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Abstract—Studying the behavior of individual proteins has
significantly advanced drug design, disease diagnosis, and the
development of novel nanotechnologies. Trapping proteins is a
common research method, but existing techniques often chemi-
cally or physically alter their behavior. A promising new tech-
nique utilizing dielectrophoresis (DEP) offers label-free, active,
detection-less, local trapping of proteins. While DEP has been
widely used for cell manipulation, its application in single protein
trapping is a recent development. For this method to be effective,
a detailed understanding of the DEP potential within the trap
is necessary. This requires a combination of experiments and
simulations. Research by S. Pud et al. aims to experimentally
determine the DEP potential for a dielectrophoretic trap using
polystyrene nanoparticles. This paper presents a framework for
modeling this setup in silico by solving the Langevin equation for
DEP and Brownian motion. The framework will help determine
the theoretical DEP potential and pave the way towards DEP
study of single proteins.

Index Terms—Dielectrophoresis, Simulation, Langevin eqau-
tion, Brownian Motion, Trapping.

I. INTRODUCTION

The study of single molecules has revolutionized modern
biophysics. It enabled studying individual protein behavior,
providing insights into fundamental biological mechanisms
and driving advancements in drug design, disease diagnosis,
and the development of novel nanotechnologies[3]. Over the
last decades, many techniques established themselves to study
single molecules[16]. One of the crucial factors influencing the
accuracy of these techniques is the localization of the molecule
under study[4]. Some methods use fluorescence to track the
molecules, some confine the movement of the molecule using
nanostructures or by attaching a chemical tether, and others
confine the movement using external forces[5].

A new technique aims to trap molecules using dielec-
trophoresis (DEP). DEP is a dielectric force that carries the
molecule towards places of field strength where the molecule’s
free energy is reduced[6]. Standard DEP theory defines it
as a force acting on a moment in an electric field gradient.
Improvements in manufacturing nanoelectrodes have made it
possible to engineer them such that single molecule trapping
has come into the realm of possibilities[12]. This method is
label-free, active, does not depend on detection, and offers very
localized trapping[2][10]. Furthermore, DEP actuation offers a
way to study additional parameters of the molecule. Following
procedures as proposed by Ma et al. [17], but replacing

the tethers with DEP actuation, DEP parameters like size
and the Clausius–Mossotti, K(ω) factor can be determined.
This K(ω) describes the contrast between the medium and
molecule in terms of their interaction with the electric field
and can reveal information about its dipole moment[6].

Before this can be done, the DEP-induced trapping potential
of the trap has to be determined. Simulation can help here
by modeling the movement of a molecule in a trap model.
This way, the trapping potential can be estimated. Comparing
this estimation to real-life experiments can help create a more
accurate model of the DEP potential.

This thesis will continue the work done by E. Schwander
et al.[2]. Moving from 2D simulation to 3D, expanding on
theory research and approximating the trapping potential of
a simplified setup. The simulation represents the in silico
experiment of the setup shown in Figure 1 and is described in
P. Sergii et al. [10]. It aims to trap single spherical polystyrene
nanoparticles with a radius between 20 and 50 nm. The design
of two bow-tie-shaped nano-electrodes creates a strong and
local electric field at the tips. The field induced is in the 10−6

to 10−7 V/m range for an AC voltage of 1V on the electrodes.
This electric field creates a trapping potential strong enough
for prolonged trapping of single proteins[19]. The electric
field is simulated using COMSOL Multiphysics. This field is
imported into a Python environment. In Python, a framework
is built to calculate the dielectrophoretic force and model
Brownian motion and collisions. Using a simplified electrode
model, this framework’s trapping potential is compared to its
theoretical trapping potential. This way, the accuracy of the
framework can be evaluated. It is important to note that in the
real setup the molecules are detected using iScat technology.
As this thesis aims to model only the DEP potential this part
is outside the scope of research.

Ultimately, the research aims to study the DEP potential
of the trap for complex molecules like proteins. This thesis,
however, serves as a step in guiding the simulation framework
in the right direction, providing a foundation that can be built
upon.

II. THEORY

The setup discussed in the introduction places polystyrene
nanoparticles with a 20-50 nm radius in a fluid with two nano-
electrodes. These nano-electrodes induce a strong electric field



Fig. 1: A) This is the setup used by Sergii Pud et al.[2] that this simulation will be based on. It puts a AC voltage on electrodes
with a 20-50 nm gap inbetween them to induce high electric field gradients. iScat dectection to measure the particles. B) The
setup shows a detection event for a particle with a 30 nm radius.

gradient, causing a DEP trapping potential. The setup has
been designed to stay clear from adverse effects like dielectric
breakdown, electrolysis, heat release, reshaping or degradation
of particles, or denaturation of proteins [18][10]. Considering
this, the movement of the particles is dominated by two
main forces: Brownian motion and the dielectrophoretic force.
Understanding these forces is crucial for simulation. This sec-
tion will tackle the theory regarding these forces and discuss
the Langevin equation used to model them. Furthermore, it
will tackle simplifying the Langevin equation and discuss a
simplified electrode model that can be statically evaluated to
assess the accuracy of the model.

A. Brownian Motion

Brownian motion is the random movement of a particle
suspended in a fluid. The thermal energy of the molecules
in the fluid causes them to rush and collide with each other.
The net force of these collisions creates a random walk. The
equipartition theorem describes a molecule’s kinetic energy in
a fluid, which states that every degree of freedom contributes
1
2kbT of energy. In 3 dimensions, that results in an average
translational kinetic energy of:

Ep =
3

2
kbT (1)

where kb is the Boltzmann constant and T is the temperature.
According to A. Einstein the mean displacement of such
particle when only taking into account Brownian motion and
Stokes friction law is[1]:

⟨r2⟩ = 6Dt (2)

Where r is position, t is time, and D is the diffusion coefficient
given by Stokes-Einsteins relation[1]:

D =
kbT

γ
(3)

Where γ is the stokes drag given by:

γ = 6πηR (4)

Where η is the viscosity of the surrounding fluid, and R is the
particle’s radius. So, the movement is affected by temperature
T and particle size R.

1) Langevin Equation: The random walk of Brownian par-
ticles can be modeled using stochastic differential equations.
The Langevin equation is an equation that is used to model
Brownian motion. It describes the evolution of a system
under the influence of deterministic and fluctuating (”random”)
forces. For Brownian motion in one dimension, the Langevin
equation looks like[2]:

m
d2x(t)

dt2
= −γ

dx(t)

dt
+ ξ(t) (5)

Where ξ is a function representing Gaussian white noise
responsible for the random motion of the particle. The magni-
tude of this white noise is given by

√
2kbTγW (t) where W (t)

is a random function with normal distribution with mean of 0
and variance of 1.

2) Langevin equation: The random walk of Brownian par-
ticles can be modeled using stochastic differential equations.
The Langevin equation is such an equation which can be
used to model Brownian motion. It describes how a system
evolves when subjected to a combination of deterministic and



fluctuating (”random”) forces. For Brownian motion in one
dimension the Langevin equation looks like[2]:

m
d2x(t)

dt2
= −γ

dx(t)

dt
+ ξ(t) (6)

Where ξ is a function representing Gaussian white noise
responsible for the random motion of the particle. The magni-
tude of this white noise is given by

√
2kbTγW (t) where W (t)

is a random function with normal distribution with mean of 0
and variance of 1.

B. Dielectrophoresis

The dielectrophoretic force is the force on a dielectric par-
ticle polarised by a non-homogeneous electric field. Standard
DEP predicts[6] that if the particle’s electric polarizability
exceeds the polarizability of the fluid medium, it moves
towards a higher field strength. Moreover, if the particle’s
electric polarizability is lower than the polarizability of the
fluid medium, it moves towards a lower field strength. This
is positive and negative DEP, respectively. When the distance
between the poles of the dipole is small compared to the scale
of nonuniformity of the field, the dielectrophoretic force is
approximated by[2]:

Fdep = (4πϵ0ϵmRe(K(ω))R3E · ∇)E (7)

For a DC field field (E · ∇)E = ∇E2 and for an AC field
(E · ∇)E = 1

2∇E2. The force depends on the permittivity of
the medium ϵm, the size of the particle R, the electric field
gradient, and the Clausius-Mossotti factor, K(ω). The K(ω)
describes the contrast between the medium and the particle
in terms of their polarizability due to an electric field. K(ω)
factor for a sphere like nanoparticle can be described as [6]:

K(ω) =
ϵ∗2 − ϵ∗1
ϵ∗2 + 2ϵ∗1

(8)

Where ϵ∗2 is the complex permittivity of the particle and ϵ∗1
is the complex permittivity of the medium. These complex
permittivity are given by [19]:

ϵ∗n = ϵn − iσn

ω
(9)

where ϵn is the relative permittivity of the material and σn

the conductivity of the material and ω the frequency of the
electric field. The iσ

ω part can be ignored when dealing with
DC electric fields. The K(ω) is limited in the range −0.5 <
K(ω) < 1.0. Which is negative and positive DEP, respectively.

In the presence of an AC field, this force will alternate
with time. When the field changes very fast, it is possible to
average this over the timescale. The theoretic time-averaged
dielectrophoretic potential energy is:

⟨Udep⟩ = −2πϵ0ϵmR3 ϵp − ϵm
ϵp + 2ϵm

|E2| (10)

With the time averaged force as ⟨Fdep⟩ = −∇⟨Udep⟩. Here,
|E2| is the amplitude of the electric field at maximum am-
plitude in the AC wave. This will realistically mean that the
real potential of the trap is less than this as, at most times,

the amplitude is lower, but it would be proportional to it. To
model the dielectrophoretic force in simulation, it is added to
the Langevin equation. The Langevin equation for Brownian
motion under an external force field reads:

m
d2x(t)

dt2
= −γ

dx(t)

dt
+ ξ(t) + Fexternal (11)

In this case, Fexternal is the dielectrophoretic force FDEP .

C. Relaxation Time

This paper aims to simulate sub-50 nm polystyrene particles.
These particles have a low mass and reach terminal velocity
quickly for a given force. This behaviour is characterized by
the momentum relaxation time [7] [8]:

τ =
m

γ
(12)

Where m is the mass of the studied particle. If the time step
of the simulation is well below this relaxation time, the simu-
lation can transition from the ballistic to the diffusive regime.
For 20-50 nm particles, the relaxation time ranges between
8.77 ∗ 10−18s and 5.48 ∗ 10−17s depending on the particle’s
radius. The timestep of the simulation will be discussed in
subsection IV-A. Assuming the timestep is well above the
relaxation time, the acceleration term can be discarded, and
the resulting Langevin equation will look like:

0 = −γ
dx(t)

dt
+ Fdep + ξ(t) (13)

Simplifying the equation:

dx(t)

dt
=

Fdep

γ
+

ξ(t)

γ
(14)

D. Statistical Approach To Trapping

The trap will only attract particles if the force towards the
trap is greater than the thermal energy propelling the Brownian
motion. A boundary will exist where the DEP energy is greater
than the particle’s thermal energy and remains trapped. For a
collection of particles, this boundary can be predicted using
the particle-conservation equation[15]:

δn

δt
+

−
v · ∇n = ∇

−
J (15)

Here, n is the number of particles per unit volume, and
−
J is

the total flux, which in this case is Brownian motion flux and
DEP flux. Given by:

−
J = −D∇n+

nFDep

6πηR
(16)

The particle-conservation equation can be used to analyze
the confinement of particles in potential energy minima. For
the complex electrode model, the electric field gradients do
not always guide particle to the confinement region. This
is because the gradient is strongest towards the electrode
resulting in particles getting stuck to the electrode instead
of moving towards the convergence region. This thesis will
explore a simplified case that mimics the complex electric



field of the nanogap electrode while remaining easy to study.
The most straightforward implementation of such an electrode
would be a charged sphere. For a spherical electrode, the
confinement region is approximated by a circle. When the
particle is within the circle’s radius, it is in a steady state.
It will be called the capture radius. Here, the dielectrophoretic
force is so strong that thermal energy will not carry it outside
of the trap. In the steady state, the total flux at any point is
zero. In this case, the particle-conservation equation can be
written as[15].

−D∇n+
nFDEP

6πηR
= 0 (17)

Solving this differential equation for n in terms of dielec-
trophoretic potential, the following equation is found:

n

n0
= exp(−Udep

kbT
) (18)

where n
n0

represents the proportion of particles trapped.

E. Electric Field Gradient

The dielectrophoretic potential depends on the electric field
gradient. The electrodes of the complex nano-electrodes create
an electric field, which is hard to calculate analytically. COM-
SOL Multiphysics will be used to calculate it. For the charged
sphere, a relatively simple theory can determine The electric
field gradient for a sphere. The electric field is the gradient of
potential:

E = −∇V (19)

The potential caused by a spherical particle bearing charge q
is:

V (r) =
q

4πϵmϵ0r
(20)

Using spherical coordinates, we find:

E = −[r̂
δ

δr
+ θ̂

1

r

δ

δθ
+ ϕ̂

1

rsin(θ)

δ

δϕ
]

q

4πϵmϵ0r
(21)

Because V does not change for θ and ϕ the electric field is:

E = −r̂
δ

δr

q

4πϵmϵ0r
= r̂

q

4πϵmϵ0r2
(22)

The electric field gradient is thus defined as:

∇E2 = (
q

4πϵmϵ0

2
)
−4

r5
(23)

III. SIMULATION SETUP

The simulation will solve the Langevin Equation for the
polystyrene nanoparticles. It will do this for two electrode
geometries. For the spherical model, it is done to assess
the trapping potential of the simulation by testing for a
capture radius. For the complex electrodes, it is done to prove
the framework can model particles in 3D using COMSOL
imported electric fields. The framework is coded in Python
using code based on previous work done by E. Schwander et
al.[2] and Sergii Pud. The process of COMSOL simulation
is also explained by E. Schwander et al.[2]. The simulated

particles have a radius of between 20 and 50 nm, and the
dielectrophoretic force acting on them is approximated by
considering the particles as point-like objects. Considering the
steep electric field gradient, this model is not correct, but this
will remain out of the scope of this thesis as it is a proof of
concept for a 3D Langevin equation solver. Furthermore, this
thesis will not delve into modeling the real Clausius-Mosotti
factor of particles, so a Clausius-Mosotti factor of 1 is used.
This is the value often approximated for polystyrene spherical
particles[12]. The rest of this section will explain how the
Langevin Equation is solved in simulation as well as how
the electric field is modeled; it will also explain the need for
and implementation of collision detection. Additionally, it will
discuss the optimization steps, and lastly, it will explain the
setup for the experiments.

A. Numerically Solve Langevin Equation

To simulate the forces on the particle, the Langevin equation
has to be solved numerically. As discussed in subsection II-C,
the simulation is in the diffusive regime when the timestep is
well above the relaxation time of the particle. Equation 13 can
be used to solve for the particle’s velocity. The Euler method
is used:

x[n+ 1] = x[n] + ∆t · v (24)

For the Fdep part this yields:

x[n+ 1] = x[n] + ∆t · Fdep

γ
(25)

The white noise term can not be approximated using the
Euler method as it would conflict with the variance criteria
of the white noise [8]. The following equation approximates
the white noise numerically:

x[n+ 1] = x[n] +
√
∆t ·W (26)

Combining these two equations:

x[n+ 1] = x[n] + ∆t · Fdep

γ
+
√
∆t · ξ[t]

γ
(27)

The white noise is generated using the numpy random.randn
code, which takes a sample from a standard normal distribution
[9].

B. Electric Field

The electric field gradient for the complex geometry shown
in Figure 2C is calculated using COMSOL. COMSOL is
simulation software that uses the Finite Element Method to
solve differential equations. It calculates the Electric Field of
arbitrary geometries by solving Maxwell differential equations
for set boundary conditions. The setup for COMSOL is outside
the scope of the thesis and is explained in [2]. The potential of
the electrodes is 1 V when running the COMSOL simulation.
Because the squared electric field gradient scales with V 2[2],
later scaling can be done in Python. This reduces the amount
of simulation that has to be done in COMSOL and the amount
of data that needs processing, increasing the time spent on the
simulation code. When exporting from COMSOL, it generates



Fig. 2: A) Electric Field of electrodes proposed in Pud Sergii et al. [10] at 10 nm above the bottom. Black indicates the
electrodes and the white line indicates the cross-section shown in B. B) Electric field of same electrodes as Y = 0. The
white line indicates the cross-section shown in A. C) Electrode figure found in Pud Sergii et al. [10]. D) Electric Field of the
simplified electrode.

a .txt file encoding the electric field gradients at a range
of coordinates. The resolution of this grid is 1 nm for a
601*601*301 grid. The electric field induced by the electrodes
is shown in Figure 2A and Figure 2B. The electric field
gradient of the simplified sphere electrodes can be solved
using Equation 23. This electric field should be similar to the
COMSOL electrode to mimic its behavior. A sphere with a
30 nm radius was chosen to mimic the tips of the COMSOL
electrodes. The electric field at the edge of the electrode should
be 4 ∗ 107V/m as can be seen in figure Figure 2A. The
electrode’s charge is found by solving Equation 22 at the edge
of the electrode for q. This yielded a q of 3.2 ∗ 10−16. Using
this charge, the electric field is calculated and can be found in
figure Figure 2D. The potential is solved with Equation 20
and is 1.2V. The force on the particles is correlated with
V 2. Thus, multiple potentials of the electrode will be tested.
The ratios considered are 1, 0.5, and 0.25. Respectively being
1V, 0.6V and 0.3V. Furthermore, the electric field gradient

is calculated for the same grid as the COMSOL simulation
output to keep the method of simulation the same between
electrode geometries.

C. Collision Detection

Collusion detection is implemented for two reasons. First,
the particles should not be able to go within the electrodes or
below the floor. Secondly, as the particles are considered point-
like, the dielectrophoretic force can become unrealistically
strong if the particle gets too close. This is because the electric
field gradients are big at the edges of the electrodes. The
problem manifested in particles moving through electrodes
and exiting on the other side during one timestep. The im-
plementation thus considered the particle’s radius, limiting the
proximity of particles to the electrodes. For the spherical elec-
trode collision detection, math was simple. Each coordinate in
the 601*601*301 grid is looped over. If the distance from
the coordinate to the center of the electrode is less than the



summed radii of the electrode and particle, the coordinate is
a collision coordinate. The collision detection on the COM-
SOL geometry proved to be more involved. As the arbitrary
geometry means no easy mathematical formula would unravel
the particle’s distance from the electrode. This is solved by
looping over all the electrode coordinates and projecting the
particle on top of it. All the coordinates on which the particle
is projected are considered collision coordinates. Collusion
prevention was done in the same way for both electrode
models. The future coordinate is checked for collisions before
the particle moves. If it is a collision coordinate, the particle’s
movement is canceled. These non-elastic collisions did result
in sticking behaviors, meaning a particle could not move away
from the electrode anymore. However, implementing realistic
elastic collision would require the normal of the surface at
collision[13]. This remained outside the scope of this thesis.

D. Optimization

The simulation involves a lot of calculations at each
timestep. To optimize this, all calculations regarding the par-
ticle displacement due to the DEP are done before running
the simulation. This is done by looping over all grid points
and calculating the DEP part of the numerical Langevin
equation. The precalculation means that all coordinates in
the 601*601*301 grid have predetermined displacement and
collision values. During the simulation only two array calls
and a numpy.random call for Brownian motion is enough for
the movement modeling. This significantly improved the speed
of the simulation

To optimize the simulation further, the optimal time step is
needed. Too short means that the simulation will take longer
than needed, and too large leads to non-realistic behavior in
the simulation. The problem with a large timestep is that the
particles will move too much in one timestep such that they
miss the slope of the electric field. An example of such a
problem is that at a large time step, the displacement can get
so big that in one timestep, the particle moves from close to
the electrodes, where the field gradients are big, to outside the
coordinate system. In the physical world, the particle would
have collided with the electrode or slowed down due to drag.
The relaxation time must also be considered as the Equation 27
assumes that the simulation deals with the diffusive regime.
The simulation is run multiple times with multiple timesteps
to find the optimal timestep. The optimal stable timestep is
seen to scale with the intensity of the electric field[2]. The
optimal timestep is found for different electric field ratios. It
is also tested for different particle sizes. The simulations are
run on the spherical electrode model, as this geometry enables
more straightforward distance calculations.

E. Capture Coordinates

The capture coordinates are found by determining the like-
lihood of trapping the particle at different starting positions.
The duration of the experiment is 5 ∗ 10−6s. This was a
balance between runtime and divergence of Brownian motion.
The longer the experiment duration, the more the Brownian

motion will stay consistent between the simulations. However,
the simulation runtime linearly increases with the duration
of the experiment. Using limited hardware, 5 ∗ 10−6s was
considered sufficient. For the spherical electrode, the particles
are considered trapped when less than 5 nm away from the
electrode. This is considered a safe distance as it is clear that
the DEP force is much bigger than the thermal energy at this
distance. The coordinates where the particle is 50% likely to
get trapped are considered capture coordinates. A circle gets
fitted over these manually, and this circle represents the capture
threshold. It corresponds to a squared electric field strength as
approximated by Equation 18. In the complex electrode model,
the particle is not considered trapped per se when getting close
to an electrode. A capture radius of 50 nm exists at the origin
of the grid. This is the place with the lowest trapping potential,
and only here Equation 17 is considered valid.

IV. SIMULATION RESULTS

Voltage Ratio Radius Particle
(nm)

Stable ∆t (s)

0.25 20 1 ∗ 10−7
0.5 20 5 ∗ 10−8
1 20 5 ∗ 10−9

30 5 ∗ 10−9
40 5 ∗ 10−9
50 5 ∗ 10−9

TABLE I: Table displaying stable time steps for different
simulation configurations

A. Timestep

The timestep on which the simulation runs will, for a large
part, determine its speed. To test for the optimal timestep, 300
particles are released at a 15 nm distance from the spherical
electrode. This means a different starting position for particle
radia as the distance to the electrode is calculated from the
closest point of the particle. The time it takes to reach the
electrode is measured, and the amount of particles that hit it
is also recorded. The graphs displaying the results are found in
Figure 5. The stable ∆t for the electric field ratios and particle
sizes are found in Table I. The other experiment is run with
these timesteps.

B. Capture Coordinates

The capture coordinates are starting coordinates at which the
particle is 50% likely to be captured by the trap. One hundred
particles are released at every 10th index of the 601*601*301
coordinate system to find these coordinates. For the spherical
electrode electrode, the particle is considered captured when
the distance to the electrode is less than 10 nm. A circle
can be fit on these capture coordinates. These circles have
a radius and that is called the capture radius. These capture
radia represent a squared electric field amplitude. These results
are found in Figure 4. The capture radia are found for different
particle sizes and voltage ratios. The capture coordinates of the
complex electrode are plotted in Figure 3B. It was not possible



Fig. 3: Capture Coordinates for complex electrode

to determine an capture radius and electric field magnitude for
this configuration.

V. DISCUSSION

It is possible to numerically solve the Langevin equa-
tion as described in Equation 27. The simulation modeled
the dielectrophoretic force and the Brownian motion in 3D
for a polystyrene particle with a 20-50 nm radius. This is
shown for two electrode models. Their electric field gradients
are approximated using a 601*601*301 grid with a 1 nm
resolution. Coding of the collision detection was done to
improve accuracy, and the timestep and capture coordinate
experiments were set up to improve speed and quantify the
model’s accuracy, respectively. Note that the simulation is run
in a diffusive time regime. The timesteps used in the simulation
for different electric fields can be found in Table I. These are
well above the relaxation time of the particles as calculated
in subsection II-C. The timestep is chosen to be the highest
possible while remaining stable. The instability caused by
bigger timesteps is related to the steep electric field gradients.
The forces close to the electrodes become very big due to a
high electric field gradient. With a big timestep, the particle
might travel through the electrode and come out the other
side. It does not raise an error with the collision detection but
is unrealistic. The experiment is set up so that the particles
are released close to the spherical electrodes. Meaning that a
stable timestep is sure to yield realistic results. The timesteps
are very small. This meant that for an experiment time of 1
second or more, the simulation would take days to run. For the
accuracy experiment, it was thus chosen to run 5∗10−6s. The
accuracy of the trapping potential approximation Equation 10
is then determined using the capture coordinate experiment.
It is evident that in terms of absolute trapping potential, the
theory and simulation differ a lot. The squared electric field,

which captures 50% of the particles according to Equation 18
and Equation 10 is 7.96 ∗ 1010. Simulation approximated
1.38 ∗ 1012. It is suspected that the difference between theory
and simulation is due to the theory considering the particles
as point-like. This simplification can not be done in very
steep electric field gradients as the non-uniformity of the
electric field is big compared to the distance between the
two poles of the induced dipole. This suspicion is further
supported by the correlation of the trapping potential to the
radius of the particle. The theory states that the trapping
potential should be correlated to R3. In Figure 4, one can
see that the simulated trapping potential is approximately
correlated to R. This divergence from theory is thus related to
the radius, which is the distance between the poles of the
dipole. In the future, the particles should be approximated
as 3D particles. The simulation seems to agree with the
theoretical trapping potentials correlation with V 2. As shown
in Figure 4, the capture radius did reduce when lowering
the electrode potential remaining at approximately the same
threshold squared electric field for the ratio 0.5 and 0.25. The
trapping potential of the complex electrode trap could not be
approximated in simulation using the same method. Due to
the complex electric field and non-elastic collision system, too
many starting coordinates lead to particles getting stuck. So, it
is reasonable to say that the trapping potential is inaccurate. A
major note to this experiment is its short runtime. The relative
scale of the Brownian Motion increases as ∆t → 0[8]. The
statistical properties do not change, but in a short time frame,
Brownian Motion can diverge, causing a divergence in capture
coordinates results. Longer experiment times would thus yield
more reliable results. In the future, better optimization or better
hardware could be used for these experiments. If this is done,
a second experiment, as proposed in F. Ruggeri et al.[11], can
determine the potential well of the trap. This potential well
depends on the dwell time of the particles in the trapping
radius. This experiment does require an experiment time of 1
second or more.

VI. CONCLUSIONS

Developing a dielectrophoretic trap to study proteins re-
mains a big task with many hurdles to cross. This thesis
demonstrates a 3D simulation framework to determine the
trapping potential of such a dielectrophoretic trap. Using the
framework, this thesis demonstrated positive dielectrophoresis
accuation for particles with a 20 to 50 nm radius and a
Clausius-Mossotti factor of 1 and did so for two electrode
models. The first model represents the setup of S. Pud[10] in
silico. Its induced electric field is calculated using COMSOL
Multiphysics and then imported into Python. The second
model is a charged sphere. This electric field is calculated
in Python. The simulation framework was optimized using
precalculations for DEP displacement and collision detection,
and the optimal time step was determined for different setups.
The accuracy of the trapping potential is determined for the
spherical electrode. For the potential on the electrode, the
trapping potential correlates as expected by the theory. For



Fig. 4: Results showing the capture radius of both the voltage ratio and particle size capture coordinates experiment. Also it
displays the squared electric field magnitude these capture radia represent

the radius of the particle, it does not. This is most likely
because the dielectrophotic force is being calculated for point-
like particles.

VII. FUTURE OUTLOOK

The simulation framework succeeds as a proof of princi-
ple for 3D DEP potential modeling. There remain multiple
areas where the framework needs improvement. One of such
improvements would be longer runtimes. This would allow
for less divergence in the results as the mean of Brownian
motion over a long time frame is 0. This could be done by
running simulations on lower electrode potential, optimizing
the code better, or improving the hardware. Secondly, the
simulation should move from simulating point-like particles
to 3D particles. This can be done by considering the particle
as a grid of point-like particles with the particle’s radius and
averaging out the force on these particles. Furthermore, the
collision physics should be improved. This can be done by
approximating the normal of all surfaces and implementing
elastic collisions. Implementing this will reduce particles get-
ting stuck on electrodes. Also, it might be relevant to consider
hindered diffusion. The approximation of the diffusion coeffi-
cient as in Equation 3 considers a homogeneous medium for
the particle to roam around. This is not realistic in the nano-
electrode setup[14]. To yield the same trapping potential in

simulation as in real life, hindered diffusion is needed. Lastly,
a new experiment could be added, which proposes another way
to find the trapping potential. It is described by F. Ruggeri et
al.[11] and would require runtimes of up to 1 second or more.
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VIII. APPENDIX

A. AI statement

During the writing of this report AI was used in the form of
spelling checkers such as Grammerly and Overleaf. During the
research no information was gathered using AI. AI was used
in debugging of code, and when coding using the matplotlib
package.

B. Figures
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Fig. 5: The results to find the optimal timestep for each particle size. The red line represents the timestep chosen.



Fig. 6: The results to find the optimal timestep for electrode potential. The red line represents the timestep chosen.
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