
Investigating the Effects of Changing the
Optimization Order in Profile Steering

Dominic Pinto (2678462)
Faculty of EEMCS

University of Twente

Abstract—Energy management is crucial for the current en-
ergy transition. It can be employed to maintain a steady load
profile, thereby optimizing grid efficiency. One way to achieve
a steady load profile is through load management algorithms
such as Profile Steering. Profile Steering is used to shape the
power consumption profiles of devices towards an overall desired
profile. However, the algorithm does not currently distinguish
an optimization order for devices during each iteration and
is not guaranteed to reach the optimal solution. Changing the
order of optimization of devices within the algorithm could yield
better results. One possible method to order devices based on
their flexibility was implemented and tested. Sorting devices
in ascending order of flexibility allows more flexible devices to
compensate for devices with lower flexibility. This implementation
can achieve a similar load profile to the original algorithm whilst
reducing the computation time by a factor of 2.

Index Terms—Power quality, scheduling, smart grids, algo-
rithms.

I. INTRODUCTION

The current energy transition denotes a paradigm shift,
moving away from the traditional top-down centralized energy
grid to an increasingly distributed and decentralized bottom-
up grid hierarchy. The steady decline in the cost of distributed
energy resources, coupled with supportive government policies
and an increased desire for energy security, has resulted in
a noticeable increase in electrification. However, the existing
grid infrastructure was not designed to accommodate this
gradually increasing load of bidirectional energy flow resulting
from increasing deployment of distributed renewable energy
sources. Accommodations need to be made to avoid overload-
ing the current infrastructure. Either, the current infrastructure
needs to be updated to support the increased load, which is
a long process and would be expensive; or smart planning
techniques in the form of Demand Side Management (DSM)
algorithms. Profile Steering (PS) [1] is one such DSM algo-
rithm that can be used to plan and optimize the energy profiles
for sets of devices.

II. PROBLEM AND RESEARCH QUESTION

Profile Steering (PS) is a heuristic algorithm designed to
optimize the power profile for each grid hierarchy level.
The algorithm currently requests improved profiles from all
devices before accepting only a single improved profile that
corresponds to the greatest improvement to the aggregated
profile. One way around requesting all devices for improved
profiles is to request for profiles in a certain order. To establish
an order, the characteristics of devices that are beneficial to the

algorithm have to be quantified. The main device characteristic
to consider is flexibility, thus an optimization order based on
flexibility could be a solution.
How does implementing an optimization order of the PS Algo-
rithm affect its performance when considering the Euclidean
distance to the desired profile?

• How do you calculate and implement a flexibility quan-
tifier into the decision-making process of the Profile
Steering Algorithm?

• How does the performance and efficiency of the ordered
implementation of the PS Algorithm compare with the
standard PS Algorithm?

• How does this affect the scalability of PS in terms of
number of devices and number of houses?

III. BACKGROUND WORK

DSM approaches such as Price Steering and Profile Steering
can be used to create desirable planning profiles tailored to
individual consumers. Controllers that collect and steer the
planning profiles of devices, called aggregators, use these
algorithms to steer devices under their purview to shape the
aggregated load profile to match the desired profile as closely
as possible. Price Steering uses time-varying prices for a
unit of energy to guide the aggregator. The aggregator then
incentivizes devices to adjust their profiles to utilize cheaper
intervals first. On the other hand, the PS Algorithm is a form
of DSM where an aggregator uses steering signals based on
the norm distance to the desired profile to guide devices.

1) Price Steering: An aggregator running the price steering
algorithm can either use ‘uniform pricing’, where all houses
get the same price signals, or ‘differentiated dynamic pric-
ing’, where individual houses receive different price signals.
Uniform pricing can serve as an incentive for devices to shift
their consumption towards off-peak hours. However, using the
same price signal for several houses can result in peaks simply
being shifted in time. Therefore, different price signals are
used for individual houses, incentivizing power consumption
at different times. This approach is called ‘Differentiated
dynamic pricing’ and results in individual houses having peak
loads at different times and therefore a few steps closer to
flat profiles. Nevertheless, when zooming into the individual
profiles there are additional problems. The main issue with
Price Steering is that it encourages extreme behaviour, such
as high peaks during cheap intervals.

A. Profile Steering [1]

Another possible approach is Profile Steering. Given a
device X which has a power profile x⃗ = [x1, ..., xN]T and
a desired profile p⃗ = [p1, ..., pN]T both valid for N intervals,
the PS Algorithm attempts to shorten the norm distance
∥x⃗ − p⃗∥∗ between x⃗ and p⃗. Consider a set of M devices
with profiles x⃗m within a household with combined profile
x⃗ and a desired profile p⃗ valid for N intervals. First, all
devices individually minimize ∥x⃗m∥. Next, a difference vector
is calculated as d⃗ = x⃗ − p⃗. The device planning profile p⃗m
is then chosen such that ∥⃗̂xm − p⃗m∥2 is minimized, where
p⃗m = x⃗m − d⃗ and ∥⃗̂xm is a candidate planning for the device
. The device which is able to provide the greatest improvement
em = ∥x⃗m− p⃗m∥2−∥⃗̂xm− p⃗m∥2 is chosen. Finally, the total
consumption x⃗ is recalculated, and x⃗m is assigned its new
value. This process is then repeated until em < ϵ, where ϵ is an
arbitrary set threshold. This algorithm can then be applied to
every level of the grid hierarchy using a bottom-up approach.

The algorithm currently requests improved profiles from all
devices and chooses the best, wasting the rest of the calcula-
tions. If there was some way to order the devices such that the
algorithm could automatically request the device that would
produce the best result in order, this would significantly reduce
the required number of calculations. This can be achieved by
sorting the devices. The rest of the paper explores the idea
and implementation of sorting the device list by flexibility.

B. How do you quantify Flexibility?

1) Shapley Values [2]: One possible method to quantify
flexibility and device worth to an aggregator is Shapley
Values which we will now review using the scenario and
equation given in [2]. Given a set of M devices, the marginal
contribution ξ(i) of a certain device i ∈ M to a subset, or
coalition, S ⊆ M is used to quantify its worth. The marginal
contribution can be defined as ξ(i) = v(S ∪ {i}) − v(S),
with v(S) = ∥x⃗0∥2−∥x⃗∥2, where x⃗0 is the uncontrolled pro-
file. However, devices interact differently with other devices
and other coalitions. Therefore, Varenhorst et al. define an
interaction index I(v, {i, j}) (shown in Equation 1) between
two devices i and j, using their marginal contributions ∆{i,j}
(shown in Equation 2) to a coalition of T assets, to be used
to determine the value of their synergy.

∆{i,j}v(T) := v(T ∪{i, j})−v(T ∪{i})−v(T ∪{j})+v(T)
(1)

I(v, {i, j}) :=
∑

T⊆M\{i,j}

1

m− 1

(
m− 2|T |

)−1
∆{i,j}v(T)

(2)
Using these defined terms, the Shapley value of i can be

calculated for all possible subsets, S ⊆ M assets, shown in
Equation 3. However, this also means that the complexity of
calculating the Shapley value scales exponentially with the
number of assets M .

ϕi(v) =
∑

S⊆M\{i}

|S|!(m− |S| − 1)!

m!
[v(S ∪{i})− v(S)] (3)

2) FlexOffers [3]: FlexOffers [3] use power and time
flexibility data to create a tuple, which is a potential method to
quantify the flexibility of devices. A tuple can be defined for a
device m as f = ([tes, tls], p⃗); where tes is the earliest possible
start time, tls is the latest possible start time for the device,
and p represents data about the maximum and minimum power
consumption of the device.

Another key idea presented is the classification of flexibility
into Time Flexibility (TF), Amount Flexibility (AF), and Time
and Amount Flexibility (TAF). TF devices such as washing
machines (WM) and dishwashers (DW) only show flexibility
as time shifting, i.e. they have flexible start times but their
power profiles cannot be changed. On the other hand, AF
devices like heat pumps (HP) can have varying power profiles
depending on thermostat settings and other factors, but do not
have a clear start time and thus do not display time flexibility.
TAF devices, like electric vehicles (EV), have clear start times
and also show controllability in their power profiles.

IV. ANALYSIS

A. Why sort by flexibility?

First, taking a step back, we first need an understanding
of why we sort by flexibility. Looking at a simple scenario,
including just a WM and an EV, we can find an intuitive sense
of sorting in ascending order of flexibility. In standard PS,
the device that provides the largest improvement during each
iteration is selected to submit an improved profile. The EV,
which has greater flexibility has a higher probability of having
the greatest improvement during the first iteration. However,
this does not allow the WM to aid in the improvement process.
Let’s assume the base profile is N discrete time intervals long
where each interval is 1 hour and has a valley that is 3 intervals
long at t = 5 to t = 8 and another valley that is 3 intervals
long at t = 10 to t = 13. Both valleys have a depth of 3kW
and can therefore store a total of 9kWh of energy each. Now
let’s also assume that tes = 0 and tle = 7 for the washing
machine; and 0 ≤ tes = 3 and 10 ≤ tle ≤ N for the EV. The
washing machine has a fixed profile that is 3 intervals wide
and 1kW high, for a total consumption of 3kWh. The EV has
a flexible profile but needs to charge a total of 15kWh before
departure. During the initialization stage of the algorithms,
both devices are assigned arbitrary profiles, usually based
on greedy charging, resulting in peaks near the start of the
profile. A sketch of the situation can be seen in Figure 1.
For standard PS, the EV would win best improvement for
the first iteration by moving its load from the start to partially
fill both valleys by distributing its energy consumption equally
between them. Both valleys would now only be 0.5kWh deep.
In the next iteration, the WM would move its load to fill
the first valley resulting in a 0.5kWh surplus. The second
valley remains as is. A third iteration is then needed to shift
some of the EV’s consumption from the first to the second
valley. Since every device is requested for an improvement
profile during each iteration this means that 6 improvement
requests (3iterations×2devices) were required to obtain the
desired profile. However, if we sorted by flexibility and then

requested improvements sequentially, the WM would move
all consumption to the first valley and then the EV would
fill the remainder of the two valleys. Thus requiring only
2 improvement requests instead of 6. Sorting by increasing
flexibility allows higher-flexibility devices to compensate for
lower-flexibility devices. How can this be implemented?

Fig. 1: Example Situation with PS (Black: Baseload, Red:
WM, Green: EV)

B. Quantifying Flexibility using FlexValues

To create an optimization order based on flexibility, we first
need to quantify flexibility for devices so that they can be
sorted. By building on the foundation laid by FlexOffers [3]
from Pedersen et al., we can define a flexibility quantifier for
devices called FlexValues. Taking inspiration from FlexOffers,
we see that the key device parameters to consider when quanti-
fying the flexibility of a device are its power comsumption and
start and end times. Additionally, another key concept drawn
from Flexffers is that devices can be split into TF, TAF, and AF
devices. Using these concepts, we now define a single value to
sort devices called a FlexValue. A FlexValue, represented by
V , is a unitless flexibility quantifier that is calculated uniquely
for TF, TAF, and AF devices and is based on the device’s
power and time flexibility. The FlexValues for TF, TAF, and
AF devices can be computed as follows:

a) Time Flexible Devices: For TF devices, the main
device parameter to consider is their start time range. The
Flexvalue (V) for TF devices can be calculated as:

V = (tls − tes) (4)

b) Amount Flexible Devices: For AF devices, which are
continously available, the FlexValue can be calculated based
on the maximum possible power consumption pMAX and
minimum possible power consumption pMIN . FlexValue (V)
for AF devices is therefore defined as:

V = (pMAX − pMIN) (5)

c) Time and Amount Flexible Devices: Lastly, for TAF
devices, we combine the two calculations previously done.

V = (pMAX − pMIN)(tls − tes) (6)

C. Profile Steering Adapted (PSA)

To implement the optimization order based on flexibility,
we must first adapt the PS algorithm such that it follows the
sorted list of devices when requesting devices for improved
profiles. This new variation on the PS algorithm will be called
Profile Steering Adapted (PSA). An overview of the process
of PSA can be found in Figure 2and is described in detail next.

First, devices are sorted by their device types, in order
TF→TAF→AF, with TF devices at the start of the list and
AF devices at the end. TF devices have the lowest flexibility
(not always available and fixed power profile), then TAF in the
middle (not always available but flexible device power profile)
and lastly AF devices have the highest flexibility (always
available and flexible device power profile). Next, devices of
the same type are sorted based on their FlexValue V, which
can be calculated using the equations from subsection IV-B.
The controller then follows this list. It first creates an arbitrary
planning for all devices in the list and computes an aggregated
profile. Next, The controller requests devices, in order, for
improved profiles and implements the improvement before
moving on to the next device. A key distinction is made here
between PS and PSA; in PS the algorithm requests optimized
profiles from all devices for every iteration of the algorithm
whilst only accepting the improved profile of the device that
provides the most improvement to the overall profile. For M
devices, over α iterations, where the number of computations
to create a new optimal profile for device m is defined as Ym;
the total number of computations CTotal can be calculated as:

CTotal,PS =
∑
α

∑
M

Ym (7)

Since only one device is selected per iteration and all other
computations are discarded, the number of wasted computa-
tions can be calculated:

CWasted,PS =
∑
α

∑
M−1

Ym,!best (8)

Equation 8 PSA on the other hand accepts all requested
improvements which could reduce the number of wasted

computations. Once an improvement from every device has
been implemented, a single iteration has been completed. The
controller then moves back to the start of the list and restarts,
requesting profiles from lowest to highest flexibility once
again. It continues to do this until the overall improvement
in an iteration falls below a preset threshold, emin.

Fig. 2: Profile Steering Process

D. Scaling up FlexValues with FlexProfiles
To calculate FlexValues for larger systems, such as houses

or neighborhoods, is more complicated since they contain
several devices within them. Therefore we must define a
method to calculate a flexibility quantifier for systems which
hold multiple devices, that is able to account for the flexibility
of the devices within that system. To be able to calculate a
FlexValue for such a system, we first introduce FlexProfiles,
represented by F (V). Flexprofiles are vectors containing the
maximum and minimum power consumption of the flexible
devices encompassed by the system. FlexProfiles can be
generated for all devices and then summed together to get
combined FlexProfiles for larger systems, such as houses and
neighbourhoods. The final FlexProfile for a system can then
be summed to get a FlexValue for the system. For a set of
intervals N , with M devices within a house, where pmax,m,n

is the maximum possible power consumption of a device m
during interval n.

F (V)max,m = [pmax,m,0, ..., pmax,m,N−1] (9)

The FlexProfile for the entire house can then be given to be

V⃗max = [
∑
m∈M

pmax,m,1, ...,
∑
m∈M

pmax,m,N] (10)

V⃗min = [
∑
m∈M

pmin,m,1, ...,
∑
m∈M

pmin,m,N] (11)

The final FlexValue for a house is then given by:

Vhouse =
∑
n∈N

F (V)max,n − F (V)min,n (12)

FlexProfiles are necessary to calculate FlexValues for higher
levels of the grid hierarchy and thus must be calculated
and stored for every level of the hierarchy. For example,
FlexProfiles of devices are used to calculate FlexProfiles of
their houses, which are used to calculate the FlexValues of
those houses. FlexProfiles houses are then used to calculate
FlexProfiles of neighborhoods, which can be used to calculate
the FlexValues of the neighbourhoods. The calculated FlexVal-
ues can then be used to sort houses within a neighborhood, or
neighbourhoods within cities.

V. EVALUATION

To test the effectiveness of the algorithms and provide fair
comparisons it is key that any profiles used for testing are
realistic and representative of actual households, and that the
same profile is used when comparing. Therefore testing was
conducted based on data generated by the ALPG (Artificial
Load Profile Generator) [4]. This tool allows realistic mod-
elling of environmental and lifestyle factors of various house-
hold types with varied number of occupants and domestic
situations. Additionally, it is also able to provide flexibility
data to allow planning of smart devices. Therefore it is ideal
to create test scenarios which can be used to evaluate and
compare the performance of the PSA algorithm.

A. Phase 1: Single Household Planning

The initial implementation, intended as a foundational
proof of concept, will use artificial load profiles generated
by the ALPG to create a simple test scenario. To do this a
custom household with a single worker occupant was set up
for the ALPG, including an EV, WM, and DW. The driving
distance, initial state of charge (SoC), battery capacity, start
times and end times, are all determined by the algorithm
based on the household type and environmental factors such
as the weather, day of the week, etc. Then load profiles and
flexibility data are generated for a single household of this
type and passed on to the PSA code

PSA was implemented using the PS Lite framework which
already includes structures to represent various device types.
Whilst device characteristics and planning methods vary dras-
tically from device to device, each structure essentially in-
cludes three main functions: ’initialize’, ’plan’, and ’accept’.
The ’initialize’ function creates an arbitrary planning, usually
choosing to start at the first available start time. The ’plan’
function finds the optimal device profile given a steering
signal. Finally, the ’accept’ function changes the current profile
to the one created by the ’plan’ function. A layer of abstraction
is achieved by standardizing function names across device
structures; allowing different structures to be placed in lists.
Since the algorithms do not require knowledge about lower-
level optimisation, this abstraction reduces code complexity.
Lists containing these devices can then be generated using
profile and flexibility information from the ALPG. These struc-
ture lists are given as inputs to the PSA algorithm along with
the desired power profile p⃗desired, the minimum improvement

required per iteration to continue emin, and the maximum
number of iterations Imax. The PSA algorithm takes the device
list and calculates the FlexValue V for all devices using the
equations shown in subsection IV-B. It then sorts the by device
type and category. The rest of the PSA code is implemented
as described by Figure 2 with the improve profile step being
done using the ’plan’+’accept’ functions for each device.
To evaluate the performance of PSA, we can compare it to
the standard PS algorithm. Key indicators of performance to
be compared will be time taken, number of computations, and
Euclidean norm of final profile.

a) Time Taken: Time taken to to run the algorithm from
start to finish can be measured and compared. However, this
brings some concerns. Firstly, whilst some process can be run
in parallel in PS, all processes are sequential in PSA. In PS,
during each iteration the controller could theoretically request
all devices for an improved profiles simultaneously. If there is
enough computational power available, multi-threading could
be used to possibly speed up the PS algorithm. Additionally,
if computation can be offloaded to devices the time required
for each iteration now reduces to the slowest improvement
calculation with some added communication time. PSA on
the other hand, needs to sequentially request for profiles
and therefore would benefit from parallelization, but would
not benefit from offloading computation. However, in this
scenario, we can assume that computation is not offloaded to
devices as most smart devices do not have much computation
power. Due to these effects, the absolute time taken cannot be
used as a metric, but rather as a general trend; i.e. see which
algorithm is faster for a given situation.

b) Number of Computations: Number of computations
can be estimated by counting the number of times the algo-
rithm call the ’plan’ function. Ideally, the number of compu-
tations should be as low as possible which would correspond
to an algorithm with a higher efficiency i.e. the algorithm that
requires fewer computations to achieve the same result is more
efficient.

c) Euclidean Norm: The Euclidean norm is a measure
of profile flatness. For this scenario the flatter the profile, the
better, as this is one of the main goals of Profile Steering. A
flatter profile means a lower euclidean norm. Therefore the
euclidean norm should be as small as possible. Ideally, PSA
would be able to produce the same, if not lower, norm as PS.

B. Phase 2: Scalable Planning

The next phase entails implementing measures to scale up
the PSA and PS algorithms. This can be done by nesting.
Another device class is created (with the same functions
’initialize’, ’plan’, and ’accept’) to represent larger systems
which hold several devices. For simplicity, we will only
consider houses rather than higher grid hierarchy levels. Since
this new class is identical in structure to the way the devices
are defined, the algorithm is unable to distinguish between a
list of ’Houses’ and a list of devices. This allows the higher-
level algorithm to control the houses, whilst an algorithm
nested within each house controls devices within the given

house and attempts to conform to a desired profile specified
by the higher-level algorithm. This is shown in Figure 3.
Therefore the ’House’ class serves as both an aggregator as
well as a controller. One key distinction to be made here is
the difference in the way the nesting must be done between
both algorithms.

For PSA, nesting is much simpler because the improvements
requested are always accepted. For PS, this is significantly
harder. Since only the best improvements are accepted, records
of unimproved profiles need to be kept to ensure that all
unaccepted changes can be reverted. Bookkeeping can be
achieved by saving chosen profiles once the ’accept’ function
of the higher-level PS algorithm. At the start of every iteration
of the algorithm, all devices can then be restored to the last
chosen profile.
To evaluate the performance of the PSA algorithm when using
nesting, the same metrics from Phase 1 can be used. They
can also be used show how scalable the PS algorithm is as
compared to the PSA algorithm.

Fig. 3: Nesting in the Grid Hierarchy

VI. RESULTS

A. Simulation Parameters

To simplify testing and verification of the implementation
of both phases, we must define a few of the test parameters.
Interval length is set at 1 minute. This is chosen so that the
power profiles have enough precision to represent real house-
hold consumption, including devices that may only be on for a
few minutes at a time (for example kettles). Additionally, the
intervals are long enough that the computational complexity is
still manageable. The number of iterations for any algorithm is
limited to 20. This keeps the time taken for computations down
even when scaled. In theory this could be varied to achieve
better results but additional research is required for this.

House 0 Norm House 1 Norm Time (s)
PSA 22887 31507 0.7899
PS 22910 31419 1.8315

TABLE I: Phase 1 Results, Two Houses

B. Phase 1: Single Household Planning

A simple scenario can be generated using the ALPG to
test the phase 1 PSA implementations. The scenario includes
2 houses, each with a dishwasher, washing machine, and
electric vehicle. The flexibility information for these devices
is also generated imported into the test program. The test
program creates devices for the houses and assigns flexibility
data from the ALPG to them. It is also able to call code to
compute the FlexValue of each device. The list of devices
for each house is then sorted, first by type of device (in the
order TF → TAF → AF) and then by ascending order of
FlexValue. Therefore devices with the lowest flexibility are
the lowest in the list. Both houses are then initialized and run
through both the PS and PSA algorithms. The results of this
test are shown below in Table I. These initial tests clearly
show that both algorithms achieve approximately the same
final profile Euclidean norm. However, the PSA algorithm can
achieve the result in around half the time. this is due to the
reduced number of calculations that are wasted.

Next, for a larger scale test, the number of devices within the
household was scaled. The time taken,final Euclidean norm,
and number of improvement requests of both the PS and
PSA algorithms was measured while increasing the number
of devices within the household. For a fair comparison, the
baseload was kept constant and all devices were randomaly
generated using the ALPG. The outcome of this test is plotted
in Figure 4, Figure 5, and Figure 6.

Fig. 4: Computation time vs Number of Devices for PS and
PSA

Figure 4 shows that PSA shows around a 2× to 2.5×
improvement in speed when compared to PS. Whilst the

Fig. 5: Number of Computations vs Number of Devices for
PS and PSA

Fig. 6: Output Euclidean Norm vs Number of Devices for PS
and PSA

absolute time for the calculation depends on the computation
device, it is clear that the PSA algorithm is faster for this
particular scenario and test conditions. Additionally, Figure 6
shows that both algorithms give approximately the same final
Euclidean norm, showing that both algorithms are equally
effective. Figure 5 shows the number of improments requested
by the algorithm. The trend clearly shows that PSA needs less
than half as many improvement requests to achieve the result.
This implies that the PSA algorithm is more efficient than
standard PS.

C. Phase 2: Scalable Planning

To test the phase 2 implementations of scalability, the same
test profiles were used. However, in this scenario, the houses
no longer work independently but rather as a neighbourhood.
This means that the houses can compensate for each other and

House 0 Norm House 1 Norm Time (s)
PSA 22887 31507 0.7899
PS 22910 31419 1.8315

TABLE II: Phase 2 Results: Houses compensating for each
other

can create a flatter combined profile. The result for this test
is shown in Table II. Both algorithms give roughly the same
combined Euclidean norm, but PSA achieves it slightly faster.
For a larger scale test, the time taken and output Euclidean
norms were measure for both algorthms whilst increasing the
number of houses. To reduce complexity, all houses have
the same 3 devices: an EV, WM, and DW. The mamximum
number of iterations for both the higher-level and nested
algorithms is set at a lower value of 10 to keep computation
time manageable. The flexibility and baseload information for
all houses is unique and generated using the ALPG. The results
of the test are shown in Figure 7 and Figure 8.
Figure 7 shows that the PSA implementation is generally
quicker than PS. However this could be misleading, because
in a real world situation a central controller would not perform
all computations, but rather offload house level improvement
requests to the house controllers. This means that the PS
algorithm could simultaneously request improvements from
all houses and thus drastically improve the performance of the
PS algorithm. Figure 8 shows that both algorithms are equally
effective at reducing the Euclidean norm of the houses.

Fig. 7: Computation time vs Number of Houses for PS and
PSA

VII. CONCLUSION

In conclusion, changing the optimization order in Profile
Steering based on Profile Steering was effective. Sorting
devices based on FlexValues, which can be calculated based
on a devices time and power flexibility data, resulted in an
increase in 2× reduction in computation time and efficiency

Fig. 8: Output Euclidean Norm vs Number of Houses for PS
and PSA

whilst still achieving the same Euclidean norm. Additionally,
using FlexProfiles to calculate FlexValues for houses, and
using the FlexVales to sort houses for nested algorithms was
also successful. Both algorithms were able to reach the the
similar Euclidean norms. However, the time data obtained is
misleading. Further testing with more realistic conditions is
needed to compare the time taken by both algorithms. Addi-
tional research is also required into hybrid nesting algorithms
for scalability. Since PS allows more parallelization, it may be
beneficial to use it for higher levels of the grid higherarchy
where computations are offloaded. On the other hand, at the
house level, where no computational offloading is possible, it
is more beneficial to use PSA. PSA is faster within a house
and scales better with increasing devices. Research needs to be
done into the most optimal configuration, optimal maximum
number of iterations and optimal minimum improvement for
PS and PSA based hybrid nested algorithms.

VIII. DECLARATIONS

During the preparation of this work, the author used GitHub
Copilot for generative coding. Any code added, modified, or
suggested by GitHub Copilot has been reviewed by and was
according to the intent of the author. Additionally, Grammarly
and Overleaf’s built-in spell check were used to improve
grammar and remove typing errors. After the use of these tools
and services, the author has reviewed and edited all content
as needed and takes full responsibility for the content of the
work.

REFERENCES

[1] M. E. T. Gerards, H. A. Toersche, G. Hoogsteen, T. van der Klauw, J. L.
Hurink, and G. J. M. Smit, “Demand side management using profile
steering,” in 2015 IEEE Eindhoven PowerTech, 2015, pp. 1–6.

[2] I. A. M. Varenhorst, M. E. T. Gerards, and J. L. Hurink, “Quantifying
device flexibility with shapley values in demand side management.” 2024.

[3] T. B. Pedersen, L. Siksnys, and B. Neupane, “Modeling and managing
energy flexibility using flexoffers,” 2018 IEEE International Conference
on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm), Oct 2018.

[4] G. Hoogsteen, A. Molderink, J. L. Hurink, and G. J. Smit, “Generation of
flexible domestic load profiles to evaluate demand side management ap-
proaches,” 2016 IEEE International Energy Conference (ENERGYCON),
Apr 2016.

	Introduction
	Problem and Research Question
	Background Work
	Price Steering
	Profile Steering7232328
	How do you quantify Flexibility?
	Shapley ValuesShapley
	FlexOffersPedersenSiksnysNeupane2018

	Analysis
	Why sort by flexibility?
	Quantifying Flexibility using FlexValues
	Profile Steering Adapted (PSA)
	Scaling up FlexValues with FlexProfiles

	Evaluation
	Phase 1: Single Household Planning
	Phase 2: Scalable Planning

	Results
	Simulation Parameters
	Phase 1: Single Household Planning
	Phase 2: Scalable Planning

	Conclusion
	Declarations
	References

