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Identification of wireless devices in the 2.4GHz
band using machine learning

Luuk Vink

Abstract—With the increasing popularity of wireless devices,
it has become increasingly important to monitor the electro-
magnetic spectrum and enforce rules on the use of it. The
radio communications agency of the Netherlands, Rijksinspectie
Digitale Infrastructuur, is responsible for monitoring the fre-
quency spectrum and ensuring its proper use. Processing the
data measured by the measurement setups spread throughout the
Netherlands is labour-intensive which is why there are machine-
learning models in place for processing data to detect outlandish
signals, reducing the need for human intervention.

Further analysis of the 2.4GHz unlicensed band is requested,
with focus on detecting specific devices transmitting at this
frequency. This can later be used for statistical purposes or to
enforce regulations. The analysis will be done using supervised
machine learning due to its proven effectiveness and faster data
processing capabilities compared to traditional signal processing
methods.

This paper explores the use of the Random Forest model and
the Gradient Boosted Trees model for detecting specific devices
in the 2.4 GHz unlicensed band. First, a dataset will be made,
consisting of spectrograms of WiFi, Bluetooth, and Fixed carrier
(Babyphone) signals. The dataset is later expanded upon with
several combinations of the three signals. Next, a Random Forest
and Gradient Boosted Trees model is trained, compared, and
shown to be effective. After the expansion of the dataset, the
models are retrained and shown to be working. Finally, a real-
world data sample is input to both models where it is shown that
they correctly identify the specific signal. The best-performing
algorithm is the Gradient Boosted Trees model, achieving an
accuracy of 97.3%.

I. INTRODUCTION

THE usage of the radio frequency (RF) spectrum keeps
growing. With a growing number of wireless devices,

more supervision is necessary to ensure compatibility between
devices and allow for a functioning wireless spectrum. The Ra-
dio Communications Agency of the Netherlands, Rijksinspec-
tie Digitale Infrastructuur (RDI), is responsible for monitoring
the RF spectrum and enforcing the legislation around wireless
communications. This monitoring is done by utilising several
RF spectrum measuring setups in the Netherlands, with nine
in urban areas and six in the countryside. [1] These measuring
setups generate a lot of data on a daily basis, which has to
be processed. RDI used to have people manually processing
the data, with employees examining the generated data and
drawing conclusions, which is inefficient, costly, and prone to
error. Research into using machine learning for processing the
measurements has been conducted and is shown to work, [2]
[3] reducing the workload for people at RDI.

The 2.4GHz band, which is unlicensed but not unregulated,
is used for daily household electronics, like a WiFi router,
or Bluetooth devices. Even though the 2.4GHz band is unli-
censed, RDI is still interested in this band as it is not entirely

unregulated, with heavier monitoring and more restrictions
being put on the band in case of large events due to economic
interests. When processing this band, RDI is interested in
identifying the type of device, such as a WiFi access point
or a baby monitor, in addition to ensuring the legality of the
signals. This information allows for statistical analysis and
makes it easier to localize possible rule breakers.

Previous research shows that it is possible to get mean-
ingful results from a spectrogram using supervised machine
learning. [2][3] These results were obtained using real-world
measurement data from the measurement setups operated by
RDI, which will also be the case in this study. A different paper
explores the identification of WiFi and Bluetooth devices using
unsupervised machine learning showing that it is possible to
identify devices based on their RF presence. [4]

The authors of [1][2][3] focused on using supervised ma-
chine learning or signal processing for detecting outlandish
signals with the measurement data at RDI. However, more re-
search is needed to show the feasibility of supervised machine
learning for identifying specific devices which are transmitting
in the 2.4GHz band, specifically using spectrograms obtained
by measurements of RDI. This technology can later be used on
a large scale for statistical analysis and tracking down illegal
use of the spectrum.

This research explores the possibility of using supervised
machine learning to identify different types of wireless de-
vices. Supervised machine learning requires a labelled dataset
which is as close as possible to real-world measurements. The
devices considered in this research are WiFi routers, Bluetooth
devices and Babyphones. The RF signals of these had to be
simulated accurately to enable the creation of a comprehensive
dataset. The machine learning algorithms used are Random
Forest and Gradient Boosted Trees, which are decision tree
algorithms. Their performance will be tested and compared.

A. Research question

The main research question which will be investigated is:
What accuracy can be achieved when identifying different

types of wireless devices using supervised machine learning
in the 2.4GHz band?

II. METHOD

A. Channel

All signals pass through a channel when travelling from
transmitter to receiver. A generic wireless communication
setup can be viewed in fig. 1. This paper considers the
channel to be an additive white Gaussian noise (AWGN)
channel. Other influences such as multipath propagation have
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Fig. 1: Generic wireless communication setup
Source: From [5]

been disregarded to reduce computation times and dataset
complexity.

In [6], the noise floor in the 2.4GHz band was measured and
found to be well above the thermal noise floor for the receiver
used (-111dBm), with an average received power between
−78 and −101 dBm. General power levels at the receiver
for Bluetooth and WiFi are between -30 and -100 dBm. [7][8]
Power levels for a fixed carrier can vary more, but it is a safe
assumption that they can be in the same range as WiFi and
Bluetooth. Using these values, a typical Signal-to-Noise Ratio
(SNR) ranging from -22 (no discernible signal) to an absolute
maximum of 71 dB (very strong signal) can be utilized for
dataset creation.

All the generated waveforms will be passed through the
AWGN channel to realise a specific SNR, varying throughout
the dataset to encompass the full possible range.

B. Generation of the spectrogram

The generation of a spectrogram is done by taking the short-
time Fourier transform (STFT) of a signal sampled in time.
The STFT in this paper uses a segment length of 256 with an
overlap of 128. A Hanning window is used to reduce spectral
leakage.

RDI collects spectrum data at each measurement location,
containing the signal strength sampled every minute. [1] These
measurements combined result in a spectrogram, which will
be saved to the servers for later analysis. Using a spectrogram
as the input for the machine learning algorithms allows for
minimal preprocessing, speeding up computation times and
reducing complexity.

C. Dataset Creation

First, the dataset should be created. To do this, the relevant
signals have to be simulated accurately.

1) Fixed Carrier: For the fixed carrier (babyphone), both
digital modulation and frequency modulation (FM) were cho-
sen. The digital modulation uses one of three chosen modu-
lation schemes: BPSK, QPSK or 16-QAM. The constellation
points for all modulation schemes were normalised such that
the average energy per bit is 1. This was done to ensure
comparable signals. The data sent for the duration of the signal
is randomly generated as we do not care about the actual
contents, but mainly about the frequency usage.

The FM signal uses an arbitrary input waveform to modulate
a carrier. In this case, a chirp signal was chosen.

2) WiFi: WiFi is simulated according to the 802.11g stan-
dard with a modulation coding scheme (MCS) index of 9.
This is an OFDM signal with 16-QAM modulation, utilising
52 OFDM subcarriers with a spacing of 0.3125 MHz between
subcarriers. Furthermore, after each packet, a short pause is
required. The pause is called the short interframe spacing
(SIFS) which is 10 µs for the used standard.

3) Bluetooth: Bluetooth operates in the frequency range
from 2400 MHz to 2483.5 MHz. This frequency span is
partitioned into 79 frequency channels, spaced 1 MHz apart.
Each channel n, where 0 ≤ n ≤ 78 and n ∈ Z, is modulated
with a carrier frequency of 2402 + n MHz. [9]

In this paper, the original ’Basic Rate’ modulation scheme
is used, which uses Gaussian frequency shift keying (GFSK)
modulation with a raw data rate of 1 MBit/sec. The frequency
deviation for a logic ’1’ and a logic ’0’ is nominally +160
KHz and -160 KHz respectively. This frequency deviation has
to be at least ±115 KHz.

Furthermore, Bluetooth has built-in pseudo-random fre-
quency hopping to avoid interference. There are 1600 time
slots per second, allocating 625 µs to each slot, after which
the Bluetooth signal can hop. Each packet is transmitted on
a different frequency channel with a single data packet using
between 1 and 5 slots.

4) Noise: Finally, there should also be a case where no
device is sending. In this case, only noise is a factor. Noise
will be simulated by only considering the AWGN channel and
reading the output (simulated received side).

D. Initial Model

After the creation of the initial dataset, models need to be
trained. The chosen models are Random Forest and Gradient
Boosted Trees. The decision to go for decision trees is due
to previous research finding success in the usage of these
methods with spectrogram data. [3]

Random Forest and Gradient Boosted Trees are both en-
semble learning methods that leverage multiple decision trees
to improve predictive accuracy. A decision tree consists of a
series of binary tests that partition data into subsets based on
feature values, culminating in leaf nodes that provide the final
prediction. For instance, a test might ask, ”Are there more
than 10 coins in his wallet?”, branching the decision process
based on ’yes’ or ’no’ answers.

Random Forest employs two key techniques: bagging and
feature randomness. Bagging trains each tree on a different
subset of the data, sampled with replacement, while feature
randomness considers only a random subset of features at each
split. These techniques reduce variance and improve model ro-
bustness. Random Forest is inherently parallelizable, enabling
faster training, and providing an unbiased error estimate via
out-of-bag samples. However, it can become memory-intensive
and complex with many trees, potentially slowing prediction
times and increasing model size. [10]

Gradient Boosted Trees utilises the boosting method,
building trees sequentially, where each tree corrects the errors
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of the previous ones. This is achieved through gradient descent
optimisation on the loss function, with each tree fitting to the
negative gradient of the previous tree’s errors. The addition of
a learning rate moderates each tree’s contribution, mitigating
overfitting risks. While Gradient Boosted Trees often achieve
higher accuracy, they are computationally intensive and slower
to train, with sequential tree construction hindering paralleliza-
tion. Sequential training does allow for the use of fewer trees,
speeding up inferencing and reducing model size. [11][12]

To train the model, Python will be used with the Yggdrasil
Decision Forests (YDF) library. YDF was chosen for its speed
and small size compared to other libraries. [13]

Results will be analysed to determine if changes are neces-
sary for either the models or the dataset.

The machine learning algorithms will mainly be scored
based on the accuracy and the F1-score. The accuracy is the
ratio of the correctly predicted samples to the total samples.
The F1-score is a metric which ranges from 0 to 1, with
1 being the best, that measures the performance of both
precision and recall. Precision focuses on the correctness of
the prediction, while recall focuses on the completeness of the
prediction. Higher precision means fewer false positives and
higher recall means fewer false negatives.

E. Dataset Expansion

The dataset will be expanded when the approach is verified
to be working. This expansion adds combinations of the
previously generated signals. Adding another four possible
outcomes for the machine learning model to determine. These
being:

• Fixed Carrier + Bluetooth
• Fixed Carrier + WiFi
• Bluetooth + WiFi
• All three combined

F. Final Model

A final model will be trained using the full dataset. Again,
both the Random Forest and Gradient Boosted Trees algo-
rithms will be trained, after which, a comparison has to be
made.

G. Measurements and Testing

Finally, after a functioning final model is realised, it will be
tested using real-world measurement data supplied by RDI.

III. RESULTS AND DISCUSSION

The creation of the dataset and the training of the machine
learning algorithm were done in Python. The typical SNR
levels presented in section II-A are used for the creation of
the dataset.

A. Fixed Carrier data generation

One of the chosen devices to identify was a Babyphone,
which is essentially a wireless microphone. These devices
usually work with a narrow-band fixed carrier for transmitting
audio.

Because different brands approach the modulation of a
carrier in different ways, the possibilities of both frequency
modulation (FM), which is implemented in the hardware, and
digital modulation, which is handled by a microcontroller in
software, were taken into account.

This part of the dataset consists of both possibilities with
varying carrier frequencies and SNR levels.

In fig. 2 the resulting spectrograms can be viewed. Two
different fixed carrier modulation techniques are shown with
a different SNR and a different carrier frequency.

B. Bluetooth data generation

The Bluetooth data only consists of ’Basic Rate’ mod-
ulation, Enhanced Data Rate for Bluetooth has not been
implemented to limit dataset size.

To generate the signal, a random bit sequence is generated.
This is upsampled to match the sampling frequency and pulse
shaped with a Gaussian pulse, resulting in a GFSK signal.

After the full signal was generated, frequency hopping was
added by modulating the signal with a carrier signal at the
proper frequency according to a pseudo-random sequence.
This sequence is randomised for each data point in the dataset.

fig. 3 shows the resulting spectrograms of the generated
Bluetooth signal, with different hopping sequences and SNR
levels.

C. WiFi data generation

The WiFi signal is created by generating a random bitstream
which is then grouped into sets of 4 bits. Each set of 4 bits
is then mapped to a 16-QAM symbol and OFDM modulated,
with each data subcarrier representing a different symbol. The
pilot carriers have a known pilot value which is also set. Next,
the inverse fast Fourier transform (IFFT) is taken from all
subcarriers. Finally, a cyclic prefix is added, which is just a
repetition of the final few samples of the generated signal. The
cyclic prefix helps mitigate inter-symbol interference (ISI) by
acting as a guard interval. This process is repeated until there
is no more data to encode. Finally, a short spacing is added
between each packet of 10 µs (SIFS).

The result with the generated spectrogram can be seen in
fig. 4. Each plot has different packet lengths and a different
SNR.

D. Initial Results

Initially, only the case of a single device sending at a time
was considered. This was done to verify if the machine-
learning approach would work. If this hadn’t worked, the
approach had to be reconsidered because a larger dataset with
more variables would make it more difficult to train a proper
machine learning algorithm.
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(a) (b)

Fig. 2: Fixed carrier spectrograms (a): FM modulated carrier with fc = −5[MHz] and SNR = 60[dB]; (b): QPSK modulated
carrier with fC = 3[MHz] and SNR = 20[dB]

(a) (b)

Fig. 3: Bluetooth signal spectrograms with different hopping sequences (a) SNR = 60[dB]; (b) SNR = 20[dB]

Gradient Boosted Trees Random Forest
Accuracy [%] 98.5 96.5
F1-Score 0.985 0.966
Training Time 48m 26s 1m 59s
Inference Time [µs] 2.13 3.89
Model Size [MB] 9.9 11.2

TABLE I: Initial Results of trained machine learning algo-
rithms with limited dataset

table I shows the most important performance metrics of
both algorithms, showing that the Gradient Boosted Trees
method has the highest accuracy and F1-score with the current
dataset. The accuracy is the ratio of correctly predicted values
to the total number of predictions. The F1-score is the macro-
average F1-score, taking the mean of the individual F1-scores
for each possible prediction. The confusion matrices can be

found in fig. 5, displaying all the predictions (x-axis) compared
with the truth (y-axis). Both confusion matrices display a
clear diagonal, indicating that most predicted devices were
correct. Any non-zero value outside the diagonal indicates an
incorrect prediction. For example, in fig. 5a, 35 data samples
were falsely predicted as ’Fixed’ when they were, in fact,
’Bluetooth’.

Both models have an accuracy of over 96% (table I), show-
ing that these are viable models, allowing for the expansion
of the dataset.

E. Expanded Dataset

After verifying that the chosen supervised machine learning
approaches are viable solutions, the dataset had to be expanded
to allow for the detection of multiple devices at once.



UNIVERSITY OF TWENTE — RADIO SYSTEMS, JULY 14, 2024 5

(a) (b)

Fig. 4: WiFi signal spectrograms with different packet lengths (a) SNR = 60[dB]; (b) SNR = 20[dB]

(a) (b)

Fig. 5: Confusion matrices of trained machine learning models, Random Forest (a) and Gradient Boosted Trees (b)

In fig. 6 the different combinations can be seen, where
the generated data for the full dataset varies in SNR, Carrier
frequency for the fixed carrier, hopping sequence for the
Bluetooth signal, and packet length for the WiFi signal. Some
of these variations can be seen between the subplots, with
every sample in the dataset being different from one another.
When combining the signals, a clear difference in signal power
spectral density (PSD) can be viewed between WiFi and the
other signals. This is because the power is more spread out in
the frequency domain due to the OFDM modulation, resulting
in a lower PSD.

F. Final Results

The most important performance metrics of both final
models can be seen in table II. The Gradient Boosted Trees
algorithm has the highest overall accuracy, F1-score and
lowest inference time. The Random Forest model does have

Gradient Boosted Trees Random Forest
Accuracy [%] 97.3 95.5
F1-Score 0.973 0.957
Training Time 2h 35m 04s 9m 23s
Inference Time [µs] 4.96 6.41
Model Size [MB] 10.4 14.8

TABLE II: Final Results of trained machine learning algo-
rithms with complete dataset

a significantly shorter training time while still achieving good
results.

The best-achieved accuracy was 97.3% (table II) with the
Gradient Boosted Trees model.

The final confusion matrices can be seen in fig. 7. With a
clearly defined diagonal, most predictions are correct. With the
largest outlier, shown in fig. 7a, being the 36 false predictions
of ’Fixed’ instead of ’Bluetooth’.
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(a) (b)

(c) (d)

Fig. 6: Spectrograms of all possible combinations of signals, each with an SNR of 60 [dB] (a) Fixed & WiFi; (b) Fixed &
Bluetooth; (c) Bluetooth & WiFi; (d) Combination of all three

G. Real World Data

After successfully training a machine learning model with a
generated dataset, RDI provided real-world measurement data
(fig. 8). The data supplied by RDI consists of spectrograms
from various locations throughout the Netherlands. Very little
data preprocessing should be required for the machine learning
model to function, as it was trained on spectrograms and
expects this type of data. However, there are significant re-
strictions when using the data from the measurement setups at
RDI. The main differences between the data supplied by RDI
and the generated dataset are the timestep and the frequency
span, with RDI doing measurements every minute and the
generated dataset roughly every 6 µs, and the frequency span
of the generated dataset spanning from -10 to 10 MHz (20MHz
span). The supplied RDI data spans from 1.9GHz to 3GHz
(1.1GHz span).

The choice of having the generated dataset only span 20
MHz was set to achieve enough detail in the measurements
while keeping the size of the dataset manageable.

To be able to process real data with the current model,
the frequency span was decreased to match the number of

frequency bins in the training data. Additionally, the data was
truncated to match the same length.

Since it is not known what kind of devices are sending, it is
difficult to classify if the algorithm is right or wrong. This is
why a sample has been hand-picked to ensure a visible fixed
carrier. The hand-picked sample can be seen in fig. 9 with a
clear fixed carrier around 2.45 GHz. The decision was made
to search for a fixed carrier because the time intervals of the
actual data are too large to detect Bluetooth hops. Additionally,
it is more challenging to locate a WiFi signal due to the
difficulty in confirming the presence of a WiFi signal with
certainty from the measured data.
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(a) (b)

Fig. 7: Confusion Matrices of the final models trained using the full dataset. (a) Random Forest; (b) Gradient Boosted Trees

(a) (b) (c)

Fig. 8: Real-world measurement data generated by RDI around the 2.4GHz band, (a)-(c) show different locations with clear
differences between the spectrograms

Noise Fixed BLT WiFi Fixed + BLT Fixed + WiFi WiFi + BLT Fixed + BLT + WiFi
Gradient Boosted Trees 0.09 0.48 0.40 0 0 0.01 0 0.01
Random Forest 0.09 0.43 0.26 0 0.04 0.03 0.01 0.14

TABLE III: Prediction of both models on real-world data from RDI, each value representing the confidence of the prediction

Fig. 9: Real-world measurement data from RDI clearly show-
ing the presence of a fixed carrier, the data is zoomed and
truncated to match the input shape of the machine learning
algorithms

Finally, processing this hand-picked sample with both mod-
els results in the predictions in table III. Both the Random
Forest and the Gradient Boosted Trees models correctly predict
the fixed carrier with confidence levels of 43% and 48%
respectively. Both models rank both the fixed carrier and
Bluetooth high, the latter is likely due to the additional
artefacts visible in fig. 9. Between these two options, the GBT
ranks the fixed carrier with the highest confidence. To verify
the other cases of the algorithms, measurement data should be
gathered in a more controlled environment where the present
devices are known. Since this is not possible with the current
measurement setup at RDI a custom setup has to be made.
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IV. CONCLUSION

The usage of supervised machine learning for the identi-
fication of WiFi, Bluetooth, and fixed carrier (Babyphone)
devices has been explored in this research. Random Forest and
Gradient Boosted Trees models were trained using a dataset
closely resembling the real-world signals emitted by the afore-
mentioned devices. The Random Forest model achieved 95.5%
accuracy, while the Gradient Boosted Trees model achieved
97.3% accuracy in the experiments. The Gradient Boosted
Trees model also had the fastest inference time at 4.96 µs,
compared to 6.41 µs for the Random Forest model. Addi-
tionally, the Gradient Boosted Trees model had the smallest
size at 10.4 MB. Despite the excellent performance, the main
downside of the Gradient Boosted Trees model compared to
the Random Forest model is the significantly longer training
time.

The model was fed real-world data, and both algorithms
accurately predicted the correct device. Gradient Boosted
Trees was the most confident in its prediction. However, the
analysis was limited to only a single hand-picked sample
with a fixed carrier due to the measurement setup. A revised
measurement setup is needed to thoroughly validate the model
and draw a more conclusive assessment of its accuracy with
real-world data.

Finally, it is concluded that supervised machine learning
is a viable solution to the problem of identifying devices in
the 2.4GHz spectrum, achieving an accuracy of 97.3% using
the Gradient Boosted Trees model. This technology can be
implemented to reduce the human workload and increase the
processing speed of measurement data.
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APPENDIX

A. Use of AI

During the preparation of this work, the author used Grammarly in order to check for and correct spelling, grammar, and
sentence structure errors. After using this tool/service, the author reviewed and edited the content as needed and takes full
responsibility for the content of the work.

B. Code

Requesting the code used in this research is possible via e-mail: l.w.a.vink@student.utwente.nl
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