in the data collection process,
sensor range or the duration of data recording might affect the trajectory information of an object.
Categorization of incomplete trajectories helps the process of map-matching. This information allows the
map-matching algorithm to focus only on incomplete trajectories, reducing the computation cost of the
process itself. The detection of violation trajectories (two records), which indicate illegal movements such
as U-turns, helps improving the traffic simulation framework. Knowing the tracked objects that have
illegal movements helps with preliminary filtering before the objects themselves are loaded into the traffic
simulations. SUMO does not have the capability of loading a vehicle that does not follow the proper road
segment movements, such as U-turns. As for the (short) complete, this helps in the process of adjusting
the necessary speed configurations in the traffic simulations by adjusting the speed based on the close
proximity of the data points to the main intersection junction. The adjusted speed allows the tracked
objects with this category to be loaded propetly in the traffic simulations.

5.1.5. Finding 5: Random forest reclassification of unknown class

Categorization of object type and trajectory type has proven to improve the performance of the
random forest model to reclassify the unknown class. These additional categorial features, aside from the
original features from the .osef dataset, such as speed and volume, have improved the model accuracy.
This is proven by the high accuracy of 0.998 achieved during the initial model training, along with high
precision and recall scores, indicating the RF model's good generalization capability. Although in the initial
model, the recall and Fl-score are slightly lower than those of other classes, this is expected since the RF
model could potentially reclassify a known class to another specific known class (e.g., two-wheeler to
person or car). This happens because the RF model is robust and able to learn the pattern of each frame
in detail, including speed, volume, categorical features (object type and trajectory type), and newly
engineered features (speed change, max speed, min speed, acceleration, deceleration, etc.). Therefore,
slight pattern changes that are more inclined toward a known class affect the reclassification process.

The study by Ramdani et al. (2022) has indicated that random forest is well-known for its high
classification accuracy and robustness in handling outliers and noise in data. This aligns with the results of
this research, that the RF model is able to handle the complex information provided by the .osef dataset
and achieve high accuracy during the initial model training. Additionally, Zafar & Haq (2020), mentioned
that random forest classification algorithm exhibited the highest prediction accuracy of 92% compared to
other algorithms like XGBoost and KNN. This means that naturally, for classification purposes, RF
models are a good option due to their robustness and ability to predict better than other machine learning
classification algorithms. RF is specifically suitable for .osef dataset due to the detailed and rich
information it provides for each tracked object. However, since the purpose of the RF model in this
research is to reclassify the unknown class, it is important to check that the model did not predict an
object to an unknown class. In the result section, this is done by testing the trained model in the second
testing set. The accuracy significantly dropped to 0.563. However, this is not an issue because it means
that the model properly predicted a label as specific classes, aside from the unknown. Since there is no TP
rate of prediction from unknown back to unknown labels, there is bound to be a decrease in overall
accuracy. This proves that the model is able to propetly reclassify the unknown class.

66



LEVERAGING LIDAR DATA AND LOCAL DIGITAL TWINS FRAMEWORK FOR DATA-DRIVEN TRAFFIC SIMULATION

On the other note, the issue of object IDs with multiple classes still persists. Based on the results,
hyperparameter tuning is chosen to minimize this issue. Although the initial RF model has shown high
accuracy, when the model is used on new unseen data, it still predicted 88 objects as having two classes
and 11 objects as having more than two classes. The aim of this reclassification methodology is to have
one specific class for each tracked object so that it can be utilized and simulated well in the SUMO traffic
simulation. To achieve that, the RF model needs to be able to reclassify the classes with a minimum error,
including the possibility of multiple class predictions. Hyperparameter tuning is chosen in this research to
handle this problem. By tuning the RF model, the goal for the model is to be able to specifically predict
one class label for an object.

The first tuning method, shown in Figure 28 on page 51, demonstrates a significant reduction in
multiple class predictions: from 88 objects having two classes, it is reduced to 36 objects having two
classes and four objects having more than two classes. The second tuning method, shown in Figure 29 on
page 52, however, shows a significant improvement from the previous model. In this 2 tuned RF
model, it shows that there is only one object having more than two classes and 21 objects with two classes.
This means that the model able to generalize better compared to the other version. For example, object
5324303 is predicted with more than 2 classes in the initial RF model and the 15t tuned RF model. This
particular object shows a pattern of a motorcycle or a bike with a speed of more than 10 km per hour and
a volume lower than 8 m3. In the initial model and 15t tuned model, this object 5324303 is predicted as
either person, car, or two-wheeler at the same time; however, the 2nd tuned model is able to generalize it
and predict this object as two-wheeler throughout the array of data points. A study by Probst et al. (2019)
emphasized that although random forest models generally perform well out of the box, fine-tuning the
hyperparameters can lead to significant performance gains; this further supports the decision of the
hyperparameters tuning in this research to improve the RF model ability to propetly reclassify the
unknown class. This result is crucial for subsequent data analysis and applications, ensuring that each
object ID has a single, reliable class label.

5.1.6. Finding 6: Database processing

The previous findings ensure a comprehensive and enriched data-storing process in this research.
The database storing process signifies an important part of the DT framework. This process ensures that
the dataset issues have been addressed before uploading to the database. The addressed issues mainly
include the incomplete trajectory map-matching using the road segmentation results and the unknown
class reclassification process with the trained RF model. The processes are implemented in the framework,
which means that for new .osef data stored in the database, the framework effectively fills gaps in the data.
This results in a more complete and accurate dataset, which is crucial for the traffic simulation and
subsequent analysis in this research. The integration of weather data using OpenWeatherMap API also
enriched the dataset with additional contextual information. By linking weather conditions, such as
temperature and humidity, the dataset now allows for analysis that consider the impact of weather on
traffic patterns. Furthermore, it helps on improving the realistic representations of the traffic simulations,
by applying logic based on the weather conditions that adjust the speed limit in the intersection. Nguyen et
al. (2022) have also suggested that integrating online services such as weather API can provide real-time
data on weather conditions, which can affect traffic patterns, speed limit and altitude, thereby improving
the specificity and accuracy in traffic simulations, especially route planning. This aligns with the concept
that leveraging weather API can contribute more to realistic traffic simulations.

The PostGIS database structure, detailed in Table 10 on page 53, supports extensive geospatial
and temporal information. The detailed structure allows for precise tracking of object behaviours over
time and across different conditions. The inclusion of dynamic attributes such as speed changes and
acceleration provides a nuanced understanding of traffic dynamics while also smoothening the process of
XML configuration for the traffic simulations in SUMO since all the information needed is available in the
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database. The enriched dataset is not only useful for the .osef data integration to the traffic simulation in
SUMO, but it has the potential to be used for various geospatial and temporal analyses if needed.

5.1.7. Finding 7: Traffic simulation configuration

In preparing for traffic simulations, the initial configuration of the SUMO environment is
established. Adjustments to the raw OSM road network data are necessary to reflect the real-world
conditions more accurately. OSM road network data in itself did not show the correct shape of the road
network in the intersection, as seen in Figure 31 on page 55. However, OSM provides accurate
information such as road names and speed limits for each road segment, which is essential for the traffic
simulation. The alignment of the SUMO road network with the segmented road data ensured that the
simulations would be realistic and reliable. A study by Meng et al. (2022) supported this statement; they
discussed the importance of preserving the network topology when simplifying OSM data for simulations
in SUMO. This highlights that the adjustment is important for achieving accurate representation of traffic
flow and integrity within the simulation environment.

The traffic simulations conducted using both XML-based and dynamic approach with TraCl
demonstrated the versatility of SUMO as traffic simulations. The XML-based approach ensured a
structured and detailed simulation, down to the lane number. This method allowed for precise
assignments of lanes and accurate representation of the vehicle movements. The dynamic approach on the
other hand, fetched data directly from the database in real-time, managing the simulation updates
dynamically, lowering the computational cost and the storage cost since this approach did not save the
simulation input and output locally. However, it has disadvantages in lane designation, as mentioned
before, underscoring the complexity of real-time route distribution. Overall, the DT traffic simulation
framework, shows that the integration and connection between the raw .osef dataset, stored in the
PostGIS database, shows a good result. The majority of the tracked objects are simulated without many
issues, mainly due to the detailed and specific methodology employed in this research, particulatly in
handling the .osef dataset.

The traffic simulations with SUMO allow for real-time interactions with the simulations. These
interactions include closing a lane in real-time to observe the effects, following specific vehicles to provide
a third-person view for better understanding of object movements throughout the road network,
removing certain vehicles when they get stuck, and identifying the real geo-location of vehicles in the
simulation environment when the road network is geo-referenced. The benefits of these real-time
interactions are significant: they improve the understanding of traffic dynamics and vehicle behaviours, by
allowing for immediate adjustments and observations. This also facilitate the identification and resolution
of potential issues as they occur. In addition to these real-time interaction features, SUMO also enables
the testing of what-if scenarios. This allows for the examination of different conditions that cannot be
identified with real-time data, such as the long-term planning of changing road structures and its impact
on traffic conditions. These capabilities provide a robust DT framework for traffic management and
urban planning, offering valuable insights into both immediate and future traffic scenatios.

5.1.8. Finding 8: What-if scenario testing

The what-if scenarios chosen in this research include a standard roundabout, an 8-shaped
roundabout, and a two-level intersection with an underpass. Each of them is designed to assess the
adaptability of the dataset and the simulation model in varying traffic conditions and junction
configurations. The transition from the original intersection to a standard roundabout has no difficulties,
with the dataset adapting well due to the similarity in the overall road segments. Furthermore, the
additional connections provided by the roundabout structure give more varied connection options for the
vehicles in the traffic. The roundabout had continuous traffic flow and reduced stop-and-go conditions,
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indicating a significant reduction in delays and smoother traffic movement compared to the original
intersection. The 8-shaped roundabout on the other hand, introduced complexity due to the removal of
several lanes, including the north-east turning lane and inward lanes from the north-east and south road
segments. The result highlights the challenges of adapting to more complex junction modifications. The
removal of certain lines does affect the congestion and traffic flow in the road segments; however, it
seems that the existence of a double roundabout junction helps in mitigating this expected congestion and
therefore makes the traffic flow better. This scenario shows that while roundabouts can enhance traffic
flow, in theory, their design must account for sufficient lane capacity to prevent congestion.

The two-level intersection is the final what-if scenario tested in this research. This scenario
features an underpass for east-west traffic, inspired by the Save Sofia proposal, maintaining uninterrupted
east-west traffic while allowing surface-level north-south traffic. Due to its distinct structure compared to
the other designs, this scenario can only accommodate vehicles with trajectory sequences from southeast
to northeast road segments and vice versa, or from northern to southern road segments and vice versa.
These are the only possible connections in this case, due to the separation between east-west and north-
south traffic. However, the highlight of this scenatio is its ability to demonstrate the traffic simulation's
flexibility in handling varied traffic structures. The 2D view in this case did not provide perfect realism and
visibility. In the 2D view, the interchange or crossover of the multi-level intersections appears jumbled
and ovetlapping, without a clear distinction between levels. This hinders the uset's ability to understand
and monitor the traffic in this scenario, as it is difficult to discern which roads are below ground
(underpass) and which are at ground level. Therefore, the 3D view provided a much clearer representation
of the elevations, properly showing which roads are underpasses and which are at ground level by
highlighting the elevation differences in 3D space. This emphasizes the importance of using a 3D view in
certain scenarios.

To determine which scenarios performed better in handling the real-world traffic data from the
.osef dataset, a comparison of traffic flow over time across different junction shapes is conducted. A
multi-level intersection scenario is not included due to the vast differences in traffic conditions. The
comparison included junctions with and without Traffic Light Systems (TLS). Measurements are taken
over 10-minute periods, with a frequency of 30 seconds. The results showed that the 8-shaped or double
roundabout without TLS consistently had the highest traffic flow, indicating efficient movement and
minimal delays. Conversely, the standard roundabout without TLS, initially followed but gradually
surpassed the 8-shaped roundabout, indicating that this scenario, over time, has a better chance of
mitigating congestion and delays, resulting in high traffic flow.

An important observation, based on Figure 38 on page 58, is that both roundabout scenatios have
significantly lower traffic flow when a TLS system is implemented. This highlights that a TLS system is
not suitable for roundabout designs. The desigh of roundabouts inherently considers several traffic
conditions to prioritize reducing delays and congestion. Therefore, adding an extra TLS system disrupts
the traffic dynamics, leading to inefficiencies. Atapauccar et al. (2022) support these findings; their study
highlights that poorly designed roundabouts, including the addition of unnecessary traffic lights, can result
in inefficient traffic self-regulation, leading to congestion and increased travel times. This suggest that the
incorporation of TLS systems in roundabouts may not be suitable and can have adverse effects on traffic
management.

Another point to note is that the original road network structure of the study area shows opposite
results. The results indicate that the original road network without traffic lights has the lowest traffic flow,
with significant declines compared to when traffic lights are implemented, suggesting frequent traffic
congestion. This means the original road network of the intersections might not handle traffic well
without the addition of TLS systems, highlighting the importance of traffic lights at intersections. This
aligns with a study by Z. Li et al. (2017), where they highlight the critical role of TLS in mitigating
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congestion and reducing emissions. The absence of it in a busy intersection can cause unregulated traffic
resulting in a high congestion rate.

5.1.9. Finding 9: DT framework assessment

The overall DT framework is assessed at the end of this research. This assessment includes
validation of the simulated data and comparing the trajectories from the simulation with the real-world
data. The scatter plot comparing observed traffic counts to simulated counts in Figure 39 on page 59
shows a strong alignhment between the simulation and real-world traffic patterns. Overall, the high R-
squared value and relatively low RMSE indicate that the traffic simulation closely mirrors real-world traffic
conditions. The high R-squared value indicates that 97% of the variability in observed traffic counts is
explained by the simulated counts, demonstrating a high degree of correlation. For each of the road
segments, according to the overall RMSE of 11.34, there is a difference in vehicle counts of around 11 to
12 traffic units. This implies that while the simulation closely matches the observed traffic, there are still
minor deviations. These deviations can be attributed to inherent variability in real-world traffic, errors
during traffic observation, or inaccuracies in the reclassification process with the RF model, meaning that
some objects might not be reclassified properly into their respective classes based on real-world
conditions. Despite the noted variability, the overall similarity rate between the simulation and the
observed traffic data is acceptable. This high degree of correlation signifies that the simulation is a reliable
representation of real-world traffic conditions.

The other assessment involves trajectory comparison between the simulated trajectories and the
real-world trajectories. The use of cosine similarity (CoSim) in this research provides a deeper
understanding of the routing algorithm's performance within the traffic simulation. High CoSim values
closer to 1 for most object IDs indicate that the simulated trajectories follow similar directional patterns as
the real-world trajectories, reinforcing the simulation accuracy in capturing vehicle movement directions.
However, the slightly lower CoSim values for some objects suggest minor position deviations supported
by the observed Euclidean distance values. The slight differences in shape do not significantly affect the
CoSim values. However, object IDs such as 5324579, illustrated in Figure 41 on page 62, may exhibit
visual discrepancies in trajectory shapes. This still indicates that the overall directional movements are
similar to those of real-world trajectories. This assessment highlights areas where the simulation model can
be further refined to improve its precision in replicating exact vehicle trajectories. For example, employing
other metrics, such as Dynamic Time Warping (DTW), which measures the minimum distance between
trajectories while accounting for possible shifts and distortions in the time dimension, can provide a
different perspective on trajectory similarity and further identify areas for improvement.

5.2. Implications

The overall traffic simulation digital twin framework developed in this study shows a successtul
attempt at integrating the .osef dataset into a detailed and comprehensive traffic simulation model. This
framework demonstrates a robust capacity for handling detailed traffic data and transforming it into usable
simulations, proving its potential adaptability to other intersections with similar characteristics. The
methodology applied throughout this research ensures that the DT framework can be effectively used to
other areas with similar features and characteristics to the Paradise Center Mall intersection. However, the
road segmentation, which is a crucial part of this framework, needs to be configured accurately in order to
represent the target intersection characteristics. On that note, as long as the segmentation method aligns
with the approach used in this research, the framework functions effectively.

The DT framework's ability to integrate the .osef dataset into traffic simulations signifies a major
advancement in urban traffic management tools. This framework not only shows potential in the context
of the current study area but also shows potential for broader application such as further traffic analysis
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using the enriched databases. The advantages of these traffic simulations lie in the ability to simulate real-
world traffic, identify potential congestion and changes in traffic flows, and evaluate the impacts of
various traffic management strategies before their implementation. This capability can improve overall
urban mobility and enhance the decision-making process in urban traffic management.

The random forest reclassification model trained in this research proves to be a valuable tool for
handling new, unseen .osef data. The DT framework supported by this trained machine learning model
addresses gaps in dataset completeness by reclassifying unknown classes into specific object classes (car,
truck, two-wheeler, or person). Although there is room for improvement, the current model acts as a
reliable method for improving the dataset quality and ensuring accurate traffic simulations. This is
particularly important for maintaining the integrity and reliability of traffic data, which forms the
foundation for effective traffic management strategies. This reclassification model ensures that the traffic
simulation in the DT framework remains accurate to the real-world conditions, giving detailed insights of
the traffic conditions in the intersection.

The enriched PostGIS database developed in this research allows for more extensive analysis
beyond traffic simulations. The simulation framework can provide a more realistic model of traffic
conditions by integrating real-time environmental data, such as weather conditions. This comprehensive
dataset supports a wide range of analyses, from understanding the impact of weather on traffic patterns to
planning for emergency responses and optimizing public transportation schedules. Incorporating diverse
data types, enhances the model's utility and ensures that it can address complex urban mobility challenges.

The what-if scenatio testing conducted in this study reveals an important insight into the
effectiveness of different intersection designs. The comparison of standard roundabouts, 8-shaped
roundabouts, and original intersections provides a comprehensive evaluation of potential traffic
management solutions. The findings suggest that roundabouts, particularly those without TLS, offer the
most effective solutions for improving traffic flow and minimizing congestion. Both the standard
roundabout and the 8-shaped roundabout scenarios show good traffic flow with minimal congestion.
However, it is essential to note that a longer observation period might be necessary to fully understand the
implications of these scenarios. A 10-minute simulation may not capture all the characteristics of
intersection traffic, and extended simulations could provide more comprehensive insights. This approach
allows traffic managers, transportation planners, or urban planners to test their road design structure and
see how it is affecting the tratfic flow in the area.

The multi-level intersection scenario, while it demonstrates a realistic design and construction
feasibility towards the study area, presents challenges due to the presence of an underground metro
station. Although this scenatio, in theory, is able to manage traffic flow, constructing an underpass for
east-west traffic is not recommended due to potential conflicts with the metro infrastructure. Instead,
constructing a fly-over road for north-east traffic may provide a more feasible and effective solution. This
consideration shows the importance of contextualizing traffic management solutions within the specific
characteristics and constraints of the study area. By tailoring it to the unique characteristics of the
intersection, urban planners can develop more effective and sustainable traffic management strategies.

Opverall, this validated traffic simulation DT framework shows potential as a valuable tool for
urban planning. Urban planners can leverage the model to simulate various traffic scenarios, test different
intersection designs, and evaluate the impact of proposed infrastructure changes before implementation.
This proactive approach allows for the identification and mitigation of potential issues, ensuring that
urban infrastructure projects are optimized for efficiency and effectiveness. The traffic simulation DT
framework aligns well with the objectives of Sofia's Sustainable Urban Mobility Plan (SUMP) for 2019-
2035. The SUMP aims to create an integrated transportation system by advancing green transportation
options, digitalizing city transportation, and encouraging sustainable transportation modes (Modijefsky,
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2023). By providing a comprehensive tool for analysing and optimizing traffic flow, the DT framework
supports the SUMP goals of reducing the negative effects of transportation development, improving the
urban environment's attractiveness, and raising living standards. The framework's emphasis on accurate
data-driven simulations and its potential for real-time traffic management align with the SUMP focus on
data-driven shared mobility and environmentally friendly urban transportation.

5.3. Limitations

Despite the successful implementation of the DT framework and promising results in this
research, several limitations exist that needs to be addressed in future research and development. One of
the primary limitations is based on the .osef dataset’s inherent challenges. The nature of the dataset that
only has local coordinates contains multiple classes within an object ID, and a high ratio of unknown class
types has been the first limitation of this research. However, these issues are solved through the
methodological approach in this research. The local coordinates issues, for example, have successfully
transformed into the respective geo-coordinates using the WKT information. As for the class problem,
this research successfully addressed these issues using machine learning approaches of random forest. The
RF model has propetly reclassified the unknown type of object class and minimized the prediction of
multiple classes in an object ID. Although there is still room for improvement, it has shown an acceptable
performance and generalization.

Currently, the direct streaming of the .osef dataset is restricted to a private network, making it
challenging to access the data directly for real-time analysis. While the parsing method used in this
research is adaptable for streaming data, it requires adjustments, such as incorporating network credential
information. In the future, developing the OSEF network into an accessible API system would
significantly improve its usability and facilitate broader access for public and research purposes. The time
span of the dataset used in this research is not extensive due to the substantial size of the .osef dataset
when stored locally. Analysing datasets larger than one hour is not computationally viable with the current
local setup. Consequently, this research relied on sample data, which, while appropriate for initial analysis,
limits the ability to observe long-term traffic dynamics comprehensively. A larger dataset would enable
more detailed observations and validations, potentially solidifying the performance and reliability of the
traffic simulation DT framework.

Although the overall Digital Twin (DT) framework has shown a successful attempt at integrating
the .osef dataset and creating detailed traffic simulations, several limitations exist that should be
considered. Due to the complexity of the road network, slight misalignments between the road
segmentation and the SUMO road network can result in some vehicles not being properly loaded. This
issue is evident in object IDs categorized as having violation trajectory types. Another example is when the
position of data points is slightly outside the defined road segments, causing them not to be propetly
loaded into the simulation. Currently, SUMO does not support loading vehicles that have violation types
of trajectories or those that do not follow the permissible allowed connections. While these issues ate not
major in this research, they are worth considering during the initial configuration of the DT framework to
ensure accurate and comprehensive simulations.

Finally, the approach in this research is not fully automated for now, particularly concerning road
segmentation. The need for detailed semantic information, including lane permissible connections, makes
it difficult to automate this process fully. Currently, there is no suitable methods that can handle the level
of detail required for road segmentation in this research. Developing automated tools for road
segmentation that can incorporate detailed semantic information is crucial for scaling and enhancing the
efficiency of the DT framework.
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5.4, Future works

This research opens to extensive possibilities for future research and development to improve its
performance, scalability, and applicability. Future work should focus on establishing the overall DT
framework in different intersections to further test its adaptability. This includes extending the application
to a bigger scope, such as including a residential road in the observation. This consideration can help
validate the DT framework further regarding its versatility and effectiveness across diverse urban settings.
While the current RF model effectively handled the issues with the object classes in the .osef dataset,
where it is able to reclassify unknown classes and minimize multiple class predictions, it is not perfect.
Future research should explore advanced methods to further improve this model. This could involve
hybrid artificial intelligence approaches or deep learning techniques to improve classification results and
handle multiple class predictions more effectively close to zero. These improvements ensure that the
model can manage better the .osef dataset with greater precision.

Since this research has proven the usability of the traffic simulation DT framework, to gain a
more comprehensive understanding of traffic patterns, future studies may utilize the DT framework for
extended observation periods, such as a week or more. Observing traffic dynamics over longer timespans
helps to identify congestion patterns, peak hours, and the effects of various unexpected conditions (such
as an eventful national day) on traffic flow. This provides deeper insights into the temporal variations in
traffic behaviour, enabling more effective traffic management strategies.

In addition, establishing a proper pipeline directly from the .osef streams when it is accessible for
public will improve the DT framework process. For now, the PostGIS database containing detailed and
robust information of the traffic conditions in the intersections allows for more potential future works,
where exploration of this database for extensive analysis can be done. The possibility of integrating the
traffic simulation DT framework into a broader city model could be an exciting future direction as well.
This would involve dynamic simulations that interact with various urban elements, such as public
transportation systems and pedestrian flows. Exploring the platforms and approaches that can handle
SUMO traffic simulations and dynamic object data will be crucial for this. This can contribute further to
the development of smart cities.

5.5. Summary

This discussion chapter analyzes the DT framework's integration of the .osef dataset for detailed
traffic simulations. The framework shows robust accuracy and adaptability, enhancing urban traffic
management and planning. Key findings include effective coordinate transformation, accurate vehicle
trajectory analysis, and the positive impact of what-if scenarios like roundabouts on traftic flow. The
enriched PostGIS database supports extensive geospatial analysis and simulation. The DT framework
aligns with Sofia's Sustainable Urban Mobility Plan (SUMP) to improve urban mobility and living
standards. However, limitations include the complexity of the .osef dataset, challenges with direct
streaming, and the need for longer dataset time spans. Future work should enhance the RF model, extend
simulation scalability, incorporate advanced Al methods for better object classification, and integrate the
DT framework into broader city models for comprehensive urban traffic management.
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6. CONCLUSION

This concluding chapter draws comprehensive conclusions based on the formulated objectives
and research questions that guided this research. It evaluates how effectively the research has addressed
the initial goals and inquiries. By reflecting on the outcomes, this chapter provides a concise concluding
statement of the research contributions to the urban and transportation field.

The research began with a review of the relevant literatures, including tools, models, and methods
for traffic simulations. This review highlighted best practices and notable case studies, emphasizing the
importance of microscopic simulation for detailed modelling of individual vehicle movements at
intersections. SUMO emerged as the most suitable tool due to its extensive capabilities, flexibility, and
open-source nature.

Processing and enriching the LiDAR dataset was the next focus. The OSEF dataset contained
detailed information about objects at intersections but had issues such as Cartesian coordinates and many
"unknown" classes. The methodology included transforming local coordinates to geo-coordinates and
generating semantic information about road segments. This information was used to train a Random
Forest model to reclassify unknown classes, ensuring smooth integration of the OSEF LiDAR data into
the digital twin framework. In this research, the PostGIS database was used as middleware for this
integration. It facilitated data storage and fetching, ensuring seamless data flow to the traffic simulation.

The development of the traffic simulation digital twin framework involved using SUMO for
intersection simulations. Real-world road information was fetched from OpenStreetMap, with adjustments
made to enhance realism. Using the PostGIS database as middleware, the traffic simulation could fetch
data directly for model input. The approach adopted involved XML-based methods and dynamic
interaction using TraCl. Running various what-if scenarios revealed that in a 10-minute simulation, an 8-
shaped roundabout exhibited better, and more stable traffic flow compared to other scenarios. However,
the standard roundabout showed superior traffic flow over the total observation period. Additionally, the
application of Traffic Light Systems to roundabout scenarios significantly reduced traffic flow, whereas for
intersections, TLS improved traffic flow, highlichting a contrast in effectiveness between the two
configurations.

Regarding the type of digital twin suitable for traffic simulation, it was determined that 2D digital
twins are generally more effective for broader traffic observation. However, there are specific cases where
3D digital twins are advantageous. For instance, in the what-if scenario of a two-level intersection, the 2D
view was insufficient to fully capture the interchange where ground-level roads and an underpass
intersected. Conversely, the 3D view provided better visualization of elevation differences and angles,
enhancing the accuracy and detail of observations.

Finally, the traffic simulation DT framework accuracy and similarity to real-world traffic were
assessed. The framework demonstrated high accuracy in traffic generation and strong similarity in traffic
trajectories, evidenced by a high R-squared value of 0.97. While minor deviations were observed, the
overall RMSE of 11.34 and a relative error of approximately 19.89% indicate general accuracy. The
simulated trajectories closely matched real-world directional patterns, with cosine similarity values close to
1 for most object IDs. These findings underscore the potential of integrating advanced simulation tools
and enriched datasets to enhance traffic management and planning, which open possibilities for more
efficient and realistic traffic simulations in future research.
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7. ETHICAL CONSIDERATIONS

This research, conducted in collaboration with The Big Data for Smart Society Institute (GATE),
reflects the institute's vision and intentions by leveraging their proprietary .osef dataset, which is not
available for public use. The dataset, owned by GATE, is used under mutual agreements, ensuring ethical
handling and data security. The study intentionally chose LiIDAR as the method because it does not
capture license plates of vehicles or the faces of people, thereby safeguarding privacy and confidentiality.
The focus was solely on tracked objects, with no involvement of human subjects. Rigorous data security
measures are implemented, and all research activities adhered to the highest ethical standards, ensuring
transparency, integrity, and alighment with institutional guidelines.
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ANNEXES

Annex 1: Study Area WKT information

Figure 42. WKT information of the study area intersection. Source: Author (2024).
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Annex 2: .osef data overview sample

FIRST RECORD: Date 2023-85-30 Timestamp 11:43:58.1045

LAST RECORD: Date 2023-05-30 Timestamp 11:45:24.4901

TIME DIFF: @ day © hour @2 minutes 26.0385 seconds

FRAMES DETECTED: 1726

FPS: 19.98

TRACKED OBJECTS: 516

DETECTED CLASSES: CAR, PERSON, TRUCK, TWO_WHEELER, UNKNOWN

CONSISTENT OBJECTS: 264
TRUCK

UNKNOWN

CAR

PERSON

RECOGNIZED OBJECTS: 241
CAR : 188
TRUCK 2 4
PERSON : 36
TWO_WHEELER: 13

UNIDENTIFIED OBJECTS: 11

5324412: UNKNOWN, TWO_WHEELER, CAR
5324431: UNKNOWN, PERSON, TWO_WHEELER
5324597: UNKNOWN, TWO_WHEELER, CAR
5324894: UNKNOWN, TWO_WHEELER, CAR
5324926: UNKNOWN, CAR, TRUCK

5324944 : UNKNOWN, CAR, TRUCK

5324972: UNKNOWN, PERSON, TWO_WHEELER
5324976: UNKNOWN, PERSON, TWO_WHEELER
5325108: UNKNOWN, PERSON, TWO_WHEELER
5325172: UNKNOWN, TWO_WHEELER, CAR
5325213: UNKNOWN, PERSON, TWO_WHEELER

Figure 43. .osef sample data overview. Source: Author (2024).
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Annex 3: Permissible connection configuration

Possible Target

Source lane
Taraet lane |

Conflict

Figure 45. Permissible connection configuration details. Source: Author (2024).
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Annex 4: TLS system configuration
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Figure 46. TLS systems configuration in SUMO. Source: Author (2024).
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Annex 5: Real-world trajectory plot

Latitude
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Figure 47. Real-world vehicle trajectories. Source: Author (2024).
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Annex 6: Simulated trajectory plot
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Figure 48. Simulated vehicle trajectories. Source: Author (2024).
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