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Management summary 
This thesis is performed at OCON Orthopedische Kliniek. OCON is a hospital which 

specialises in treating patients with orthopaedic problems. OCON also performs surgery on 

patients who need a primary total knee arthroplasty (TKA) or primary total hip arthroplasty 

(THA).  

Problem description and motivation  

One of the problems that OCON faces is that it is difficult to predict how long a patient will 

recover in a bed after they had their surgery. The amount of time that a patient recovers in the 

bed department is called the length of stay (LOS). The LOS is defined as the time between 

when the patient arrives at a bed at the bed department up until the patient is discharged to 

leave the hospital. Having better predictions solves multiple problems. We divide these 

problems roughly in two types of problems: patient-related problems and planning-related 

problems. Patient-related problems refer to the inconveniences perceived by the patient due to 

inaccurate LOS predictions, and planning-related problems refer to how OCON’s planning is 

negatively impacted due to wrong predictions.  

Central research problem 

The research of this thesis focusses on predicting the LOS for patients who underwent a 

primary TKA/THA. OCON wants better predictions for the postoperative LOS for these types 

of patients, and they want to know which patients will experience a long LOS. A long LOS is 

defined as a LOS of at least 3 days. This brings us to the central research problem: 

“A method should be devised which is able to make better predictions for the postoperative 

length of stay for patients who underwent a primary TKA/THA.” 

To solve this research problem, we created a tool which helps predict whether a THA or TKA 

patient will experience a long or short LOS. 

Approach 

We performed an extensive literature review on predicting LOS for THA and TKA patients. 

We selected relevant features for predicting the LOS for such patients. We asked OCON for 

data while using the relevant features according to literature. Not all data for these features was 

received, primarily because of issues with the HiX database that OCON uses. The size of the 

total dataset was 260 columns/variables and 5391 rows/surgeries. Most of the 260 variables 

turned out to be post- or perioperative variables, making them irrelevant because the purpose 

of this research is to make a preoperative prediction of the LOS by using preoperative variables 

only. Other problems occurred: many features were stored as written text, or otherwise 

unusable because they contained no LOS-related data (26% of the data) such as discharge date 

and time. There were missing or faulty values for certain features. Even though we performed 

data imputation to fill in missing values, the imputed values are never as good as the real values. 

After extensive and time-consuming data analysis, we ended up with a dataset containing 2208 

THA surgeries and 1766 TKA surgeries, with 22 remaining features.  

We analysed relevant models used for predicting the LOS for THA/TKA patients. From the 

literature, we selected eight machine learning (ML) models. Those are: 
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1. Logistic regression (LOGR) 

2. Naive Bayes classifier (NBC) 

3. K-nearest neighbour (KNN) 

4. Linear support vector machine (LSVM) 

5. Support vector machine with radial basis function kernel (SVMR)  

6. Random forest (RF) 

7. Extreme gradient boosting (XGB) 

8. Artificial neural network (ANN) 

To further decrease the number of features needed, we performed three feature selection 

methods (FSM). Reducing features shows which features are important and which are 

redundant, which increases the interpretability of the resulting ML models. The FSMs are: 

1. Filter FSM based on chi-squared tests, one-way ANOVA F-tests, and Pearson 

correlation coefficients. This FSM does not depend on the ML model used and the 

selected feature subset is the same for all ML models of a certain surgery type (TKA or 

THA).  

2. Wrapper FSM, namely backward sequential feature selection. 

3. Embedded FSM based on feature importance. Additionally, we performed Lasso on the 

LOGR model, where we selected the best performing feature subset and a feature subset 

with good performance but requiring fewer features. 

We also used a dataset containing all remaining features, which we did not perform any FSM 

on. We did this to measure how well the feature subsets resulting from the FSM perform 

compared to when we use all remaining features. In the end, we ended up with 34 combinations 

of ML models and feature subsets per surgery type. 

Results 

To measure the performance of each resulting ML model, we used the area under the curve 

(AUC) of the receiver operating characteristic (ROC) curve of each model, where a higher 

AUC is better. The ROC curve is a plot which shows the classification performance of the used 

ML models for various cutoff values. We also took the number of features for each model into 

account when selecting the most promising models, where using fewer features is more 

favourable. Table 1 and Table 2 show the performance of each created model.  

Table 1: AUC values and number of features overview of the models trained and tested on the THA data. 

 

AUC All Filter Wrapper Embedded
# of 

features
All Filter Wrapper Embedded

LOGR 0.7517 0.7454 0.7407 0.7431 LOGR 22 18 13 13

LSVM 0.7283 0.7250 0.7284 0.6659 LSVM 22 18 22 20

SVMR 0.6941 0.7001 0.6705 0.6791 SVMR 22 18 22 20

KNN 0.6905 0.6229 0.6468 0.6626 KNN 22 18 5 20

NBC 0.7220 0.7171 0.7251 0.7141 NBC 22 18 20 20

RF 0.7551 0.7422 0.7531 0.7112 RF 22 18 22 11

XGB 0.7538 0.7405 0.7454 0.7456 XGB 22 18 19 12

ANN 0.7398 0.7390 0.6653 0.7190 ANN 22 18 15 8

LassoOpt 0.7471 LassoOpt 17

LassoStd 0.7126 LassoStd 10
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Table 2: AUC values and number of features overview of the models trained and tested on the TKA data. 

 

In Table 1 and Table 2, the six promising models are coloured green and selected to be used in 

the prediction tool. We selected models with a high AUC, and we also selected models that 

have a good AUC and relatively few features.  

ML models were for classification of output fractions. These fractions range from 0 to 1. The 

higher the fraction, the more likely the model expects a long LOS. The actual prediction on 

whether a patient is expected to experience a long LOS depends on a cutoff value, and thus the 

models require a cutoff value. If the output fraction is higher than this cutoff, then the model 

predicts the corresponding patient to experience a long LOS. Table 3 shows a summary of the 

selected ML models. The sensitivity is a measure of how well a model can identify patients 

who will experience a long LOS, while the specificity is about how well the model identifies 

short LOS patients. A higher sensitivity or specificity means a better performance. We chose a 

default cutoff with the highest sum of the sensitivity with the specificity. Picking a lower cutoff 

value for an ML model will increase the sensitivity at the cost of decreasing the specificity. 

Table 3: Overview of performance metrics of each of the selected ML models for the prediction tool. 

 

We utilised the knowledge gathered by designing a prediction tool. The tool is validated by 

OCON staff, and we made adjustments based on the gathered feedback. This prediction tool 

has an Excel interface, as shown in Figure 1, where the user inputs - for a specific patient - the 

surgery type, machine learning method, the values for each corresponding feature, and 

optionally the cutoff fraction. Output will be whether the patient is expected to experience a 

long LOS. Figure 2 shows the R script which uses the data in Excel to run the ML models. The 

steps for using the tool correspond to the red boxes and are as follows:  

1. Fill in the Surgery (C2), which is either THA or TKA. 

2. Fill in a machine learning method at the Method (D2). 

3. Input the values for the corresponding features in column F. 

4. The user must save the Excel file, such as by pressing Ctrl+S. 

5. Open the R file called: 'R prediction code'. 

6. In the R file, press Ctrl+Shift+S to run the script, or press the Source button. 

AUC All Filter Wrapper Embedded
# of 

features
All Filter Wrapper Embedded

LOGR 0.7211 0.7251 0.7206 0.7440 LOGR 22 8 18 13

LSVM 0.6388 0.5929 0.5271 0.6742 LSVM 22 8 8 20

SVMR 0.6936 0.6435 0.6946 0.6708 SVMR 22 8 22 20

KNN 0.6331 0.6194 0.6806 0.6520 KNN 22 8 8 20

NBC 0.6943 0.7194 0.7189 0.6859 NBC 22 8 5 20

RF 0.7190 0.7327 0.6901 0.7101 RF 22 8 21 12

XGB 0.7057 0.7254 0.7158 0.7061 XGB 22 8 14 12

ANN 0.7033 0.7092 0.6211 0.7234 ANN 22 8 8 15

LassoOpt 0.7192 LassoOpt 23

LassoStd 0.6938 LassoStd 1

Surgery Method Number of features AUC Default cutoff Sensitivity Specificity Accuracy

Total hip arthroplasty Random forest 22 0.76 0.191 0.86 0.55 0.62

Total hip arthroplasty Logistic regression 13 0.74 0.215 0.7 0.67 0.68

Total hip arthroplasty Artificial neural network 8 0.72 0.176 0.79 0.57 0.62

Total hip arthroplasty XGBoost 12 0.75 0.197 0.72 0.66 0.67

Total knee arthroplasty Random forest 8 0.73 0.253 0.82 0.55 0.61

Total knee arthroplasty Logistic regression 13 0.74 0.39 0.51 0.84 0.75
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7. In the R file, in the bottom left corner, check the Console tab for the resulting prediction. 

This is either long LOS of at least 3 days, or a short LOS of less than 3 days. 

 

Figure 1: Updated interface of prediction tool in Excel based on feedback. 

 

Figure 2: Updated R code of prediction tool based on feedback. 

Discussion and recommendations 

The main limitation in our research is the received data amount. The received dataset was 

relatively small compared to datasets used in literature. Most of the literature work with 

datasets of at least 100,000 surgeries. Despite the small amount of data, our ML models have 

similar performance to models used in literature. The AUC values of our models range between 

0.72 and 0.76, while AUC values in literature range between 0.69 and 0.83. The literature also 

often uses comorbidity scores as features, which were not present in our received data. It would 

be beneficial to train new ML models in the future when there is more data, as the models have 

the potential to improve further. We recommend OCON the following: 

- Use the prediction tool and register the predictions done by OCON staff, predictions 

done by the tool, and whether the concerning patient experienced a long LOS or not. 

This helps keeping track of the performance of the tool and whether the cutoff value 

should be adjusted to OCON’s preferences.  

- Collect more features which are relevant according to literature, such as comorbidity 

scores. 

- Collect more surgeries to be used as input data for training the ML models. More data 

should improve the AUC of the models and thus their performance. 

Various academic sources use ANN models. The ANN model in our research was limited to 

one hidden layer. Making ANN models with more hidden layers could provide models with 

higher AUC. Finally, incorporating LOS predictions into capacity plannings could help 

optimise scheduling.  
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Chapter 1: Introduction 
In this chapter, we elaborate on the research setup and the context of the research of this thesis. 

We describe the background and discuss the problems which are the motivation behind the 

research. Finally, we propose research questions which are the foundation of the research. 

1.1 Description of the background 

The company which concerns this master thesis assignment is OCON. OCON is short for 

Orthopedisch Centrum Oost-Nederland. OCON Orthopedische Kliniek is a categorical hospital 

which specialises in treating patients with orthopaedic problems (Organisatie, 2024). The 

hospital offers a total package of high-quality sports and orthopaedic medical care. OCON is 

situated within Ziekenhuis Groep Twente (ZGT), which is a hospital group. OCON has two 

settlements: one in Hengelo, and one in Almelo. We execute our research at the Hengelo 

settlement of OCON. 

OCON's team of medical specialists consists of fifteen orthopaedic surgeons, six 

anaesthesiologists, and approximately 180 employees. The patient receives tailor made medical 

care, which is specifically meant to fit the individual, and is in line with state-of-the-art 

scientific insights. The orthopaedic surgeons and anaesthesiologists form one coherent team of 

medical specialists, which collaborate intensely in a goal-oriented manner with OCON's 

medical staff to take care of patients and their needs. This collaboration ensures that the 

experience and knowledge of different fields are aligned, and this makes sure that the treatment 

process of patients undergo a constant monitoring and tuning process.  

Every year, OCON treats approximately 22,000 different patients and performs about 5,000 

surgeries. Surgeries take place in OCON Hengelo. The orthopaedic specialisations which are 

present in OCON are: 

• Knee and hip replacement surgery 

• Spine surgery 

• Sports orthopaedics and sports medicine 

• Foot and ankle surgery 

• Wrist and hand surgery 

• Shoulder and elbow surgery 

• Prosthesis revision surgery 

• Paediatric orthopaedics 

• Traumatology 

The focus of this master assignment is about patients who undergo a primary total knee 

arthroplasty (TKA) or primary total hip arthroplasty (THA). This surgical procedure replaces 

the whole knee or hip of a patient with a prosthesis. ‘Primary’ means that the TKA/THA has 

been performed for the first time for a patient, instead of a revision for example. In 2020, 

OCON performed approximately 700 THAs and 630 TKAs (Elawady, 2021). 

We explain the patient flow of TKA/THA patients briefly as follows. The patient first visits 

primary care and is then forwarded to a consult with an orthopaedic surgeon. This surgeon 

analyses the patient at the outpatient clinic. The surgeon judges whether the patient requires a 

TKA/THA, and if necessary, OCON forwards the patient to pre-operative screening (POS). At 

the POS, a nurse or physician assistant assesses the patient's ability to undergo a surgery. The 
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goal of this screening is to ensure the medical staff is well prepared for potential complications 

that might occur during or after a surgery. If the patient is considered too frail for surgery, then 

OCON could work on prehabilitation before the patient is allowed to undergo a surgery. For 

example, if the patient is severely overweight, smokes, often drinks alcohol, and is of an age 

above 70, then it is possible that the surgery could cause dangerous complications. Thus, by 

making the patient stop drinking, quit smoking, or lose weight, OCON minimises the risks.  

After the patient has been approved at the POS, the anaesthesiologist also assesses the surgical 

applicability of the patient. After this approval, the patient makes an appointment for the 

surgery. A week before the surgery, OCON invites the patient for a rapid recovery conversation, 

in which they discuss relevant information regarding the surgery and recovery.  

After the surgery, OCON moves the patients to a bed in the nursing department and the patients 

stay there for a certain number of days until they are ready to go home and able to either take 

care of themselves, or someone else is able to sufficiently take care of them. It is also possible 

that the patient transfers to a nursing home instead. The time period which a patient is spending 

in a bed in the nursing department while they are recovering until they are discharged is called 

the length of stay (LOS). We measure the LOS in days, plus a fraction of a day. For example, 

if a patient arrives at the bed department at 11:00 on Monday, and is discharged Wednesday 

17:00, then the LOS is 2 days plus 6 hours, which is 2.25 days. The research of this thesis 

focusses on predicting the LOS for patients who underwent a primary TKA/THA. OCON 

wants better predictions for the postoperative LOS for these types of patients. Having better 

predictions helps solving multiple problems. We explain these problems in Section 1.2. In this 

thesis, whenever the prediction of the LOS is mentioned, it refers to the LOS for patients who 

underwent a primary TKA or THA.  

1.2 Problem context 

The first step in this research is to understand the problem context. Thus, we analyse the current 

processes and problems concerning TKA/THA patients. We use theses done by other students 

who have done research in different topics at OCON in the past as a source for understanding 

patient processes (Abbink, 2021; Elawady, 2021; Rolink, 2023). The first few chapters of these 

theses introduce the background of OCON. Furthermore, one of the student theses explains the 

patient flow that TKA/THA patients go through when OCON treats them, which provides 

useful information for the background of this research.  

Additionally, we interview OCON’s staff to gain more knowledge concerning the processes 

concerning TKA/THA patients. We walk along with a nurse at the nursing department, and 

with a physician assistant at the preoperative screening (POS). Furthermore, we have meetings 

with other OCON staff to discuss and learn more about the context of the assignment. In 

addition to the OCON supervisors, the physician assistant, and the nurse, we have meetings 

with the quality and capacity manager, the clinical department process coach, and with the data 

specialist. The knowledge gathered during all the meetings and interviews is summarised in 

the problem cluster shown in Figure 1.1. 
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Figure 1.1: Problem cluster of the current situation in OCON. 

The problems in the problem cluster can be divided roughly in two types of problems: patient-

related problems and planning-related problems. Patient-related problems refer to the 

inconveniences perceived by the patient due to inaccurate LOS predictions, and planning-

related problems refer to how OCON’s planning is negatively impacted due to wrong 

predictions. 

The main problem that patients experience with an inaccurate LOS prediction, is patient 

uncertainty. Patients do not know for how long they will have to recover at OCON’s nursing 

department. Consequently, these patients cannot psychologically prepare well for their 

recovery process. This is especially distressing for older and frail patients, who often also have 

a significantly longer than average LOS. Another inconvenience that patients experience is that 

they cannot make clear plans. When undergoing a TKA/THA, patients may have to take time 

off from work, they might have to arrange friends or family to take care of them at home, or 

they have to postpone appointments or vacation plans. The patient uncertainty comes not only 

from the fact that the true LOS could be different than expected, but it can also result from 

medical personnel giving different indications of the patient’s LOS. These indications can be 

interpreted by the patient as promises. For example, if the orthopaedic surgeon tells the patient 

that it would not be a problem if the patient recovers in the nursing department for a few extra 

days, then a patient remembers this and base their plans on it, and this could result in patients 

staying longer at the nursing department than required, which can result in costs and 

inconvenience. It is beneficial if the medical personnel are on the same page when it comes to 

making such LOS ‘promises’ to patients.  

OCON’s planning-related problems can be caused by two scenarios: either a patient’s LOS is 

longer or shorter than predicted. If the LOS prediction is longer than the patient’s actual LOS, 

then this means that more resources, such as material, space, and personnel, are allocated than 

required. If the LOS prediction is consistently too long, then this means that patients will 

consistently leave the nursing department earlier than expected, which creates gaps in OCON’s 

planning. This means that more resources are allocated than required, and these resources are 

not used in the end. Thus, this means that the capacity is underutilised. It is often not possible 
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to suddenly fill in these gaps in OCON’s planning. Thus, beds and other material is available 

instead of being used, which is an inefficient use of resources. 

If the LOS prediction is consistently shorter than predicted, then this means that patients remain 

longer in the nursing department than expected, which causes overlap in the planning. This is 

problematic, because it could be the case that certain resources are suddenly required by two 

different patients. If this is not possible, then this results in a congested planning, which means 

that certain patient-related activities have to be moved or postponed. In such a situation, the 

medical staff of OCON is unexpectedly required to do more work, which puts pressure on 

them. From the conducted meetings, medical staff already have to do a lot of work, especially 

nurses. This observation further stresses that pressuring the medical staff even more is highly 

undesirable. 

OCON’s planning-related problems, as well as the patient-related problems, all originate from 

the problem that the current LOS is not based on considering patient-related factors. Patient-

related factors refer to any aspect which concerns the patient’s health, or the processes that the 

patient experiences in OCON. Examples of such factors are BMI, gender, age, surgery time, 

and blood loss during surgery. OCON collects these factors and writes them down in HiX. 

These factors might be an indication of what the LOS of a patient could be. HiX is the database 

that OCON uses to register information such as patient-related information, and thus it 

essentially functions as an electronic patient archive. Currently at OCON, there is no systematic 

model which considers patient-related factors for predicting a patient’s LOS. According to 

OCON’s medical staff, the current expected LOS for primary TKA patients is 3 days, and for 

primary THA patients it is 2 days. These estimations include the day on which the patient 

undergoes the surgery. The absence of a systematic prediction model for the LOS causes the 

aforementioned problems that can be seen in Figure 1.1, which means that the core problem, 

as well as the research problem is as follows: 

“A method should be devised which is able to make better predictions for the postoperative 

length of stay for patients who underwent a primary TKA/THA.” 

1.3 Problem approach 

After identifying the core problem, our problem approach is to devise research questions which 

aim to solve the core problem. The research questions are the building blocks for the solution 

for the core problem and answering them should solve the problem. The research questions are 

categorised in five categories, and each category is a chapter in this thesis. Certain research 

questions are divided in sub-research questions which help answering them. The (sub-)research 

questions are as follows: 

Introduction (Chapter 1): 

1. What core problem is OCON currently facing concerning primary TKA/THA patients? 

a. What is the patient flow of primary TKA/THA patients? 

b. What current problems does OCON face regarding primary TKA/THA 

patients? 
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Literature review (Chapter 2): 

2. What suitable methods for LOS prediction for primary TKA/THA patients does 

academic literature mention?  

a. Which methods help reduce the number of required input features for such 

prediction methods? 

b. Which indicators can be used to measure the performance of a prediction 

model? 

Data collection and analysis (Chapter 3): 

3. What input is required for LOS prediction methods? 

a. How do we collect such input data? 

b. What steps are required to make input data suitable for the prediction methods? 

Machine learning methods (Chapter 4): 

4. How do we configure the LOS prediction methods to improve their performance? 

a. Which methods can reduce the number of required input features? 

Results (Chapter 5): 

5. Which LOS prediction methods perform the best? 

6. How can we implement the LOS prediction methods in practice? 

1.4 Thesis outline 

In Chapter 1, we introduce OCON and the assignment, and we elaborate on the problem context 

in Section 1.2. After identifying the core problem and research questions, the next step in this 

research is to perform a literature study in Chapter 2 to search for methods which can perform 

predictions for a patient’s LOS. We discuss and prepare the input data in Chapter 3, and in 

Chapter 4 we cover methods that we implement. We test these methods and analyse the 

corresponding results in Chapter 5. Finally, we discuss limitations, conclusions, and 

recommendations in Chapter 6. 

1.5 Summary 

In this chapter, we analyse the problem context regarding the LOS of primary TKA/THA 

patients. We research the patient flow of these patients to find the current problems that OCON 

faces regarding these patients. Consequently, we find that the core problem is that OCON 

requires a method to predict the LOS of such patients. We perform a literature review in Chapter 

2 to find suitable methods in academic literature. 
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Chapter 2: Literature review 
In this chapter, we answer the literature review research questions as proposed in Section 1.3. 

We analyse literature aims to predict with methods, such as machine learning (ML) methods, 

the postoperative LOS for primary TKA or THA patients. We use the database of Scopus for 

collecting literature. We answer the following research question: What suitable methods for 

LOS prediction for primary TKA/THA patients does academic literature mention? In Section 

2.1, we discuss the collected literature and the methods that are frequently used for LOS 

prediction. We briefly summarise our findings in Section 2.2. 

2.1 Literature overview 

Table 2.1 summarises the literature, concerning the goal of the source, patient type, features, 

and model performance. Features are variables which describe data points. For a patient, 

features could be the age and BMI. Both TKA and THA can be categorised under total joint 

arthroplasty, and thus this term is also added to the search query. Replacement is alternative 

way of mentioning arthroplasty in this context. Discharge time is another possible term which 

can be used for describing the LOS, which is also included in the search query. Finally, learning 

refers to machine learning (ML) and predict* refers to possible conjugations with the word 

predict. We add the concept of ML to the search query because it has shown to be promising in 

literature when it comes to predicting the LOS (Papalia et al., 2021). The search query used is: 

primary AND total AND ( knee OR hip OR joint ) AND ( replacement OR arthroplasty ) AND 

( length AND of AND stay ) OR ( discharge AND time ) AND learning AND predict* 

Most research done on the topic of predicting the LOS for TKA and THA patients has been 

performed on the American population, and these researchers often extracted their data from 

databases with American patients such as SPARCS, NIS, and ACS-NSQIP. The amount of 

research done on European patients is underrepresented, which makes research of these type 

of patients more innovative. 

A recurring trait in the literature in Table 2.1 is that plenty of sources model the LOS as a binary 

or categorical variable, where time intervals are put together to form a category. If the LOS is 

modelled as binary, then a distinction is made between a relatively short or prolonged LOS. 

Thus, we expect the prediction model in this research to be more suitable if the LOS is also 

modelled as a binary or categorical variable. We refer to a binary variable which indicates a 

prolonged LOS as LongLOS. 

Certain variables occur frequently in literature, such as age, BMI, gender, ethnicity, blood 

values, anaesthesia type, and comorbidity scores. In Chapter 3, we make a selection of variables 

used in literature for LOS prediction. We use this selection as a starting point for finding 

relevant input data. 

Finally, academia uses a train/test split of 80:20 the most, which means that 80% of the input 

data is used for training a prediction model, while 20% is used to test the model’s performance. 

However, various academic sources also used other train/test splits, such as 60:40. 
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Table 2.1: Overview of literature with prediction models for the LOS for primary TKA and THA patients.  

Source Goal Patient 

type 

# patients Methods used  Relevant features Pre-/peri-

/postoperativ

e features 

Best performance Additional remarks 

(Zalikha 

et al., 

2023) 

Compare ML 

models’ 

performance 

for predicting 

LOS, 

discharge 

disposition, 

and mortality. 

Primary 

TKA 

patients 

from US 

between 

2016 and 

2017. 

Extracted 

from NIS. 

 

~306,000 10 ML models were 

used, of which 

LSVM, CHAID, and 

Decision List were the 

3 most promising 

models. 

15 variables: 8 patient-specific 

(including Age, Gender, Race, Total 

number of diagnoses, All Patient 

Refined Diagnosis Related Groups 

(APRDRG) Severity of illness, 

APRDRG Mortality risk, Income zip 

quartile, and Primary payer) and 7 

situational variables (including Patient 

Location, Month of the procedure, 

Hospital Division, Hospital Region, 

Hospital Teaching status, Hospital Bed 

size, and Hospital Control). 

Preoperative KPIs: AUC and 

accuracy. AUC: 

0.689 (LSVM). 

Accuracy: 85.39% 

(Decision list). For 

predicting the LOS, 

the best performing 

ML models were: 

LSVM, Decision 

Lists, CHAID. 

LOS is binary with a cutoff 

of 2 or less days, which is 

based on the average of the 

patients in the study; Patient 

income was measured in 

four categories. LOS is 

defined as when the patient 

either moves to another 

facility or home. 

(Nham et 

al., 2023) 

Compare 

patient-

specific and 

situation 

perioperative 

variables with 

ML models to 

predict 

postoperative 

outcomes. 

Primary 

THA 

patients 

from US 

between 

2016 and 

2017. 

Extracted 

from NIS. 

~177,000 10 ML models were 

used, of which 

LSVM, CHAID, and 

Decision List were the 

3 most promising 

models. 

15 variables: 8 patient-specific 

(including Age, Gender, Race, Total 

number of diagnoses, All Patient 

Refined Diagnosis Related Groups 

(APRDRG) Severity of illness, 

APRDRG Mortality risk, Income zip 

quartile, Primary payer) and 7 

situational variables (including Patient 

Location, Month of the procedure, 

Hospital Division, Hospital Region, 

Hospital Teaching status, Hospital Bed 

size, and Hospital Control). 

Preoperative KPIs: AUC and 

accuracy. AUC: 

0.745 (LSVM). 

Accuracy: 83.88% 

(Decision list). For 

predicting the LOS, 

the best performing 

ML models were: 

LSVM, Decision 

Lists, CHAID. 

 

LOS is binary with a cutoff 

of 2 or less days, which is 

based on the average of the 

patients in the study; 

SMOTE was applied to deal 

with data imbalance; Uses 

three data subsets (train, 

test, validate); Patients with 

deficit information were 

removed; 80:20 train test 

split; Similar authors like 

Zalikha et al. (2023). 

(Chen et 

al., 2023a) 

Predicting 

prolonged 

LOS based on 

national 

patient cohort 

data (binary 

variable LOS 

of 3 days was 

based on the 

Primary 

TKA 

patients 

from US 

between 

2013 and 

2020. 

Extracted 

~268,000 4 ML models: ANN, 

RF, histogram-based 

gradient boosting, 

KNN. 

Recursive feature elimination based on 

a rudimentary RF model was done; the 

most relevant features were age, BMI, 

ethnicity, pre-operative transfusion, 

white blood cell, hematocrit, platelet 

count, operation time, anaesthesia type, 

and diabetes.  

Pre- and 

perioperative 

The best performing 

model was ANN. Its 

KPIs were AUC 

(0.71), calibration 

plot (slope: 0.82, 

intercept: 0.03), 

Brier score (0.089). 

Prolonged LOS defined as 

exceeding the 75th 

percentile of all LOSs, 

which was more than 3 

days; No revision surgery, 

thus only primary TKA; 

removes outliers in features; 

80:20 train/test split. 
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75th percentile 

of all LOS). 

from ACS-

NSQIP. 

(Chen et 

al., 

2023b) 

Develop ML 

models with 

national-scale 

data set and 

test their 

performance 

in predicting 

prolonged 

LOS. 

Primary 

THA from 

US between 

2013 and 

2020. 

Extracted 

from ACS-

NSQIP. 

~246,000 4 ML models: ANN, 

RF, histogram-based 

gradient boosting, 

KNN. 

Recursive feature elimination based on 

a rudimentary RF model was done. The 

most relevant variables for predicting 

were age, transfusion after surgery, 

operation time, BMI, platelet count, 

white blood cell count, and anaesthesia 

type. 

Pre- and 

perioperative 

The best performing 

model was ANN. Its 

KPIs were AUC 

(0.73), calibration 

plot (intercept: -

0.01, slope: 0.99), 

Brier score (best: 

0.185). 

Prolonged LOS defined as 

exceeding the 75th 

percentile of all LOSs, 

which was more than 3 

days; 80:20 train test split; 

mentions that many patient 

variables were made binary. 

(El-

Othmani 

et al., 

2022) 

Develop, test, 

and compare 

ML models to 

predict 

postoperative 

parameters 

like LOS. 

Primary 

THA from 

US between 

2016 and 

2017. 

Extracted 

from NIS. 

~177,000 4 ML models: LSVM, 

RF, ANN, XGBoost. 

15 variables: 8 patient-specific and 7 

hospital-specific variables. Variables 

most effective for LOS prediction were 

age, total number of diagnoses, 

APRDRG mortality, APRDRG 

severity, hospital division, sex, hospital 

bed size, race, hospital control, primary 

payer. 

Preoperative KPIs were AUC 

(0.744 of LSVM) 

and accuracy 

(72.21% of LSVM). 

LOS is binary with a cutoff 

of 2 or less days, which is 

based on the average of the 

patients in the study; 

SMOTE was applied to deal 

with data imbalance; Uses 

three data subsets (train, 

test, validate); Patients with 

deficit information were 

removed; 80:20 train test 

split; Similar authors like 

Zalikha et al. (2023). 

(Li et al., 

2022) 

Develop a 

predictive 

model for 

LOS 

TKA 

between 

2013 and 

2014 from a 

single 

Singapore 

centre 

~1800 2 ML models: 

XGBoost, logistic 

regression 

Univariate analysis (p<0.05 were 

selected) is used to identify predictive 

variables, which were: age, ASA score, 

diabetes, ischemic heart disease, 

congestive heart failure, general 

anaesthesia, operation duration, 

cerebrovascular accident, creatinine 

level, race, gender, BMI, hemoglobin, 

and smoking. 

Pre- and 

perioperative 

XGBoost model 

(AUC: 0.738) 

performed better 

than logistic 

regression (AUC: 

0.639) because 

AUC was higher  

Normal and prolonged LOS 

were differentiated with a 

binary variable. Long LOS 

is 6 or more days. 

(Wei et 

al., 2021) 

Develop ANN 

model to 

determine pre- 

and 

perioperative 

variables to 

Primary 

TKA from 

2018 in US. 

Extracted 

~29,000 2 ML models: logistic 

regression and ANN 

Variables with p<0.2 (using chi-squared 

and independent samples t-test) were 

used for logistic regression, while 

stepwise logistic regression was also 

used for filtering, which resulted in: 

age, race, BMI, dyspnoea status, 

Pre- and 

perioperative 

KPI was AUC. The 

ANN (AUC: 0.801) 

performed slightly 

better than the 

logistic regression 

Patients with missing data 

were excluded; prediction 

was about whether patient 

was discharged the same 

day or not, normal 

discharge was two to four 



Chapter 2: Literature review 2.1 Literature overview 

 

9 

 

predict same-

date discharge 

from ACS-

NSQIP 

functional status, anaesthesia type, 

operating time, preoperative INR, 

preoperative sodium, sex, ASA score, 

hypertension, chronic steroid use, and 

preoperative haematocrit. Variables 

used for ANN were the first 9 variables, 

as well as COPD status and anaemia 

status 

model (AUC: 

0.796) 

days LOS, and same day 

discharge was a LOS of 0 

days. Thus, LOS was 

modelled as a binary 

variable; 60/40 train/test 

split 

(Ramkum

ar et al., 

2019a) 

Develop an 

ANN that 

predicts the 

LOS  

Primary 

TKA from 

2009 to 

2013 in US. 

Extracted 

from NIS, 

as well as an 

institutional 

database 

~175,000 1 ML model: ANN 15 variables: age, gender, ethnicity, 

race, APR risk of mortality, APR 

severity of illness, number of chronic 

diseases and diagnoses, comorbidity 

status, type of admission, whether the 

admission was from the emergency 

department, whether the admission was 

during the weekend, hospital type, 

patient income quartile, and whether 

patient was transferred from an outside 

hospital 

Preoperative KPIs were AUC and 

accuracy. The ANN 

for predicting the 

LOS had an internal 

AUC of 74.8%, an 

internal accuracy of 

75.3%, an external 

accuracy of 80%, 

and external AUC 

of 83.2% 

 

Patients with missing data 

were excluded, which was 

2.5% of the data; LOS 

determination does not 

check discharge disposition; 

LOS outcome variable had 

two categories: short LOS 

(1 to 3 days), and long LOS 

(4 or more days)  

 

(Ramkum

ar et al., 

2019c) 

 

Develop an 

ANN that 

predicts the 

LOS  

Primary 

THA from 

2009 to 

2011 in US. 

Extracted 

from NIS  

~78,000 1 ML model: ANN 15 variables: age, gender, ethnicity, 

race, APR risk of mortality, APR 

severity of illness, number of chronic 

diseases and diagnoses, comorbidity 

status, type of admission, whether the 

admission was from the emergency 

department, whether the admission was 

during the weekend, hospital type, 

patient income quartile, and whether 

patient was transferred from an outside 

hospital 

Preoperative KPIs were AUC and 

accuracy. The ANN 

for predicting the 

LOS had an internal 

AUC of 82%, an 

internal accuracy of 

75%, an external 

accuracy of 75.6%, 

and external AUC 

of 80.3% 

 

Patients with large amount 

of missing data were 

excluded. LOS outcome 

variable was binary, and 

threshold was based on the 

median (4 or more days was 

long LOS); 90:10 train/test 

split, stratified k fold (k=10) 

was used. Five categories of 

AUC quality. 

(Gabriel 

et al., 

2019) 

Develop 

predictive 

model for 

identifying 

patients who 

will not 

require a long 

LOS 

Primary 

THA in US 

from 2014 

to 2016. 

Extracted 

from single 

institution  

 

~1000 3 ML models: 

Logistic regression 

with ridge regression, 

logistic regression 

with Lasso, RF  

 

Univariable logistic regression to assess 

associations of variables with LOS. 

Final model contained 9 variables: age, 

opioid use, metabolic equivalents score, 

sex, anemia, chronic obstructive 

pulmonary disease, hypertension, 

obesity, primary anaesthesia type.  

Preoperative KPI was AUC. 

AUC for the best 

performing model 

was 0.761 (logistic 

regression with 

ridge regression) 

 

Short LOS is defined at 3 or 

less days. Train/test split is 

66:33. Backward stepwise 

model selection based on 

AIC was used to construct 

final logistic regression 

model. 

 

(Ramkum

ar et al., 

2019b) 

Develop ML 

model to 

Primary 

THA in US 

from 2012 

~122,000 1 ML model: Naive 

Bayesian model  

Final variables: age, race, gender, and 

comorbidity scores (APR risk of 

morbidity and APR risk of illness).  

Preoperative KPIs: AUC (0.87) 

and accuracy (0.83) 

LOS categories: 1-2, 3-5, 

6+ days.  
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predict LOS 

with big data 

to 2016. 

Extracted 

from 

SPARCS 

(Navarro 

et al., 

2018) 

Using 

preoperative 

big data to 

predict the 

LOS 

Primary 

TKA in US 

from 2009 

to 2016. 

Extracted 

from 

SPARCS 

~141,000 1 ML model: Naive 

Bayesian model 

Final variables: age, race, gender, and 

comorbidity scores (APR risk of 

morbidity and APR risk of illness).  

Preoperative KPIs: AUC 

(0.7822) and 

accuracy (0.874) 

3:1 train/test split; LOS 

categories: 1-3, 4-5, 5+ 

days. 
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In the following section, we explain the concepts named in Table 2.1. Machine learning (ML) 

particularly is a recurring term in the literature. It is a scientific field where the goal is to learn 

a computer how to perform desirable behaviour without giving detailed instructions on how to 

behave (Colliot, 2023). Essentially, it is about training computers based on input data, so that 

they can perform helpful tasks when new input data is provided. ML is a part of artificial 

intelligence (AI). AI is a scientific domain with the goal of making computers perform similar 

tasks that can be done by animal or human intelligence. Examples of such tasks are recognising 

images or words in speech. The concept of AI and ML emerged around the 1940s and 1950s. 

In 1943, scientists devised an artificial neural model. This model is based on the concept of a 

biological neuron. In 1958, a scientist created the first perceptron, which is an artificial neuron, 

which was able to recognise images. It uses a set of input data, combines them, transforms 

them with a mathematical function, and delivers an output. We explain more on the concept of 

artificial neurons in at the section concerning artificial neural networks in this chapter. ML 

methods continued to develop throughout the 1980s and 1990s. During this time, scientists 

worked on developing and improving decision trees and support vector machines. We expand 

more on these latter concepts later in this chapter. ML can be classified in three main categories, 

which are supervised learning, unsupervised learning, and reinforcement learning. Figure 2.1 

shows an overview of these categories (Hossain et al., 2020, p. 78060). Any other ML methods 

are variation on these three categories.   

 

Figure 2.1: Taxonomy of ML (Hossain et al.,2020, p. 78060). 

Supervised learning refers to making predictions for a certain output based on given inputs, 

while unsupervised learning refers to finding structure and relationships when only the input is 

given, and no specific output variable has to be predicted. The data to train the supervised 

learning model is the train data, and the data used to make predictions on to test the model is 

called the test data. Reinforcement learning is characterised by the existence of a decision 

maker which reacts to a current state, executes an action, and learns from the resulting reward. 

In reinforcement learning, the decision maker constantly interacts with the environment.  

As can be seen in Table 2.1, the majority of the ML methods used are supervised learning. 

Examples are naive Bayes classifier, logistic regression, and gradient boosting. It makes sense 
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that the literature uses supervised learning methods, because the goal of this research is to 

predict LOS, which can be achieved with training a model on training data. Figure 2.2 shows 

a flowchart of how supervised learning works (Osisanwo et al., 2017, p. 129). After the user 

inputs data, the program processes the data and uses it to train a supervised learning algorithm. 

The program tests the model and tunes parameters to improve it. Afterwards, the model can be 

used for classification purposes. 

 

Figure 2.2: General structure of supervised learning (Osisanwo et al., 2017, p. 129). 

We found promising supervised ML methods in the literature review, as shown in Table 2.1. 

We select ML methods who are used in at least two different sources with significantly different 

research teams. Certain sources have significant overlap in researchers and mainly differ in the 

fact that one source analyses THA patients and the other analyses TKA patients. We view these 

sources as one type of research. This means that we consider the following pairs as one type of 

research: 

- Zalikha et al. (2023) and Nham et al. (2023). 

- Chen et al. (2023a) and Chen et al. (2023b). 

- Ramkumar et al. (2019a) and Ramkumar et al. (2019c). 

- Ramkumar et al. (2019b) and Navarro et al. (2018). 

Additionally, we also include relatively simple ML methods according to literature, such as k-

nearest neighbour and naive Bayes classifier. In the end, we select the following ML methods 

for this research: 

- Logistic regression (LOGR) 

- Naive Bayes classifier (NBC) 

- K-nearest neighbour (KNN) 

- Support vector machine (SVM) 

o Linear support vector machine (LSVM) 

o Support vector machine with radial basis function kernel (SVMR) 

- Random forest (RF) 
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- Extreme gradient boosting (XGB) 

- Artificial neural network (ANN) 

Logistic regression (LOGR) 

Logistic regression is one of the most used methods for predicting a binary outcome variable 

with a given input data (Fitzmaurice & Laird, 2015). It uses equation [1] where X is a certain 

input variable value, 𝛽0 is the intercept, 𝛽1 is the coefficient for variable X, and p(X) is the 

probability that the outcome variable is 1. Determining whether p(X) is high enough to 

conclude whether the outcome variable is 1 depends on a certain prediction probability cutoff 

value. For example, if a cutoff value of 0.5 is used, then this means that a value of p(X) or 

higher will mean that the outcome variable is predicted to be 1. Equation [1] is the formula for 

logistic regression if only one input variable is used, and it could be extended with multiple 

input variables and coefficients. Using more than one input variable for logistic regression is 

called multiple linear regression. 

𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋

1 +  𝑒𝛽0+𝛽1𝑋  
     [1]  

Naive Bayes classifier (NBC) 

The naive Bayes classifier is a relatively simple but powerful ML algorithm (Berrar, 2018). It 

uses the formulation of the Bayes’ theorem to calculate conditional probabilities 𝑝(𝑦𝑗|𝒙𝒊), 

which is the probability that outcome variable value 𝑦𝑗 will be present when a row of input 

features 𝒙𝒊 of instance 𝑖 is present. Equation [2] shows the corresponding formula. The naive 

Bayes classifier can be used to predict outcome variable values. If the value of the conditional 

probability 𝑝(𝑦𝑗|𝒙𝒊) is higher than a certain chosen threshold, then the classifier predicts value 

𝑦𝑗. 

𝑃(𝑦𝑗|𝒙𝒊) =
𝑃(𝒙𝒊|𝑦𝑗) ∗ 𝑃(𝑦𝑗)

𝑃(𝒙𝒊)
      [2] 

K-nearest neighbour (KNN) 

The k-nearest neighbour algorithm is a relatively simple ML method which can be used to 

classify data (Zhang, 2016). The way KNN works is that the training data is mapped as data 

points in a space, and the result of the outcome variable of each data point is also being 

registered. Every axis in the space represents a feature. When a prediction is done for a data 

point from the test data, the KNN algorithm will check the Euclidean distance from the newly 

added data point to the closest data points from the training data. The amount of training data 

points to be checked equals parameter k. A KNN algorithm chooses the outcome for a new data 

point from the test dataset based on the highest number of closest data points from the training 

dataset. The k parameter affects how the algorithm works significantly. A lower k risks ignoring 

small patterns, even though these patterns could still be significant. A higher k reduces the 

impact of random errors on the prediction quality, but this could risk missing small but 

significant patterns in the data. Figure 2.3 illustrates how the data points are put in a space, 

where colours are the outcome of a data point, and the axes are features (Zhang, 2016, p. 3). 

The triangles, which is the train data, are plotted first. Afterwards, the circles are plotted, and 

their outcome is predicted based on the closest neighbouring train data. 
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Figure 2.3: Illustration of how predictions of test data is made with KNN (Zhang, 2016, p. 3). 

Support vector machine (SVM) 

Support vector machine is a ML method which tries to distinguish different outcomes based on 

features (Pathak, 2020). The method creates a hyperplane and predicts the outcome of data 

points based on their relative location to this hyperplane, or decision surface. Figure 2.4 

illustrates this concept (Mountrakis et al., 2011, p. 248). Data points which fall on one side of 

the decision surface are predicted to have a certain outcome, while data points on the other side 

are predicted to have another outcome. 

 

Figure 2.4: Illustration of LSVM example (Mountrakis et al., 2011, p. 248). 

The SVM method tries to create an optimal hyperplane, which is based on maximising the 

distance of the hyperplane to the closest data points on either side of the hyperplane. This 

distance is called the margin, and the closest data points to the decision surface are called the 

support vectors. Applying a linear SVM assumes that the data is linearly separable. There are 

also non-linear SVMs, such as an SVM which uses the radial basis function kernel (SVMR). 

Such SVMs help classify data which is not linearly separable. 

Random forest (RF) 

Random forest is a method which can deal well with noise and outliers, is accurate in 

classification, and avoids overfitting (Liu et al., 2012). Random forest is an ensemble method, 
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which is a method that uses multiple learning algorithms to create a combination of decision 

trees. A decision tree is a structure that contains nodes which split in other nodes. These nodes 

have a criterium, and the direction to resume in the decision tree is governed by whether the 

input data satisfies this criterium or not. Figure 2.5 shows an example of a decision tree where 

the criterium of the first split is whether the input data has a value higher than 0.62625 for 

variable LTC4S, and the second split at node 2 is governed by the criterium whether the variable 

CA2 has a value higher than 0.90977 (Myles et al., 2004). The final nodes, called leaf nodes, 

contain the prediction of the outcome variable, which is in Figure 2.5 either L or M. 

 

Figure 2.5: Illustration of decision tree example (Myles et al., 2004, p. 276). 

A random forest creates decision trees where each one of them is built on a subset of the training 

data. Furthermore, for every decision tree, only a subset of the total amount of features is 

included. A random forest model will base its final prediction on a majority vote depending on 

the resulting individual predictions of all predictions of the decision trees which are part of the 

random forest. Figure 2.6 shows a schematic to illustrate the random forest method, where 𝑇𝑘 

signifies a subset of the training data created by sampling with replacement (Liu et al., 2012, 

p. 247). 

 

Figure 2.6: Schematic of random forest concept (Liu et al., 2012, p. 247). 

Gradient boosting (XGB) 

Gradient boosting is an ensemble method like random forest (Natekin & Knoll, 2013). An 

ensemble method uses multiple instances of a base-learner to produce better predictions. An 

example of base learners could be decision trees. Instead of creating different decision trees at 

the same time, like random forest does, gradient boosting builds the decision trees sequentially. 

Every new decision tree model is trained pertaining to the error of all the previous models so 

far, which is done to improve the prediction accuracy. A gradient-descent formulation is used 

to determine what the structure of the next decision tree in the sequence should be. This 
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formulation makes sure a decision tree is created where the chosen loss function, which is based 

on the prediction error, descents the fastest, which is achieved by analysing the gradient of the 

loss function. Figure 2.7 shows a figure which illustrates how a gradient boosting machine is 

trained (Nhat-Duc & Van-Duc, 2023, p. 3). New decision trees are subsequentially added and 

aim to reduce the prediction error of the previous results. Like random forest, the final 

prediction of gradient boosting is based on a majority vote across all decision trees that are 

created. 

 

Figure 2.7: Illustration of how a gradient boosting model is trained (Nhat-Duc & Van-Duc, 2023, p. 3). 

Histogram-based gradient boosting is an adjusted version of gradient boosting, where the 

continuous values of features are put into ranges and aggregated into separate bins. The number 

of bins could be set to 255 for example (Nhat-Duc & Van-Duc, 2023). The bins can be used to 

create a histogram to visualise the distribution of the continuous input features. The main 

advantage of histogram-based gradient boosting is that it reduces the computational cost of the 

method.  

Extreme gradient boosting (XGBoost) is another adjusted version of gradient boosting (Chen 

& Guestrin, 2016). It introduces additional algorithms and data techniques. XGBoost handles 

sparse data better and makes use of approximate learning. The adjustments introduced in 

XGBoost has the main advantage that the computation time is significantly low compared to 

other similar methods.  

Artificial neural network (ANN) 

An artificial neural network is characterized by three types of neurons, which are input neurons, 

output neurons, and hidden neurons. Figure 2.8 shows an example of an ANN, where x signifies 

the input layer, h signifies the hidden layer, and y signifies the output layer (Bougrain, 2004, p. 

348). An ANN can have multiple hidden layers. Each input node receives information of the 

features and passes it on to hidden nodes via connections. These connections have weights. The 

hidden nodes perform calculations, such as taking the weighted sum of the input values plus a 

value called the bias, transform this value with a function called the activation function, and 

pass this final value to other nodes through connections. This flow of information could pass 

multiple hidden nodes before it reaches the output nodes. The output nodes signify outcome 

variables. For example, suppose an ANN has an output node where a value of 1 signifies a long 

LOS and a value of 0 signifies a short LOS. If a certain collection of features is inputted in the 

input nodes, and the final output value is 0.8 after calculations are done in the hidden layer, 
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then this means that the ANN predicts the likeliness of a long LOS to be 0.8, which means that 

the ANN suggests that the outcome is much more likely to be a long LOS. For the ANN, the 

choice of the weights of the connections, activation functions, and bias values should be 

optimised to make the predictions as good as possible. 

 

Figure 2.8: ANN illustration (Bougrain, 2004, p. 348).  

Feature selection methods (FSM) 

The variables used in the literature as input for the ML models differ across the literature, as 

shown in Table 2.1. To make sure the promising prediction variables are included in the ML 

models used in this thesis, we aim to incorporate as much variables as possible. Furthermore, 

it could be the case that the input data of the research of this thesis contains variables which 

are useful for LOS prediction but are not extensively researched in the literature, which further 

highlights the advantages of considering as much input variables as possible. However, using 

too many features in a prediction model could make predictions worse and could cause 

overfitting (Jović et al., 2015). Furthermore, having too many variables could be 

computationally expensive. Having many variables is also less convenient from a customer’s 

perspective, as this would require extensive variable collection. Feature selection methods 

(FSMs) could help filter down the most promising variables before we train the ML models. 

Figure 2.9 shows that feature selection methods can be classified in the following four 

categories: filter methods, wrapper methods, embedded methods, and hybrid methods 

(Abiodun et al., 2021, p. 15095).  

 

Figure 2.9: Categories of feature selection methods (Abiodun et al., 2021, p. 15095). 

For filter methods, variables are selected based on a certain performance measure, which is not 

influenced by the used ML modelling method. Only the variables which satisfy certain criteria 

are included for modelling. These criteria can be statistical measures. An example of this would 

be Pearson correlation coefficients. High correlation between the features and the outcome 

variable is desirable, while high correlation between the features themselves should be avoided 
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(Witten et al., 2016). Similarly, chi-square tests can also be used to select features, where 

features which are significantly dependent on the outcome variables would be selected (Jović 

et al., 2015).  

Wrapper methods create subsets of the data by only including a part of the features and then 

test the predictive performance of these subsets on the used machine learning modelling 

algorithm. This also means that the feature subsets become biased towards the modelling 

algorithm used, which is undesirable. Still, wrapper methods generally yield better feature 

subsets than filter methods, but wrapper methods are significantly slower. Examples of wrapper 

methods are sequential algorithms, such as forward or backward sequential feature selection 

(Abiodun et al., 2021). 

Embedded methods execute the feature selection method while the modelling algorithm is 

running (Jović et al., 2015). Certain embedded methods utilise regularisation, which minimises 

the fitting errors while making sure that feature coefficients are close to zero. An example of 

this is as the Lasso method. Another example of an embedded feature selection method is 

ranking the importance of all features and then selecting the features with an importance index 

higher than a certain threshold (Genuer et al., 2010). 

Hybrid methods combine the most beneficial properties of both wrapper and filter methods 

(Jović et al., 2015). The filter method is executed first to reduce the total amount of features. 

Afterwards, the wrapper method is executed so that the best feature subset is selected. Hybrid 

methods often achieve the high efficiency of filter methods, while also attaining the high 

accuracy of wrapper methods. 

Key performance indicators (KPIs) 

Key performance indicators can be used to measure the performance of a ML prediction model. 

Table 2.2 proposes such KPIs (Lee et al., 2021). Classification models refers to models whose 

outcome variable are categorical, and non-classification models refers to models with a 

continuous outcome variable. As mentioned before, the LOS is modelled as a categorical 

variable in the literature, which implies that the KPIs for classification models are suitable for 

our research. This is in line with what the literature in Table 2.1 shows, as the AUC and 

accuracy are often used as KPIs. For these KPIs, higher values mean better model performance. 

Table 2.2: KPIs for classification models (Lee et al., 2021, p. 7). 

 

The AUC is a KPI which is measure as the area under the curve of a receiver operator 

characteristic (ROC) curve. The ROC curve (Hastie et al., 2021) is a graphic which visualises 

the sensitivity and specificity of a tested prediction model depending on the prediction 
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probability cutoff value used. Every point in the ROC curve corresponds to a certain cutoff 

value. Every cutoff value also has a different accuracy, which makes it relatively difficult to 

assess a model’s performance with accuracy. To evaluate the whole ROC curve, it is more 

favourable to use the AUC instead (Bradley, 1997). Thus, we use the AUC as main KPI for our 

research. An example of an ROC curve is shown in Figure 2.10, where the true positive rate is 

the sensitivity, and the false positive rate equals one minus the specificity (Hastie et al., 2021, 

p. 151). The AUC values in literature range from 0.69 to 0.83 for TKA patients, and from 0.73 

to 0.87 for THA patients. 

 

Figure 2.10: ROC curve illustration (Hastie et al., 2021, p. 151). 

In this research, we define the occurrence of a long LOS as a positive label. The sensitivity is 

defined as the probability of a ML model to predict a long LOS given that the patient 

experiences a long LOS. For example, a high sensitivity of 0.8 means that 80% of the patients 

who experience a long LOS are predicted by the model to experience a long LOS. This would 

mean that the model is relatively good at identifying long LOS patients. In contrast, the 

specificity is the probability that the model predicts a short LOS given that the patient 

experiences a short LOS. A high specificity means that the model is relatively good at 

identifying patients who experience a short LOS. 

2.2 Summary 

In Chapter 2, we review the academic literature which performed LOS predictions for primary 

THA/TKA patients. The literature trains ML models on training data and then tests their models 

on separate data to measure the performance. We select eight ML models. We also select three 

FSMs which help reduce the required number of input features for the ML models. We use 

AUC as the main performance metric for the models. We have a selection of ML models to use 

for our research, and the next step is to gather data which can be used to train and test our 

models.  
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Chapter 3: Data collection and analysis   
In this chapter, we answer the research questions related to the collection, analysis and 

processing of the data which is required as input for ML models. We answer the following main 

research question: What input is required for LOS prediction methods? In Section 3.1, we 

explain how we prepare for the data request from the HiX database. We discuss and interpret 

the selected variables, the received variables, and the received datasets. In Section 3.2, we 

prepare, process, and clean the data. This consists of formatting data and deleting parts of the 

data. In Section 3.3, we visualise certain variables and analyse them to gain initial insight in 

the distributions of the variables. Finally, in Section 3.4, we perform data imputation to make 

sure the data contains no missing values. This makes sure the data is suitable to be used as input 

for ML models, which will be done in Chapter 4. 

3.1. Data collection 

To gather data, which is necessary for training ML models, we require patient-related data from 

the HiX database. One important aspect which determines whether data is suitable for a 

potential data extraction, is whether the data is registered in the form of written text, or in the 

form of structured data. The written text refers to data which is typed in a text section without 

any extra structure from HiX itself. The structured data refers to data which has a data box 

dedicated to specifically one type of data, and thus has a restricted type of data registration. An 

example of this are numbers, as well as answers with a finite number of possible values, such 

as yes/no answers. Interpreting and structuring data in the form of written text is a significantly 

large workload, and there is no guarantee whether these variables are useful. Thus, analysing 

data in the form of written text is outside of the scope of this research.  

For the HiX data request, we collect relevant variables which are suitable for predicting the 

LOS for primary TKA/THA patients. We select variables based on literature. In addition to the 

sources in Table 2.1, we extract relevant variables from Ding et al. (2022), Ding et al. (2019), 

Elings et al. (2014), Han et al. (2021), Johannesdottir (2022), Lakomkin et al. (2017), Ong & 

Pua (2013), Sibia et al. (2016), Sibia et al. (2017), and Van der Sluis (2018). Table 3.1 shows 

the overview of variables selected from literature. Unfortunately, not all these selected 

variables are available in HiX, and thus we are forced to exclude a part of these variables from 

the data request. Furthermore, plenty of variables are registered in HiX as written text, and thus 

we also exclude these variables. Our selection of variables mainly consists of preoperative 

variables. However, it also contains some perioperative variables, even though the aim of this 

research is to only make predictions by using preoperative variables. In case we do not receive 

enough preoperative variables from the HiX data request, we could also use perioperative 

variables to predict the LOS. However, this is undesirable as the goal of the research is to make 

LOS predictions before the surgery, and not during or after the surgery. 
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Table 3.1: Overview of variables deemed important for LOS prediction according to literature. 

 

While investigating which variables can be extracted from HiX, we also found variables which 

are in the form of structured data instead of written text and decided to also add these variables 

to the data request. Primarily questionnaires, such as the anamnesis questionnaire, contain a 

high amount of structured data, which also includes relevant variables such as the presence of 

comorbidities. An overview of the requested variables is shown in Table 3.2. The total number 

of requested variables is 219. The green variables are the variables which we received in the 

data request, which are 39 variables in total. 

Once the data of the data request arrived, we gained access to two datasets:  

- A dataset with various variables which we requested contains 200 columns and consists 

of: 

o A part containing data from HiX. 

o A part with data from an operating room overview database. 

o A part with data from LROI. 

- A dataset containing the variables related to blood tests consisted of 60 columns with 

information about: 

o Blood values. 

o Blood measurement dates. 

o Medical personnel who performed the measurements. 

After combining both datasets, the size of the total dataset is 260 columns/variables and 5391 

rows/surgeries, which are the names of the variables. Of the 260 variables we received, we 

requested 99 columns. However, 51 columns all referred to the type of prosthesis used in the 

surgery, which concerns the Articles variable as shown in Table 3.2. Furthermore, most of the 

260 variables turned out to be post- or perioperative variables, which is suboptimal because the 

purpose of this research is to make a preoperative prediction of the LOS by using preoperative 

variables only. 

There are also a few variables present in the data request which are useful for predicting the 

LOS according to academic literature but were not requested in the HiX data request. These 

THA or TKA surgery Not being able to walk on day of surgery (after)

Age Charnley score

ASA score Time up and go test

Gender WOMAC score (for arthrosis)

Anesthesia type (spinal, general) Pain scale rating

Charlson Comorbidity Index Estimated walking capacity in minutes

Sleep quality Tourniquet usage

Preoperative albumin Tourniquet time

Digestive diseases Distal femoral osteotomy thickness

Overall comorbidity Osteoporosis

Living alone (absence of carer) Tibia component size

Primary osteoarthritis for hip Postoperative Hb values within 24 hours

Heart disease Intraoperative blood loss

Lung disease Femoral component size

BMI Insert thickness

Surgery time APR risk of mortality

Pre-existing hypertension APR risk of illness

Coronary artery disease (ischemic heart problems) Poor mental health

History of deep vein thrombosis Low volume surgeon

History of pulmonary embolism Expectation to receive step-down care

Anterior surgery approach to THA Preoperative knee function 

High blood loss Most recent blood values test (preoperative)
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variables are the surgical approach and the Charnley score, which are variables that could not 

be extracted from HiX but are present in the LROI part of the received dataset.  

Table 3.2: Overview of variables requested for HiX data request, where the green variables are present in the received datasets. 

 

3.2. Data preparation  

After collecting the data, the next step is to process the data so that it can be used for machine 

learning models. The main goal is to make sure that the dataset has no missing values, without 

sacrificing too much data. This can be done by either deleting rows or columns with missing 

data, or by data imputation. Rows and columns can only be used for machine learning if they 

contain no missing values. A downside of data imputation is that it creates bias (Lee & Huber, 

2021), and a downside of deleting rows or columns is that we lose useful data. We start with 

the combined dataset of 5391 rows and 260 columns. We refer to the missing value percentage 

as NA%. The initial NA% of the data is 49%. We import the dataset to the programming 

language R, and to prepare the data we execute the following steps: 

1. Remove variables with only missing values, which are NA values. 

2. Remove variables which do not appear to have an impact on the LOS according to the 

expert opinion of an OCON anaesthesiologist. 

3. Remove post- and perioperative variables. We are left with 5391 rows and 45 columns. 

The new NA% becomes 30%. 

4. Combine columns which are about the same variable (e.g. ASA scores, Charnley 

scores, and surgeons are scattered across columns), and calculate the LOS and 

LongLOS variables for each surgery. We are left with 5391 rows and 38 columns. 

5. Remove patients which do not seem to be primary TKA/THA patients or have clear 

errors in their data. We are left with 5379 rows and 38 columns. 

Birth date (age is available) BMI

Gender Pain score

Pseudo patient ID Weight

Type of surgery Length

Surgery side Date and time of the previously mentioned four measurements

ASA-score Infusion postoperative

Screening surgeon Infusion-amount

Screener Infusion-per

Approving user Date and time of 'Last measurements':

Date of approval HR (heart rhythm) measurement

Valid till (of approval) NIBP

Main anaesthesia technique Resp

Sub anaesthesia technique SpO2

Explanation anaesthesia technique Temp

Operator / practitioner IBW

Planned surgery date Bladderscan

OR location Surgery date

Expected duration Operating room

Amount of pre-/postoperative days Priority of patient

Albumin blood values Surgery times

Hemoglobin blood values 11 variables 6 variables were present

HbA1c blood values All variables in 'Anamnese' (POS) Smoking

Leukocytes blood values ~75 variables, excluding written text

GFR blood values All variables in 'Screening Kwetsbare Ouderen', otherwise SNAQ

CRP blood values ~12 variables, excluding written text

Date and time of each blood test All variables in 'Anamnese' (Verpleegkundig dossier)

Reference interval of each blood test ~60 variables

Unit of each blood test Type of aftercare

Articles: Status Imp. (Planned) discharge date

Articles: Description Intake date/time

Articles: Article code Discharge date/time

Articles: Scancode(s) Location

Articles: Batch/Lot
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6. Remove patients where LOS calculation is impossible (missing discharge date/time), 

which is approximately 26% of the data. We are left with 3974 rows and 38 columns. 

The new NA% becomes 22%. We make a boxplot of the remaining data where we plot 

the NA fraction of each patient, which Figure 3.1A shows. 

7. Calculate the NA% of each remaining variable. Table 3.3 shows these values. 

8. Data imputation could introduce bias (Lee & Huber, 2021). In literature, there is no 

clear threshold when there is too much missing data to use data imputation, but we use 

a threshold of 95% as a starting point. We consider variables with an NA% of higher 

than 95% too high and we remove them. We are left with 3974 rows and 30 columns. 

The new NA% of the total dataset becomes 1.3%. 

9. Calculate the NA% of each surgery and make a boxplot, as Figure 3.1B shows. The 

boxplot shows that there are outliers with a significantly higher NA% than the rest of 

the patients. However, we keep these patients in the data because imputation generally 

outperforms ignoring data (Van der Heijden et al., 2006). 

10. Plot a selection of intuitive variables and leave out variables such as blood values. 

11. Remove postoperative variables which we used for LOS calculation, such as the time 

to bed department, discharge date, and discharge time. We also remove the surgery date 

and pseudo_id variables from the dataset. We are left with 3974 rows and 25 columns. 

The new NA% of the total dataset becomes 1.6%. 

12. Impute the remaining missing data with the MICE data imputation method, which we 

do in Section 3.4. 

The initial NA% of the combined dataset of 5391 rows/surgeries and 260 columns/variables is 

49%. After removing variables with only missing values, removing peri- and postoperative 

variables, and the variables which are not deemed important according to expert opinion, the 

NA% becomes 30%. Furthermore, we categorise GFR blood values in four categories, which 

are in line with literature (Neuen et al., 2018; Wanner et al., 2018). We consider missing values 

as data that has been measured but not registered in the database. The only exception to this 

rule is HbA1c blood results. According to expert opinion, medical staff only measure HbA1c 

if the patient has diabetes. Thus, we assume that a missing value for HbA1c means that the 

patient does not have diabetes, while a filled in value means that the patient has diabetes. 

In step 5, we remove patients with clear errors in the data and patients who seem to have 

undergone a different surgical procedure than a primary THA/TKA. Various columns in the 

received dataset contain information in the form of written text with information about the 

surgical procedure, and we use these variables to determine whether a different surgery was 

performed.  

In step 6, we remove patients where LOS calculation is impossible, and the new NA% becomes 

22%. We calculate the LOS of patients by analysing the time difference between their 

postoperative arrival at the bed department and their discharge timing. We remove patients who 

contain faulty or missing data concerning these times. Afterwards, we make a boxplot of the 

NA fraction of each patient, as is shown in Figure 3.1A. The NA fraction is a decimal value 

where a value of 1 means 100%. The boxplot contains whiskers which are 1.5 times the 

interquartile range. However, the interquartile range, as well as the whiskers are all situated at 

an NA fraction of 0.21, which shows that the vast majority of the patients have this NA fraction 

value. 
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Figure 3.1: (A) Boxplot of NA fraction of patients in step 6, and (B) boxplot of NA fraction of patients in step 9. 

We calculate the NA% per variable in step 7. We do this to analyse whether missing values are 

clustered around certain variables. If this is the case, then we could remove a relatively small 

number of variables while reducing the NA% significantly. The sorted table with the NA% of 

each of the 38 variables in this step is shown in Table 3.3. Only eight variables have an NA% 

of 95% of more, while all other variables have an NA% of approximately 5% or less. This 

means that a large part of the missing values in the dataset is clustered around the variables 

with the highest NA%. Since data imputation introduces bias (Lee & Huber, 2021), we put a 

threshold of 95% for when a variable has too much missing data. We remove variables with an 

NA% of 95% or more, and the new mean NA% becomes 1.3%. According to literature, most 

of the removed variables in this step do not seem to be very important for LOS prediction, 

except for the albumin blood levels. Certain blood values, such as cholesterol, albumin, 

leukocytes, and CRP, have high NA% values because OCON does not measure every blood 

value for each patient.  

Table 3.3: NA fraction of each variable in step 7, where the orange variables are variables with an NA% of 95% or more.  

 

Variable NA fraction Variable NA fraction Variable NA fraction

Buitenlandse.Postcode 1.000 UITSLAG_Natrium 0.048 Elective_patient 0.000

Andere.voorgaande.operaties 1.000 UITSLAG_Hemoglobine 0.043 Surgery.Outside.OfficeHours 0.000

UITSLAG_Cholesterol 0.999 Prosthesis_type 0.028 Time_to_bed_department 0.000

UITSLAG_Albumine 0.995 ASA_score 0.016 Discharge_date 0.000

UITSLAG_Leukocyten 0.985 Planned_anaesthesia 0.002 Discharge_time 0.000

Lengte 0.958 BMI 0.002 pseudo_id 0.000

Gewicht 0.958 Smoking 0.001 Surgery_date 0.000

UITSLAG_CRP 0.952 Gender 0.000 Age 0.000

UITSLAG_Trombocyten 0.055 Charnley.score 0.000 UITSLAG_HBA1C 0.000

UITSLAG_Ureum 0.054 Surgery_side 0.000 Surgeon 0.000

UITSLAG_Kreatinine 0.050 Surgical_approach 0.000 LOS 0.000

UITSLAG_GFR 0.049 Diagnosis 0.000 LongLOS 0.000

UITSLAG_Kalium 0.048 Type.Surgery 0.000
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In step 9, we again plot a boxplot of the NA fraction of the patients to see the impact of 

removing the variables in step 8. The boxplot is shown in Figure 3.1B. The median, quartiles, 

and the whiskers all are situated at an NA% of 0%, while patients with a higher NA% are 

indicated as outliers. Approximately 10% of the patients have an NA% of more than 0%, which 

means in this case that 10% of the patients are outliers. Imputation generally is better than 

ignoring data (Van der Heijden et al., 2006), which means that it would be more beneficial to 

use imputation on the data instead of deleting the patients. Thus, we leave these patients in the 

data. 

3.3. Data analysis 

To recap, we started with 5391 surgeries and 260 variables with an NA% of 49%. The 

remaining dataset consists of 3974 surgeries and 30 variables with an NA% of 1.3%. In Section 

3.3, we execute step 10, and we analyse the raw data and visualise the distributions of variables 

in three categories: patient data, LOS data, and procedure data.  

3.3.1. Patient data analysis 

The most intuitive variables concerning the patient itself are plotted in this section. Figure 3.2 

shows the bar charts or boxplot of the patients’ BMI, gender, age, type of surgery, Charnley 

score, and ASA score. The Charnley score classifies patients based on how much they are 

affected by arthrosis or other joint-related diseases.  

The median of the BMI is 27.4 and 50% of the patients lie between a BMI of 24.8 and 30.7. 

There are quite some outliers with a BMI higher than the upper whisker value of the box plot. 

The patients are mostly female, while approximately 40% is male. The median of the age is 70, 

while 50% of the patients have an age between 64 and 76 years old. The age has mainly outliers 

of patients who are younger than the lower whisker value, and barely outliers older than the 

upper whisker value. The performed surgeries are mainly THAs, which is 56% of the surgeries. 

Most patients have a Charnley score of A, which indicates that one joint is affected by arthrosis. 

More severe Charnley scores have less patients compared to less severe Charnley scores. 

Finally, an ASA score of 2 is most common, whereas an ASA score of 1 is the least common. 
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Figure 3.2: Patient data of (A) BMI boxplot, (B) gender bar chart, (C) age boxplot, (D) type of surgery bar chart, (E) Charnley 

score bar chart, and (F) ASA score bar chart. 

To gain more insight in the correlation between certain variables, we make combination plots 

by using variables such as BMI, age, gender, type of surgery. Figure 3.3 shows these plots. 

There does not seem to be a lot of difference in the median between men who underwent a 

THA or TKA. However, this BMI difference becomes bigger for women who underwent a 

THA or TKA. THA patients seem to have more outliers with an extra high BMI compared to 

TKA patients. The age distribution does not seem to differentiate a lot between genders and 

type of surgery. However, there seems to be more outliers, which are younger patients, for THA 

patients than TKA patients. Concerning Figure 3.3C, there does not seem to be a clear 

correlation between BMI, age, and type of surgery.  
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Figure 3.3: Combination plots of: (A) boxplots that show the correlation between BMI, gender, and type of surgery; (B) 

boxplots that show the correlation between age, gender, and type of surgery; and (C) scatter plot which shows the correlation 

between BMI, age, and type of surgery. 

3.3.2. LOS data analysis 

This section is about variables related to the LOS. As mentioned before, the LOS is calculated 

as the difference between the postoperative arrival time of a patient at the bed department, and 

the discharge timing. For example, if a patient arrives at the bed department at 11:00 on 

Monday, and is discharged Wednesday 17:00, then the LOS is 2 days plus 6 hours, which is 

2.25 days. Figure 3.4 shows boxplots of the distribution of the LOS, as well as the LOS 

distribution when viewing type of surgeries separately. The median of the LOS is around 2 

days, while 50% of the data lies between approximately 1.5 and 3 days. However, there are 

plenty of outliers with a much higher LOS. The LOS does not seem to differ by a lot between 

type of surgeries. Their median values are approximately 2 days. However, the interquartile 

range is slightly different. TKA patients are unlikely to experience a LOS less than 2 days, 

because 75% of the TKA patients have a LOS of at least 2 days. In contrast, 75% of the THA 

patients have a LOS of at least 1.25 days, which shows that THA patients tend to recover faster 

than TKA patients. 
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Figure 3.4: Data visualisations of (A) boxplot of length of stay (LOS), and (B) boxplots to show the correlation between LOS 

and type of surgery. 

As mentioned in Chapter 2, academic literature consistently tries to predict a categorical long 

LOS variable, instead of an exact numerical LOS variable. To determine whether a patient 

experienced a long LOS, the patient should have a LOS above a certain threshold. With the 

help of an OCON anaesthesiologist, we choose a long LOS threshold based on the 75th 

percentile value of the LOS data, which is 3 days. This threshold is also in line with literature 

(Chen et al., 2023a; Chen et al., 2023b). We depict the long LOS as a binary variable LongLOS, 

where 1 signifies a long LOS, which means that a patient experienced a LOS of at least 3 days. 

Figure 3.5 indicates that the majority of the patients experience a LOS of less than 3 days. As 

expected, 75% of the patients experience a short LOS because the threshold value is based on 

the 75th percentile value. The proportion of patients experiencing a long LOS compared to 

patients who experience a short LOS differs per surgery type. This proportion is 28% for TKA 

patients, and it is 23% for THA patients. This means that TKA patients are more likely to 

experience a LOS of at least 3 days. 

 

Figure 3.5: Data visualisations of (A) bar chart of whether a patient experienced a long length of stay, and (B) bar chart which 

shows the correlation between type of surgery and whether a patient experienced a long LOS. 
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3.3.3. Procedure data analysis 

In this section, we cover the variables which concerns the surgical procedure. The graphs for 

these variables are shown in Figure 3.6. The surgeries performed per surgeon are not the same 

for all surgeons. Certain surgeons perform more surgeries in total than others, and certain 

surgeons perform more THA than TKA surgeries and vice versa. In our remaining data, there 

are 14 surgeons in total. The top three surgeons with the most primary THA/TKA surgeries 

done performed 37% of the total amount of primary THA/TKA surgeries. The surgeons ranked 

fourth and fifth in terms of the number of surgeries performed, perform only THA surgeries. 

Most of the surgeries use spinal anaesthesia, which is 92% of all surgeries. The surgery side 

does not differ much between patients. Approximately 52% of the surgeries are performed on 

the right side of a patient’s body.  

  

Figure 3.6: Bar chart data visualisations of (A) surgery distribution of each surgeon, (B) planned anaesthesia, and (C) surgery 

side. 

3.4. Data imputation 

In step 11, we remove the postoperative variables which we used to calculate the LOS with. 

We also remove the pseudo_id and surgery date variables, which were used for identifying 

surgeries. We are left with a dataset of 3974 rows and 25 columns. Two of these columns are 

the LOS and LongLOS variable, and the remaining 23 variables are features. The current NA% 

is 1.5%. The next step is to fill in the missing values of the remaining data, which is necessary 

to use the columns and rows of the corresponding cell. The missing data pattern for our data is 

shown in Figure 3.7. Every row indicates a certain scenario, which is a combination of red and 

blue blocks which describe whether each variable has missing values. A red block means that 
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there are missing values for the variables mentioned at the upper axis, and a blue block means 

that there are no missing values for this variable. The left row counts the number of scenarios 

present in the dataset. For example, the fourth row means that there are 6 patients who have 

missing values for the urea and thrombocytes blood test result. The right axis shows the number 

of variables with missing values for a certain scenario. This value is 2 for the fourth row, 

because the urea and thrombocytes blood test results are missing. The variables on the right of 

the upper axis are the variables with the most missing values. Figure 3.7 gives a visual 

representation of where the missing values are situated in the dataset. 

 

Figure 3.7: Missing data patterns of the data.  

Before data imputation, we split the dataset based on whether a patient undergoes a THA or 

TKA surgery, which is in line with the literature described in Chapter 2. Thus, we perform the 

data imputation of each of these datasets separately. This means that each of the new subsets 

do not contain the feature about the type of surgery performed anymore, and thus the total 

amount of features of each of these subsets becomes 24. The THA dataset contains 2208 

surgeries and the TKA dataset contains 1766 surgeries.  

We perform data imputation, which is the process of filling in missing data. One data 

imputation method is MICE, or Multiple Imputation by Chained Equations (Van Buuren & 

Groothuis-Oudshoorn, 2011). MICE has been widely used before for machine learning in a 

healthcare-related setting (Polo Friz et al., 2022). We use the ‘mice’ function in R to apply data 

imputation. Single imputation is when only one value is filled in for each missing value in the 

original dataset. Multiple imputation creates copies of the original dataset and fills in different 

values for each of those datasets. When the amount of missing data is low, such as 5% or less, 

the performance of multiple imputation is approximately as good as single imputation (Van der 

Heijden et al., 2006). Since our remaining data has less than 5%, we choose to perform single 

imputation. We use the imputed dataset for training and testing the machine learning models in 
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Chapter 4. The imputation is based on the training data, which means that no knowledge is 

used from the test data during the data imputation process.  

Finally, we split each dataset into a train and test subset. We use 80% of the data for training, 

which is in line with the literature in Chapter 2. This equals 1766 surgeries for the THA dataset 

and 1412 surgeries for the TKA dataset.  

3.5 Summary 

In Chapter 3, we elaborate on what input is required for the ML methods for LOS prediction to 

work. We require data where the features are properly structured, and the data contains no 

missing values. We collect this data by filing a data request for primary TKA/THA patients. 

We request variables based on academic literature. We perform various steps which combine 

columns into single features, remove patients where no LOS calculation is possible, and resolve 

mistakes in the data. We also remove features with a very high percentage of missing values. 

For features with a relatively low missing value percentage, we perform data imputation to fill 

in these missing values. We split the data based on whether a patient undergoes a TKA or THA, 

and we split each subset again based on an 80:20 train test split.  

We started Chapter 3 with one dataset of 260 columns/variables and 5391 rows/surgeries, and 

we end up with one THA dataset of 2208 surgeries and one TKA dataset of 1766 surgeries. 

Both datasets contain 24 variables, which is a mix of numerical and categorical variables. Table 

3.4 shows an overview of all remaining variables. The next step is to use the prepared data as 

input for creating the ML models, which we execute in Chapter 4. 

Table 3.4: Overview of all remaining variables after the data preparation. 

 

 

  

Variable Class Variable Class

Gender character Age numeric

Smoking character UITSLAG_GFR character

BMI numeric UITSLAG_Hemoglobine numeric

Surgery_side character UITSLAG_Kalium numeric

Surgical_approach character UITSLAG_Kreatinine numeric

Prosthesis_type character UITSLAG_Natrium numeric

Diagnosis character UITSLAG_Trombocyten numeric

Charnley.score character UITSLAG_Ureum numeric

Elective_patient character UITSLAG_HBA1C character

Surgery.Outside.OfficeHours character Surgeon character

Planned_anaesthesia character LOS numeric

ASA_score character LongLOS character



Chapter 4: Machine learning methods 4.1 Feature selection methods 

 

32 

 

Chapter 4: Machine learning methods 
In Chapter 3, we collect relevant features which should be suitable for predicting the LOS for 

primary TKA/THA patients. We now have two imputed datasets of 2208 surgeries for the THA 

dataset and 1766 surgeries for the TKA dataset. Both datasets contain 24 variables. Two of 

these variables are the LOS and LongLOS variables. The other 22 variables are features. In 

Chapter 4, we answer the research question: How do we configure the LOS prediction methods 

to improve their performance? In Section 4.1 we discuss feature selection methods which help 

reduce the number of input features required for the ML models. In Section 4.2 we describe the 

details concerning the execution of the machine learning (ML) models, such as parameter 

tuning and data preprocessing.  

As mentioned in Section 3.4, we divide the datasets in train and test data. The THA train dataset 

contains 1766 surgeries and the TKA train dataset contains 1412 surgeries. From this point on, 

we only use the train datasets to perform feature selection methods and create ML models. We 

use the test datasets in Chapter 5 to test the performance of the models. 

4.1 Feature selection methods 

Using too many features in a model or code is computationally demanding, and it could also 

lead to overfitting in certain models and result in worse predictions (Jović et al., 2015; Witten 

et al., 2016). Also, having a high number of features could make it cumbersome for OCON to 

collect data. Thus, we use feature selection methods for these purposes, which we explain later 

in this section. As mentioned in Chapter 2, we name four categories of feature selection 

methods, namely filter methods, wrapper methods, embedded methods, and hybrid methods. 

For this research, we will be applying the first three feature selection methods. We also use a 

fourth subset of features where no feature selection method is applied, using all 22 remaining 

features which are left after Chapter 3. We do this to compare and test the practicality of using 

feature selection methods.  

OCON states that predicting whether a patient experiences a long LOS is sufficient, and 

predicting the exact LOS is not necessary. The literature in Chapter 2 also uses the categorical 

variable LongLOS as a dependent variable, instead of the LOS variable. Thus, we consider the 

LongLOS as the target variable. 

4.1.1 Filter method  

The first feature selection method we use is a filter method, it is a combination of two methods. 

We select categorical features based on Pearson’s chi-squared tests with the LongLOS variable 

(Witten et al., 2016), and we select numerical features by using a one-way ANOVA F-test 

(Elssied et al., 2014) between the features and the LongLOS. For both tests, we use a 

significance level of 0.05 (Thaseen & Kumar, 2017). Furthermore, we remove highly correlated 

numerical features to get rid of multicollinearity (Mallampati et al., 2023; Liu et al., 2020). We 

select these features based on their Pearson correlation with each other, and we consider an 

absolute value of 0.6 or higher as a significant correlation (Liu et al., 2020). For this calculation 

we use the LOS variable instead of the LongLOS variable because numerical variables are 

required for calculating the Pearson correlation. 

First, we perform chi-squared tests between the LongLOS and the categorical features and 

calculate the p-values. The rounded p-values are shown in Table 4.1 for each training dataset. 

The orange features have a p-value lower than the significance level of 0.05, which means that 
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we consider these features as significant and select them. We discard the remaining features 

and are left with 11 categorical features for the THA dataset and five categorical features for 

the TKA dataset. 

Table 4.1: Rounded p-values from chi-squared tests between categorical features and LongLOS for both training datasets. 

 

To illustrate the significance of chosen features compared to ignored features, we visualise the 

importance of the chosen features as follows. In the following examples, we use the THA 

training dataset. Table 4.1 shows that the ASA score is a feature with a significantly low p-

value, which means that it should be a relevant feature. Figure 4.1A shows the bar chart of the 

ASA score for a short or long LOS. We barely see patients with an ASA score of 1 experiencing 

a long LOS, even though there are plenty of such patients who experience a short LOS. This 

highlights the importance of the ASA score as a feature. In contrast, the Smoking feature has a 

high p-value, which indicates that it is not a useful feature. Figure 4.1B shows the bar chart of 

the Smoking feature for a short or long LOS. There is barely any difference in proportion of 

patients who smoke. For patients who experienced a long LOS, 7.5% of the patients smoked. 

For patients who experienced a short LOS, 9% of the patients smoked. This highlights further 

why the Smoking feature is not a promising feature to use in the ML models.  

  

Figure 4.1: Bar charts of the THA training dataset for comparing the LongLOS with (A) the ASA score and (B) the Smoking 

feature. 

The performance of a model could improve when highly correlated features are removed 

(Mallampati et al., 2023). Other feature selection methods can also benefit from removing 

correlated features. We discard numerical features by analysing their Pearson correlation 

coefficient with other numerical features. Academic literature tends to use a correlation 

threshold of at least 0.6 (Liu et al., 2020), which is what we also use. This means we view a 

THA dataset TKA dataset
Variable p.value Variable p.value Variable p.value Variable p.value

RESULT_GFR 0.00000 Elective_patient 0.00016 ASA_score 0.00000 Surgery.Outside.OfficeHours 0.34148

ASA_score 0.00000 Charnley.score 0.00064 RESULT_GFR 0.00023 Prosthesis_type 0.46012

Surgeon 0.00000 Planned_anaesthesia 0.00392 Surgeon 0.00040 Surgery_side 0.55383

Surgical_approach 0.00000 Surgery.Outside.OfficeHours 0.00472 Gender 0.00113 Smoking 0.70927

Gender 0.00000 RESULT_HBA1C 0.15972 Diagnosis 0.03886 Surgical_approach 0.75630

Diagnosis 0.00000 Surgery_side 0.18259 Charnley.score 0.17584 Elective_patient 0.87374

Prosthesis_type 0.00002 Smoking 0.33760 Planned_anaesthesia 0.28737 RESULT_HBA1C 1.00000
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correlation coefficient of more than 0.6 or less than -0.6 as a significant correlation, and thus 

we discard one of the correlated features in such case.  

Figure 4.2 shows the correlation coefficients between the numerical features of each training 

dataset. None of the features are significantly correlated with each other. Thus, we do not 

remove any numerical features for either dataset in this stage. 

 

Figure 4.2: Pearson correlation plot between numerical features for the train dataset of (A) THA and (B) TKA. 

Next, we select relevant numerical features with the help of a one-way ANOVA F-test (Elssied 

et al., 2014). We perform the test between the numerical features and the categorical variable 

LongLOS. After running the ANOVA F-test, we analyse the p-value based on the F statistic. 

We select the features with a p-value lower than our chosen significance level of 0.05. The p-

value of every remaining numerical feature is shown in Table 4.2 for both training datasets. We 

select features with at least a p-value smaller than 0.05. The corresponding features are 

coloured orange. For the THA dataset, we are left with seven numerical features, and for the 

TKA dataset, we are left with three numerical features. 

Table 4.2: Rounded p-values from ANOVA test between numerical features and LongLOS for each training dataset. 

 

Finally, we combine the selected features from each training dataset. To summarise, after 

applying the filter feature selection method, our THA training data consists of 1766 surgeries 

THA dataset TKA dataset
Features p_value Features p_value

Age 0.00000 Age 0.00000

RESULT_Hemoglobin 0.00000 RESULT_Urea 0.00007

RESULT_Urea 0.00000 RESULT_Hemoglobin 0.00010

RESULT_Sodium 0.00002 BMI 0.45579

RESULT_Thrombocytes 0.00470 RESULT_Sodium 0.63961

RESULT_Creatinine 0.01145 RESULT_Thrombocytes 0.65376

RESULT_Potassium 0.02654 RESULT_Creatinine 0.69706

BMI 0.43595 RESULT_Potassium 0.93674
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and 18 features columns, and our TKA training data consists of 1412 surgeries and eight 

features. An overview is shown in Table 4.3.  

Table 4.3: Selected features of each dataset after applying the filter feature selection method. 

 

4.1.2 Wrapper method 

Filter methods are totally separate from the machine learning model which is used for 

modelling. In contrast, wrapper methods incorporate the machine learning model into the 

feature selection process. They iteratively use a part of the features, create a machine learning 

model, test the performance of such a model, and evaluate which subset of features yields the 

best predictive performance. Forward feature selection may be more computationally efficient, 

but it tends to find weaker subsets than backward feature selection (Kumar, 2014). Since we 

prioritise performance over running time, we perform backward sequential feature selection. 

This method starts with all features, and iteratively reduces the number of features based on a 

certain criterium. This criterium can be, for example, the AUC of the created model with the 

selected subset of features after validating the model. Since a wrapper method is based on the 

ML algorithm used, the selected features also differ per algorithm. One of the inputs for 

backward feature selection is the number of features to evaluate in each iteration. From this 

point on, the categorical features are transformed into multiple dummy features. We explain 

the concept of dummy features in Section 4.2. For backward feature selection, we use feature 

subset sizes of 5 till 45 while using steps of 5. This means that our wrapper method evaluates 

batches of five features in each iteration. Using smaller steps could severely increase the 

running time and risks overfitting (Kohavi & Sommerfield, 1995).  

We test each subset of features by using k-fold cross-validation on the resulting model. The k-

fold cross-validation method divides the data into k groups of approximately equal size (Hastie 

et al., 2021). Consequently, the chosen machine learning model is trained on all data except 

one of the k groups. The k groups are used as validation datasets to test how well the trained 

machine learning model performs. This procedure is executed k times, where the validation 

dataset differs every time. Figure 4.3 shows a schematic of k-fold cross-validation. The 

numbers in Figure 4.3 are the indices for each observation in a dataset. The index of the last 

observation is n. Each coloured bar represents an iteration in k-fold cross-validation, where the 

blue bar is the training dataset and the orange bar the validation dataset. Usually, academic 

literature chooses values of 5 or 10 for k in k-fold cross-validation (Hastie et al., 2021). We 

apply 10-fold cross-validation on the training data to measure the performance of our subset of 

features after every iteration. We use AUC value of the ROC curve as a performance metric. 

TKA dataset

Gender Age Gender

Surgical_approach RESULT_GFR Diagnosis

Prosthesis_type RESULT_Hemoglobin ASA_score

Diagnosis RESULT_Potassium Age

Charnley.score RESULT_Creatinine RESULT_GFR

Elective_patient RESULT_Sodium RESULT_Hemoglobin

Surgery.Outside.OfficeHours RESULT_Thrombocytes RESULT_Urea

Planned_anaesthesia RESULT_Urea Surgeon

ASA_score Surgeon

THA dataset
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Figure 4.3: K-fold cross-validation, where the numbers are indices of observations of a dataset (Hastie et al., 2021, p. 203). 

4.1.3 Embedded method 

The final feature selection method is the embedded method. We use two approaches. One 

approach is Lasso for the logistic regression. Lasso is a method which minimises a formula 

based on the prediction error and the coefficients used (Hastie et al., 2021). This makes sure 

that the prediction error as well as the number of features used is minimised. Lasso is not 

applicable on the other ML models we use in this research, and that is why we use another 

approach. This second approach consists of making use of the varImp function of the caret 

library in R. This function calculates a numerical feature importance of a ML model, and the 

selected feature importance methods depend on the ML model used (VarImp Function - 

RDocumentation, n.d.).  Certain ML methods are not appropriate for the varImp function, 

namely KNN, NBC, LSVM and SVMR. Instead, the feature importance of these four ML 

methods will be calculated with the filterVarImp function (FilterVarImp Function - 

RDocumentation, n.d.). Since filterVarImp function is not ML model specific, all these four 

ML methods have the same feature importance. Technically, this means that selecting features 

with the help of filterVarImp is not an embedded feature selection. However, we use this 

method as a substitute for the ML methods that do not have a unique feature importance ranking 

process in the varImp function. We refer to features selected based on feature importance as 

embedded features. 

To illustrate how the varImp function works, we cover two examples in Figure 4.4, namely the 

LOGR and RF methods which are used on the THA train data. We run both functions with the 

dataset that contains all remaining features and plot the feature importance graphs in Figure 

4.4.  
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Figure 4.4: Importance plots of (A) logistic regression (LOGR), and (B) random forest (RF). 

We determine which features are important based on visual analysis. This is different per ML 

method, and thus the cutoff value to determine which features to include in the final model are 

also different among ML methods. We choose a cutoff of 18 for Figure 4.4A because one could 

argue that the features above this cutoff are clustered together, as this is demonstrated with a 

bigger gap in importance. We choose a cutoff of 14 for Figure 4.4B while applying the same 

logic. With this feature selection method, we select the upper 24 features until 

Prosthesis_typeUncemented for the LOGR method, and we select the upper 11 features until 

ASA_score3 for the RF method. 

4.2 Machine learning methods 

In this section, we explain the details regarding the execution of the machine learning methods 

selected in Chapter 2. The ML models are: 

1. Logistic regression (LOGR) 

2. Naive Bayes classifier (NBC) 

3. K-nearest neighbour (KNN) 

4. Linear support vector machine (LSVM) 

5. Support vector machine with radial basis function kernel (SVMR)  

6. Random forest (RF) 

7. Extreme gradient boosting (XGB) 

8. Artificial neural network (ANN) 

We first use one of the feature selection methods described in Section 4.1 on the train datasets, 

and then we use the remaining data to train the ML models. When training the models, we use 

10-fold repeated cross-validation to ensure a proper level of flexibility in the models, which 

can reduce overfitting (Hastie et al., 2021). We repeat the cross-validation three times to take 

randomness into account. We only apply cross-validation once for the wrapper method instead 
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of three times to reduce severely long running times. After training the ML models, we test the 

models on the test datasets and calculate the AUC for the ROC curve of each model. We cover 

these results in Chapter 5.    

Various machine learning methods do not handle categorical features well and require 

adjusting, such as support vector machines and KNN (Pagan et al., 2023; Edwards & Raskutti, 

2004). LOGR also requires adjusting of the categorical features before being able to use them, 

as categorical features transform into dummy features when creating the model. Dummy 

features are binary features which signify whether one of the many possible values for a 

categorical feature is present. For example, the categorical feature ASA score is split up into 

dummy features ASA_score2 and ASA_score3. Only one of these dummy features can have a 

value of 1, which indicates the corresponding ASA score. When both dummy features equal 0, 

the ASA score of the corresponding patient is 1. To make sure the input data is applicable on 

all ML models; we transform the categorical features into dummy features. The process of 

transforming categorical features into dummy features is called one-hot encoding (Hastie et al., 

2021). In total, we end up with 50 features for the THA train dataset and with 46 features for 

the TKA train dataset. The difference in features between these datasets is because certain 

categorical variables, such as the variable about the surgical approach, have different values 

for each dataset.  

Certain features cover a larger range of numerical values than others. Machine learning 

methods tend to view features with a large range of numerical values as more important in 

modelling compared to features which cover a smaller range (Ozsahin et al., 2022). To make 

sure all features are in the same scale, we preprocess the data with standardisation. This method 

subtracts the mean of the data from the original numerical data and divides it by its standard 

deviation. According to literature, feature scaling methods like standardisation either improve 

ML models or barely affect them. We apply standardisation on all ML methods. 

Various ML methods have parameters, such as the analysed number of neighbours in the KNN 

method or the number of features to consider at each node in the RF method. The tuning of 

these parameters is done by the train function from the caret library in R. The function creates 

the model and finds the most suitable parameters by testing various parameters and uses the 

AUC metric to find the best performing model.  

Initial testing of the LSVM machine learning model suggests that the model do not seem to be 

performing particularly well. Thus, we add another but similar model, which is the support 

vector machine with radial basis function kernel (SVMR) (Park et al., 2023).  

The ANN methods applied in Ramkumar et al. (2019a) and Ramkumar et al. (2019c) use 

multiple hidden layers and multiple neurons per layer. We work with the nnet library in R, 

which works with one hidden layer. We create an ANN with all remaining features of the THA 

train dataset, and the caret train function tunes the size and weight decay parameters by using 

cross-validation. The size parameter signifies the number of neurons in the hidden layer, and 

the weight decay parameter reduces overfitting by lowering the weights in the ANN. Initially, 

the function tunes the model with a size parameter of 1, 3, and 5, while the decay parameters 

of 0, 0.001, and 0.1 are used. When inputting the THA dataset for all remaining features, the 

nnet function chose a size of 1 and a decay parameter of 0.1 as the optimal parameters. The 

validation AUC is 0.72 and the test AUC is 0.75. Usually, neural networks are complex and 

contain more than one neuron (Ramkumar et al., 2019a; Ramkumar et al., 2019c). To make 
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sure that we do not miss out on important parameters, we test more tuning values to search for 

a more complex and possibly better performing ANN model. For the size parameter, we try 

values from 1 to 18. For the decay parameter, we input values from 0 to 0.01 while making 

steps of 0.0002. Figure 4.5 shows the plot of the tuning process. The colours are the number of 

neurons in the hidden layer, and the x-axis shows the weight decay value. The y-axis shows the 

AUC value, which is the key performance indicator.  

 

Figure 4.5: Plot of tuning process of ANN with all remaining features as input while using the THA train dataset. 

The top five configurations in Figure 4.5 with the highest validation AUC values are shown in 

Table 4.4. We tested these configurations on the THA test data, which is shown in the fourth 

column (AUC_test) in Table 4.4. Even though the first four configurations got the highest 

validation AUC values, they all score lower than the configuration which only uses one neuron 

in the hidden layer and with a weight decay parameter of 0.008. This configuration has a test 

AUC of 0.74. This AUC value is still lower than the test AUC of the ANN which used a size 

parameter of 1 and a decay parameter of 0.1, which is 0.75.  

Table 4.4: ANN configurations with highest AUC validation values for THA training data with all remaining features. 
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Figure 4.6 shows the visualisation of the ANN that we use. On the left are the input neurons, 

in the middle is the hidden neuron, on the right is the output neuron, and at the top are the 

biases. Since this configuration is the ANN model with the highest test AUC value, it gives a 

strong indication that the default tuning parameters of the train function for the ANN are 

sufficient. The fact that certain configurations have a higher validation AUC value than the 

configuration with a size parameter of 1 and decay parameter of 0.1 shows that these 

configurations are vulnerable to overfitting for the used dataset. So, we use one hidden layer, 

one neuron, and a decay parameter of 0.1 for our THA dataset. For the TKA dataset, we find 

that this configuration is also the most suitable one, and we conclude that the default tuning 

parameters are also sufficient for this dataset. 

 

Figure 4.6: Visualisation of the ANN with all remaining features of the THA train data.  

4.3 Summary 

To recap, we perform three types of features selection methods, create subsets of features, and 

apply eight ML methods on the remaining data. The filter method uses chi-squared tests, one-

way ANOVA F-tests, and Pearson correlation coefficients to select the most promising features. 

The wrapper method uses the backward selection method to select its features while the 

corresponding ML method is also executed. The embedded method uses a feature importance 

metric to select the most promising features based on varying cutoff values for the importance 

values. Additionally, as an extra embedded method, we apply Lasso for logistic regression. We 

also apply the ML methods for THA/TKA dataset where we do not perform any feature 

selection method (FSM). With one-hot encoding, we transform the categorical features in 

dummy features. Furthermore, we preprocess all features by scaling them to make sure the 

features are treated equally in the modelling. We train the ML models with a train function 

from the caret library. We program it to use cross-validation and automatically tune the 

parameters so that it chooses the most suitable parameters for the corresponding models. For 

each of the two training datasets (THA/TKA), we have 26 models based on combinations of 

FSMs and ML methods and eight more ML models for using all remaining features with no 

FSM. In total, we have 34 ML models for each of the THA and TKA datasets. In Chapter 5, we 

show the results of each 68 ML methods after being tested on the test datasets. 
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Chapter 5: Results 
In this chapter, we cover the performance of each FSM and ML method described in Chapter 

4. We answer the following research questions: Which LOS prediction methods perform the 

best? and How can we implement the LOS prediction methods in practice? In Section 5.1, we 

test the resulting models on the test data, create the ROC curves, and calculate the AUC values. 

The test datasets are separate for the THA and TKA data. In Section 5.2, we visualise the 

learning curves of ML methods to see how well the models learn with the training data (Meek 

et al., 2002). In Section 5.3, we analyse the performance of ML models and select the most 

promising ones. In Section 5.4, we create a prediction tool based on the most promising ML 

models and their corresponding features. The tool is able to analyse an incoming new patient 

and predict whether this patient will experience a long LOS or not. In Section 5.5, for each of 

these ML models, we compare their predictions for the test data with the actual results.  

5.1 Modelling results 

Figure 5.1 shows the ROC curves and the AUC values for each FSM and ML methods applied 

for the THA dataset. Figure 5.2 shows the same information but for the TKA dataset. Each used 

ML method and their AUC values have different colours. For example, in Figure 5.1A we 

compare all remaining features without any FSM. The RF model with an AUC of 0.755 seems 

to be the best model to fit, because it has the highest AUC. The number of features mentioned 

in the plots of the ROC curves of the Lasso features includes the dummy features as described 

in Section 4.2. We elaborate further on the best performing models in Section 5.3.  

 

Figure 5.1: ROC curves and AUC values for each FSM and ML method for the THA dataset. The plots are for: (A) all remaining 

features, (B) the features after the filter FSM is applied, (C) the features after the wrapper FSM is applied, (D) the features 

after the embedded FSM using the feature importance is applied, (E) the features selected with the Lasso method, and (F) a 

plot for the Lasso parameter tuning which is used for feature selection. 

Figure 5.1F and Figure 5.2F also include a plot which shows the tuning process for the lambda 

parameter for the Lasso method. This lambda parameter makes sure that using more features 
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is penalised. This means that a higher lambda value ensures fewer features, but this also means 

that the overall performance of the corresponding model could deteriorate. We select two 

subsets of features with the Lasso method. The first selection is the feature subset which has 

the lowest binomial deviance when we performed cross-validation while tuning the lambda 

parameter and thus performs the best. The second selection of features has a binomial deviance 

value which is within one standard deviation of the best performing feature subset. This means 

that the second selection of features has a somewhat similar model performance to the best 

performing feature subset, while containing less features. 

 

Figure 5.2: ROC curves and AUC values for each FSM and ML method for the TKA dataset. The plots are for: (A) all remaining 

features, (B) the features after the filter FSM is applied, (C) the features after the wrapper FSM is applied, (D) the features 

after the embedded FSM using the feature importance is applied, (E) the features selected with the Lasso method, and (F) a 

plot for the Lasso parameter tuning which is used for feature selection. 

We run the code for the FSMs and ML methods on a laptop with the specifications as shown 

in Table 5.1. We calculate the running time of the ML models. We can neglect the running times 

of all remaining features with no FSM, filter FSM, and embedded FSM since each of those 

(eight ML models per each) are finished within 30 minutes. Table 5.2 shows the running time 

in hours of each ML method during the execution of the wrapper FSM. The wrapper FSM has 

by far the longest running time of all FSMs, which is in line with literature (Jović et al., 2015). 

Even though the THA training dataset has more rows (1766 rows) than the TKA training dataset 

(1412 rows), the running time is longer for all ML methods except LSVM and NBC for the 

TKA data. The running time of the wrapper method for both the THA and TKA datasets is 

approximately 2 days. Running the whole R script for both datasets, which consists of data 

extraction, data preparation, data imputation, FSM execution, ML model training and testing, 

and plotting learning curves, takes approximately four to 5 days. 
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Table 5.1: Relevant specifications of the device where we run the R code on. 

Central processing 

unit 

12th Gen Intel Core i7 Processor (14-core) i7-12800H, 1.8 GHz 

with Turbo Boost up to 4.8 GHz, with 24 MB of Cache 

Graphics 

processing unit 

NVIDIA® GeForce RTX™ 3060 (6GB GDDR6 VRAM) 

Random Access 

Memory 

16 GB DDR5-4800 MHz 

Operating system Windows 11 Home, Version 23H2 
 

Table 5.2: Running time in hours of each ML method which ran for the wrapper FSM. 

  

5.2 Learning curves 

We plot learning curves to analyse how well the models are trained on the training data (Meek 

et al., 2002). Learning curves can give an indication whether too much or too little training data 

is used, or how well the model is performing on the test data compared to the training data. We 

measure a model’s performance with their AUC value. Figure 5.3 shows the learning curves 

using all remaining features for the THA dataset, and Figure 5.4 shows the learning curves 

using all remaining features for the TKA dataset. The x-axis is the number of training rows 

used and the y-axis is the AUC value of the model which is trained on this number of rows. 

The blue lines are the AUC values when the model is tested on the training data, and the orange 

lines are the AUC values when it is tested on the test data. If AUC values of both lines are 

increasing when more training data is used, then it means that having more training data is 

beneficial. The XGB model in Figure 5.3 is a clear example of this. When an orange line starts 

to increase, but eventually starts to decrease, it means that the model is overfitting, and that 

less data would be better for the corresponding model’s performance. An example of this is the 

LSVM for the TKA data, which is shown in Figure 5.4. When there is a large gap between the 

orange and blue lines, it means that the model has a significantly different performance on the 

training data than the test data. Adding more data could lower such gaps. Both RF models in 

Figure 5.3 and Figure 5.4 show significant gaps between the training and testing AUC values. 

We perform any further analysis of relevant learning curves in Section 5.3. 

THA TKA

LOGR 0.001 0.001

LSVM 0.526 0.199

SVMR 3.223 4.666

KNN 0.174 0.234

NBC 0.211 0.166

RF 2.476 10.550

XGB 8.257 11.105

ANN 1.318 2.218
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Figure 5.3: Learning curves for the ML models using all remaining features for the THA dataset. 

 

Figure 5.4: Learning curves for the ML models using all remaining features for the TKA dataset. 

5.3 Analysis of results 

In this section, we analyse which models are the most promising and which ones we will use 

in our prediction tool which is mentioned in Section 5.4. We first analyse AUC values (Section 

5.3.1) and number of features used for each ML model. Afterwards, we analyse the learning 

curves (Section 5.3.2) and feature importance (Section 5.3.3) for the most promising models. 

5.3.1 Model performance 

The main KPI we use for defining the best models is the AUC value, but we also analyse the 

number of features used. Table 5.3 shows the overview of AUC values for each FSM and ML 

method for the THA dataset, while Table 5.4 shows the same information about the TKA 

dataset. The rows are the ML methods, and the columns are the FSMs. Both tables also show 
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the number of features used for the corresponding models. We do not count dummy features 

here. In Table 5.3 and Table 5.4, the bold and underlined numbers are the top 10 ML models 

with the highest AUC values either for the THA or TKA datasets.  

The Lasso FSM is an embedded FSM. Since we also used another embedded FSM based on 

feature importance, we added the Lasso results at the bottom of the column about the embedded 

FSM features. LassoOpt is the feature subset with the lowest binomial deviance when we 

performed Lasso, while LassoStd is the feature subset with a binomial deviance which is within 

one standard deviation of the lowest binomial deviance.  

Table 5.3: AUC values and number of features overview of the models trained and tested on the THA data. 

 

Table 5.4: AUC values and number of features overview of the models trained and tested on the TKA data.   

 

With Table 5.3 and Table 5.4, we select a few ML models for each dataset to implement in the 

prediction tool in Section 5.4. The ML models with the highest AUC values do not necessarily 

have to be the best ML models, as the number of features is also important. Having fewer 

features is more desirable because this requires less work from the user of the prediction tool, 

and it also reduces the probability of human error. Preferably, we do not want to use ML 

methods which use all remaining features, as these models use the highest number of features 

of all FSMs. The selected models which are used in prediction tool are coloured green in Table 

5.3 and Table 5.4. 

For the THA data in Table 5.3, the RF model with all remaining features has the highest AUC 

value of 0.7551. The RF model with the wrapper features has only a slightly lower AUC value, 

but the number of features is the same. Thus, we add the RF model which uses all remaining 

features to our prediction tool. The model with the lowest number of features but still with a 

good AUC value within the top 10 highest AUC values is the XGB with embedded features. 

AUC All Filter Wrapper Embedded
# of 

features
All Filter Wrapper Embedded

LOGR 0.7517 0.7454 0.7407 0.7431 LOGR 22 18 13 13

LSVM 0.7283 0.7250 0.7284 0.6659 LSVM 22 18 22 20

SVMR 0.6941 0.7001 0.6705 0.6791 SVMR 22 18 22 20

KNN 0.6905 0.6229 0.6468 0.6626 KNN 22 18 5 20

NBC 0.7220 0.7171 0.7251 0.7141 NBC 22 18 20 20

RF 0.7551 0.7422 0.7531 0.7112 RF 22 18 22 11

XGB 0.7538 0.7405 0.7454 0.7456 XGB 22 18 19 12

ANN 0.7398 0.7390 0.6653 0.7190 ANN 22 18 15 8

LassoOpt 0.7471 LassoOpt 17

LassoStd 0.7126 LassoStd 10

AUC All Filter Wrapper Embedded
# of 

features
All Filter Wrapper Embedded

LOGR 0.7211 0.7251 0.7206 0.7440 LOGR 22 8 18 13

LSVM 0.6388 0.5929 0.5271 0.6742 LSVM 22 8 8 20

SVMR 0.6936 0.6435 0.6946 0.6708 SVMR 22 8 22 20

KNN 0.6331 0.6194 0.6806 0.6520 KNN 22 8 8 20

NBC 0.6943 0.7194 0.7189 0.6859 NBC 22 8 5 20

RF 0.7190 0.7327 0.6901 0.7101 RF 22 8 21 12

XGB 0.7057 0.7254 0.7158 0.7061 XGB 22 8 14 12

ANN 0.7033 0.7092 0.6211 0.7234 ANN 22 8 8 15

LassoOpt 0.7192 LassoOpt 23

LassoStd 0.6938 LassoStd 1
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This model only required 12 features but still managed to achieve a high AUC value of 0.7456. 

We also add this model to our prediction tool. Similarly, the LOGR model which uses 

embedded features only uses 13 features and still achieves a high AUC value. This is the third 

model that we add to our prediction tool. One model which has a decent AUC value but uses 

only eight features is the ANN ML model which uses embedded features. Its AUC value is not 

in the top 10 highest AUC values, but an AUC value of 0.72 is still sufficient. This is the final 

model that we add to the prediction tool for the THA data. 

For the TKA data in Table 5.4, the model with the highest AUC value of 0.744 is the LOGR 

model with the embedded features. It uses 13 features. Due to the high AUC and the relatively 

low number of features, we select this model for the prediction tool. The RF model with filter 

features is also a promising model as it only needs 8 features and has a relatively high AUC. 

We add the RF model to our selection of models for the prediction tool as well. No other models 

score significantly better in AUC value or use significantly less features. Thus, we will only 

add two models from the TKA data to the prediction tool. 

Not all models perform better when they use more features. Particularly, for the TKA data, the 

filter FSM which only has eight features performs relatively well. The filter FSM for the TKA 

data uses one of lowest number of features but still has four models which are in the top 10 

models with the highest AUC. In contrast, the model with the highest AUC for the THA data 

uses all 22 features. For the TKA data, the RF model with filter features has a better AUC than 

the RF model with all remaining features. This could be explained by the concept of overfitting. 

Since the TKA data is even smaller than the THA data, it is harder for the models trained on 

the TKA training data to generalise to test data. Using too many features in this case could 

cause a model to overfit to the training data, which makes the model worse at generalising 

(Jović et al., 2015). This means that the models could perform better if we use less features. 

This is indeed the case because the filter FSM performs better for the RF model. However, 

whether less features yields a higher AUC may depend on the ML method used, because using 

less features does not always improve the AUC as can be seen in Table 5.4. 

According to literature, wrapper FSM usually should yield better results than the filter FSM 

(Jović et al., 2015). However, despite the long running time as shown in Table 5.2, for the TKA 

dataset, the feature subset from the filter FSM trained ML models with higher AUC values than 

the models trained with the wrapper FSM features. Academic literature mentions that wrapper 

FSM could face overfitting problems (Kohavi & Sommerfield, 1995) and the feature subsets 

of the wrapper FSM are biased towards the ML method used (Jović et al., 2015). It could be 

the case that the ML models who use the features of the wrapper FSM are overfitting on the 

training data and thus perform worse than the relatively simple filter FSM.  

5.3.2 Learning curves of promising models 

The learning curves for the selected models for the THA data and TKA data are shown in Figure 

5.5 and Figure 5.6, respectively. The x-axis represents the number of rows used in the training 

data and the y-axis represents the AUC values of the corresponding models. In Figure 5.5, all 

four learning curves have increasing lines for the test data when more data is added. When all 

training data is used, Figure 5.5B, Figure 5.5C and Figure 5.5D have small gaps between the 

training and test AUC values. This is desirable because this means the model has similar 

performance for the train and test data. In contrast, Figure 5.5A has a large gap between the 

training and test AUC values. Since the training AUC is much higher than the testing AUC, 
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this could be an indication of overfitting. This could be caused by the fact that the training data 

is relatively small compared to the literature in Chapter 2. For Figure 5.5A, the training AUC 

is slowly decreasing while the testing AUC is slowly increasing. This indicates that both AUC 

values could come closer to each other if there would be more data. Since the AUC values are 

increasing for all learning curves in Figure 5.5, having more training data could improve the 

corresponding models.  

 

Figure 5.5: Learning curves of selected models for the THA data which are: (A) RF with all remaining features, (B) XGB with 

embedded features, (C) LOGR with embedded features, and (D) ANN with embedded features.  

The two learning curves in Figure 5.6 show a somewhat different pattern than the learning 

curves in Figure 5.5. Figure 5.6A has a decreasing training AUC and an increasing testing AUC. 

However, the testing AUC seems to stop increasing when all the training data is used for 

modelling. Since there is still a significant gap between the training and testing AUC, more 

data is needed to draw conclusions on whether the testing AUC can increase further. Figure 

5.6B has a testing AUC which increases above the training AUC. This could mean that the 

testing data is easier to predict for the LOGR model with embedded features than the training 

data. This phenomenon can happen when the test data is similar to parts of the training data 

which occur frequently in the training data. In this case, the corresponding model is better in 

predicting the test data than the training data because the training data also contains less 

represented rows which are harder to make long LOS predictions for. A way to make sure the 

training and testing AUC are closer together, is to increase the total amount of data. In short, 

more data is beneficial for both the THA and TKA ML models. We expect the TKA models 

especially to benefit from more data, since the TKA training dataset is even smaller (1412 rows) 

than the THA training dataset (1766 rows). 
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Figure 5.6: Learning curves of selected models for the TKA data which are: (A) RF with filter features, and (B) LOGR with 

embedded features.  

5.3.3 Feature importance of promising models 

To visualise the feature importance of the selected models, we calculate the scaled feature 

importance with the varImp function from the caret library in R. Figure 5.7 shows the feature 

importance of each model that we add to the prediction tool based on the THA data, and Figure 

5.8 shows the same but for the models based on the TKA data. The feature lists include the 

dummy features. Features with a high feature importance affect the predictive ability of the 

corresponding model the most.  

In Figure 5.7, the Age feature is consistently the feature with the highest importance value. 

Especially the XGB model with embedded features (Figure 5.7B) deems the Age feature as 

much more important than the rest. The feature importance values of the RF model with all 

remaining features (Figure 5.7A) have a very unequal distribution. The top eight features have 

a significantly higher feature importance than the rest of the features. Figure 5.7C and Figure 

5.7D have a slightly more balanced distribution of feature importance. Overall, the most 

important features for the THA data seem to be Age, ASA score, Surgical_approach, and 

RESULT_Hemoglobin. 

Concerning Figure 5.8, both models that are trained on the TKA data have the Age feature as 

most important feature. The ML model of Figure 5.8A primarily benefits from its top three 

most important features, while the rest of the features are significantly less important. In 

contrast, the feature importance of the model of Figure 5.8B is more evenly distributed. 

Overall, for the TKA data, the most important features seem to be Age, Surgeon, and 

RESULT_Urea.  

For both Figure 5.7 and Figure 5.8, the feature importance ranking has significant differences 

among their models. One reason for this is that each ML model works different. For example, 

even though the training THA data is the same for all models in Figure 5.7, there are significant 

differences in feature ranking across the models. Another reason could be that the data of both 

the THA and TKA data is relatively small compared to literature. A small dataset may not be 

very representative of reality. This comes with the risk that ML models may consider random 

fluctuations or noise as important. Certain features may be statistically relevant for the training 

data, but do not have to be relevant in practice. To overcome risking such issues, collecting 

more data could help. 
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Figure 5.7: Scaled feature importance of selected ML models trained on THA data. The models are: (A) RF with all remaining 

features, (B) XGB with embedded features, (C) LOGR with embedded features, and (D) ANN with embedded features.  

 

Figure 5.8: Scaled feature importance of selected ML models trained on TKA data. The models are: (A) RF with filter features, 

and (B) LOGR with embedded features.  
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5.4 Prediction tool 

To make sure that OCON can use the best performing ML models to make LOS predictions, 

we devise a prediction tool. We describe the tool in Section 5.4.1. In Section 5.4.2, we discuss 

the validation of the tool by asking OCON staff to fill in a user experience survey. We update 

the tool based on the feedback from the survey results in Section 5.4.3. 

5.4.1 Prediction tool overview 

The prediction tool consists of an interface in Excel where the user can input data, and a script 

in R which uses this data to make a prediction. To use the tool, it is required that the user has 

Excel and R installed on their computer. The tool can predict whether a certain new patient will 

experience a long or short LOS based on values inputted for the features by the user. The 

features differ per ML model used. It is important that the user makes sure all input values for 

each required feature is filled in, as this is required for the corresponding ML model. One of 

the input values is which combination of ML method and FSM should be used. Another one of 

the input values is the cutoff value. Figure 5.9 shows a screenshot of the Excel user interface. 

The red blocks show the steps that the user must perform to use the Excel file for the tool. The 

steps are as follows, and the cell locations are written between parentheses: 

1. Fill in the Surgery (C2), which is either THA or TKA. 

2. Fill in a machine learning method at the Method (D2). 

3. Use the arrows to filter the chosen Surgery (C5). 

4. Use the arrows to filter the chosen Method (D5). 

5. Input the values for the corresponding features in column F. Categorical features can 

be selected from a dropdown menu. 

6. The user must save the Excel file, such as by pressing Ctrl+S. 

 

Figure 5.9: Interface of prediction tool in Excel. 

The next steps should be performed in the R script. Figure 5.10 shows a screenshot of the R 

script, and the steps are as follows: 

7. Open the R file called: 'R prediction code'. 

8. In the R file, press Ctrl+Shift+S to run the script, or press the Source button. 

9. In the R file, in the bottom left corner, check the Console tab for the resulting 

prediction. This is either long LOS of at least 3 days, or a short LOS of less than 3 

days. 
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Figure 5.10: Code for prediction tool in R. 

Whenever a ML model makes a prediction, it gives a fraction from 0 to 1 as output. The higher 

the value, the more likely it is according to the model that the corresponding patient will 

experience a long LOS. When this fraction is above a certain cutoff threshold, it predicts that 

the patient will experience long LOS. Decreasing this cutoff value makes the model more likely 

to predict a long LOS, while increasing the cutoff value does the opposite. The default cutoff 

value for each model used in the prediction tool is the cutoff value in the corresponding ROC 

curve with the highest sum of the sensitivity and the specificity. The ROC curves with the 

corresponding chosen cutoff values are shown in Figure 5.11 for the THA data and Figure 5.12 

for the TKA data. The values between parentheses are the specificity and sensitivity of the 

cutoff value respectively. For example, in Figure 5.11, the cutoff value for the RF model with 

all remaining features (Figure 5.11A) is 0.191, and its specificity and sensitivity are 0.554 and 

0.861, respectively. Suppose the model predicts a prediction fraction of 0.3. The value of 0.3 

is higher than the used cutoff value of 0.191, which means that the model predicts a long LOS. 

In Figure 5.9, in cell location B2, the user of the prediction tool has the option to adjust this 

cutoff value manually to make the tool more or less likely to predict a long LOS. We also add 

a sheet called Information to Excel, which contains an overview about the available ML 

models, the number of features they require, their AUC, default cutoff value, sensitivity, and 

specificity. 
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Figure 5.11: ROC curves of selected models for the THA data along with the best cutoff value and its corresponding specificity 

and sensitivity. The models for each plot are: (A) RF with all remaining features, (B) XGB with embedded features, (C) LOGR 

with embedded features, and (D) ANN with embedded features. 

 

Figure 5.12: ROC curves of selected models for the TKA data along with the best cutoff value and its corresponding specificity 

and sensitivity. The models for each plot are: (A) RF with filter features, and (B) LOGR with embedded features. 

5.4.2 Tool validation 

We validate our prediction tool based on a user experience survey, namely the User Experience 

Questionnaire (UEQ, 2018). Appendix A shows the questionnaire. These questions of the 

survey are divided into six categories, namely: 

- Attractiveness: a user’s impression of the tool. 

- Perspicuity: how easy it is for the user to work with the tool. 

- Efficiency: whether the user can use the tool without having to do needless tasks. 

- Dependability: whether the user experiences being in control of the process. 

- Stimulation: whether the tool stimulates or motivates the user to use it. 

- Novelty: how innovative the tool feels to the user. 
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We asked two categories of OCON staff to fill in the questionnaire, which are medical staff 

who are potential users of the tool and non-medical staff who also work in the hospital. Figure 

5.13 shows the graphs of the medical staff, and Figure 5.14 shows the graphs of the non-

medical staff. Both figures also show plots for three grouped categories, which are: 

attractiveness, pragmatic quality, and hedonic quality. The pragmatic quality category consists 

of Perspicuity, Efficiency, and Dependability. This category refers to task-related aspects. The 

hedonic quality category refers to non-task-related aspects and consists of Stimulation and 

Novelty. 

 

Figure 5.13: Graphs concerning the User Experience Questionnaire results of medical staff. The bar charts are: (A) mean 

scores for each of the six categories and (B) mean scores of three grouped categories. 

 

Figure 5.14: Graphs concerning the User Experience Questionnaire results of non-medical staff. The bar charts are: (A) mean 

scores for each of the six categories and (B) mean scores of three grouped categories. 

The medical staff filled in significantly higher scores than the non-medical staff. Novelty is the 

highest scoring category, while Dependability scored the lowest across all categories. This 

gives the indication that the respondents think the tool is innovative, but they are not familiar 

with using it and may require some time to get used to it. Still, the medical staff assign good 

scores for the Dependability category. In contrast, the non-medical staff fill in lower scores in 

this category. Another category with stark contrasts between the medical and non-medical staff 

is the Perspicuity category. Essentially, the non-medical staff views the prediction tool as not 

very easy to work with and expects medical staff to struggle with using the tool. On the 

contrary, the medical staff do view it as easy to work with.  

One non-medical respondent claims that the user would want to trust the tool that it already 

selects the best settings, and that potential users do not know what ML methods are and do not 

know the impact of choosing one ML method over another. This respondent also states that it 

is undesirable to work in two programs, and that it would be ideal for the user to only work 
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with one program with one interface. This latter point could be an opportunity for further 

research. Another non-medical respondent thinks that certain aspects are too complex for 

potential users, such as selecting the ML model. This respondent also states that the Excel 

interface for inputting the features is well organised and that it is nice that the tool gives one 

clear prediction. The respondent also wonders is there is a way to show how reliable each 

prediction is. Despite the lower scores from the non-medical respondents, the hedonic quality 

still has a fair mean score, which indicates that these respondents also acknowledge the non-

task-related qualities of the tool, and especially its novelty. 

The medical respondents are positive about the tool and filled in good scores for all categories 

of the survey. One medical respondent states that the tool is very innovative and impressive. 

Another medical respondent states that the tool has nice explanations for the helpful method in 

the Excel interface.  

5.4.3 Tool adjustments based on feedback 

To improve the prediction tool, we incorporate the feedback given from the respondents. One 

respondent states that it would be beneficial if the tool already selects the best settings. What 

is defined as the best settings is subjective, because one user might value the AUC of a model 

more than the number of features to input or vice versa. Even though we offer the user freedom 

in selecting which ML method to use, we make sure that the tool uses a default cutoff value 

and a default ML method. The chosen default ML model for both THA and TKA is LOGR, 

because of its relatively low number of input features and its good AUC.  

Another respondent asks whether it is possible to say something about how reliable the 

predictions by the tool are. We introduce an additional performance indicator to measure this. 

This is a number which is calculated as the absolute difference between the prediction fraction 

and the chosen cutoff value. A higher number indicates that the prediction fraction is further 

away from the cutoff value. Furthermore, we present this number as a percentage where 100% 

is the maximum difference of the prediction fraction with the cutoff value. A high percentage 

means that the given prediction is less likely to change if the user would input a slightly 

different cutoff value. This prediction score can be used as an indication of how certain the 

predictions are, where higher values indicate a higher certainty. A value below 10% indicates 

a relatively low certainty. Additionally, we make some adjustments to make sure the tool is 

easier to work with and feels more intuitive to the user. Figure 5.15 shows the updated Excel 

interface, and Figure 5.16 shows the updated R code. 

- The selection of ML methods in step 2 is based on the selected surgery type. 

- The THA and TKA settings each have a default ML method which is based on a good 

AUC and a low number of features. Changing the ML method is optional. 

- Filtering the features works automatically based on selected ML method and surgery 

type. Thus, we remove step 3 and 4 as described in Section 5.4.1. 

- We add a Feature Importance sheet with plots from Figure 5.7 and Figure 5.8 to give 

the user more insight in the importance of features for each ML model. 

- Protect cells of the Information and Feature Importance sheets to reduce the risk of 

human error. 
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Figure 5.15: Updated interface of prediction tool in Excel based on feedback. 

 

Figure 5.16: Updated R code of prediction tool based on feedback. 

5.5 Predicted versus actual values 

We supply each ML model in the prediction tool with default cutoff values, which are necessary 

for the tool to decide whether it predicts a patient to have a long LOS or not. We test the ML 

models with the default cutoff values on the test data. This means the models make predictions 

based on the features in the test data. To compare the predicted LOS values with the actual 

values in the test data, we measure the accuracy, which is the fraction of correctly predicted 

outcomes. Figure 5.11 and Figure 5.12 show the used default cutoff value for each ML model. 

Table 5.5 compares the predictions with the actual values for the LongLOS, and it shows the 

frequency of each combination of predicted and actual values for each ML method. It also 

shows the results when a model always predicts a short LOS, which occurs significantly more 

often in the data than long LOS instances. The values between brackets are the fractions of the 

total amount of instances for the corresponding frequencies. Table 5.6 shows the accuracy of 

each model described in Table 5.5, as well as their sensitivity and specificity.  

Table 5.5: Distribution of predictions versus actual LongLOS values for each ML method. 

 

  

Prediction Actual RFHIP_Freq LOGRHIP_Freq ANNHIP_Freq XGBHIP_Freq RFKNEE_Freq LOGRKNEE_Freq
Always Short 

LOS (THA)

Always Short 

LOS (TKA)

Short LOS Short LOS 192 (0.43) 229 (0.52) 193 (0.44) 224 (0.51) 141 (0.40) 217 (0.61) 341 (0.77) 258 (0.73)

Long LOS Short LOS 149 (0.34) 112 (0.25) 148 (0.33) 117 (0.26) 117 (0.33) 41 (0.12) 0 0

Short LOS Long LOS 20 (0.05) 30 (0.07) 22 (0.05) 28 (0.06) 20 (0.06) 47 (0.13) 101 (0.23) 96 (0.27)

Long LOS Long LOS 81 (0.18) 71 (0.16) 79 (0.18) 73 (0.17) 76 (0.21) 49 (0.14) 0 0
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Table 5.6: Performance values for each ML method. 

 

In Table 5.6, the method with the highest accuracy (0.77) for the THA data is when a model 

always predicts a short LOS. The accuracy equals the fraction of the test data which are short 

LOS patients. Even though the accuracy is the highest, the AUC value is the lowest (0.5). A 

model which always predicts a short LOS has a sensitivity of 0 because it is unable to predict 

long LOS patients, which is undesirable. This shows that accuracy would be an unsuitable 

performance indicator for measuring the quality of a prediction model in this case. The model 

which always predicts a short LOS has a lower accuracy for the TKA data, because the fraction 

of short LOS patients in this dataset is small than the THA data. We add the accuracy of each 

ML model to the Information sheet so that the user gets more insight into the performance of 

each ML model. 

5.6 Summary 

In Chapter 5, we test the 68 ML models described in Chapter 4 on the test data. We select the 

most promising ML models based on their AUC and number of features. We select four ML 

models for the THA data and two models for the TKA data. The selected models are: 

- For the THA dataset: 

o Random forest with all remaining features. 

o Logistic regression with embedded features. 

o XGBoost with embedded features. 

o Artificial neural network with embedded features. 

- For the TKA dataset: 

o Random forest with filter features.  

o Logistic regression with embedded features. 

Overall, the most important features for the THA data seem to be Age, ASA score, 

Surgical_approach, and RESULT_Hemoglobin. For the TKA dataset, the most important 

features seem to be the Age, Surgeon, and RESULT_Urea. 

We incorporate these selected models into a prediction tool, which consists of an Excel 

interface and an R code. In the Excel interface, users select the type of surgery and input feature 

values. The R code plugs the data into the selected ML model and makes a prediction 

concerning whether a patient is expected to experience a long LOS. We ask OCON staff to fill 

in the User Experience Questionnaire to validate the tool, and we adjust our tool based on the 

received feedback. By using learning curves, we conclude that more input data could improve 

the performance of the ML models. We elaborate on the discussion of our research in Chapter 

6.  

Surgery Method Number of features AUC Default cutoff Sensitivity Specificity Accuracy

Total hip arthroplasty Random forest 22 0.76 0.191 0.86 0.55 0.62

Total hip arthroplasty Logistic regression 13 0.74 0.215 0.7 0.67 0.68

Total hip arthroplasty Artificial neural network 8 0.72 0.176 0.79 0.57 0.62

Total hip arthroplasty XGBoost 12 0.75 0.197 0.72 0.66 0.67

Total knee arthroplasty Random forest 8 0.73 0.253 0.82 0.55 0.61

Total knee arthroplasty Logistic regression 13 0.74 0.39 0.51 0.84 0.75

Total hip arthroplasty Always short LOS 0 0.5 0 1 0.77

Total knee arthroplasty Always short LOS 0 0.5 0 1 0.73
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Chapter 6: Discussion 
In this chapter, we discuss the implications of our research. In Section 6.1, we conclude our 

research and provide a short summary. Section 6.2 discusses the limitations that occurred 

throughout the research, and Section 6.3 mentions the theoretical and practical contributions. 

We mention our recommendations to OCON in Section 6.4, and we finalise this chapter with 

Section 6.5, where we discuss opportunities for further research. 

6.1 Conclusion 

In Chapter 1, we analysed the problem that OCON is facing. We interviewed OCON staff and 

created a problem cluster based on the findings, as is shown in Figure 1.1. The resulting 

research problem is: 

“A method should be devised which is able to make better predictions for the postoperative 

length of stay for patients who underwent a primary TKA/THA.” 

OCON provides a patient registration database called HiX which contains patient-related data. 

We made a selection of relevant features in HiX for predicting the length of stay (LOS) for 

primary total knee arthroplasty (TKA) and primary total hip arthroplasty (THA) surgeries 

based on literature. We extracted details from as many surgeries as were available. We prepared 

the data in such a way that it can be used on feature selection methods (FSMs) and machine 

learning (ML) models, and we split the data based on whether a THA or TKA is performed. 

We used three different FSMs to make sure irrelevant features are excluded to examine if this 

improves ML models. Using too many features could potentially cause overfitting and make 

the ML models worse. We also included a fourth dataset with all remaining features where we 

did not use an FSM. Afterwards, we applied the four datasets on eight different ML models. 

The most important metric for measuring the performance of such models is the AUC of the 

corresponding ROC curves. The number of features for each ML model is another metric for 

measuring how promising a model is. We selected the six most promising models and created 

a prediction tool where a user can make LOS predictions of a patient based on inputted feature 

values. Each selected ML model uses different features. Figure 5.7 and Figure 5.8 shows their 

feature importance. Table 6.1 shows an overview of the final selected models and their 

performance metrics. Each row in this table signifies a ML model, which is about a certain type 

of surgery, a ML method, used default cutoff value, and about the number of used input 

features. Each row also contains information about the performance of the model, namely its 

AUC, sensitivity, and specificity. We validated the prediction tool by asking OCON staff to fill 

in the User Experience Questionnaire and applied feedback to improve it. 

We conclude our research with the updated prediction tool which OCON staff (medical or non-

medical staff) can use to estimate whether a patient is expected to experience a long LOS. The 

tool can be used as an advisory tool to help OCON staff make better predictions by using 

historical data, and so our research solves the research problem. 
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Table 6.1: Overview of performance metrics of each of the selected ML models for the prediction tool. 

 

6.2 Limitations  

During the execution of our research, we came across various limitations. The first limitation 

is that the HiX database does not contain all features which we requested. A lot of features who 

are used in literature for LOS prediction are not stored in HiX, and thus cannot be extracted for 

our research. Examples of this are the Timed Up and Go test and a patient’s mental health. The 

second limitation is that a lot of features are stored in HiX as written text. The act of structuring 

written text is very challenging, as every person can write their text in a different way, and it 

can contain spelling errors. This means that a feature with written text has a very high number 

of unique values, which makes it hard for a ML model to generalise information. Thus, we limit 

our research to features which are not stored in a written text format but in a structured and 

limited format. The third data limitation is that 26% of the received data is unusable, because 

the corresponding surgeries contained no data which are required for calculating the LOS, such 

as discharge date and time. The fourth data limitation is that there are missing values for certain 

features. Even though we perform data imputation, the imputed values are never as good as the 

real values. The data imputation method imputes a value which the method expects to be there, 

and the real value can be different than the imputed value. The fifth data limitation is that we 

did not receive most of the features that we requested even though they are present in HiX. We 

requested 219 features which are available in HiX, but we received 39 of them in our data 

request. The sixth limitation is that various features contained a few wrong values, which 

required manual fixing or resulted in being forced to remove some surgeries from the data. 

Finally, the time between when we handed in our data request and when we received our final 

dataset took longer than expected. 

6.3 Theoretical and practical contribution   

The AUC values for the THA and TKA models are comparable with what the academic 

literature in Table 2.1. The best performing models in academic literature found AUC values 

between 0.69 and 0.83 for TKA data, and they found AUC values between 0.73 and 0.87 for 

THA data. One key difference between our research and the academic literature is that most of 

the sources in Table 2.1 have at least 100,000 surgeries to analyse per THA or TKA surgery 

type. In contrast, our total THA dataset contains 2208 surgeries and our total TKA dataset 

contains 1766 surgeries, which is significantly less compared to the amount of data that is used 

in the literature. Our datasets also contain different features than the academic literature. One 

key difference is that the literature often uses comorbidity scores, which are not present in our 

received data. An example of such a classification system used in literature is All Patients 

Refined Diagnosis Related Groups (APRDRG). Despite the difference in features and the 

significantly smaller dataset, our created ML models have AUC values which are comparable 

to literature. Finally, the literature described in Table 2.1 perform their research on either an 

American or Asian population. In contrast, our research is performed on a European population, 

namely the Dutch population. 

Surgery Method Number of features AUC Default cutoff Sensitivity Specificity

Total hip arthroplasty Random forest 22 0.76 0.191 0.55 0.86

Total hip arthroplasty Logistic regression 13 0.74 0.215 0.67 0.7

Total hip arthroplasty Artificial neural network 8 0.72 0.176 0.57 0.79

Total hip arthroplasty XGBoost 12 0.75 0.197 0.66 0.72

Total knee arthroplasty Random forest 8 0.73 0.253 0.55 0.82

Total knee arthroplasty Logistic regression 13 0.74 0.39 0.84 0.51
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To the best of our knowledge, there is no interactive prediction tool in academic literature with 

an adjustable cutoff input value and ML method which can make a prediction on whether a 

primary THA or TKA patient is expected to experience a long LOS or not. With the prediction 

tool’s estimations, OCON staff can gain insight into knowledge gained from historical patient 

data, which should improve their predictions concerning whether THA/TKA patients will 

experience a long LOS. This can help solve the problems as defined in the problem cluster in 

Figure 1.1 in Chapter 1. For example, making better predictions can reduce patient uncertainty, 

improve bed capacity utilisation, and reduce the risk of a congested planning. 

6.4 Recommendations  

First and foremost, we recommend OCON staff to use the prediction tool. It can function as an 

advisory tool to improve predictions concerning the LOS of THA/TKA patients. We 

recommend using the ML models with relatively few features to make sure filling in feature 

values does not become a bothersome chore. We also recommend using the default cutoff value 

in the beginning when people start using the tool for the first time. Once users feel like they 

want to the tool to become better at identifying long LOS patients, they can decrease the cutoff 

value slightly, such as in steps of 0.05. We also recommend users to use the default ML models 

for each type of surgery, which should make the tool easier to work with. 

In order to measure the effectiveness of the tool, we recommend that users keep track of the 

predictions done by the model, as well as the actual LOS. This can visualise how the tool 

performs compared new data. This can be useful in tuning the tool. For example, users can 

input a lower cutoff value than the default cutoff value if they feel like the model is favouring 

identifying short LOS patients over identifying long LOS patients. Lowering the cutoff value 

makes the tool more likely to predict a long LOS, which comes at the expense of the tool 

becoming worse at identifying short LOS patients. This would mean that the sensitivity of the 

corresponding ML model increases, while its specificity decreases. 

If OCON desires to further improve the tool, then the models can be trained again on newly 

added data. However, retraining the models and implementing them in the prediction tool 

requires a significant amount of effort. Especially adding more features would be a challenging 

task. Adding new features is not limited to HiX only, as new features can also be added 

manually in an Excel sheet for example. Adding more surgeries for the features that are already 

being used by the models in the prediction tool would be easier, but it still requires analysing 

the R code and making sure it works with newly added data. For example, adding new data 

might make the FSMs select different features, and it also affects the feature importance. 

Finally, the prediction tool interface could be improved by the IT department. Currently, the 

tool requires the user to use Excel as well as R. To make the tool more user-friendly, one could 

add macro buttons to the Excel which runs the R code. This would not require the user anymore 

to open R at all. 

6.5 Further research   

The performance of ML models highly depends on the input data. Poor input data results in 

poor ML models. Collecting more surgeries and more features increases the input data, and 

extra data can train the ML models better and improve their AUC values. An option for further 

research could be to make sure the R code can work with the new data and create new ML 

models.  
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One of the best performing models in the literature described in Table 2.1 is the ANN. The 

creation of the ANN model in our research was limited to one hidden layer. Ramkumar et al. 

(2019a) uses an ANN with multiple hidden layers. Exploring the effectiveness of ANN for the 

data of this research is also a further research opportunity.  

Finally, another way to benefit from the prediction tool is by combining the predictions with 

the capacity planning. For example, the planning for each patient bed at the bed department 

can be adjusted based on the LOS predictions of the prediction tool. Exploring how LOS 

predictions can impact and improve scheduling problems is another opportunity for further 

research. 
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