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Abstract

In Model Order Reduction, the goal is to estimate solutions to high dimensional
models of physical systems using a lower dimension reduced order model (ROM) that
is faster to compute. A common approach is to build ROMs on a linear subspace of
the solution space of the high dimensional model. For ROMs on n-dimensional linear
subspaces, the lowest achievable approximation error is given by the Kolmogorov n-
width. ROMs on linear subspaces can be extended to ROMs on polynomially mapped
manifolds. There is an analogue to the Kolmogorov n-width for ROMs on polynomially
mapped manifolds of degree p, called the polynomial Kolmogorov (n, p)-width. In most
cases, it is not possible to compute these widths exactly. We propose two methods
for estimating both the Kolmogorov n-width and polynomial Kolmogorov (n, 2)-width
and compare their performance on an example setting. A theoretical approximation
bound (lower and upper) can be given for the polynomial Kolmogorov (n, p)-width,
formulated in terms of the Kolmogorov n-width. Using our estimation methods for
the two widths, we investigate this approximation bound numerically on an example
setting.
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1 Introduction

Numerical simulations are often needed to approximate complex physical systems, that are
difficult to find exact solutions to. To approximate these systems accurately, the resulting
discrete models are possibly of high dimension. These models often have parametric depen-
dencies, requiring separate evaluations for each parameter. For high dimensional models,
these repeated evaluations can be computationally expensive and time-consuming. In
model order reduction (MOR), the goal is to speed up the computation of the high di-
mensional model, also known as the full order model (FOM). This is done by building a
reduced order model (ROM) of a reduced dimension, which is significantly lower than the
dimension of the FOM, that approximates the FOM. Instead of repeatedly evaluating the
FOM, the ROM is evaluated for an approximate solution.

In classical MOR, a ROM of reduced dimension n, is constructed on an n-dimensional
linear subspace of the solution space of the FOM. The approximation quality of such a
ROM can be bounded below by the Kolmogorov n-width, which gives the lowest achievable
approximation error for ROMs on an n-dimensional linear subspace. In most cases, it is
not clear how to construct a ROM that achieves the approximation error given by the
Kolmogorov n-width.

A ROM on a linear subspace may not be able to provide satisfactory approximations
for problems where the Kolmogorov n-width decays slowly. Other types of ROMs can po-
tentially address this issue. One such class of ROMs are ROMs on polynomially mapped
manifolds, which extend ROMs on linear subspaces. In [1], an analogue to the Kolmogorov
n-width for ROMs on polynomially mapped manifolds is defined, called the polynomial
Kolmogorov (n, p)-width. Additionally, [1] gives approximation bounds for the polyno-
mial Kolmogorov (n, p)-width, in terms of the Kolmogorov n-width. These approximation
bounds give a range in which the lowest achievable error by ROMs on polynomially mapped
manifolds lie.

In most cases, it is not possible to compute the Kolmogorov n-width and polynomial Kol-
mogorov (n, p)-width exactly. In this thesis, we aim to numerically investigate the bounds
given for the polynomial Kolmogorov (n, p)-width. To this end, we propose two methods
for estimating both the Kolmogorov n-width and polynomial Kolmogorov (n, p)-width.
We give a comparison of these methods on an example setting. Finally, we use them, to
numerically investigate how the polynomial Kolmogorov (n, 2)-width behaves within the
bounds, on the same example setting.

Our numerical investigation focuses on determining where the polynomial Kolmogorov
(n, p)-width lies between the estimations of the theoretical upper and lower bounds, which
is not immediately apparent from the theoretical bounds alone. This positioning between
the bounds is significant, because it is an indication of the lowest achievable approximation
error for ROMs on polynomially mapped manifolds. If our numerical estimates show that
the polynomial Kolmogorov (n, p)-width is close to the lower bound, it suggests a lower
achievable approximation error, indicating potentially more accurate approximations using
ROMs on polynomially mapped manifolds. Conversely, if it is closer to the upper bound,
this might indicate a higher lowest achievable error. It is important to note that this nu-
merical investigation is restricted to the methods and test values chosen and does not aim
to make any absolute claims about these type of ROMs.
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2 Bounds for model reduction

In this section, we give the necessary background to define the Kolmogorov n-width and
polynomial Kolmogorov (n, p)-width. These bound the theoretically lowest achievable ap-
proximation error for two classes of ROMs.

We begin by defining classical ROMs on linear subspaces. We then introduce the Kolmogorov-
n-width to measure the quality of the best possible approximation of this type of ROM.
These ROMs on linear subspaces can be extended to ROMs on polynomially mapped man-
ifolds. For this type of ROM there is an analogue to the Kolmogorov n-width called the
polynomial Kolmogorov (n, p)-width. Finally, we give an upper- and lower bound for the
polynomial Kolmogorov (n, p)-width in terms of the Kolmogorov n-width.

2.1 Reduced order models on linear subspaces

Let (V, ∥ · ∥V ) be an N -dimensional normed vector space over R with N ∈ N.

In model order reduction, an element x ∈ V from the high dimensional space, is mapped
to an element xn ∈ Rn called the reduced coordinates of x, that are contained in a low
n-dimensional space with n ≪ N . This xn is then mapped back to V by some mapping
Γ : Rn → V to obtain an approximation x̃ ∈ V of x.

The way in which elements of V are mapped to the low n-dimensional subspace Rn, and
mapped back to V , depends on the type of ROM. In this section, we consider ROMs on
linear subspaces. This type of ROM is based on a low n-dimensional subspace Vn ⊂ V .

Let V̄n ∈ RN×n be an orthonormal basis matrix of Vn. An element x ∈ V with reduced
coordinates xn is approximated by a linear combination of basis vectors in V̄n with

x̃ := V̄nxn. (1)

When the reduced coordinates xn are chosen as the projection of x onto Vn, with xn = V̄ ⊤
n x,

then the x̃ in (1) is the best possible approximation of x from a linear combination of the
basis vectors of Vn (x̃ minimizes infv∈Vn ||x−v||V ). The reduced coordinates are the scalars
of this linear combination.

This optimality of this x̃ can be shown using the Projection Theorem (see Theorem 1)
with

inf
v∈Vn

||x− v||V
(

Projection
Theorem )

= ||x− V̄nV̄n
⊤
x||V = ||x− V̄nxn||V = ||x− x̃||V .

Theorem 1. (Projection Theorem [12]) Let Ȳ be an orthonormal basis matrix for the
subspace Y of the inner product space H. For any x ∈ H, the vector

y0 = Ȳ Ȳ ⊤x

is the unique vector that minimizes ∥x− y∥ for all y ∈ Y .

We can measure the quality of the linear subspace Vn in approximating a set S ⊂ V
with the worst best-approximation error.
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Definition 1. (Worst Best-approximation Error [1]).
Let (V, ∥ · ∥V ) be a normed vector space. For two sets S,U ⊆ V , we call

dist(S,U) := sup
s∈S

inf
u∈U
∥s− u∥V (2)

the worst best-approximation error of S in U .

The worst best-approximation error dist(Vn, U) of Vn in U ⊂ V measures the quality
of our approximation of U with the subspace Vn ⊆ V . In this thesis, we are interested in
how good an approximation can be at best for any n-dimensional linear subspace. This
leads us to the Kolmogorov n-width, which measures how good an n-dimensional linear
subspace of V is able to perform at best in approximating a set U ⊂ V .

Definition 2. (Kolmogorov n-width [10]). Let (V, ∥ · ∥V ) be a normed vector space.
For a set S ⊂ V ,

dn(S, V ) := inf
Vn⊆V

dim(Vn)≤n

dist(S, Vn)

is defined as the Kolmogorov-n-width of S in V .

Definition 2, defines the Kolmogorov n-width of S in V as the worst-best approximation
error of the "best" (minimal worst best-approximation error) n-dimensional linear subspace
Vn of V .

2.2 Reduced order models on polynomially mapped manifolds

For ROMs on linear subspaces, our approximation in (1) only depends linearly on the
reduced coordinates. A possibly lower approximation error can be achieved by adding
terms that depend differently on the reduced coordinates. We can add higher order terms
by combining the elements of the reduced coordinates xn := ((xn)i)

n
i=1 with the symmet-

ric Kronecker product Ks(xn, k) of order k, which contains all unique combinations of k
elements. It is defined as

Ks(xn, k) := [(xn)i1(xn)i2 ...(xn)ik |1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ n] xn = ((xn)i)
n
i=1 ∈ Rn, n ∈ R, k ∈ N.

As an example, the quadratic term, Ks(xn, 2) consists of all combinations of 2 elements
{(xn)i(xn)j |1 ≤ i ≤ j ≤ n}.

In ROMs on polynomially mapped manifolds, the reduced coordinates xn are mapped
to the solution space of the FOM through a polynomial mapping with (3), instead of a
linear transformation of the reduced coordinates like in (1). Elements x ∈ V are approx-
imated using higher order terms from the Kronecker product Ks(xn, k) of xn in (3), in
addition to the linear transformation of the reduced coordinates xn used in (1).

Let (V, ∥ · ∥V ) be an N -dimensional normed vector space over R with N ∈ N. For a
polynomial degree p ∈ N, we estimate x ∈ V by mapping the reduced coordinates xn ∈ Rn

to V with the polynomial map Γn,p : Rn → V . We obtain an approximation x̃ ∈ V with

x̃ := Γn,p(xn) Γn,p(xn) :=

p∑
k=0

AkKs(xn, k) Ak ∈ RN×|Ks(xn,k)| (3)

with Ak being called mapping matrices. The quantity |Ks(xn, k)| is the number of com-
binations of k elements with replacement

(
n+k−1

n

)
. The image of Γn,p is an n-dimensional
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submanifold M̃n,p ⊆ V that we call a polynomially mapped submanifold [1].

There is an analogous measure to the Kolmogorov n-width for measuring the lowest achiev-
able approximation error by ROMs based on polynomially mapped manifolds, called the
polynomial Kolmogorov (n, p)-width.

Definition 3 (Polynomial Kolmogorov (n,p)-width [1]). Let (V, ∥ · ∥V ) be a finite
dimensional normed vector space. For a set S ⊆ V ,

d⊗n,p(S;V ) := inf
M̃l,p, poly. mapped submnf.

dim(M̃l,p)≤n

dist(M̃l,p, S)

is defined as the polynomial Kolmogorov (n, p)-width of S in V .

The polynomial Kolmogorov (n, p)-width of S in V gives a bound for how good an
n-dimensional polynomially mapped submanifold of degree p can be at best in approxi-
mating a set S ⊆ V . It’s the worst best-approximation error of the "best" (minimal worst
best-approximation error) n-dimensional polynomially mapped submanifold of degree p.

The polynomial Kolmogorov (n, p)-width can be bounded from below and above by the
Kolmogorov n-width of dimension n and t(n, p)≫ n respectively, with Theorem 2.

Theorem 2. (Approximation Bounds for polynomial Kolmogorov (n,p)-width
[1]). Let (V, ∥ · ∥V ) be a normed vector space. For S ⊆ V and p ≥ 1,

dt(n,p)(S, V ) ≤ d⊗n,p(S, V ) ≤ dn(S, V ) t(n, p) =

p∑
k=0

(
n+ k − 1

n

)
.

The mapping matrices Ak in (3) total t(n, p) columns. The map Γn,p maps an element
through a linear combination of these columns, but with a restricted set of scalars. By
"restricted" it is meant here that, after choosing the scalars xn in the linear term A1xn
from (3), the other scalars Ks(xn, k) for k > 1 cannot be chosen freely any more.

In Section 4.2.2 we investigate these bounds numerically for an example case and study
how d⊗n,2 behaves within the bounds of Theorem 2. For this, we need to be able to estimate
the Kolmogorov n-width and polynomial Kolmogorov (n, 2)-width. We present methods
for this in the next section.

3 Numerically estimating error bounds

The bounds in Theorem 2 give the theoretically lowest achievable approximation error by
ROMs on n-dimensional linear subspaces and polynomially mapped manifolds. Although
relatively simple to describe, they are not that straightforward to compute. The nested
infimums and supremum, from Definitions 2 and 3, combined with (2), cause them to be
hard to compute exactly. In this section, we describe methods to estimate both the Kol-
mogorov n-width and the polynomial Kolmogorov (n, p)-width.

For this section, we let (V, ⟨·, ·⟩) be an N -dimensional vector space over R, where N ∈ N.
The inner product ⟨·, ·⟩ induces the norm ∥ · ∥V . Additionally, let S ⊆ V be a finite subset
of V , that is, |S| <∞. In Section 3.1, we give two methods for computing the Kolmogorov
n-width dn(S, V ) and in Section 3.2 we give two methods for computing the polynomial
Kolmogorov (n, p)-width d⊗n,p(S, V ).
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3.1 Kolmogorov n-width

In this section, we present two methods for estimating the Kolmogorov n-widths. The first
method, in Section 3.1.1, randomly samples bases for an n-dimensional linear subspace
of V . The second method, in Section 3.1.2, uses a well known method to build a linear
subspace by taking snapshots of S and minimizing the sum of least squares approximation
error of these snapshots.

3.1.1 Randomly sampling bases

In Definition 2, the Kolmogorov n-width is given by the infimum over all n-dimensional
subspaces Vn in V . For this method, we randomly sample basis matrices V̄n of an n-
dimensional linear subspace to approximate this infimum.

Part A: Sampling a random orthonormal basis V̄n

To find such bases matrices, we repeatedly sample a random matrix Un ∈ RN×n with
entries uniform over [0, 1]. Any other interval [a, b] with a, b ∈ R can be used as well.
We then perform the singular value decomposition (SVD) [13] on Un. We choose as basis
matrix V̄n ∈ RN×n the left singular matrix A of the SVD of Un. The basis matrix V̄n is an
orthonormal basis matrix, because the left singular matrix A is orthonormal [13].

Part B: Computing the worst best-approximation error dist(Vn,S)
We now compute dist(Vn, S) for a given basis matrix Vn. To compute sups∈S infv∈Vn ∥s−
v∥V in (2), we calculate infv∈Vn ∥s− v∥V for all s ∈ S and take the supremum.

Part C: Computing the best-approximation error infv∈Vn ||s− v||V
We can compute infv∈Vn ||s− v||V using the Projection Theorem (see Theorem 1). We can
apply the Projection Theorem for H = V and Y = Vn. We get that infv∈Vn ∥|s − v||V =

||s− V̄nV̄n
⊤
s||V completing our estimation.

The steps are summarized in Algorithm 1.

Algorithm 1 Kolmorogov n-width: randomly sampling bases

1: Input: state space V ⊆ RN , set to approximate S ⊆ V , number of random samples
Ns

2: Output: Approximation of Kolmogorov n-width dn(S, V )
3: dn ←∞
4: for i = 1 to Ns do
5: Un ← Random matrix in RN×n with Uij ∼ Uniform([0, 1])
6: V̄n ← A : The left singular matrix of the SVD of Un

7: dist← max
{
∥x− V̄nV̄n

T
x∥V | x ∈ S

}
8: dn ← min(dn, dist)
9: end for

10: return dn

3.1.2 Proper orthogonal decomposition

Instead of sampling random bases, in this section we attempt to find one specific basis
Vn that is close to optimal in the sense that dist(Vn, S) is close to dn(S, V ). The method
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we use for this is the proper orthogonal decomposition (POD) [14]. This is a widely used
method in the field of model order reduction for reducing the dimensionality of a dataset.
We take snapshots as training data and find the basis that minimizes the sum of least
squares approximation error of the snapshots.

We start by constructing the snapshot matrix P ∈ RN×|S|. The j-th column of P contains
a snapshot pj := sj .

We index the elements in S so that we have a bijective mapping, f : [1, 2, .., |S|] → S
and we define sj := f(j). For all sj ∈ S, we create a snapshot pj . This means there are
Np := |S| snapshots in total and thus P ∈ RN×Np is given by

P = [p1, p2, .., pNp ].

We now perform the SVD on P to obtain its left singular matrix A. To create the or-
thonormal basis matrix V̄n, we take the first n left singular values of A.

V̄n = [a1, a2, ..., an] ∈ RN×n

where ak is the k-th column of A.

We pick the singular vectors with the highest singular values, because they capture the
most variance in the data in the least-squares sense [13]. This is the basis that minimizes
the sum of least-squares approximation error of the snapshot matrix (4) [6].

V̄n = argmin
V̄n∈RN×n

Np∑
j=1

||sj − V̄nŝj ||2V ŝj := V̄ ⊤
n sj ∈ Rn. (4)

Typically, only a subset of snapshots of S is taken to construct the snapshot matrix. When
the elements of S are solutions to the full order model, it can be computationally expensive
to use the entire set S, or impossible when |S| is infinite. In the example setting in Section
4.1, the whole set S is available, and so the entire set S is used for the snapshot matrix.
However, it could be further explored to use only a subset of S to construct the snapshot
matrix.

The Kolmogorov n-width, minimizes dist(S, Vn) for all n-dimensional subspaces Vn of V.
Subspaces are evaluated based on their approximation of S with the metric dist(S, Vn).
Instead, this method evaluates a subspace based on the sum of least-squares approximation
error of S.

Our approximation uses the basis V̄n that minimizes the sum of least squares error ap-
proximation error of S in (4) with the aim that this basis is also close to minimizing
dist(S, Vn). These are two different metrics that measure the error of a linear subspace in
approximating S.

After obtaining the basis matrix V̄n, the value of dist(Vn, S) is calculated using the method
described in part B and C of Section 3.1.1. The steps are summarized in Algorithm 2.

3.2 Polynomial Kolmogorov (n,2)-width

Analogously to the previous section, we give two methods for finding the polynomial Kol-
mogorov (n, 2)-width. By choosing the polynomial degree p = 2, we aim to show the
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Algorithm 2 Kolmogorov n-width: POD

1: Input: state space V ⊆ RN , set to approximate S ⊆ V with |S| = Np

2: Output: Approximation Kolmogorov n-width dn(S, V )
3: for j = 1 to j = Np do
4: pj ← sj
5: end for
6: P ← [p1, p2, .., pNp ]

7: V̄n ← [a1, a2, ..., an] with A := [ai]
Np

i=1 the left singular matrix of the SVD of P
8: dn ← max

{
∥x− V̄nV̄n

T
x∥V | x ∈ S

}
9: return dn

difference of ROMs on polynomially mapped manifolds, while being more manageable in
terms of mathematical and computational complexity. These methods are similar to the
methods described for the Kolmogorov n-width, with one method using random bases and
another constructing one basis like in Section 3.1.2.

For ROMs on linear subspaces, we used the Projection theorem to calculate infv∈V ||x−v||V
for a linear subspace Vn exactly. We cannot apply the Projection Theorem in the same
way to calculate inf

v∈M̃n,2
||x− v||V for quadratically mapped manifolds M̃n,2. Therefore,

inf
v∈M̃n,2

||x− v||V must be estimated differently.

For p = 2 approximations of x̃ ∈ V from (3) are of the form

x̃ := Γn,2(xn) Γn,2(xn) = A1xn +A2Ks(xn, 2) xn ∈ Rn (5)

A1 ∈ RN×nA2 ∈ RN×t(n,2)−n−1.

In both methods, we attempt to find basis matrices A1 and A2 that are close to minimizing
dist(S,M̃n,2), where M̃n,2 = img(Γn,2) ⊆ V .

3.2.1 Randomly sampling bases

Part A: Sampling random orthonormal bases matrices A1 and A2

For this method, we choose A1 in the same way that we chose the basis matrix in Algorithm
1. We sample a random matrix U1 ∈ RN×n with (U1)ij ∼ Uniform([0, 1]) and choose A1

as the left singular matrix of the SVD of U1.

For A2, we sample a random matrix U2 ∈ RN×(t(n,2)−n−1) with (U2)ij ∼ Uniform([0, 1]).
We perform the SVD on U2 to get the left singular matrix X2 of U2. We obtain A2

by projecting X2 onto the orthogonal complement of the space spanned by A1 such that
A⊤

1 A2 = 0. This way, the spaces spanned by A1 and A2 are orthogonal to each other.
Thus A2 is given by

A2 = (I −A1A
⊤
1 )X2.

Part B: Estimating the worst best-approximation error dist(Mn,2,S)
We map an element x ∈ S to it’s reduced coordinates xn by projecting x onto the subspace
spanned by A1 with

xn = A⊤
1 x.

We use A1 and A2 for the map Γn,2 in (5). The quadratically mapped submanifold Mn,2

is given byMn,2 = img(Γn,2) ⊆ V .
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The value of dist(S,M̃n,2) is given by the supremum over x ∈ V of inf
v∈M̃n,2

||x − v||V .
For a particular x ∈ V , we estimate inf

v∈M̃n,2
||x − v||V with ||x − x̃||V , where x̃ is our

approximation of x given by (5).

Thus, our final estimation of dist(S,M̃n,2) is the supremum over x ∈ V of ||x − x̃||V
and our estimation of d⊗n,2(S, V ) is given by the minimum estimation of dist(S,M̃n,2) over
the realizations of M̃n,2. The steps are summarized in Algorithm 3.

Algorithm 3 polynomial Kolmorogov (n, 2)-width: randomly sampling bases

1: Input: state space V ⊆ RN , set to approximate S ⊆ V , number of random samples
Ns

2: Output: Approximation polynomial Kolmogorov (n, 2)-width d⊗n,2(S, V )

3: d⊗n,2 ←∞
4: for i = 1 to Ns do
5: U1 ← Random matrix in RN×n with (U1)ij ∼ Uniform([0, 1])
6: A1 ← X1 : The left singular matrix of the SVD of U1

7: U2 ← Random matrix in RN×(t(n,2)−n−1) with (U2)ij ∼ Uniform([0, 1])
8: A2 = (In −A1A

⊤
1 )X2 with X2 the left singular matrix of the SVD of U2

9: dist← 0
10: for x ∈ S do
11: xn = A⊤

1 x
12: x̃ = A1xn +A2Ks(xn, 2)
13: dist← max(dist, ||x̃− x||V )
14: end for

15: d⊗n,2 ← min(d⊗n,2, dist)
16: end for
17: return d⊗n,2

3.2.2 Extended proper orthogonal decomposition

Similarly to Section 3.1.2 we construct one set of bases A1 and A2 that aim to be close to
minimising the worst best-approximation error in (2). The basis matrix A1 is constructed
in the same way as the basis matrix V̄n in Algorithm 2 using the POD. That is, we create
a snapshot matrix P ∈ RN×NP , where NP := |S|, with unique snapshots pj := sj for
j ∈ {1, ..., Np}, sj ∈ S. We take the first n left singular vectors of the SVD of P to create
the basis matrix A1.

A1 = [x1, x2, ..., xn] ∈ RN×n

where xi is the i-th left singular vector of P .

10



From now on, we follow the steps from [6] to construct the quadratic term A2. The
method in [6] extends the traditional POD method for quadratically mapped manifolds.
We summarize their method here, but applied to our setting.

The part of P not included by the linear basis matrix A1 can be found by projecting
P onto the orthogonal complement of the space spanned by A1. We denote this as the
residual E given by

E := (IN −A1A
⊤
1 )P.

Similarly to transforming the reduced coordinates with the Kronecker product in (3), we
also transform the snapshots pj with the symmetric Kronecker product of their reduced
coordinates. We get a snapshot matrix W of the reduced coordinates for the quadratic
term.

W := [Ks(p̂1, 2),Ks(p̂2, 2), ...,Ks( ˆpNp , 2)] ∈ RN×n(n+1)/2 p̂j := A⊤
1 pj ∈ Rn.

Again, we obtain the reduced coordinates p̂j by projecting pj onto the space spanned by A1.
Similarly to (4), we choose A2 to minimize the sum of least-squares of the approximation
error of the snapshot matrix.

A2 = argmin
A2∈RN×n(n+1)/2

Np∑
j=1

||sj − Γn,2(ŝj)||2V

= argmin
A2∈RN×n(n+1)/2

Np∑
j=1

||sj −A1ŝj −A2Ks(ŝj , 2)||2V .

This can be rewritten in terms of the frobenious norm of a matrix with

A2 = argmin
A2∈RN×n(n+1)/2

1

2
||W⊤A⊤

2 − E⊤||2F . (6)

Large coefficients can lead to overfitting, so we add a regularization parameter γ that
penalizes A2 for having a large norm. This transforms (6) into (7).

A2 = argmin
A2∈RN×n(n+1)/2

(
1

2
||W⊤A⊤

2 − E⊤||2F +
γ

2
||A2||2F ). (7)

Equation (7) can be solved explicitly. In the end, we have A2 given by

A2 = EW⊤(WW⊤ + γIn(n+1)/2)
−1.

We use A1 and A2 to create the mapping Γn,2 in (5). We estimate dist(S,M̃n,2) with
M̃n,2 = img(Γn,2) in the same way as in Section 3.2.2 to get our approximation of the
polynomial Kolmorogov (n, 2)-width.

The steps are summarized in Algorithm 4.

11



Algorithm 4 polynomial Kolmorogov (n, 2)-width: Extended POD

1: Input: state space V ⊆ RN , set to approximate S ⊆ V with |S| = Np, regularization
parameter γ

2: Output: Approximation polynomial Kolmogorov (n, 2)-width d⊗n,2(S, V )

3: for j=1 to j=Np do
4: pj ← sj
5: end for

6: P ← [p1, p2, .., pNp ]

7: A1 ← [x1, x2, ..., xn] with X := [xi]
Np

i=1 the left singular matrix of the SVD of P

8: for j=1 to j=Np do
9: p̂j ← A⊤

1 pj
10: end for

11: E ← (IN −A1A
⊤
1 )P

12: W ← [Ks(p̂1, 2),Ks(p̂2, 2), ...,Ks(p̂Np , 2)]
13: A2 ← EW⊤(WW⊤ + γIn(n+1)/2)

−1

14: d⊗n,2 ← 0
15: for x ∈ S do
16: xn = A⊤

1 x
17: x̃ = A1xn +A2Ks(xn, 2)
18: d⊗n,2 ← max(d⊗n,2, ||x̃− x||V )
19: end for

20: return d⊗n,2

3.3 Time complexity analysis

In this section, we will analyse the time complexity of the four algorithms that approximate
the Kolmogorov n-width and polynomial Kolmogorov (n, p)-width. The time complexity
analysis is in Big-O notation and in terms of the number of elementary operations. These
elementary operations include initialization steps such as setting a variable to a specific
value, simple arithmetic operations (e.g., addition, subtraction, multiplication, and division
of scalar values), and basic comparisons or assignments. To facilitate the analysis, we first
review the time complexities of some well known operations used within the algorithms.
These are the time complexities we will assume for these operations.

• Matrix Multiplication: [M] The standard algorithm for the multiplication of an
p×q matrix with a q×r matrix has time complexity O(p ·q ·r). There are algorithms
with a lower bound for the time complexity, but these are usually not used in practice.

• Singular Value Decomposition (SVD) [S]: Computing the SVD of an n × m
matrix is commonly done with the Golub-Reinsch algorithm [7], which has a time
complexity of O(n ·m ·min(n,m)) for computing the SVD of an n×m matrix.

• Matrix Inversion [I]: An n× n square matrix can be inverted in O(n3) time [2].
Algorithms with a better bound exist, but still remain close to cubic time complexity.

12



The symbols [M], [S] and [I] indicate the respective operation(s) used in a step. Addition-
ally, the assumption is made that the norm ∥x∥V for x ∈ RN can be computed in O(N),
as is typically the case.

3.3.1 Algorithm 1: Kolmogorov n-width

Input N,n, S,Ns

Step Time Complexity
dn ←∞
for i = 1 to Ns do Ns iterations
Un ← Random matrix in RN×n O(N · n)
V̄n ← the left singular matrix of the SVD of Un O(N · n2) [S]
dist← max

{
∥x− V̄nV̄

T
n x∥V | x ∈ S

}
O(n ·N2 · |S|) [M]

dn ← min(dn, dist)

end for
return dn

Table 1: Time complexity analysis of Algorithm 1

The time complexity of each iteration is identical. Each iteration in the for loop has
time complexity

O(N · n) +O(N · n2) +O(n ·N2 · |S|) = O(n ·N2 · |S|).

The time complexity is linear in the number of basis samples Ns with a final time complexity
of

O(Ns · n ·N2 · |S|)).

3.3.2 Algorithm 2: Kolmogorov n-width

Input N,n, S

Step Time Complexity
for j = 1 to |S| do |S| iterations
pj ← sj in basis V O(N)

end for
P ← [p1, p2, . . . , p|S|] O(N · |S|)
V̄n ← [a1, a2, . . . , an] with A := [ai]

|S|
i=1 O(N · |S| ·min(N, |S|)) [S]

the left singular matrix of the SVD of P
dn ← max

{
∥x− V̄nV̄

T
n x∥V | x ∈ S

}
O(n ·N2 · |S|) [M]

return dn

Table 2: Time complexity of Algorithm 2

The steps in Table 2, come to a combined time complexity of

O(|S| ·N) +O(N · |S|) +O(N · |S| ·min(N, |S|)) +O(n ·N2 · |S|)
=O(N(|S|+ |S| ·min(N, |S|) + n ·N · |S|))
=O(N2 · n · |S|).
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3.3.3 Algorithm 3: polynomial Kolmogorov (n,p)-width

Input N,n, S,Ns

Step Time Complexity
d⊗n,2 ←∞
for i = 1 to Ns do Ns iterations
U1 ← Random matrix in RN×n O(N · n)
A1 ← X1 : The left singular matrix of the SVD of U1 O(N · n2) [S]

U2 ← Random matrix in RN×(t(n,2)−n−1) O(N · t(n, 2))
A2 = (In −A1A

⊤
1 )X2 O(N2 · t(n, 2))[M] +

with X2 the left singular matrix of the SVD of U2 O(N · t(n, 2) ·min(N, t(n, 2)) [S]

dist← 0

for x ∈ S do |S| iterations
xn = AT

1 x O(n ·N)

x̃ = A1xn +A2Ks(xn, 2) O(N · n+N · t(n, 2))
dist← max(dist, ∥x̃− x∥V ) O(N)

end for
d⊗n,2 ← min(d⊗n,2, dist)

end for
return d⊗n,2

Table 3: Time complexity analysis of Algorithm 3

Computation of Ks(xn, 2) ∈ Rt(n,2) can be done in O(t(n, 2)) time. In this derivation,
we use that t(n, 2) = n·(n+1)

2 implying that O(t(n, 2)) = O(n·(n+1)
2 ) = O(n2). Each

iteration in the outer for loop has a time complexity of

O(N · n) +O(N · n2) +O(N · t(n, 2)) +O(N2 · t(n, 2))
+O(N · t(n, 2) ·min(N, t(n, 2)) +O(|S|(n ·N +N · n+N · t(n, 2) +N)

=O(N2 · n2) +O(|S| ·N · n2)

=O(N · n2 · (N + |S|)).

There are Ns identical iterations, totalling a time complexity of

O(Ns ·N · n2 · (N + |S|)).

3.3.4 Algorithm 4: polynomial Kolmogorov (n,p)-width
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Input N,n, S

Step Time Complexity
for j = 1 to |S| do |S| iterations
pj ← sj in basis V̄ O(N)

end for
P ← [p1, p2, . . . , p|S|] O(N · |S|)
A1 ← [x1, x2, . . . , xn] O(N · |S| ·min(N, |S|)) [S]
with X := [xi]

|S|
i=1 the left singular matrix of the SVD of P

For j=1 to |S| do |S| iterations
p̂j ← A⊤

1 pj O(N · n)
end for

E ← (IN −A1A
T
1 )P O(N2 · |S|) [M]

W ← [Ks(p̂1, 2),Ks(p̂2, 2), . . . ,Ks(p̂|S|, 2)] O(|S| · t(n, 2))
A2 ← EW T (WW T + γIn(n+1)/2)

−1 O(N · |S| · t(n, 2)) [M] +
O(t(n, 2)2 · |S|)[M] +
O(t(n, 2)3)[I] +
O(N · t(n, 2)2)[M]

d⊗n,2 ← 0

for x ∈ S do |S| iterations
xn = AT

1 x O(n ·N)

x̃ = A1xn +A2Ks(xn, 2) O(n ·N +N · t(n, 2))
d⊗n,2 ← max(d⊗n,2, ∥x̃− x∥V ) O(N)

end for
return d⊗n,2 O(1)

Table 4: Time complexity analysis of Algorithm 4

We will split the calculation up into three parts. The first part is up to and including
the calculation of A1. The time complexity for this part is

O(|S| ·N) +O(|S| ·N) +O(|S| ·N ·min(N, |S|)) = O(|S| ·N ·min(N, |S|).

The second part is up to and including the calculation A2. The time complexity for this
part is given by

O(|S| ·N · n) +O(|S| ·N2) +O(|S| · t(n, 2)) +O(N · |S| · t(n, 2))+
O(|S| · t(n, 2)2) +O(t(n, 2)3) +O(t(n, 2)2 ·N)

=O(|S| ·N2) +O(N · |S| · n2) +O(|S| · n4) +O(n6) +O(N · n4)

=O(|S|(N2 +N · n2 + n4) + n6 +N · n4).

The remaining part has a time complexity of

O(|S|(n ·N + n ·N +N · t(n, 2) +N)) = O(|S| ·N · n2).

We can see that the total time complexity is dominated by the second part and thus the
final time complexity is

O(|S|(N2 +N · n2 + n4) + n6 +N · n4)).
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3.3.5 Time complexity summary

Algorithm Inputs Time complexity
1 N,n, S,Ns O(Ns ·N2 · n · |S|))
2 N,n, S O(N2 · n · |S|)
3 N,n, S,Ns O(Ns ·N · n2 · (N + |S|))
4 N,n, S O(|S|(N2 +N · n2 + n4) + n6 +N · n4))

Table 5: Time complexities of the four algorithms

Table 5 summarizes the time complexity of the four algorithms. To estimate the Kol-
mogorov n-width, Algorithm 1 has a time complexity with an extra linear factor Ns com-
pared to Algorithm 2. It should be noted that the complexity of an algorithm is not
definitive for its running time.

The time complexities of Algorithm 3 and 4 cannot be compared easily, without making
assumptions about the relations between the inputs. For example, in section 4.1, S is cho-
sen in a way such that |S| grows quadratically in N . Then we can use that O(S) = O(N2)
to reduce the number of inputs that the time complexity depends on. Multiple of these
assumptions are needed, to simply the comparison.

4 Numerical investigation

In this section, we implement the four algorithms for an example setting we define in Section
4.1. We evaluate how the two methods of randomly sampling bases and constructing a basis
based on the POD compare for both the Kolmogorov n-width and polynomial Kolmogorov
(n, 2)-width. We then use these methods to examine the relationship given by Theorem 2.

4.1 Example setting

In this section we define our state space VN and the subset to approximate SN ⊂ VN .

This example setting is adapted from [3]. For this setting, the Kolmogorov n-width decays
slowly as a function of the reduced dimension n. Thus, there is potential gain over linear
subspace ROMs in terms of the approximation error.

Let (VN , ∥ · ∥VN
) be the space of left-continuous piecewise constant functions with a period

of 1. As a basis for VN , we choose {f1, f2, ..., fN} where fi on [0, 1) is defined as

fi(x) :=

{√
N, if i−1

N ≤ x < i
N

0, else
x ∈ [0, 1).

The coordinate vector cf ∈ RN of a function f ∈ VN in the basis V̄N is given by

cf := (ci)
N
i=1 ci ∈ R such that f(x) =

N∑
i=1

cifi(x).

The inner product ⟨f, g⟩VN
is defined by the dot product of the coordinate vector of f and

g. The definition of the norm ∥ · ∥VN
follows
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⟨f, g⟩VN
:= ⟨cf , cg⟩RN ||f ||VN

=
√
⟨f, f⟩VN

=
√
⟨cfcf ⟩RN .

We approximate the set SN ⊂ VN of discrete periodic "box functions" with a height of 1
and a period of 1. They are defined on [0, 1) as

ba,l(x) =

{
1, if a ≤ x < ((a+ l) mod 1)

0, else

x ∈ [0, 1), a ∈ {0, 1

N
, ...,

N − 1

N
}, l ∈ {lmin, lmin +

1

N
, ..., 1− lmin}

with the constant lmin ∈ (0, 12) a multiple of 1
N . It can be verified that SN ⊂ VN by writing

ba,l as a linear combination of the basis vectors in V̄N

4.2 Results

In this section, we start with a comparison of Algorithm 1 and Algorithm 2 to compute the
Kolmogorov n-width. We do the same for Algorithm 3 and 4. Finally, we use these methods
to examine Theorem 2 numerically for p = 2 and analyse the decay of the polynomial
Kolmogorov (n, 2)-width within the bounds of Theorem 2.

4.2.1 Random bases sampling versus basis from POD

Figure 1 shows the approximations of dn(SN , VN ) by Algorithm 1 and 2 plotted as a func-
tion of the reduced dimension n. Increasing the number of bases samples Ns for Algorithm
1 improves the approximation of dN (SN , VN ). We can hypothesise that, as Ns → ∞, the
approximation should converge to the theoretical value of dN (SN , VN ).

In figure 2, the decay of dn(SN , VN ), averaged over 200 runs of Algorithm 1, is shown
in relation to the number of random basis samples Ns. The decay of dn(SN , VN ) can be
approximated by a least squares fit of a power law with horizontal asymptote of the form
f(Ns) = a · N−b

s + c. The asymptote of the power law fit can be used to approximate
dn(SN , VN ) with dn(SN , VN ) ≈ limNs→∞ f(Ns) = c. The approximations of dn(SN , VN )
in figure 2(a) are plotted in three clusters of Ns values, spread far apart. This is with the
aim to improve the fit for large Ns, with less data points. The samples in Figure 2 give an
approximation of dn(SN , VN ) ≈ 0.292 this way, while Algorithm 2 gives an approximation
of dn(SN , VN ) ≈ 0.289. With more samples of Algorithm 1 over a larger range of Ns, a
more accurate approximation of dn(SN , VN ) could be found this way.

The number of entries in a random basis matrix Un in Algorithm 1 is N · n. This
means that for larger N , more random bases are required to find a good approximation of
dn(SN , VN ), because there is a larger space of bases matrices to sample.

Table 6 compares the relative performance of Algorithm 1 to Algorithm 2. For N = 20,
Algorithm 1 already performs significantly worse than for N = 10 compared to Algorithm
2, for the same number of bases samples Ns. For a relatively small N = 10 and a large
number of basis samples Ns = 107, algorithm 1 still estimates dn(SN , VN ) as 1.244 times
higher than Algorithm 2. Additionally, Algorithm 2 is much faster to compute than Algo-
rithm 1 for large Ns.
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Figure 1: Algorithm 2 vs Algorithm 1 for different values of Ns with full dimension
N = 25.

Ns N = 10, n = 5 N = 20, n = 10

104 1.520× 2.153×
105 1.378× 1.981×
106 1.262× 1.829×
107 1.244× -

Table 6: Ratio of Algorithm 1 and Algorithm 2’s approximation of dn(SN , VN ) for
different values of Ns evaluated for N = 10 with n = 5 and N = 20 with n = 10.
(1.000× Meaning that Algorithm 1 and 2’s output are equal.)
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(a)

(b) Zoomed in version of (a) for clarity.

Figure 2: Decay of dn(SN , VN ) as the number of bases samples Ns increases for
N = 6 and n = 3. For each Ns, the value of dn(SN , VN ) is calculated by averaging
over 200 runs. There are three clusters of samples of Ns, taken far apart from
eachother, for a better fit.
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Figure 3: The ratio of approximations of Algorithm of 1 and 2 denoted by ρ :=
d
(1)
n (SN ,VN )

d
(2)
n (SN ,VN )

with (i) indicating the approximation of Algorithm i. (N = 25, Ns =

105)

Figure 3 show the ratio ρ between Algorithm 1 and 2’s approximation of dn(SN , vN ).
We see that ρ peaks around n = N/2. This is where the difference between Algorithm 1
and 2 is largest. For small n, there is a smaller space of bases to sample and the difference
between Algorithm 1 and 2 is smaller. For large n, close to N , the choice of basis is less
important (in the extreme case n = N , any basis spans VN and gives a perfect approxima-
tion). Here the difference between Algorithm 1 and 2 is smaller again.

Notably, we see in Figure 3 that when n is very close to N , Algorithm 1 gives a lower
estimate than Algorithm 2. Figure 4 shows Algorithm 1 and 2’s worst best-reconstruction
(the reconstruction of argmaxs∈SN

infv∈Vn ||s − v||V .) for their chosen subspace Vn of a
box function in SN when n is very close to N (N = 25, n = 24). Here Algorithm 1 out-
performs Algorithm 2. Minimizing the sum of least squares error in (4) is different from
minimizing the worst best-approximation error in (2). Algorithm 2 is optimal in the sum
of least square sense, and therefore it weights the squared approximation error of every
element in SN . The Kolmogorov n-width is defined solely based on the error of the worst
best-approximation in SN . The definition is independent of the best-approximation error
of other elements in SN .

This is illustrated in Figure 5, which shows the approximation error using the bases chosen
in Algorithm 1 and 2 for all box functions ba,l ∈ SN , when n is close to N (n = 24, N = 25).
The worst best-approximation error for the basis in Algorithm 2 is 44% higher than the
worst best-approximation error of the basis chosen in Algorithm 1. This is, despite the
average approximation error of the basis in Algorithm 2 being close to three times lower
than the average approximation error of the basis chosen in Algorithm 1.
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(a) Algorithm 1 with Ns = 105 and the approximation of dn(SN , VN ) = 0.089.

(b) Algorithm 2 with the approximation of dn(SN , VN ) = 0.092.

Figure 4: The worst best-reconstructions of Algorithm 1 and 2 for N = 25 and
n = 24. (The box functions plotted are the argmaxs∈SN

infv∈Vn ||s − v||V for the
subspace Vn chosen in Algorithms 1 and 2 with their respective reconstructions.)
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(a) Algorithm 1 (b) Algorithm 2

Figure 5: Approximation error of all box functions ba,l ∈ SN with a on the x-axis
and l on the y-axis for the bases chosen in Algorithm 1 and 2. (n=24, N=25,
Ns = 104)

We now look at the random bases sampling and the basis from POD methods for the
polynomial Kolmogorov (n, 2)-width with Algorithm 3 and 4 respectively. The results are
almost identical to the results for the Kolmogorov n-width. Figure 6 shows a sample re-
construction with Algorithm 2 and 4. The green and orange line segments indicate the
reconstruction of Algorithm 2 and 4 of the box function in blue, respectively. The dif-
ference in height between the line segments is very small, showing that Algorithm 2 and
4 produce similar reconstructions. For this example setting, the quadratic term seems to
have little impact on the reconstruction. This suggests that Algorithm 2 and 4 might
behave similarly to Algorithm 1 and 3.

Figure 7 compares Algorithm 3 and 4, similarly to how Figure 1 does. The relation be-
tween Algorithm 3 and 4 seems to be the same as between Algorithm 1 and 2. In the next
section, we also see the similarity between the approximations of Algorithm 2 and 4.

Figure 6: A sample box function reconstruction with Algorithm 2 and 4 for N = 25
and n = 10.
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Figure 7: Algorithm 3 vs Algorithm 4 for different values of Ns with full dimension
N = 25 and γ = 20.

4.2.2 Approximation bounds for polynomial Kolmogorov (n,2)-width

Theorem 2 gives us bounds for the polynomial Kolmogorov (n, p)-width in terms of the
Kolmogorov n-width and t(n, p)-width. We now look at how d⊗n,2(SN , VN ) behaves within
the bounds of Theorem 2.

Figure 8 shows a comparison of the widths in Theorem 2. For Algorithm 4, γ was chosen to
minimize the average value of the estimated width over the possible values of the reduced
dimension n less than N . The approximations for dn(SN , VN ) and d⊗n,2(SN , VN ) are very
close and it is unclear from Figure 8 alone, if the approximations satisfy the inequality
in Theorem 2. Figure 9 shows the ratio ρ between dn(SN , VN ) and d⊗n,2(SN , VN ). It con-
firms that the approximation of d⊗n,2 is indeed lower than the approximation of dn(SN , VN ).

The approximation of d⊗n,2(SN , VN ) is between the approximations of dn(SN , VN ) and
dt(n,2)(SN , vN ) as would be expected by Theorem 2. However, for this choice of VN and
SN , the difference between the approximations of dn(SN , VN ) and d⊗n,2(SN , VN ) is between
0.1% and 1% as seen in Figure 9.

Figure 10 compares the approximation bounds in Theorem 2 using Algorithm 1 and 3
instead of Algorithm 2 and 4 like in Figure 8. Here, the difference between the estimations
of dn(SN , VN ) and d⊗n,2(SN , VN ) is bigger (up to 10% difference) than in Figure 8. The
estimations in Figure 10 do satisfy the inequality in Theorem 2. In Figure 8, dn(SN , VN )
and d⊗n,2(SN , VN ) decay (as a function of n) quickly at first and then slow down. Whereas,
the estimations in Figure 10 by Algorithm 1 and 3 mostly decay close to linearly.
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Figure 8: Comparison of the approximation bounds in Theorem 2 using Algorithm
2 and 4. (N = 100, γ = 20)

Figure 9: The ratio of approximations of Algorithm of 2 and 4 denoted by ρ :=
d
(2)
n (SN ,VN )

d
⊗(4)
n,2 (SN ,VN )

with (i) indicating the approximation of Algorithm i. (N = 100)
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Figure 10: Comparison of the approximation bounds in Theorem 2 using Algo-
rithm 1 and 3. (N = 25, Ns = 103 and γ = 20)

5 Conclusion and future work

A theoretical approximation bound (lower and upper) can be given for the polynomial
Kolmogorov (n, p)-width is terms of the Kolmogorov n-width (see Theorem 2). In this the-
sis, a numerical investigation is done on these approximation bounds, to investigate how
the polynomial Kolmogorov (n, p)-width behaves within these bounds on a test setting.
For this purpose, two approaches are presented for estimating the Kolmogorov n-width
and polynomial Kolmogorov (n, 2)-width. On the test setting (and tested values of N ,
n, Ns and γ), the estimated polynomial Kolmogorov (n, p)-width decayed closely to the
estimated upper bound of the approximation bounds.

The first approach, applied to Algorithm 1 and 3, relies on randomly sampling the ba-
sis that defines the ROM. In Algorithm 1, the Kolmogorov n-width is estimated. First,
a random basis is sampled and transformed into an orthonormal basis using the SVD.
Then, this basis is evaluated using the worst best-approximation error. This process is
repeated for Ns samples. The Kolmogorov n-width is estimated by the minimum worst
best-approximation error encountered in the samples. Algorithm 3, extends this to the
polynomial Kolmogorov (n, 2)-width. The basis for the linear term is sampled in the same
as in Algorithm 1. Then, another random orthonormal basis is sampled for the quadratic
term. This basis is projected on the orthogonal complement of the space spanned by the
first basis to ensure orthogonality between the bases. The polynomial Kolmogorov (n, p)-
width is again estimated as the minimum over the worst best-approximation errors of the
ROMs derived from the bases. The second approach, applied in Algorithm 2 and 4, relies
on the POD to find an orthonormal basis that minimizes the least squares reconstruction
error. The basis for Algorithm is obtained from the first n left singular vectors of the
snapshot matrix containing all coordinate vectors of elements in S. This basis minimizes
the sum of least squares error of the reconstruction of S (for ROMs on linear subspaces).
After deriving the linear basis, Algorithm 4 constructs the quadratic basis through the
sum of least squares minimization of the residual error, that is not captured by the linear
basis.
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The algorithms are tested on the set of discrete periodic "box functions" contained in
the space of left-continuous piecewise constant periodic functions with a period of 1. In
this setting, the estimations from Algorithm 2 of the Kolmogorov n-width were significantly
lower than the estimations of Algorithm 1, with the exception when the reduced dimension
was very close to the full dimension. This was tested up to Ns = 107 random bases for
Algorithm 1 (Table 6), where Algorithm 1’s estimation was still higher by a big margin.
As the full dimension N increases, Algorithm 1’s estimates of the Kolmogorov n-width are
higher, relative to the estimations of Algorithm 2 as seen in Table 6. This is presumably
because of the increased degrees of freedom in choosing a random basis.

The algorithms for the polynomial Kolmogorov (n,2)-width produced results close to their
Kolmogorov n-width counterparts, with Algorithm 2 and 4 showing minimal difference in
their reconstruction of box functions. This indicates, that for this problem setting and
chosen parameters, the quadratic term has little impact on reducing the approximation
error compared to the linear term. Because of this, the results for Algorithm 1 and 2,
apply in a similar way for Algorithm 3 and 4.

The four methods were used to investigate the approximation bounds in Theorem 2 numer-
ically. The inequality of Theorem 2 was satisfied by the estimated widths, on the example
setting. According to the estimations, the polynomial Kolmogorov (n, 2)-width decayed
closely to the Kolmogorov n-width. ROMs on quadratically mapped manifold do not per-
form well on this test testing according to the estimations methods used and the used
values of n,N,Ns and γ. There are multiple success cases, where ROMs on quadratically
mapped manifolds produced a significantly lower approximation error over linear subspace
ROMs, such as in [6] and [8]. Their performance needs to be evaluated on additional test
settings, before any conclusions can be made about their general performance. Addition-
ally, ROMs on polynomially mapped manifolds of higher order are yet to be evaluated.

A limitation, when testing the approximation bounds in Theorem 2, is the fact that we
estimate the widths. The results are less certain, because there is no upper- or lower
bound on the error of our estimations. A comparison is needed, on a test setting, where
an exact form of the Kolmogorov n-width is known like in [9], where, an exact form of the
kolmogorov 2n-width is given by (2πm)−1 for a specific type of Sobolev class of functions.
This could provide insight into the accuracy of the Algorithm 2 and potentially Algorithm
4 as well, because of its similarity to Algorithm 2.

Another constraint of this thesis, is the low dimension used for the full dimensional states.
In model order reduction, the dimension of the FOMs can be in the order of 105 - 109 [11].
It is uncertain if the results for the lower dimensions, used in this thesis, translate to higher
dimension. With more time and computational resources, future work could be done to in-
vestigate this. Improving the execution time of the proposed algorithms can also aid in this.

With slight modifications, Algorithm 1 and 3 can be parallelized to improve their execution
time. Each random basis sample, can be evaluated for the worst best-approximation error
independently of each other. The results can then be combined back together to obtain
an estimate of the width. Especially when done on a GPU, this could massively improve
the execution time compared to execution on a single core. Algorithm 2 and 4 do not rely
on separate evaluation of bases, and thus cannot be parallelized this way. However, they
mostly consist of linear algebra operations that can be done in parallel on a GPU. Matrix
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multiplication, matrix-vector multiplication and matrix inversion can be done concurrently
with libraries such as cuBLAS [4]. The SVD can also be done in parallel on the GPU,
using a GPU-optimized library like cuSOLVER [5]. When n and N are large, the matrices
used will be large and GPU-accelerated linear algebra operations will be very effective at
reducing the execution time. Evaluating the best-approximation error of elements s ∈ S
in Algorithm 2 and 4, can be done independently of each other. This means batches of
elements of S can be evaluated in parallel. When implemented, all of these modifications
can be used to evaluate the widths for higher values of N , n and Ns in less time.

The time complexity of the proposed algorithms is analysed and summarized in Table
5. Notably, Algorithm 1 has an additional factor in the number of basis samples Ns com-
pared to Algorithm 2.

The decay of Algorithm 1 is shortly mentioned in Figure 2, where a power law is used
to fit the decay. Using the horizontal asymptote of this fit, gives similar results to Al-
gorithm 2 in approximating the Kolmogorov n-width. The accuracy and computational
feasibility of such methods could be worthy of further investigation.
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A Appendix. Code implementation

This appendix contains implementation details in python, that can be used to reproduce
this work. It contains an explanation of the code needed for the implementation of the
four algorithms, including the implementations of the algorithms themselves. Source code
is available at https://gitlab.utwente.nl/s2840790/thesis-sourcecode.

The following package imports are assumed:

import numpy as np
import scipy.linalg as lalg
import itertools
import math

A.1 Creating the test setting

We start with the implementation of the test case defined in Section 4.1. The coordinate
vector cf of a box function f := ba,l in the basis used for VN is obtained with:

def create_box_function_basis(a, l):
c = []
for x in np.arange(0,1,1/N):

if a + l > 1:
c.append(1/(N **0.5) if (x >= a or x < (a+l)%1) else 0)

else:
c.append(0 if x < a or x >= a + l else 1/(N** 0.5))

return c

The coordinate vector for every box function in SN is obtained as the coordinate vector of
ba,l for all possible a and l values.

def create_S_N(N):
as_ = np.arange(0,1,1/N)
ls = np.arange(lmin , 1-lmin ,1/N)
cs = []
for a in as_:

for l in ls:
cs.append(create_box_function_basis(a, l))

return np.array(cs)

A.2 Sampling orthonormal bases

The following snippet can be used to generate the orthonormal random basis matrices used
in Algorithm 1 and 3.

def sample_linear_and_quadratic_basis(N, n):
linearBasis = sample_linear_basis(N,n)
return linearBasis , sample_quadratic_basis(N, n, linearBasis)

def sample_linear_basis(N, n):
return lalg.orth(np.random.rand(N,n))

def sample_quadratic_basis(N, n, linBasis):
num_columns = t(n,2) - n - 1
orth_random_matrix = lalg.orth(np.random.rand(N,num_columns))

if orth_random_matrix.shape[1] < num_columns: # if the SVD truncated
the random matrix
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zeros_padding = np.zeros((N, num_columns - orth_random_matrix.shape
[1]))

orth_random_matrix = np.hstack (( orth_random_matrix , zeros_padding))

quadBasis = (np.eye(N) - linBasis @ linBasis.T) @ orth_random_matrix
return quadBasis

A.3 Creating the snapshot matrix

The following snippit creates the snapshot matrix P containing snapshots of all elements
in SN used in Algorithm 2 and 4.

def create_snapshot_matrix ():
all_a = np.arange(0,1,1/N)
all_l = np.arange(lmin , 1-lmin ,1/N)
paramaters = np.array(list(itertools.product(all_a , all_l)))

num_parameters = paramaters.shape[0]
snapshot_matrix = np.zeros((N, num_parameters))

for i in range(num_parameters):
a,l = paramaters[i]
coeff = create_box_function_basis(a, l)
snapshot_matrix[:,i] = coeff

return snapshot_matrix

A.4 Kronecker product

The symmetric Kronecker product Ks of order 2 used in Algorithm 3 and 4.

def symmetric_kronecker_product_order_2(x):
unique_combinations = itertools.combinations_with_replacement(x,2)
sym_kron2 = np.zeros(math.comb(len(x) + 2 - 1, 2))
for i,term in enumerate(unique_combinations):

sym_kron2[i] = math.prod([_ for _ in term])
return sym_kron2

A.5 Algorithm 1

def kolmogorov_n_width_random_bases_method(n, N_s , S_N):
n_width = np.inf
I_N = np.eye(N)
for temp in range(N_s):

basis = sample_random_orthonormal_basis(N, n)
worst_best_approximation_error = 0
for x in S_N:

temp = np.dot(I_N - basis@basis.T, x)
best_approximation_error = np.dot(temp ,temp) ** 0.5

worst_best_approximation_error = \
max(worst_best_approximation_error , best_approximation_error)

n_width = min(n_width , worst_best_approximation_error)
return n_width
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A.6 Algorithm 2

def kolmogorov_n_width_pod_method(n, S_N):
n_width = 0
I_N = np.eye(N)
snapshot_matrix = create_snapshot_matrix ()
podBasis = lalg.orth(snapshot_matrix)[:, :n]

for x in S_N:
temp = np.dot(I_N - podBasis@podBasis.T, x)
best_approximation_error = np.dot(temp ,temp) ** 0.5
n_width = max(n_width , best_approximation_error)

return n_width

A.7 Algorithm 3

def poly_kolmogorov_n2_width_random_bases_method(n, N_s , S_N):
n2_width = np.inf
for _ in range(N_s):

V1 ,V2 = sample_linear_and_quadratic_basis(N, n)
worst_best_approximation_error = 0
for x in S_N:

reduced_coordinates = np.dot(V1.T,x)
kron_reduced = \

symmetric_kronecker_product_order_2(reduced_coordinates)

x_tilde = np.dot(V1 , reduced_coordinates) \
+ np.dot(V2, kron_reduced)

diff = x - x_tilde
best_approximation_error = np.dot(diff , diff) ** 0.5

worst_best_approximation_error = \
max(best_approximation_error , \
worst_best_approximation_error)

n2_width = min(n2_width , worst_best_approximation_error)
return n2_width

A.8 Algorithm 4

For Algorithm 4, the code for computing the quadratic basis A2 from the linear POD basis
A1 is included.

def poly_kolmogorov_n2_width_extended_pod(n, S, S_N , reg):
linPodBasis = lalg.orth(S)[:,:n]
quadPodBasis = create_quadratic_pod_basis(linPodBasis , S, reg)
n2_width = 0
for x in S_N:

reduced_coordinates = np.dot(linPodBasis.T,x)
kron_reduced = \

symmetric_kronecker_product_order_2(reduced_coordinates)
x_tilde = np.dot(linPodBasis , reduced_coordinates) \
+ np.dot(quadPodBasis , kron_reduced)
diff = x - x_tilde
best_approximation_error = np.dot(diff , diff) ** 0.5
n2_width = max(best_approximation_error , n2_width)

return n2_width
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def create_quadratic_pod_basis(A1, P, gamma):
I = np.eye(P.shape[0])
ER = (I - (A1 @ A1.T)) @ P

P_HAT = A1.T @ P
W = create_W(P_HAT)

WW_T = W @ W.T
gamma_I = gamma * np.eye(WW_T.shape[0])
A2 = ER @ W.T @ np.linalg.inv(WW_T + gamma_I)
return A2

def create_W(P_HAT):
k = P_HAT.shape[1]
W = []

for i in range(k):
pi_hat = P_HAT[:, i]
kron = symmetric_kronecker_product_order_2(pi_hat)
W.append(kron)

W = np.stack(W, axis=1)
return W
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