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Abstract

Attack-defense trees (ADTs) are a commonly used methodology for representing the
interplay between the attacks on a system and the counter-acting defenses employed to
prevent these attacks. ADTs serve as a powerful tool for quantitative analysis, offering
a structured approach for prioritizing potential threats and defenses through the use of
attributes. Previous work in this domain has only focused on analyzing metrics such as
cost, damage, or time from the attacker’s perspective. This approach, however, presents
an incomplete picture of the system, as it fails to model attributes for the defender: in
real scenarios, the defender usually has finite resources for counter-attacks and, just like
the attacker, is bounded by some constraints.

This thesis aims to bridge the gap by developing fast algorithms for computing the
Pareto front between defense and attack attribute values. Building from the existing
mathematical foundations of attack trees from Lopuhaä-Zwakenberg et al. (2023), the
work extends these models with the concept of attribute domains for the defender. We
analyzed tree-structured ADTs using a bottom-up approach and Directed Acyclic Graph
(DAG)-structured ADTs (trees with shared sub-trees) using enumerative, Biobjective In-
teger Linear Programming (BILP) and Binary Decision Diagram (BDD)-based techniques.
For a clearer mathematical model and algorithms, we primarily focus on the minimum cost
attribute domain for both the defender and the attacker.

The experimental results on random ADTs indicate that rather than finding one al-
gorithm to rule them all, each technique is useful based on varying ADT properties. A
bottom-up approach computes the Pareto front the fastest for tree-structured ADTs, while
BDDs are the most efficient for DAG-structured ADTs. The implications of our work
enable a more detailed analysis of attack scenarios, allowing the system owners to make
better-informed decisions.

Keywords: attack trees, attack-defense trees, Pareto front, multi-criteria optimization
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Chapter 1

Introduction

Figure 1.1: Legend of the gate
types used in the attack-defense
tree illustrations.

Thanks to computerized systems, the health-
care, financial, and business sectors have seen
significant technical advancements. However,
these systems can become notoriously complex
when multiple actors, IT systems, and physical
systems are involved. The resulting complex-
ity also raises the number of possible breaches
that attackers can exploit. This is especially
true with cyber-physical systems, which have
delicate interplays between components. Con-
sequently, there is a need for robust and systematic threat modelling systems that can
cope with such attacks.

Fault trees, introduced in the 1960s [1] to evaluate the launch control system of ballistic
missiles, were one of the first models used to analyze the safety of a system. Through their
hierarchical structure, they model the failure of a system through the failure of individual
components. Building on this idea, Schneier [2] introduced attack trees (ATs), which
nowadays represent one of the most prominent tools to evaluate the security of complex
systems. While safety remains a critical concern, ATs have complemented the traditional
focus on accidental internal failures with protection against deliberate, malicious attacks.

Figure 1.2: Attack tree depict-
ing a scenario where the attacker
aims to steal user data.

The primary utility of ATs is to describe the
various strategies an attacker can take to com-
promise a system through a structured decom-
position of the attack into smaller objectives.
This enables security experts to design coun-
termeasures for preventing future attacks [3, 4].
Due to their simplicity and compact form, ATs
are commonly used in commercial software tools
such as Amenaza’s SecurITree [5] and Isograph’s
AttackTree [6] as well as industrial applications,
e.g. analyzing the security of a SCADA system
for a tank and pump facility [7], impact analysis
of electric grid feature scenarios [8].

The hierarchical structure of an attack tree
models the root of the tree as the attacker’s pri-
mary goal. The tree branches represent different
methods the attacker could take to achieve their primary goal. The leaves of these branches
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are basic attack steps (BASs), which cannot be further refined into finer sub-goals. To ex-
emplify this, consider Figure 1.2, which we will build on throughout the introduction,
where the attacker aims to steal the defender’s user data. This attack tree includes AND
gates, activated when all of its children are enabled, and OR gates, activated when only a
single child is enabled.

To obtain the user’s data, the attacker must obtain both the defender’s credentials
and the decryption key. Stealing the decryption key (SDK) is challenging, as the defender
stores it offline. Nevertheless, this step must be part of any successful attack. Subsequently,
the credentials can be stolen in four different ways: blackmailing the user into handing over
the password (BU), conducting a phishing attack where the user is tricked into revealing the
credentials (PA), exploiting a software vulnerability to gain unauthorized access (ESV ),
or leveraging access control vulnerabilities (ACV ) to accessing sensitive functionality.

1.1 Attack-Defense Trees

One of the limitations of attack trees is that they do not account for the countermeasures
implemented to prevent an attack. For this reason, attack-defense trees (ADTs) were
introduced by Kordy et al. [9] as an extension of regular ATs to model the attacks on a
system concurrently and the defenses to block those attacks. Since their inception, ADTs
have been effectively applied in the analysis of cyber-physical systems [10, 11], ATMs [12]
and RFID-managed warehouses [13], highlighting their versatility across security-critical
domains.

The main advantage attack-defense trees have over attack trees is their ability to model
defenses. Each BAS has a binary activation value, where activated BASs are part of an
attack and deactivated BASs are not. The defenses work by deactivating the attack nodes

Figure 1.3: Attack-defense tree where the attacker aims to steal user data, and
the defender can prevent attack nodes from being propagated.
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they are associated with, thereby disabling them.
Figure 1.3 extends Figure 1.2 by adding counter-attack nodes. The defender can prevent

phishing attacks through anti-phishing user training (APUT ). Regular software updates
(SU) prevent both ESV and ACV , resulting in a dynamic acyclic graph (DAG) structure.
This is inspired by real-life attack trees, which often contain nodes that activate multiple
parents [8, 14]. An interesting attack is DNS Hijack (DNS) which does not directly
contribute to reaching the top node but disables the SU defense. As illustrated later, DNS
can re-enable ESV and ACV . Lastly, blackmailing the user (BU) has no countermeasure,
but the high attacker cost balances this.

The basic defense steps (BDS) APUT , SU , SKO are highlighted in green for better
visualization. A defense node meets an attack node at an INH (inhibition) gate. This gate
has exactly two children and is activated only when the attacking child is activated, but
the counter-attack is not. Note that the counter-attack type is always the opposite of the
attack type: DNS (an attack node) counters SU (a defense node); SKO (a defense node)
counters SDK (an attack node). For clarity, the edge leading to the counter-attack child
of INH gates is marked with a small circle.

1.2 Quantitative Analysis on Attack Trees

Figure 1.4: Attack tree anno-
tated with cost values, depicting a
scenario where the attacker aims
to steal user data.

The structure of attack trees enables the quan-
titative analysis of attack metrics [15]. BASs
are assigned attribute values representing mea-
surable aspects of the attack scenario, such as
the minimum cost or time required for an at-
tack. Since an attack is composed of activated
BASs, determining the impact of an attack in-
volves propagating the attribute values to the
root node through the intermediary gates.

Figure 1.4 incorporates cost values into the
BASs of the tree in Figure 1.2. In this scenario,
the attack with the minimum cost is computed
from the bottom to the top as follows. The
“Steal credentials” gate is an OR gate, which re-
quires the activation of only one child. Since
the attacker seeks to minimize the attack cost,
they should pick the BAS with the minimum cost, ESV . The “Steal user data” root is an
AND node, requiring the activation of both the “Steal credentials” node and the SDK basic
attack step, meaning their costs must be added together. This results in the minimum
cost attack being tESV, SDKu, with a total cost of 40.

1.3 Quantitative Analysis on Attack-Defense Trees

In the current state of the attack-defense trees research, although there are two actors
in an attack scenario (i.e., an attacker and a defender), only the attacker’s actions are
annotated with quantifiable attribute values [16, 17]. This approach fails to fully capture
reality, as the defender, like the attacker, usually has finite resources. For an illustration
of how an ADT looks like with attributes for the attacker and defender, consider the tree
in Figure 1.5, which extends Figure 1.3 by incorporating defender cost values. In this
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Figure 1.5: Attack-defense tree annotated with cost values where the attacker
aims to steal user data, and the defender can prevent attack nodes from being
propagated.

representation, both the BASs and BDSs are annotated with cost values, and each party
aims to minimize their own cost.

1.4 Research Goal

The defender aims to select the most optimal defenses, typically those with a lower defense
cost, while simultaneously making the situation more difficult for the attacker (e.g., max-
imizing the attacker cost). Note that the defender’s and attacker’s goals are conflicting:
the attacker seeks to minimize their cost, whereas the defender aims to maximize it.

A solution that simultaneously satisfies both of the defender’s goals does not exist.
Instead, we aim to find the set of solutions which provide an overview of all optimal
defense and attack metric values, known as the Pareto front. This leads to our research
goal, the mathematical formulation of which is deferred to Section 3.4.

R.G.: Find efficient algorithms that compute the Pareto front between the metric values
of the defender’s and attacker’s attribute domains for tree-structured and DAG-structured
attack-defense trees.

A fundamental concept in this work is the dynamic between the defender and the at-
tacker: the defender fixes their defenses first, and the attacker responds to them. Defenders
set the stage for the attacker’s responses by initially establishing the defences. This se-
quence is crucial, as it mirrors real-world scenarios where the defenders of a system already
have resources allocated before any attack occurs [18]. Additionally, when planning sys-
tem defenses, it is often best to prepare for worst-case scenarios [19]: the defender has no
information about the attacker’s plans, while the attacker is fully aware of the defender’s
actions. By leveraging the Pareto front, defenders can make better-informed decisions to
allocate resources efficiently. The following section explores calculating the Pareto front
for the example depicted in Figure 1.5 to clarify this further.
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Row Defense Defense
cost

Min. size attacks Min. attack
cost

1. H 0 {tBU, SDKu,
tPA, SDKu,
tESV, SDKu,
tACV, SDKu}

40

2. tAPUT u 5 {tBU, SDKu,
tESV, SDKu,
tACV, SDKu}

40

3. tSUu 10 {tBU, SDKu,
tPA, SDKu,
tDNS,ESV, SDKu}

50

4. tSKOu 20 H `8

5. tAPUT, SUu 15 {tBU, SDKu,
tDNS,ESV, SDKu}

50

6. tAPUT, SKOu 25 H `8

7. tSU, SKOu 30 H `8

8. tAPUT, SU, SKOu 35 H `8

Table 1.1: Quantitative analysis of the attack-defense tree from Figure 1.5.

1.5 Cost-Cost Pareto Front

The computation results are presented in Table 1.1, with the corresponding Pareto front
depicted in Figure 1.6. The “Defense” column enumerates all possible combinations of
fixed defenses, while their respective defense costs are in the “Defense cost” column. For
each fixed defense, a list of all successful minimum size attacks (or H if no such attacks
exist) is illustrated in the “Min. size attacks” column. Finally, the cost metric for each
minimal-size attack is computed, with the lowest cost value presented in the “Min. attack
cost” column.

The first interesting observation from this quantitative analysis is that when the de-
fender enables SKO, all attacks on the system will fail. In this scenario, they do not have
to activate additional defenses, as all attacks have already been prevented. Furthermore,
when the defender enables SU , the attacker can neutralize this defense with DNS. No-
tably, DNS is only present in defense suites that contain SU , as DNS alone does not
contribute to reaching the top goal.

To find the Pareto front from Table 1.1, the first step is to plot the “Defense cost” and
“Min. attack cost” values on a graph, labelling the points to their corresponding “Row ”
indexes. This plot is illustrated in Figure 1.6. To determine the Pareto optimal solutions,
we need to identify all the points where no other point has both a lower or equal defense
cost and a higher attack cost. In this case, the rows p1q, p3q, p4q form the Pareto Front.
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Figure 1.6: Pareto front of the attack-defense tree from Figure 1.5.

1.6 Contributions

Below, we outline our contributions. The subsequent chapters of this thesis are organized as
follows. Chapter 2 introduces the basic concepts behind ADTs and reviews some previously
used methodologies to analyze ATs and ADTs with only attacker’s attributes. Chapter 3
presents the formal model behind ADTs and mathematically formulates the Pareto front
problem. The BU, Naive, BILP and BDD algorithms are presented in the Chapters 4 through
7. In Chapter 8, we evaluate the algorithms on a wide array of randomly generated ADTs.
Lastly, Chapter 9, we conclude the thesis and discuss potential avenues for future work.

The main contributions of this work are as follows:

1. General syntax and semantics for defining ADTs that support attacker and de-
fender attribute domains.

2. Formal representation of metrics and the Pareto front between the attacker’s and
defender’s attribute domains.

3. A bottom-up algorithm for finding the Pareto front of tree-structured ADTs.

4. A Biobjective Integer Linear Programming-based algorithm for finding the Pareto
Front of DAGs using the minimum cost attribute domains.

5. A Binary Decision Diagram-based algorithm for finding the Pareto front of DAGs.

6. An extensive performance evaluation of the above algorithms on randomly gen-
erated ADTs.

Our experiments indicate that the bottom-up algorithm is the fastest for computing
the Pareto front in tree-structured ADTs, whereas the BDD-based approach is the most
efficient for DAG-structured ADTs.
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Chapter 2

Background & related work

This chapter describes the literature advancements on concepts that are relevant to the
quantitative analysis of attack-defense trees and the computation of the Pareto Front.

2.1 Attack Trees

Popularized by Schneier [2] and later formalized by Mauw and Oostdijk [15], attack trees
provide a hierarchical framework for modelling the threats and vulnerabilities of a system.
System owners can make informed decisions to prevent these attacks by identifying and
categorizing successful attacks of a minimal size. In an attack tree, the attacker’s primary
objective is represented by the root, while the branches model various methods to achieve
this goal. The leaf nodes, or basic actions, represent the fundamental actions of the attacker
and cannot be further decomposed. Attack trees were initially inspired by fault trees, which
were used for safety analysis of nuclear research in 1980 [20].

In Arnold et al. [21], the authors develop a framework to analyze the success probability
of an attack as time progresses. This framework allows for the representation of the
sequence of attack steps and the timing between them. Each leaf node in this framework
is annotated with a probability distribution representing the time required for the basic
attack step to be successful. These distributions are then propagated up the tree to derive
a probability distribution for the entire system.

Despite the term “tree” in their name, attack trees might not necessarily have a tree-like
structure. Generally, ATs can have two kinds of forms. When each node of the AT has a
single parent, the AT maintains a tree-like structure, as illustrated in Figure 1.2. However,
if a node has multiple parents (e.g., in Figure 1.3, the INH node of software updates has
two parents), then the AT has a DAG-structure.

2.1.1 Attack-Defense Trees

In attack trees, the intermediate nodes are marked with gates that indicate the activation
pattern of their children. In the structure of attack trees introduced by Schneier [2], only
AND and OR gates are incorporated. However, this model only allows for representing basic
situations where the dependencies between nodes or counter-attacks are not considered.
Various extensions to this basic model have been developed to address this limitation,
which help replicating more intricate scenarios.

One notable extension in this regard is attack-defense trees, a concept introduced by
Kordy et al. [9], which allows for defense modelling through counter-attack gates. Before
this work, there had already been defined ideologies of attack-defense trees, but they were
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Figure 2.1: Transformation from DAG-structured ADT with separate instances
to tree-structured ADT.

tailored to more specific use cases. For instance, in Bistarelli et al. [22], defensive actions
are only possible at the leaf level. Similarly, in Roy et al. [23], the defender can only
perform counter-attacks at the leaf level but cannot have higher-level goals modelled in
the tree. In their paper, Kordy et al. [9] provided a more general concept of attack-defense
trees, where attackers and defenders have equal capabilities, and counter-attacks can be
modelled at intermediate nodes, including the root node. This approach offers a more
comprehensive overview of the security aspects of a system.

In Arias et al. [24], the authors analyze ADTs in a novel way by treating these trees
as an extension of asynchronous multi-agent systems. Each node in the tree is treated as
an agent that can act asynchronously. The transition functions of these nodes are then
equipped with attributes. Finally, the quantitative results from the generated automata
are verified with state-of-the-art model checkers such as UPPAAL and Imitator.

The concept of attack defense trees is directly relevant to this research, providing a
theoretical foundation for adding attributes for the defender. As mentioned in Section 1.3,
we will introduce an inhibition gate to represent counter-attacks in the mathematical def-
inition of attack defense-trees. Moreover, the semantics of ADTs will be extended with a
separate attribute domain for the defender.

2.1.2 Directed Acyclic Graphs

Figure 2.2: DAG
tree with a shared
instance of the node
“Phishing Attack ”

When the tree is a directed acyclic graph (DAG), nodes
can become the children of multiple intermediate nodes. In
Bossuat and Kordy [25], the authors distinguish between two
kinds of nodes that are shared between multiple parents.
Firstly, if a node has multiple parents and its activation is
propagated only to a single parent, the ancestors share differ-
ent instances of the goal. This interpretation is straightfor-
ward, as each node activation can be treated separately, trans-
forming the DAG into a tree-structured AT. For example, in
Figure 2.1, the attack “Break lock ” needs to be executed once
to break the door lock and enter the house and once more
to break the safe box to open it. As a result, this node can
rewritten with the actions “Break door lock ” and “Break safe
box lock ”. This conversion represents the situation more accu-
rately, as to reach the top AND gate, the attacker must perform
“Break lock ” twice.

8



However, when the activation of a node is propagated to all its parents, the parents
share the same instance of the goal. This scenario can be seen in Figure 2.2, where a single
“Phishing Attack” retrieves both the password and the username simultaneously. Unlike
Figure 2.1, this cannot be simplified in a tree-structured attack tree. In this case, the
BU algorithm will not yield accurate results since it will propagate the attribute value of
“Phishing Attack” multiple times instead of only once. Throughout the paper, when we
specify that a tree has a DAG-structure, we refer to this latter case, where parents share
the same instance of a node.

2.2 Quantitative Analysis

The semantic analysis of an attack tree, which identifies potential attacks and exposes
vulnerabilities, is frequently combined with a quantitative analysis of the modelled scenario.
This analysis is typically achieved through attributes representing quantifiable metrics or
proprieties associated with nodes in the tree [15]. These attributes enable the computation
of metrics such as the minimum time [2], required skill, maximum damage [15], cost [26] and
probability [27] of performing an attack. These metrics can also be intertwined, creating
dependencies, such as the minimum time of an attack given a maximum budget or skill
level [28, 29]. Although the objective is to compute these metrics as efficiently as possible,
the problem is generally NP-hard [26]. Fortunately, specific properties of an attack tree
enable efficient methodologies to be applied.

A bottom-up (BU) approach is the most efficient one, propagating attribute values from
the leaf nodes to the root node [15]. This operation is performed linearly in the number
of nodes and edges in the tree, making it a fast algorithm. Another possible approach,
though not frequently used due to its exponential complexity, involves first computing a
complete attack suite and then selecting the attack with the desired properties [25]. This
is an area of ongoing research, where some authors are building algorithms specialized for
single metrics [30] while others aim to keep the algorithms as generic as possible [26].

2.2.1 Semirings

Generally, a wide array of AT metrics can be described as a semiring with three compo-
nents: a set where the BASs take their value and two or more operations satisfying certain
axioms [31]. In the context of AT metrics, this algebraic structure is called an attribute
domain. For example, the attribute domain of the minimum cost metric is defined as
pRě0,min,`q, where the value of a BAS is in Rě0, the disjunctive operation for the OR
gate is min, and the conjunctive operation for AND is `. Unfortunately, there is no con-
sensus in the literature on defining a specific metric, leading to possible inconsistencies
between the works [31].

A vital aspect of semirings is that metrics defined on semirings attribute domains can
be computed linearly via a bottom-up algorithm on the number of tree nodes and edges.
This enables metrics to be calculated in a more generalizable way [15].

2.2.2 Quantitative Analysis on Tree-Structured ATs

The formalism of attack-defense trees can be extended with different classes of seman-
tics: propositional, multi set and equational, each suited for different use case scenarios
depending on what is considered to be an attack [32]. To analyze attribute domains, a
framework based on propositional semantics was developed by Kordy et al. [32], which was
later extended to support DAGs using multi-set semantics [16].
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A bottom-up method can compute any metric linearly using propositional semantics
when the attack tree has a tree-like structure [26]. Moreover, in cases where a single tree
node represents separate instances (e.g., as shown in Figure 2.1), these can be separated into
distinct nodes with unique labels, transforming the tree to a tree-structured form. In [25],
the authors adopt this approach, replacing the labels with pairs in GˆΓ, where G is a typed
set of goals containing basic events, and Γ is a finite set of indices for distinguishing different
instances of the same node. For example, in Figure 2.2 if we were to use the approach of
Bossuat and Kordy [25] to represent two different instances for the goal “Break door” P G,
the nodes would be labeled p“Break door”, 1q and p“Break door”, 2q.

Therefore, to compute the Pareto front, we will first consider tree-structured ADTs and
create a bottom-up algorithm that concurrently computes the metric values for both the
defender and the attacker. Based on the findings from Mauw and Oostdijk [15], we expect
this algorithm to work for any pair of metrics defined on semirings.

2.2.3 Quantitative Analysis on DAG-structured ATs

A classic result from the literature is that the bottom-up algorithm does not work on a
DAG-structured tree (where a node has multiple parents that all share the same instance
of that node) [16]. However, recent developments have found this is not always the case
[26]. Let pV,‘,bq be an attribute domain. If the b operation absorbs ‘, then even if the
metric value of a node is propagated multiple times, the final result does not change.

To illustrate this concept, consider the tree in Figure 2.2 and the minimum skill domain
pRě0,min,maxq. Formally, max absorbs min because for x, y P Rě0, maxpx, pminpx, yqq “
x. Even if the skill value of “Phishing Attack” is propagated two times through the nodes
“Get password” and “Get username”, applying max at the root AND node only retains the
value of “Phishing Attack” once despite multiple propagations. On the other hand, if we
were to apply ` at the root AND node as for the pRě0,min,`q domain, the skill value from
“Phishing Attack” would be doubled, as ` does not absorb min.

When the conjunctive operation b is not idempotent, various techniques other than the
bottom-up have been explored over the years. Most of these strategies work by reformu-
lating the issue into other mathematical and computer science domains such as Bayesian
networks, game theory, satisfiability problems, or constraint optimization problems and
addressing the problem within those contexts. For this reason, solving DAGs remains an
open problem for attack trees, with a wide variety of proposed solutions. Below, we high-
light the ones considered in our research, though this is not a comprehensive list of all
possible approaches.

C-BU algorithm

One approach is to enhance the standard bottom-up algorithm by incorporating the con-
cept of necessary clones. A clone is a node that has multiple parents. A clone is deemed
necessary if it appears in all successful minimum attacks; otherwise, it is considered op-
tional. The C-BU algorithm replaces the initial assignment value of clones with the neutral
element of the domain so that the clones are effectively ignored during the BU procedure.
For example, in the minimum cost attribute domain pRě0,min,`q, the neutral element for
min is 8, as for any a P R. minpa,8q “ a [16]. Similarly, the neutral element for ` is 0.

At the end of the computation, the assignment values of necessary clones are rein-
troduced to ensure they are counted precisely once. Since the standard BU procedure is
repeated for each subset of optional clones, the worst-case complexity of this algorithm is
Opn2kq, where n is the number of nodes, and k the number of optional nodes.
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Integer Linear Programming

Another approach for computing metrics involves using constraint solvers to determine
whether a set of basic actions satisfies a given set of constraints in an attack tree [33].
Generally, an Integer Linear Programming (ILP) problem has the following form, where
c⃗ P Rn is a vector of coefficients, y⃗ is a vector of integer variables and A P Rmˆn represents
the constraints [29].

minimize c⃗ ¨ y⃗ subject to A ¨ y⃗ ď 0

ILP techniques have been effectively used to considerably decrease the computation
time of dynamic attack trees when analyzing the minimum time metric [34]. More specifi-
cally, a new time assignment function fv is created, which assigns a completion time to each
tree node. When we consider the set of all time assignments to be FT , the optimization
problem for a tree T becomes minfPFT

fRT
. Since the constraints used in the definition

of f are not linear, auxiliary integer variables are used to transform the AND, OR, and
SAND gates into a set of linear constraints using standard integer programming techniques
[35].

When multiple objectives need to be optimized simultaneously, such as finding both
the cost and damage of a successful attack, this becomes a Multi-Objective Integer Pro-
gramming task (MOIP), which generates a Pareto front [29]. Since dedicated solvers exist
for such tasks, this approach focuses on translating the metrics problem into a real-world
optimization problem with a linear set of constraints [36]. This solution can be particu-
larly beneficial when the tree has a DAG structure, which may result in faster computation
times compared to the C-BU algorithm.

Binary Decision Diagrams

Lopuhaä-Zwakenberg et al. [26] translate the AT to a boolean function, which is then used
to create a Binary Decision Diagram. For instance, the boolean function behind the DAG
in Figure 2.2 is pGuessP _ PhishAq ^ pGuessU _ PhishAq. This boolean function can be
efficiently and compactly represented as a BDD and standard BDD techniques can be used
to compute metric values.

However, for this to work, the‘ operation of the attribute domain needs to be absorbing
and idempotent, where idempotency is defined as follows: for all d P D , d‘d “ d. In plain
terms, if an idempotent operation is applied multiple times, it should have the same effect
as applying it once.

Other approaches

Alternative methods have been developed to accurately handle the quantitative evaluation
of DAGs and are usually used when the BU algorithm is incompatible [3]. Some of them
work by first translating the tree into another formal object and then carrying out compu-
tations on this object [28]; for example, encoding SAT problems as generalized stochastic
Petri nets [37] or even game-theory approaches [38] where the Nash equilibrium between
the defender and attacker is found.

The primary limitation of these approaches is that they do not model a separate at-
tribute domain for the defender. Instead, they only measure the attack metrics when a
subset of the defenses are activated, without assigning any quantifiable attributes to the
defenses.
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2.2.4 Quantitative Analysis on Attack-Defense Trees

The quantitative aspects of attack defense trees extend those of regular attack trees by
adding to the attribute domain the concept of defensive nodes [32]. As mentioned in section
2.2.1, attribute domains for attack trees are formed of three parts: a domain, an operation
for AND gates, and one for OR gates. However, when the actions of both the attacker and
defender are modelled, then the AND, OR, and counter-attack gates can represent either a
defensive or offensive action, leading to an attribute domain composed of 7 elements. The
concepts described for attack trees remain applicable to this extended attribute domain.

2.3 Pareto Front

Most analytical methods optimize one parameter at a time, such as the cost or time of
an attack. However, this approach might not accurately represent complex real-world
scenarios where parameters can interact (e.g., the maximum damage of an attack, given
a fixed cost [29]), potentially leading to potentially sub-optimal solutions. To analyze
multiple parameters simultaneously, the leaf nodes need to be annotated with multiple
values. This creates a multi-optimization problem, as there is no single solution anymore,
but a set of Pareto efficient solutions called the Pareto Front, where one solution is not
dominated by another in a given ordering relation [17]. For instance, the main intuition
behind this ordering, assuming the Pareto front between the attacker’s damage and cost,
is that if the attacker has two strategies with the same damage, but one has a lower cost,
they have no incentive to choose the higher-cost strategy.

Instead of solving a single-objective ILP, Lopuhaä-Zwakenberg and Stoelinga [29] focus
on multi-objective ILP to find the Pareto Front between the attacker’s costs and damage
values. Often, as the attacker can spend a higher amount, the damage inflicted on the
system also increases.

Another possible approach to finding the Pareto front is through a regular bottom-up
method by combining the attribute domain of each parameter into a single Pareto attribute
domain suitable for analysis [17, 39]. Here, each basic assignment βαi for the metric αi is
combined into a singleton tpβα1pbq, . . . , βαmpbqqu, which will be used to redefine new ‘̂ and
b̂ operations. The authors prove that a Pareto attribute domain formed in this manner is
a commutative idempotent semi-ring, which can then be analyzed using the BU procedure.
If the tree can be transformed into a tree structure, a single bottom-up procedure can find
the solution using this approach. Furthermore, the method is effective even if the tree is
a DAG as long as the attribute domains of the parameters are absorbing, leading to an
exponential complexity in the number of distinct nodes.

It is important to note that although Pareto Fronts have previously been explored for
ATs, these studies focused on the trade-offs between multiple attacker’s metrics. In our
work, we consider the trade-off between the defender and attacker metrics.
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Chapter 3

Attack-Defense Trees

Symbol Description Page

T “ pN,Eq Attack-defense tree 13
Tv Sub-tree rooted at node v 13
RT Root of T 13
chpvq Children of node v 13
γpvq Gate type of v 13
τpvq Node type of v 13
Ěτpvq Opposite node type of v 13
B {0, 1} 14
A Basic attack steps of T 14
D Basic defense steps of T 14
δ⃗, α⃗ Defense, attack vectors 14
DD,DA Attribute domains of defender, attacker 15
βDpdq Attribute assignment of defense d 15
βApaq Attribute assignment of attack a 15
‘ Abstract disjunctive operation 15
‘ Abstract conjunctive operation 15
ρpδ⃗q Attacker’s response based on δ⃗ 16
S Strategies set 16
fT pδ⃗, α⃗, vq Structure function of T 16
β̂
`

δ⃗, ρpα⃗q
˘

Metric value of the strategy pδ⃗, ρpα⃗qq 15
ĺD,ĺA Partial orderings for the metrics 17
Ď Ordering relation for the Pareto front 17
PFSpT q Pareto front of T based on semantics 17
minĎβ̂pSq Formal Pareto Front problem 17

Table 3.1: Notation used throughout
Chapter 3.

The main objective of this section is to
introduce the notation used for attack-
defense trees with offensive and defen-
sive attributes and formalize the thesis’
goal.

3.1 Syntax

This section reviews the formalisms
of attack-defense trees, starting with
their definition.

Definition 1. An attack-defense tree
is defined as a quadruple T “

pN,E, γ, τq, where pN,Eq forms a
rooted acyclic graph, and each node
v P N has a gate type γpxq P

tOR, AND, BS, INHu and belongs to an at-
tacker or a defender: τpvq P tA, Du.

Moreover, T satisfies the following
constraints for a node v P N :

• Leaf-BS: γpvq “ BS if and only if v is a leaf of pN,Eq.

• INH-Children: γpvq “ INH if and only if v has exactly two children va and vc
representing the attack and counter-attack respectively. Using the notation Ěτpvq to
denote the opposite τ value of node v, τpvaq “ τpvq and τpvcq “ Ěτpvq.

• OR-AND-Children: if γpvq P tOR, ANDu, then for all children w of v, τpwq “ τpvq.

The children of a node v P N are defined by the function chpvq “ tw | pv, wq P Eu. The
tree has a unique root labelled RT , where @v P N.RT R chpvq. The sub-tree rooted at node
v is denoted as Tv. Additionally, the notation v “ ORpv1, . . . , vnq is used when γpvq “ OR
and chpvq “ pv1, . . . , vnq, and similarly for AND, INH nodes.

Despite their name, attack-defense trees do not necessarily have a tree-like structure.
For an ADT to be an actual tree, a node must not have multiple parents, i.e. @u, v P
N, chpuqX chpvq “ H. When this property is not satisfied, the ADT has a DAG structure.
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The set of all basic steps in T is denoted by BT , or simply B if there is no confusion.
For simplicity, the set of all basic attack steps is denoted by A, when for a node v P N ,
γpvq “ BS and τpvq “ A. Similarly, the set of all basic defense steps is denoted by D, when
γpvq “ BS and τpvq “ D. These two sets are disjoint, meaning AXD “ ∅, and their union
represents the set of all basic events, i.e., AYD “ B .

Figure 3.1: Tree-
structured ADT an-
notated with offensive
and defensive costs.

Let B “ t0, 1u to represent the set of booleans, with the
logical operators ^ (AND) and _ (OR). For an attack-
defense tree T , let δ⃗ P BD represent the defense vector
where δd “ 1 when the defense d P D is activated, and
δd “ 0 if it is not. Analogously, α⃗ P BA models the attack
vector.

Example 1. To illustrate the concepts presented so far
and the ones that will follow, let us consider a practical
example and expand upon it as the chapter progresses.
Figure 3.1 shows a tree-structured ADT annotated with
numbers representing the cost. In this illustration, the set
of all attacks is A “ ta1, a2, a3u, and the set of defenses is
D “ td1, d2u. If the attacker activates a2 and a3, but not
a1, this forms the attack vector α⃗ “ p0, 1, 1q. Similarly, a
defensive vector where only d1 is activated is represented
by δ⃗ “ p1, 0q.

3.2 Attributes

Attack-defense trees are commonly used in quantitative analysis to compute security met-
rics, which indicate the performance of a system. Traditionally in attack trees, all the basic
attack steps hold values assigned by a function β. Furthermore, a function β̂ is used to
determine the metric value for an attack. These values are then propagated up the tree
towards its root, using the corresponding operations at the intermediary nodes. Table 3.2
contains some of the frequently used attribute domains.

METRIC V ‘ b

min cost Rě0 min +
min time (sequential) Rě0 min +
min time (parallel) Rě0 min max
min skill Rě0 min max
max challenge Rě0 max max
max damage Rě0 max +
discrete prob. r0, 1s max ¨

continuous prob. RÑ r0, 1s max ¨

Table 3.2: Semiring attribute domains

To enable computation, metrics can generally be described as attribute domains of
the form pV,‘,bq, where the disjunctive operation ‘ and conjunctive operation b are
associative and commutative. This algebraic structure is called a semiring if b distributes
over ‘. These propreties are outlined below:
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• Associativity. @a, b, c P V. a‘ pb‘ cq “ pa‘ bq ‘ c

• Commutativity. @a, b, P V. a‘ b “ b‘ a

• Distributivity. @a, b, c P V. ab pb‘ cq “ pab bq ‘ pab cq

A semiring may also posses additional proprieties such as idempotency and absorbtion,
though these are not required for the structure to qualify as a semiring. More specifically,
a semiring is idempotent if the operation ‘ is idempotent and absorbing if b absorbs ‘:

• Idempotency of ‘. @a P V. a‘ a “ a

• Absorbtion of ‘. @a, b P V. a‘ pab cq “ a

Since, in this thesis the defender and attacker have separate attributes, we combine
these two into an attribute pair defined as follows:

Definition 2. An attribute pair for an attack-defense tree T is a tuple pDD,DA, βD, βAq,
where DD : pVD,‘D,bDq and DA : pVA,‘A,bAq are semirings. Each domain has an as-
sociated basic assignment function: βD : D Ñ VD and βA : A Ñ VA for the basic steps of
the defender and attacker respectively.

The defender and attacker attribute domains are described by DD and DA, respectively.
βD assigns an attribute value from VD to each basic defense step in D, while βA does so to
each basic attack step in A. Since the value of the defender’s metric lies in VD, while that
of the attacker is in VA, their attribute pair will naturally have values in VD ˆ VA. The
following are defined:

Definition 3. The metric value of a defense vector δ⃗ is given by:

β̂D : BD Ñ VD with β̂Dpδ⃗q “
â

dPδ⃗

DδdβDpdq

while the metric value of an attack vector α⃗ is given by:

β̂A : BA Ñ VA with β̂Apα⃗q “
â

aPα⃗
AαaβApaq

Lastly, the metric value of a pair of defense and attack vectors is given by:

β̂ : BD ˆ BA Ñ VD ˆ VA with β̂
`

pδ⃗, α⃗q
˘

“
`

β̂Dpδ⃗q, β̂Apα⃗q
˘

Continuing Example 1. For more clarity, let us note a defense vector using the names
of the activated nodes while omitting the disabled ones. Analogously for an attack vector.
Let

`

td1, d2u, ta1, a2u
˘

be a pair of defense and attack vectors. Since we are working with
the minimal cost domain, DA “ DD “ pRě0,min,`q. To determine the metric values of
this vector pair, we apply the definition of β̂:

β̂D
`

td1, d2u
˘

“ 1ˆ βDpd1q ` 1ˆ βDpd2q

“ 5` 10 “ 15

β̂A
`

ta1, a2u
˘

“ 1ˆ βApa1q ` 1ˆ βApa2q ` 0ˆ βApa3q

“ 5` 10` 0 “ 15

β̂
``

td1, d2u, ta1, a2u
˘˘

“ p15, 15q

Having defined how a pair of defense and attack vectors is assigned a numerical value,
we analyze which vector pairs form a strategy in the next section.
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3.3 Semantics

The semantics of an attack-defense tree are defined by what constitutes an event within
the tree and when it is considered successful. In ADTs, an event is represented by a pair
of defense and attack vectors pδ⃗, α⃗q.

Formalizing the idea that AND gates are activated when all their children are also ac-
tivated, and similarly for OR and INH gates with their respective conditions, the structure
function of T is defined as follows:

Definition 4. The structure function fT : BD ˆ BA ˆ N Ñ B, indicates whether pδ⃗, α⃗q
reaches the node v:

fT pδ⃗, α⃗, vq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

αv, if v P A
δv, if v P D
Ź

wPchpvq fT pδ⃗, α⃗, wq, if γpvq “ AND
Ž

wPchpvq fT pδ⃗, α⃗, wq, if γpvq “ OR

fT pδ⃗, α⃗, vτpvqq ^ ␣fT pδ⃗, α⃗, vĘτpvq
q if γpvq “ INH

Since the defender acts first, an optimal attacker’s response will always depend on δ⃗.
This relationship can be modelled as follows:

Definition 5. An attacker’s response to a defense is a function ρ : BD Ñ BA Y tKu which
maps a defense vector to the most optimal attack vector from the perspective of the
attacker, or K if there is no optimal response.

Depending on the chosen pair of metrics, ρpδ⃗q is found by maximizing the damage
or probability of an attack, minimizing the cost or time, or other criteria. However, the
attacker might not always have an optimal response. In such cases, ρpδ⃗q has no solutions.
It’s important to distinguish 0⃗ from K, as in some scenarios, not activating any attacks
might represent the optimal response.

Definition 6. A pair of defense and attack vectors pδ⃗, α⃗q is considered a “strategy” of T
if α⃗ “ ρpδ⃗q. Let S be the set of all strategies of T , where:

S “
!

`

δ⃗, ρpδ⃗q
˘

| δ⃗ P BD
)

The definition of a successful strategy varies based on the chosen pair of metrics. For
example, a strategy based on the minimum cost domain is successful when the top-level
goal is reached, but this might not hold for the maximum cost domain. As detailed
in Section 3.5, this thesis focuses on the cost-cost attribute domain, where a successful
strategy is defined as follows:

Definition 7. A strategy
`

δ⃗, ρpδ⃗q
˘

is successful when: fT
`

δ⃗, ρpδ⃗q, RT

˘

“

#

1 if τpRT q “ A

0 otherwise.

In this definition, note that if RT is an attack node, the attacker aims to reach the top
node. Conversely, if RT is a defense node, the defender aims to prevent the attacker from
reaching the top node.

Continuing Example 1. The defense and attack vectors
`

td1, d2u, ta1, a2u
˘

form a strat-
egy because ta1, a2u minimizes the attack cost. Activating d1 and d2 also activates AND1,
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thereby enabling the defense for INH1. The attacker can choose between a1 and a3. Al-
though a3 creates a successful attack, its cost is not minimal. Instead, the attacker can use
a1 to disable INH1, regaining access to a2, which can then be used to reach the root node.
The combined costs of a1 and a2 result in a total cost of 15. Therefore, δ⃗ “ td1, d2u and
ρpδ⃗q “ ta1, a2u. Note that choosing any α⃗ other than ta1, a2u does not form a strategy.

3.4 Pareto Front

The trade-off between the defender’s and attacker’s metric values can be analyzed via the
Pareto front. A point on the Pareto front is called Pareto optimal if no other solution is
better in all objectives. The notion of better is formally known as dominance, and to define
it, a few prerequisite properties need to be established.

The primary focus of this thesis is on the attribute domains based on semirings. A
partial order relation ĺ for a semiring pV,‘,bq must satisfy the basic properties of a
partial order:

• Reflexivity: for any x P V. x ĺ x, meaning each element is comparable with itself.

• Anti-simmetry: for any x, y P V . if x ĺ y and y ĺ x, then x “ y, indicating that
if two elements are mutually comparable, they are the same element.

• Transitivity: for any x, y, z P V . if x ĺ y and y ĺ z, then x ĺ z.

Furthermore, ĺ must be compatible with the ‘ and b operations of the semiring:

• Monotonicity with respect to ‘: for any x, y, z P V . if x ĺ y then x ‘ z ĺ y ‘ z,
meaning adding the same element on both sides of an inequality does not change its
direction.

• Monotonicity with respect to b: for any x, y, z P V . if x ĺ y then x b z ĺ y b z,
meaning multiplying both sides of an inequality does not change its direction.

The linear order relation ĺA is defined for DA, and ĺD for DD, where both must satisfy
reflexivity, anti-symmetry, transitivity, and monotonicity for ‘ and b. Using these orders,
it is possible to formulate when one strategy is better, i.e., dominates another:

Definition 8. Given two strategies P S, and their valuations pd1, a1q and pd2, a2q, the pair
pd1, a1q dominates pd2, a2q i.e., pd1, a1q Ď pd2, a2q when d1 ď d2 and a1 ě a2.

As mentioned at the beginning of the section, for a general poset pX,Ďq, a point x P X
is optimal if it is not dominated by any other point in X. The Pareto front is the set of
all Pareto optimal points in X, i.e., minĎX “ tx P X | @x1 P X. x1 ‰ x, x1 Ć xu.

With all the necessary mathematical prerequisites defined, we can formally state the
problem statement of the thesis:

Research Goal. For an attack defense tree T , we aim to find minĎβ̂pSq Ď VD ˆ VA,
denoted PFSpT q, where S stands for semantics.
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3.5 Minimum Cost Pair

As a practical example, let us take the minimum cost metric from 3.2 and use it for the
defender and the attacker. This means that both parties are interested in minimizing their
own cost.

The remainder of the thesis will use this pair to enhance readability in the provided
algorithms and proofs. Generally, the algorithms are translated back into their abstract
form by substituting the min operation with ‘ and ` with b, which should make them
applicable for any attribute based on idempotent absorbing semirings. However, readers
should exercise caution when doing so, as this translation has yet to be formally verified,
being outside the scope of this thesis.

The minimum cost pair is defined by the attribute pair pDD,DA, βD, βA,ĺD,ĺAq where
DD “ DA “ pRě0,min,`q. These domains have ĺD“ĺA“ď as order relations, where ď
is the natural ordering for R. Furthermore, the domains are idempotent and absorbing.

Assuming that evaluation of the strategy
`

δ⃗, ρpα⃗q
˘

results in the point pd, aq P Rˆ R,
the natural language interpretation of this tuple is as follows:

Meaning of a value pair: For a node v with a strategy evaluation pd, aq, when:

τ “ D and the defender spends at least d, the node v is activated unless the
attacker spends at least a.

τ “ A and the defender spends at least d, the node v is not activated unless the
attacker spends at least a.

We can now also define the cost of a defense and attack vector more precisely:

β̂Apα⃗q “
ÿ

aPα⃗

αaβApaq

ρpδ⃗q “

$

’

’

’

’

&

’

’

’

’

%

argmin
fT pδ⃗,α⃗,RT q“1

β̂Apα⃗q if τpRT q “ A

argmin
fT pδ⃗,α⃗,RT q“0

β̂Apα⃗q if τpRT q “ D

K if argmin does not exist

β̂Dpδ⃗q “
ÿ

dPδ⃗

δdβDpdq

β̂Apρpδ⃗qq “

$

’

’

’

’

&

’

’

’

’

%

min
fT pδ⃗,α⃗,RT q“1

β̂Apα⃗q if τpRT q “ A

min
fT pδ⃗,α⃗,RT q“0

β̂Apα⃗q if τpRT q “ D

8 if ρpδ⃗q “ K

Continuing Example 1. Another strategy for the tree in Ex. 1 is
`

td1u, ta2u
˘

, where
δ⃗ “ td1u and ρpδ⃗q “ ta2u. Note that enabling only d1 without d2 does not activate AND1.
Thus, the defender is practically better off doing nothing. Nevertheless, this still forms a
strategy, though not one which results in a Pareto optimal point. In this specific case, all
the α⃗ which satisfy fT pδ⃗, α⃗, RT q “ 1 are ta2u, ta3u, ta2, a1u, ta3, a1u, ta1, a2, a3u. From
these, ta2u minimizes the cost: β̂A

`

ta2u
˘

“ 10, which makes it the optimal attacker’s
response.

18



Chapter 4

Tree-structured ADTs

This chapter explores attack-defense trees with a tree structure and a fast bottom-up
approach to find the Pareto front between the defender’s and attacker’s cost. We will
detail the reasoning behind how the algorithm handles different types of gates and nodes
and end the chapter with a formal proof of the algorithm’s correctness.

4.1 Bottom-up Algorithm
γpvq τpvq Def. op

`

⃝D

˘

Att. op
`

⃝A

˘

AND
A

ř ř

D
ř

min

OR
A

ř

min

D
ř ř

INH
A

ř ř

D
ř

min

Table 4.1: Operators applied in the
bottom-up algorithm.

For metrics defined on semirings, a
bottom-up algorithm can be used to
compute the Pareto front linearly, in
|N |` |E| (number of nodes and edges)
when the AT is tree-structured, mean-
ing none of the nodes share multi-
ple parents [15]. To adapt the ex-
isting bottom-up algorithm for ADTs,
the following steps are performed for a
node v P N :

1. Compute the Pareto Front bottom-up for each w P chpvq.

2. Identify all possible combinations of points from the children’s Pareto Fronts.

3. For each combination, apply the min or ` operations across the defense and attack
costs, depending on the values of γpvq and τpvq.

4. Discard the dominated points from the previous step.

In step 1, the bottom-up algorithm is recursively applied to each child of v. Due to this
recursive nature, the algorithm will first complete for the leaf nodes, and the results will
then be propagated up the tree towards the root node (hence the bottom-up naming). For
step 2, the Cartesian product is used to find all possible ways to combine the children’s
Pareto fronts. Unfortunately, computing all combinations is unavoidable, as it is impossible
to predict which points will be included in the Pareto front before evaluating all the value
pairs in step 3.

The objective of step 3 is to transform a vector of value pairs into a single value pair
pd, aq for each possible combination. Recall the meaning of a value pair from Section 3.5: if
the defender spends at least d, the node v is activated/not activated unless the attacker
spends at least a. With this in mind, Table 4.1 describes each operator applied, depending
on the values of γpvq and τpvq:
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• For a basic attack step, the defender has no node that can be activated, which leads
to a defense cost of 0. The least amount the attacker needs to spend to activate v is
βApvq. This leads to the P.F. tp0, βApvqu.

• For a basic defense step, the defender can spend either 0 or βDpvq. When the defender
and attacker spend at least 0 (i.e. do nothing), v remains activated. Similarly, if
the defender spends at least βDpvq, no optimal attack is possible, illustrated by an
attacker cost of 8. This leads to the P.F. tp0, 0q, pβDpvq,8qu.

• In the case of an AND node, a strategy is successful if and only if all of its child
strategies are also successful. Although the defender’s goal is to minimize the defense
cost, this is not possible yet, since the defender has to act before the attacker and
choose a defense for each child. In this case, the defender’s cost will be minimized
in step 4, where the non-optimal points are discarded. This intuition applies to the
following gate types as well, so we will only describe the attacker’s rationale:

– If τpvq “ A, then to enable v, the attacker needs to activate all children, leading
to a sum.

– If τpvq “ D, then to disable v, the attacker only needs to disable a single child.
Thus, the child with the minimum cost is picked.

• When it comes to an OR node, the attacker’s intuition is opposite from that of an
AND node.

– If τpvq “ A, then to enable v, the attacker can pick the child with the minimum
cost.

– If τpvq “ D, then to disable v, the attacker needs to activate all children, leading
to a sum.

• The INH gate has only two children vD, vA, with τpvDq “ D, and τpvAq “ A. By
taking the Cartesian product of the Pareto fronts of vD and vA to find all possible
strategies:

– If τpvq “ A, then to enable v, the attacker needs to enable vA and disable vD.
Thus, the attacker costs of vA and vD need to be summed.

– If τpvq “ D, then to disable v, the attacker can either disable vD or enable vA.
Thus, the attacker picks the option with a lower cost.

The output of step 3 is a set of value pairs. In step 4, we reduce the elements of this set
to the Pareto Front by discarding all the dominated points according to Definition Def. 8.
The complete algorithm is presented in Alg. 1, where FindPF represents step 4 specifically.

Example 2. Let us consider the tree in Ex. 1 to exemplify how the algorithm operates
step by step. Since the root is an attack OR gate, according Table 4.1, we need to compute
FindPFptp

řn
i“1 di,minni“1 aiq | pd⃗, a⃗q P

Ś

uPchpvq BUpT, u, βquq. In Table 4.2, we divide this
goal into three sub-goals:

- 2nd column (Algorithm step 2): Find the Cartesian product between the children’s
Pareto Fronts.

- 3rd & 4th column (Algorithm step 3): For each pair in 2nd column, apply the appro-
priate operators to find the value pairs.

- 5th column (Algorithm step 4): Reduce the values from the 4th column to the Pareto
Front.
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Algorithm 1 Bottom-up
Input:

T : attack defense tree
v: node v P N
β: assignment of nodes P N

Output: Pareto frontier of the sub-tree rooted at v.
1: procedure BU(T, v, β)
2: ptsÐ new array
3: if v P A then
4: return tp0, βApvqqu
5: else if v P D then
6: return tp0, 0q, pβDpvq,8qu
7: else
8: pÐ

Ś

uPchpvq BUpT, u, βq Ź Step 2
9: pv Ð tp⃝D

n
i“1di,⃝A

n
i“1aiq | pd⃗, a⃗q P pu Ź Step 3

10: return FindPF(pv) Ź Step 4

Input: pts: set of strategy values.
Output: Subset of non-dominated values from pts.
1: procedure FindPF(pts)
2: resultÐ new array
3: Sort pts first ascending based on βD, and then descending on βA
4: Add ptsr0s to result
5: for iÐ 1 to |pts| ´ 1 do
6: pd, aq Ð ptsris
7: pdlast, alastq Ð resultr|result| ´ 1sq
8: if d ą dlast and a ą alast then
9: Add pd, aq to result

10: return result

Node
Ś

uPchpvq BUpT, u, βq Op. Value pair FindPF
d1 p0, 0q, p5,8q

d2 p0, 0q, p10,8q

AND1

`

p0, 0q, p0, 0q
˘

,
`

p0, 0q, p10,8q
˘

,
`

p5,8q, p0, 0q
˘

,
`

p5,8q, p10,8q
˘

`
ř

,min
˘

p0, 0q,
p10, 0q,
p5, 0q,
p15,8q

p0, 0q, p15,8q

a1 p0, 5q

INH1

`

p0, 0q, p0, 5q
˘

,
`

p15,8q, p0, 5q
˘

`
ř

,min
˘

p0, 0q,
p15, 5q

p0, 0q, p15, 5q

a2 p0, 10q

INH2

`

p0, 0q, p0, 10q
˘

,
`

p15, 5q, p0, 10q
˘

`
ř

,
ř
˘

p0, 10q,
p15, 15q

p0, 10q, p15, 15q

a3 p0, 15q

OR1

`

p0, 10q, p0, 15q
˘

,
`

p15, 15q, p0, 15q
˘

`
ř

,min
˘

p0, 10q,
p15, 15q

p0, 10q, p15, 15q

Table 4.2: Step-by-step walkthrough of the BU algorithm applied on Ex. 1.
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Figure 4.1: Graphical representation on how the BU algorithm propagates the
Pareto fronts on the ADT from Ex. 1

.

As an alternative to the textual notation from Table 4.2, a graphical representation
is created to illustrate how the values propagate in the tree towards the root node by
finishing Ex. 1. This is depicted in Figure 4.1. In addition to the previously found p15, 15q
point, another Pareto point, p0, 10q, is observed, where the defender does nothing, and the
minimum cost of a successful attack is achieved by activating a2.

4.2 Complexity

Although Alg. 1 is linear in the size of the tree, the operations performed at each node are
not linear because the Pareto fronts can grow exponentially due to the Cartesian product
Ś

.

Example 3. Consider the ADT in Figure 4.2, where RT “ ORpINH1, INH2, INH3q, and
for each w “ INHi, βDpwaq “ βApwcq “ 2i. We strategically choose the values in βD and
βA such that the sum between the defense costs is unique (and similarly for the attack
costs). At each INHi, we get BUpT, INHi, βq “ tp0, 0q, p2i, 2iqu. Taking the Cartesian
product between n such INH nodes:

P “
␣`

px1, x1qpx2, x2q, px3, x3q
˘

| xi P t0, 2
iu
(

The operators applied at a defense OR gate are p
ř

,
ř

q. As each element in
␣
ř3

i“1 xi
| xi P t0, 2iu

(

is unique, all the elements in P are Pareto optimal, resulting in an expo-
nential Pareto front: |PFSpT q| “ 23. Generalizing this for n is straightforward by adding
additional INH nodes. Thus, for every |D|, there is a T such that |PFSpT q| “ 2|D|.

4.3 Proof for the Bottom-up Algorithm

Proof for Alg. 1. For an attack-defense tree T , we want to prove that Alg. 1 constructs the
Pareto front as described in Section 3.4, which is BUpRT q “ PFSpT q. To achieve this, we
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Figure 4.2: ADT depicting an exponential Pareto front size.

will use strong induction using the height of the nodes within the tree.

The height is a function h : N Ñ N, where: hpvq “

#

1, if v P B
maxwPchpvq hpwq ` 1, if v R B

‹ Base case. When the tree has a height of hpvq “ 1, it consists of a single node v “ RT ,
which can be either a basic attack or defense step:

1. If v P A: There is a single strategy S “
␣

p0, vq
(

with a value β̂
`

p0, vq
˘

“
`

0, βApvq
˘

.
Therefore, PFSpT q “

␣

p0, βApvqq
(

which is exactly what BU returns on line 4.

2. If v P D: The defender has two options: do nothing or activate v. If v is activated,
then no attack is possible at this basic defense node, making the value of a “successful”
attack 8. This results in the Pareto front

␣

p0, 0q, pβDpvq,8q
(

, which is also the
output of BU on line 6.

‹ Inductive Hypothesis. Consider an ADT T with root v “ RT , having a height
hpvq “ k. Let Tw be the sub-tree rooted at a node w P N . We assume that the property
BUpwq “ PFSpTwq holds for all children w P chpvq at height hpwq “ k ´ 1, and recursively
for all descendants of these children.

‹ Induction step. Using the inductive hypothesis, we want to prove that BUpvq “
PFSpTvq holds for v itself.

In the following, the proofs for Lemma 1 and 2 are postponed until the end of the
section. The proof of Lemma 3 is straightforward and thus omitted. Likewise, Lemma 4
and 5 are derived from the structure of the BU and FindPF algorithms.

Lemma 1. β̂
`

SpTvq
˘

“

!

▽n
i“1β̂psiq | s⃗ P

Śn
i“1 SpTviq

)

For a node v P N and a tree Tv, the set of strategies SpTvq is constructed by considering
all possible combinations of strategies from its child nodes vi. Let ▽ denote the suitable
pairs of operators that should be applied for v (e.g. in the minimum cost domain, when
γpvq “ OR and τpvq “ A then ▽ “ p

ř

,minq). The set of value pairs for strategies of Tv is
determined by applying ▽ to each tuple of strategies.

We start the induction step with this Lemma’s equation:

(4.1) β̂
`

SpTvq
˘

“

#

▽n
i“1β̂psiq | s⃗ P

n
ą

i“1

SpTviq

+
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Lemma 2.
!

▽n
i“1β̂psiq | s⃗ P

Śn
i“1 SpTviq

)

“

!

▽n
i“1gi | g⃗ P

Śn
i“1 β̂

`

SpTviq
˘

)

We rewrite the right side of Equation 4.1 by moving the β̂ to the predicate. In this
context, g⃗ represents a vector of value pairs, on which the operations from ▽ are applied:

(4.2) β̂
`

SpTvq
˘

“

#

▽n
i“1gi | g⃗ P

n
ą

i“1

β̂
`

SpTviq
˘

+

Apply Lemma 2 to replace the right-hand side of Equation 4.2. Additionally, we sim-
plify the notation by applying ▽ directly to the value pairs resulted from β̂:

(4.3) β̂
`

SpTvq
˘

“▽
n
ą

i“1

β̂ pSpTviqq

Remove the dominated value pairs from both sides of the equation:

(4.4) minĎβ̂
`

SpTvq
˘

“ minĎ▽
n
ą

i“1

β̂ pSpTviqq

Lemma 3. The minĎ operation is idempotent. For a set of points X in a two-dimensional
space, minĎpminĎpXqq “ minĎpXq.

We rewrite the left-hand side of the equation with the equivalent PFSpTvq notation.
On the right-hand side, we apply Lemma 3 which permits us to take minĎ of β̂

`

SpTviq
˘

without changing the results.

(4.5) PFSpTvq “ minĎ▽
n
ą

i“1

minĎβ̂
`

SpTviq
˘

Now apply the PFSpTvq notation on the right side as well:

(4.6) PFSpTvq “ minĎ▽
n
ą

i“1

PFSpTviq

Use the Induction Hypothesis for each child vi:

(4.7) PFSpTvq “ minĎ▽
n
ą

i“1

BUpviq

Lemma 4. minĎX “ FindPFpXq

The algorithm FindPF sorts the elements in X in ascending order based on the defense
cost and in descending order based on the attack cost, following the logic of Ď. Then,
the dominated elements are removed, representing the min operation. Apply Lemma 4 to
replace minĎ on the right-hand side of the equation:

(4.8) PFSpTvq “ FindPF
´

▽
n
ą

i“1

BUpviq
¯

Lemma 5. BUpTvq “ PF
`▽Śn

i“1 BUpviq
˘
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The operations described by ▽ are the same operations described in Table 4.1. In
line 10 of the algorithm, FindPF is called with the aggregated metric values resulting from
applying ▽.

(4.9) PFSpTvq “ BUpTvq

Proof of Lemma 1. Let vi P chpvq be a child node of v and SpTviq be the set of strategies
in the sub-tree Tvi . To find SpTviq, each possible combination of strategies from each child
node needs to be considered because a strategy for v depends on how all the strategies
from all its children are combined. This can be achieved by taking the Cartesian product,
denoted by

Ś

, across all children i:
n
ą

i“1

SpTviq

To determine β̂pSpTvqq, each combination of strategies from
Śn

i“1 SpTviq needs to be
aggregated to a single value pair for the node v. This can be achieved by choosing the
appropriate ⃝D and ⃝A operators from Table 4.1, based on the specific properties of the
node v (e.g., γpvq and τpvq). An argument for the appropriateness of the operators is given
in Section 4.1. We denote the operator pair (⃝D, ⃝A) by ▽, leading to

β̂
`

SpTvq
˘

“

#

n

▽
i“1

β̂psiq | s⃗ P
n
ą

i“1

SpTviq

+

Proof of Lemma 2. To show that these two sets are equal, we need to prove that for any
s⃗ P

Śn
i“1 SpTviq, there exists a corresponding g⃗ P

Śn
i“1 β̂

`

SpTviq
˘

such that ▽n
i“1β̂psiq “

▽n
i“1gi and vice versa. Recall that s⃗ represents a tuple formed by combining the strategies

of all the sub-trees Tvi . Let s⃗ “ ps1, s2, . . . , snq P
Śn

i“1 SpTviq. Each si “ pδ⃗i, α⃗iq can be
seen as a pair of binary vectors that β̂D and β̂A can act upon. Define:

δ⃗1 “

¨

˚

˚

˚

˝

δ⃗1
δ⃗2
...
δ⃗n

˛

‹

‹

‹

‚

and α⃗1 “

¨

˚

˚

˚

˝

α⃗1

α⃗2
...
α⃗n

˛

‹

‹

‹

‚

so that s⃗ “ pδ⃗1, α⃗1q. Given s⃗, we apply the operators β̂D and β̂A to the components δ⃗1 and
α⃗1, respectively: g⃗ “

`

β̂Dpδ⃗1q, β̂Apα⃗1q
˘

. By construction, g⃗ P
Śn

i“1 β̂pSpTviqq. Applying the
operators ▽n

i“1, we get:
▽n

i“1β̂psiq “▽n
i“1gi.

Conversely, let g⃗ P
Śn

i“1 β̂
`

SpTviq
˘

. For each i, there exists si “ pδ⃗i, α⃗iq P SpTviq

such that gi “
`

β̂Dpδ⃗iq, β̂Apα⃗iq
˘

. Define s⃗ “ ps1, s2, . . . , snq P
Śn

i“1 SpTviq. Applying the
operators ▽n

i“1, we get:
▽n

i“1gi “▽n
i“1β̂psiq

Hence, the two sets are equal:
#

▽n
i“1β̂psiq | s⃗ P

n
ą

i“1

SpTviq

+

“

#

▽n
i“1gi | g⃗ P

n
ą

i“1

β̂
`

SpTviq
˘

+
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Chapter 5

DAG-structured ADTs

Figure 5.1: BU algorithm
applied on a DAG, leading to
incorrect results.

The classical BU algorithm does not work when the
ADT has a DAG structure [16]. This limitation also
holds for the adapted BU algorithm in Alg. 1. An in-
tuitive explanation is that when a node has multiple
parents, the Pareto Front computed at that node is
propagated multiple times up the tree, causing that
value to be counted several times.

To illustrate this, we apply Alg. 1 on the ADT
from Figure 5.1 and annotate it using a graphical
representation. The node d1 serves as a counter-
attack for both inhibition gates, giving this ADT a
DAG structure. At each inhibition node, the opera-
tors

`
ř

,
ř
˘

are applied on the combinations of value
pairs, resulting in BUpT, INH1, βq “

␣

p0, 2q, p1,8q
(

and BUpT, INH2, βq “
␣

p0, 1q, p1,8q
(

.
At the root OR1 node, when PFSpINH1q and

PFSpINH2q are combined, then d1 will inevitably be counted twice.

BUpT,OR1, βq “
␣

p0, 1q, p1, 2q, p2,8q
(

Furthermore, the value pair p1, 2q is produced, which is not valid: with a defense cost
of at least 1, it is incorrect that the node OR1 is not activated unless the attacker spends
at least 2. In this scenario, it should be that no attack can reach OR1 when the defender
spends at least 1.

To find the correct Pareto Front for the tree in Figure 5.1, we need to find minĎβ̂pSq.
To achieve this, we create a table similar to Table 1.1 where we track all possible defenses,
their costs, and minimum attacks. This is illustrated in Table 5.1, where we obtain β̂pSq “
␣

p0, 1q, p1,8q
(

. All value pairs are already Pareto optimal, so:

PFSpOR1q “ tp0, 1q, p1,8qu

Clearly, applying Alg. 1 yields incorrect results for DAGs since BUpT,OR1, βq ‰ PFSpOR1q.

Defense Defense cost Min. size attacks Min. attack cost

H 0 {ta1u, ta2u} 1

td1u 1 H 8

Table 5.1: Quantitative evaluation of the ADT in Figure 5.1

26



5.1 Naive approach

For ATs, it is known from Lopuhaä-Zwakenberg et al. [26] that computing a metric for a
semiring attribute domain in a DAG-structured AT is generally NP-hard. The same holds
for the ADTs discussed in this thesis, as they are an extension of ATs.

The procedure applied in Table 1.1 and Table 5.1 is clearly inefficient. To find S, we
go through each possible defense vector, find the minimum cost attack, and remove the
dominated points according to Ď.

The time complexity of this algorithm is primarily driven by the exponential growth of
the number of combinations of attacks and defenses in the tree, which is 2|D|`|A|. At each
step, computing β̂Dpδ⃗q takes Op|D|q, β̂Apα⃗q takes Op|A|q, while fT pδ⃗, α⃗, RT q (checking if
the strategy is successful) is linear in the number of nodes in the tree: Op|N |q. Bringing
it all together, the Naive approach takes Op2|D|`|A| ¨ p|D| ` |A| ` |N |qq which is clearly
inefficient for large-scale trees.

Even so, formally defining this approach is still beneficial: it provides a practical refer-
ence point for what minĎβ̂pSq outputs for DAGs, while serving as a stepping stone for the
next algorithms to improve on. Alg. 2 is rather straight forward. Lines 4-11 compute ρpδ⃗q
for each δ⃗ by going through all the possible attacks and finding the one with the minimum
cost. In the end, the value pairs are reduced to the Pareto front using FindPF (Lemma 4).

Algorithm 2 Naive algorithm for DAGs
Input:

T : attack-defense tree
v: node v P N
β: assignment of nodes P N

Output: Pareto front of the sub-tree rooted at v.
1: procedure Naive(T, v, β)
2: resultÐ new array
3: for δ⃗ P 2D do
4: att_costsÐ new array
5: for α⃗ P 2A do
6: if fT pδ⃗, α⃗, RT q “ 1 then Ź if the attack is successful
7: Add β̂Apα⃗q to att_costs

8: if att_costs “ ∅ then
9: Add

`

β̂Dpδ⃗q,8
˘

to result
10: else
11: Add

`

β̂Dpδ⃗q,minpatt_costsq
˘

to result

12: return FindPFpresultq
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Chapter 6

Biobjective Integer Linear
Programming

Integer Linear Programming (ILP) is another method that can be used for quantitative
analysis [34]. This involves a mathematical optimization problem where the variables are
constrained to be integers, and the objective function and constraints are linear. When
dealing with multiple objectives to optimize, the approach is called Multi-Objective Inte-
ger Linear Programming (MOILP). Given that we have two objectives to optimize (the
defender’s and attacker’s cost), we can name our approach Biobjective Integer Linear Pro-
gramming (BILP).

Each node in the tree is modelled as a binary variable [29]. This approach aligns with
the goal of computing the Pareto front: δ⃗ and α⃗ indicate whether a defense, respectively,
an attack, is enabled or disabled. To convert the BILP solutions into a Pareto front, the
cost for each (δ⃗, α⃗) solution is computed, and then the dominated points are removed. This
implies that by finding β̂pSq using BILP, the solutions can then be reduced to minĎβ̂pSq
using Lemma 4.

To compute β̂pSq, the ϵ-constraint method is used, where the constraints are varied on
different ϵ values to explore all solutions [40]. Each ϵ corresponds to a different defense
vector in D. This requires solving 2|D| single-objective problems, each known to be NP-hard
with a worst-case complexity of 2n, where n is the number of variables in the model [41].
Given that the model has a variable for each node in the tree, the worst-case complexity
of solving BILP is Op2|D|nq, where n is the number of nodes in the tree.

Although the theoretical worst-case complexity of solving BILP is higher than that of
the Naive approach, practical performance is usually much better due to the advanced
heuristics and optimization techniques developed over time [42]. We can leverage these op-
timizations by using state-of-the-art solvers such as CPLEX or Gurobi which solve MOILP
problems by repeatedly solving single-objective integer linear programming problems [36].

Note 6.1. Formulating a BILP problem which directly computes minĎβ̂pSq is not possible.
In general, a BILP problem for ADTs needs to solve problems of the form

minimize
ÿ

dPD
δdβDpdq

maximize min
ÿ

aPA
αaβApaq

subject to x⃗ P t0, 1uN ,

A ¨ x⃗ ď b⃗
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where A is a constraint matrix containing the coefficients of the linear inequalities, and
b⃗ is a vector that specifies the upper bounds for each constraint. Although some solvers do
not support directly maximizing an objective, this can easily be modelled as minimizing
the negative value of that objective.

Figure 6.1: DAG representing
non-linearity of attacker’s cost
function for BILP.

Let x⃗ be the status vector of all nodes in the
tree, the first objective be the defense cost, and
the second objective the attack cost. Then, the
defense cost is a linear function, but the attack
cost is not. The ordering pd1, c1q Ď pd2, c2q re-
quires c1 ě c2 while ρpδ⃗q requires c1 ď c2.

Example 4. The nonlinearity of the attacker’s
function comes from the fact that when T has a
DAG structure, the same defense vector δ⃗ might
be evaluated across different paths, leading to
multiple points with the same defense cost but dif-
ferent minimal costs. Consider Figure 6.1 where
D “ td1, d2u, βDpd1q “ 10 and βDpd2q “ 10. Two
solutions are p10, 2q and p10, 3q, where 2 is the
minimum cost for δ⃗ “ td1u and 3 is the minimum
cost for δ⃗ “ td2u. In this case, p10, 3q is dominates
p10, 2q since it enforces a higher attack cost.

This forces us to find the max and min in two
separate steps. Initially, the min operation is ad-
dressed by using a secondary objective function that minimizes β̂Apα⃗q. Then, the solutions
with a minimum attack cost for each defense are passed to the FindPF function to discard
the non-optimal elements.

Revisiting Figure 6.1, if we had not explored all the solutions using the ϵ-constraint
method, then p10, 3q would not have been a solution to begin with, as minimizing β̂Apα⃗q
would have excluded p10, 3q.

6.1 Variables

Since nodes in the tree are activated or disabled, there will be |N | binary variables, denoted
by y⃗ P BN . Using y⃗, the goal is to encode a vector pair pδ⃗, α⃗q such that for all d P D,
δd “ yd and for all a P A, αa “ ya. For all the other variables v P NzB, linear constraints
must be created such that yv models fT pδ⃗, α⃗, vq.

6.2 Constraints

For each gate v P NzB with γpvq P tAND, AND, INHu, the following constraints are defined.
When v is an AND gate, we need to enforce yv “ 1ô @w P chpvq. yw “ 1.

• @w P chpvq. yv ď yw: ensures that yv is 1 only when all of its children are 1.

• yv ě
`

ř

wPchpvq

yw
˘

´ |chpvq| ` 1: ensures that when all of its children are 1 then yv is 1.

When v is an OR gate, we must enforce yv “ 1ô Dw P chpvq. yw “ 1.

• @w P chpvq. yv ě yw: ensures that when any of its children is 1, then yv is 1.
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• yv ď
ř

wPchpvq

yw: ensures that yv is 1 when at least one of its children is 1.

When v is an INH gate, let va represent the attack child and vc the counter-attack child.
Then, we need to enforce yv “ 1ô ya “ 1^ yc “ 0.

• yv ě yva ´ yvc : ensures that yv is 1 when the attack is 1 and the counter-attack is 0.

• yv ď yva : ensures that when the attack is 0, yv is also 0.

• yv ď 1´ yvc : ensures that when the counter-attack is 1, yv must be 0.

Altogether, these constraints ensure that yv has the behaviour specified by fT pδ⃗, α⃗, vq
for all v.

Finally, we need one last constraint, called goal, to represent the attacker’s intent: if
τpRT q “ A, then we need to make sure that RT is reached: yRT

“ 1. Otherwise, RT should
not be reached: yRT

“ 0.

6.3 Objectives

The defender wants to minimize his own cost, which results in the first optimization func-
tion being to minimize

ř

dPδ⃗

δdβDpdq.

As for the attacker, we revisit the definition of ρpδ⃗q from Section 3.5. Since the min-
imization constraint fT pδ⃗, α⃗, RT q “ 1 (or fT pδ⃗, α⃗, RT q “ 0 respectively) is represented by
the goal constraint yRT

, the attacker’s cost is simply
ř

aPα⃗

αaβApaq.

6.4 Model

Combining the previously mentioned variables, constraints, and objectives forms a BILP
problem that finds the minimum attacker cost for a given δ⃗. However, if there exists a δ⃗
such that all attacks are prevented (as in Figure 5.1, where d1 blocks all attacks), then
BILP will have no feasible solution. In that case, the minimum cost is 8.

For a defense vector δ⃗, it is straightforward to prove that β̂A
`

ρpδ⃗q
˘

can be found by
solving the following BILP problem. If BILP has no feasible solution, then β̂A

`

ρpδ⃗q
˘

“ 8

minimizey⃗PBN

¨

˚

˝

ř

dPδ⃗

δdβDpdq

ř

aPα⃗

αaβApaq

˛

‹

‚

subject to @d P D.

yd “ δd,

@v P tv1 P N | γpv1q “ ANDu.

@w P chpvq. yv ď yw,

yv ě
`

ÿ

wPchpvq

yw
˘

´ |chpvq| ` 1,

@v P tv1 P N | γpv1q “ ORu.

@w P chpvq. yv ě yw,

yv ď
ÿ

wPchpvq

yw,
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@v P tv1 P N | γpv1q “ INHu. yva , yvc “ chpvq s.t. :
yv ě yva ´ yvc ,

yv ď 1´ yvc ,

yv ď yva ,

yRT
“ 1 if τpRT q “ A; otherwise yRT

“ 0.

For instance, the ADT and value assignment from Figure 6.1 produces the following
problem for a fixed δ⃗ “ td2u:

minimizey⃗PBN

ˆ

10d1 ` 10d2
a1 ` 2a2 ` 3a3

˙

subject to

yd1 “ 0, yINH1
ď ya1 ,

yd2 “ 1, yINH1
ě 1´ yOR2

,

yOR1
“ 1, yINH1

ě ya1 ´ yOR2
,

yOR1
ě yINH1

, yINH2
ď ya2 ,

yOR1
ě yINH2

, yINH2
ě 1´ yd1 ,

yOR1
ě yINH3

, yINH2
ě ya2 ´ yd1 ,

yOR1
ď yINH1

` yINH2
` yINH3

, yINH3
ď ya3 ,

yOR2
ě yd1 , yINH3

ě 1´ yd2 ,

yOR2
ě yd2 , yINH3

ě ya3 ´ yd2 .

yOR2
ď yd1 ` yd2 ,

A few possible optimizations exist when implementing Alg. 3. For example, if a vector
δ⃗ results in an 8 attack cost, then all the other defense vectors that extend δ⃗ can be
skipped, as they will also result in an 8 attack cost while having a higher defense cost.
However, these considerations are omitted here, as we are focusing on the general structure
of the algorithm.

Algorithm 3 BILP
Input:

T : attack-defense tree
β: assignment of nodes P N

Output: Pareto front of T .
1: procedure BILP(T, β)
2: resultÐ new array
3: modelÐ Initialize BILP problem, without any δ⃗ constraint
4: for δ⃗ P 2D do
5: Update model with δ⃗ constraint
6: if model has a feasible solution then
7: cost_solÐ retrieve model solution for the attacker
8: Add

`

β̂Dpδ⃗q, cost_sol
˘

to result
9: else

10: Add
`

β̂Dpδ⃗q,8
˘

to result

11: return FindPFpresultq
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Chapter 7

Binary Decision Diagrams

This section introduces three Binary Decision Diagrams (BDDs)-based algorithms to com-
pute the Pareto front for ADTs with a DAG structure. Furthermore, we delve into the
mathematical model behind BDDs and the constraints under which the algorithms operate.
The performance differences between these algorithms are explored in Chapter 8.

BDDs offer a compact representation of Boolean functions. Since BDDS can have
shared sub-trees, they can effectively model DAG structures. Generally, a BDD represents
a Boolean function f : Bn Ñ B over variables V ars “ txiu

n
i“1 [26]. Specifically, for an ADT,

V ars contains the variables corresponding to defense steps, denoted by D, and variables
corresponding to attack steps, denoted by A. Thus, V ars “ DY A, where:

D “ td P V ars | d P Du
A “ ta P V ars | a P Au

The structure function from Def. 4 allows an ADT to be modelled as a Boolean function,
which can subsequently be represented by a BDD. We use Definition 5.8 of a BDD-encoded
attack tree as outlined by Lopuhaä-Zwakenberg et al. [26]. This definition remains directly
applicable for ADTs, as the underlying BDD model remains consistent although ADTs
require a more complex Boolean function than ATs. For convenience, we will reiterate this
definition in this section as well.

The terminal nodes in the BDD are binary values, specifically False and True, rep-
resenting the Boolean function f output. For easier notation, 0T is used for the False
terminal node and 1T for the True terminal node. Given that each variable in V ars can
appear multiple times in the BDD, it is essential to distinguish between a variable in f
and a node within the tree. A nonterminal BDD node w PW represents a subfunction fw
of f as defined by its Shannon expansion. This means that w is associated with a variable
Labpwq P V ars, a Lowpwq child representing fw when Labpwq is set to 0, and a Highpwq
child representing fw when Labpwq is set to 1.

Definition 9. A BDD is a tuple B “ pW,Low,High, Labq over a set V ars where:

• The set of nodes W is partitioned into terminal nodes pWtq and nonterminal nodes
pWnq;

• Low : Wn ÑW maps each node to its low child;

• High : Wn ÑW maps each node to its high child;

32



• Lab : W Ñ t0T , 1T uYV ars maps terminal nodes to Booleans and nonterminal nodes
to variables:

Labpwq P

#

t0T , 1T u if w PWt,

V ars if w PWn.

Moreover, B satisfies the following constraints:

• pW,Eq is a connected DAG, where

E “
␣

pw,w1q PW 2 | w1 P tLowpwq, Highpwqu
(

;

• B has a unique root, denoted RB:

D!RB PW. @w PWn. RB R tLowpwq, Highpwqu .

Definition 10. Given a BDD B and a Boolean vector of variables x⃗ P BV ars, a path
in B corresponding to x⃗ is defined as a sequence of nodes p “ pw0, w1, . . . wmq where
each nonterminal node wi P Wn is associated with a Boolean variable xi: Labpwiq “ xi.
Additionally, p conforms to the following constraints:

• w0 PWn is the root node of the BDD.

• wm PWt is a terminal node.

• For each i where 0 ď i ă n.

– wi`1 “ Lowpwiq if xi “ 0

– wi`1 “ Highpwiq if xi “ 1

7.1 Evaluating Path Costs

A path p “ pw0, w1, . . . wmq where w0 “ RB can correspond to multiple pairs of defense
and attack vectors pδ⃗, α⃗q:

1. For each wi in p where wi P D, the value of the Boolean variable Labpwiq corresponds
to the value of δwi .

2. For each wi in p where wi P A, the value of the Boolean variable Labpwiq corresponds
to the value of αwi .

3. For each variable in DYA that is not in p, that variable could either be activated or
disabled since by construction of the BDD, the activation of this variable does not
impact the output of the structure function.

As it is both the defender’s and the attacker’s goal to minimize their costs, it follows
that if a variable wi from DYA is not in a path p, then wi is disabled. As each variable in
D and A is now mapped to a single Boolean, this implies that each path p corresponds to a
unique strategy pδ⃗, α⃗q. Consequently, the value pair of p can be found by taking β̂

`

pδ⃗, α⃗q
˘

.
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Figure 7.1: ADT for exem-
plifying variable ordering.

Figure 7.2: BDD with incor-
rect variable ordering.

Figure 7.3: BDD with cor-
rect variable ordering.

7.2 Variable ordering

In this thesis, we work with Reduced Ordered BDDs (ROBDD). For a specification about
what these entail, refer to Rudell [43]. Although a BDD can be uniquely reduced with
any linear variable ordering ă defined on V ars, not all orderings can accurately represent
ADTs with defensive and offensive attributes. These can be encoded as BDDs only for the
orderings ă where all the defense variables precede all the attack variables.

Note 7.1. To model the assumption that the defender acts first, a linear variable ordering
ă can be used for reducing a BDD-encoded ADT only if @d P D.@a P A. d ă a. The linear
orders used for the algorithms in this section must satisfy this property.

To understand the reasoning behind Note 7.1, consider the ADT in Figure 7.1 and its
BDD representation in Figure 7.2, which uses the variable ordering a1 ă a2 ă d1 ă d2. In
Figure 7.2, grey nodes represent attack steps, while green nodes represent defense steps.
The terminal nodes are marked with white. A dashed line from w Ñ w1 means that
Lowpwq “ w1, while a solid line means Highpwq “ w1.

Note 7.2. When representing the path of a BDD in text, for clarity, we write wi as ␣wi

if xi “ 0, and wi otherwise.

Although the BDD is reduced, the paths that end in 1T do not always have minimum
cost: the path pa1, a2,␣d1, 1T q leads to both a1 and a2 being activated, although only
one of them is needed for reaching the root OR node. Furthermore, this ordering does not
correctly model ρpδ⃗q, as the attacker does not know the complete defense vector before
choosing his actions.
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As an alternative, the BDD in Figure 7.3 models Figure 7.1 using the variable ordering
d2 ă d1 ă a1 ă a2, which satisfies Note 7.1. In this case, ρpδ⃗q is correctly modelled, as
at the first occurrence of an attack variable in the path, all defense variables have already
been passed through.

Furthermore, the path pd2, d1, 0T q in this BDD has an interesting behaviour: it contains
no attacks and leads to the terminal 0T node. Any attacks that were previously in the
BDD before it was reduced were removed, as their Low and High edges would lead to 0T .
This means that no α⃗ can reach the root node when d2 and d1 are enabled.

Note 7.3. Given an ordering that satisfies Note 7.1 and a path pw1, . . . , wmq such that
wm “ 0T , and @i ă m.Labpwiq P D, then ρpδ⃗q “ 8. In other words, if a path only
contains defenses and ends in the terminal node 0T , then the defenses on that path block
all attacks.

7.3 Algorithms

The approach of encoding an ADT into a BDD is similar to that of encoding a fault tree
into a BDD [44]. First, the propositional formula resulting from the structure function fT
is determined, and a variable ordering which satisfies Note 7.1 is identified. With these
elements, the ROBDD can be constructed.

Similar to the BDD-based algorithms for attack trees, the attribute domain must be
an absorbing semiring [26]. As specified in Section 3.5, we operate on the pRě0,min,`q
domain, which satisfies the proprieties of a semiring, and the absorption property (Sec-
tion 3.2). When working with a BDD, there are multiple ways to compute minĎβ̂pSq. The
proofs for Theorems 7.1, 7.2, and 7.3 are outside the scope of this thesis.

7.3.1 BDD-PATHS

The first approach involves identifying all the paths in the BDD which lead to 1T . For a

node w, let P pwq be the set of paths that start at node w and end at

#

1T if τpRT q “ A

0T if τpRT q “ D
Depending on the implementation, P pwq can be found using a Depth-First-Search,

Breadth-First-Search, Dynamic Programming or other approaches [45].
The BDD-PATHS algorithm is illustrated in Alg. 4. The first step is to create the

ROBDD from the structure function fT and a linear order “ă”. For each path in P pRbddq,
we compute the value pair pd, aq of the strategy that corresponds to pδ⃗, α⃗q. In pf_dict,
we keep track of all the previous paths and their defense costs. When pf_dict contains
another path with the same defense cost d, there are two possibilities:

• If δ⃗ and the defense vector corresponding to the other path are the same, then we
model the behaviour of ρpδ⃗q, which minimizes the attack cost.

• If the defense vectors differ, we encounter a situation similar to Figure 6.1 where we
need to maximize the minimum attack cost.

Next, we search for all the paths leading to 0T that only contain defenses (Note 7.3).
If any are found, we add

`

β̂Dpδ⃗q,8
˘

to result. Lastly, we remove all the dominated points
using FindPF, resulting in the Pareto front.

Theorem 7.1. Given an ADT T , a cost assignment β, and a variable ordering “ă” satis-
fying Note 7.1, Alg. 4 correctly computes the Pareto front: BDDPATHSpT, β,<q “ PFSpT q.
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Algorithm 4 BDD-PATHS
Input:

T : attack defense tree
β: assignment of nodes P N

Output: Pareto Front of T .
1: procedure BDDPATHS(T, β,ă)
2: LT Ð Boolean expression given by fT
3: bddÐ Create ROBDD from the expression LT and order ă
4: pf_dictÐ new dictionary
5: for p P P pRbddq do
6: pδ⃗, α⃗q Ð p Ź extract the vectors from the path
7: dÐ β̂Dpδ⃗q
8: aÐ β̂Apα⃗q
9: if d in pf_dict then

10: p1 “ pf_dictrds
11: pδ⃗1, α⃗1q Ð p1

12: a1 Ð β̂Apα⃗1q

13: if δ⃗ “ δ⃗1 then
14: if a ă a1 then Ź minimize attack if defense vectors are the same
15: pf_dictrds “ p

16: else if a ą a1 then Ź maximize attack if defense vectors are different
17: pf_dictrds “ p

18: else
19: pf_dictrds “ p

20: resultÐ Initialize with values of pf_dict.
21: Add infinity points resulting from Note 7.3 to result
22: return FindPFpresultq

7.3.2 BDD-ALL-DEF

Another approach is to use the BDDDAG algorithm from Lopuhaä-Zwakenberg et al. [26] to
find the minimum attacker cost. This requires running the algorithm 2|D| times by creating
a BDD for the ADT obtained by fixing a defense vector δ⃗ and performing a bottom-up
computation on that BDD.

The BDD-ALL-DEF algorithm is illustrated in Alg. 5. To create a BDD from a fixed
defense vector δ⃗, let LT be the Boolean expression given by the structure function fT .
Then, LT rD Ð δ⃗s is the operation of substituting the defense variables in D with their
Boolean values from δ⃗.

Example 5. For an ADT T , let LT “ pa1^␣d1q _ pa2^␣d2q be the Boolean expression
given by fT . For δ⃗ “ td2u, we replace d1 with False and d2 with True, resulting in:

LT rd1 Ð False, d2 Ð Trues “ pa1 ^␣Falseq _ pa2 ^␣Trueq “ a1

The BDD obtained from fixing δ⃗ now embodies a regular AT. Now, it is possible to
use the BDDDAG algorithm to compute the minimum cost. BDDDAG requires that the attribute
domain is an idempotent and absorbing semiring, properties satisfied by the minimum
cost (Section 3.5). The resulting value pair is added to result. Lastly, we remove all the
dominated points using FindPF, yielding the Pareto front.
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Theorem 7.2. Given an ADT T , a cost assignment β, and a variable ordering “ă” satis-
fying Note 7.1, Alg. 5 correctly computes the Pareto front: BDDALL-DEFpT, β,<q “ PFSpT q.

Algorithm 5 BDD-ALL-DEF
Input:

T : attack defense tree
β: assignment of nodes P N

Output: Pareto Front of T .
1: procedure BDDALL-DEF(T, β, <)
2: resultÐ new array
3: LT Ð Boolean expression given by fT
4: for δ⃗ P 2D do
5: bddÐ Create ROBDD from LT rD Ð δ⃗s,ă
6: att_costÐ BDDDAGpbdd,RT , β, pRě0,min,`qq
7: Add

`

β̂Dpδ⃗q, att_cost
˘

to result

8: return FindPFpresultq

7.3.3 BDD-BU

Lastly, we can adapt the BDDDAG algorithm from Lopuhaä-Zwakenberg et al. [26] to propa-
gate the defender’s costs together with the attacker’s cost in a bottom-up manner. Similar
to Alg. 1, we will eliminate the dominated points at each node w PW .

The BDD-BU algorithm is illustrated Alg. 6. To focus on the recursivity of the al-
gorithm, we omit the translation from the ADT to the BDD. This should be performed
similarly to the other BDD algorithms by using a variable ordering “ă” satisfying Note 7.1.
Note that a BDD node w can be visited multiple times in this algorithm. Therefore, a
significant optimization involves caching the computed Pareto front at w. However, this
optimization is left out for a simpler algorithm.

The base cases of BDD-BU are defined by the terminal nodes in the BDD. At these
nodes, the goal is to model the meaning of a value pair (Section 3.5). If the root of the ADT
is an attacker (t “ A in the algorithm), then reaching 0T means the attack was stopped by
the defenses p0,8q. If 1T is reached, then the attack succeeded p0, 0q.

When the root of the ADT is a defender, then the value pairs from above are swapped:
reaching 0T means the attack succeeded in stopping the defense: p0, 0q, while reaching 1T
implies that the defense stopped the attack: p0,8q.

Then, the Pareto fronts of the low and high children are computed in pf_low and
pf_high respectively. Since taking a high child means that the variable Labpwq is True,
we add βD

`

Labpwq
˘

to the defense cost (or βA
`

Labpwq
˘

to the attack cost) of each value
pair in pf_high.

Finally, the non-optimal points in result are discarded in two different ways. When
the variable of the BDD node is a defense step, this requires maximizing the attack cost
through FindPF. However, when the variable is an attack step, we need to mimic the
behaviour of ρpδ⃗q by finding all the attacks with minimum cost.

Theorem 7.3. Let b be a BDD that encodes an attack-defense tree T , reduced with a
variable ordering “ă” satisfying Note 7.1. Given a cost assignment β, Alg. 6 correctly
computes the Pareto front: BDDBUpb, Rb, β, τpRT qq “ PFSpT q.
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Algorithm 6 BDD-BU
Input:

bdd: Binary Decision Tree
w: node PW
β: assignment of nodes P N
t: value of τpRT q

Output: Pareto Front of the ADT encoded by bdd.
1: procedure BDDBU(bdd, w, β, t)
2: if pLabpwq “ 0T ^ t “ Aq _ pLabpwq “ 1T ^ t “ Dq then
3: return

␣

p0,8q
(

4: else if pLabpwq “ 0T ^ t “ Dq _ pLabpwq “ 1T ^ t “ Aq then
5: return

␣

p0, 0q
(

6: else Ź w PWn

7: pf_low Ð BDDBU(bdd, Lowpwq, β, t)
8: pf_highÐ BDDBU(bdd,Highpwq, β, t)
9: if Labpwq P D then

10: Add βD
`

Labpwq
˘

to the defense of each element in pf_high
11: else
12: Add βA

`

Labpwq
˘

to the attack of each element in pf_high

13: resultÐ pf_low Y pf_high
14: if Labpwq P D then
15: return FindPF(result)
16: else Ź Minimize the attack cost for each defense
17: cost_dictÐ new dictionary
18: for pd, aq P result do
19: if d not in cost_dict or a ă cost_dictrds then
20: cost_dictrds Ð a

21: return items of cost_dict

7.4 Complexity

In the worst case, the size of a BDD is exponential in the number of V ars [46]. As the
linear ordering influences the BDD size, several heuristic approaches have been developed
that find an optimal order [43, 47].

In our experiments, Rudell’s sifting algorithm [43] generally resulted in the defenses
preceding the attacks. This makes sense intuitively, as it avoids scenarios such as Figure 7.1,
where paths contain unnecessary attack nodes that will be later defended against. However,
it is not guaranteed that directly applying the existing heuristic will satisfy Note 7.1.
Therefore, finding optimal variable ordering heuristics that satisfy Note 7.1 remains an
open problem for future research.
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Chapter 8

Experiments

In this section, we evaluate the performance of the algorithms presented in this thesis: BU,
Naive, BILP, BDDPATHS, BDDBU, and BDDALL-DEF. Since this work introduces a novel model for
representing attack-defense trees, existing literature and case-study examples cannot be
directly used as they lack a defender’s attribute domain.

One approach to address this issue is to annotate the existing ADTs found in the
literature with cost values for the defender. We were able to find several ADTs with
25 ď |N | ď 50 [48, 49] but only a limited number of ADTs with 50 ď |N | ď 100 [12, 13,
50]. Finding ADTs with |N | ě 100 can be challenging as they are not public for confidential
reasons [51].

In practice, the size of attack trees can range from a few dozen to several hundred
nodes [52]. Given the relatively small number and size of ADTs found in the literature,
we do not consider this a sufficient testing suite to evaluate the algorithms. Consequently,
it is necessary to generate ADTs synthetically. Two standard techniques for generating
trees are combining literature trees into a single one [34] or generating random ones from
scratch. Both approaches are used in our experiments, primarily focusing on the latter to
cover a broader range of defense scenarios and create a more robust test suite.

A risk analysis algorithm that takes several days may be feasible for some applications.
However, within the context of this thesis, given the hardware limitations and restricted
time to conduct experiments, we limit our testing scope by not pursuing computations
that take more than 104 seconds.

All experiments were performed on a machine with an Intel Core i5-12600K 3.7Ghz
processor and 16GB of RAM. The algorithms are implemented in Python 3.12, and for
BILP, we use the Gurobi solver [53] with the Python API. Although faster BDD run times
could perhaps be achieved using a C implementation such as in Sylvan [54] or CUDD [55],
we opted to maintain a consistent testing environment for all algorithms. The code and
results are available on GitHub 1.

8.1 Random ADTs

This approach uses many randomly generated ADTs to statistically significantly compare
the algorithms’ performance. After setting a maximum number of children n, nodes with
random proprieties (gate type, attack/defense type, number of children) are recursively
generated until the tree has |N | “ n nodes. Refer to Appendix B for the specific algorithm
used. This approach naturally creates tree- and DAG-structured ADTs.

1https://github.com/dvcopae/thesis_adtrees
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Figure 8.1: Summary of all the pairwise comparisons. The vertical axis represents
each algorithm’s median time in seconds for ADTs grouped by the number of nodes
|N | at intervals of size 20.

Figure 8.1 summarises the findings of the Random ADTs approach. In this plot, the
algorithms’ runtimes across all random graphs are aggregated by taking the median at
each interval of |N | “ 20. The number of ADTs in the interval, median and maximum
runtime can be found in Appendix C. Since the run time of Naive, BILP and BDDALL-DEF
increases at an exponential rate, the values at the end of the interval will be drastically
different from those at the beginning. Therefore, to better represent the central tendency
of the interval, the median is used instead of the average.

The differences in the algorithms’ performance are discussed in the following para-
graphs, where we perform pairwise comparisons between all the algorithms. Note that
Figure 8.1 uses the same ADTs as the pairwise comparisons, thus serving as a summary
for them. The plots share several common characteristics:

– Each plot is labeled “x, y” where x is the algorithm on the horizontal axis, and y is
the algorithm on the vertical axis.

– Both axes express run time in seconds.

– Each ˆ on the plot represents a random ADT.

– If a ˆ is placed on the lower side of the plot, it means algorithm y is faster; otherwise,
x is faster.

– When one of the algorithms was BU, only tree-structured ADTs are generated.

– The size and number of random ADTs are adjusted to ensure no ADT takes more
than 104 seconds.

All BDD-based algorithms are compared in Figure 8.2. For some trees with fewer than
50 nodes BDDBU appears to be equal to or even slightly slower than BDDPATHS and BDDALL-DEF.
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However, this difference is in the order of 10´2 seconds, which is unlikely to impact real-
world scenarios significantly. Since BDDBU scales better as the number of nodes increases,
BDDPATHS and BDDALL-DEF will be omitted from future pairwise comparisons, as any algorithm
faster than BDDBU will also be faster than these two.
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Figure 8.2: BDDBU, BDDPATHS, BDDALL-DEF pairwise time comparison to determine the
fastest BDD-based algorithm. Plot (a) contains 300 random ADTs with |N | ă 110
while plot (b) and (c) 120 ADTs with |N | ă 45.

For most of the small-sized trees with fewer than 50 nodes, the Naive algorithm sur-
prisingly outperforms BDDBU and BILP. We hypothesize this is because, with a very small
number of nodes, the time required to construct the BILP/BDD model makes up a sig-
nificant proportion of the total run time. However, as the number of nodes increases, the
Naive algorithm approaches a runtime of 104 seconds, even for some trees with less than
50 nodes. Clearly, the Naive algorithm has the slowest performance among the considered
methods.
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Figure 8.3: Pairwise time comparison between Naive and the other algorithms.
All the plots in this figure are based on 120 random ADTs with |N | ă 45.

In Figure 8.4, BILP is slower than both BDDBU and BU. While BILP allows for cost analysis
of trees with 50 to 100 nodes within 104 seconds, it exceeds this time for larger trees. As
both BU and BDDBU are quite fast, we extended our analysis for larger trees with up to 325
nodes. Remarkably, while the performance gap between the two remains consistent for
trees with fewer than 100 nodes, this drastically changes as trees gain more nodes. For
trees ranging from 300 to 325 nodes BDDBU requires approximately 103 seconds, whereas BU
roughly 10´3 seconds.

In summary, the Random ADTs approach indicates that BU computes the Pareto Front
the fastest for tree-structured ADTs, while BDDBU is the most efficient for DAGs.
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Figure 8.4: BU, BILP, BDDBU pairwise time comparison. Plot (a) and (b) are based
on 300 random ADTs with |N | ă 60 while plot (c) uses 600 ADTs with |N | ă 325

8.2 Cloned ADTs

One of the drawbacks of the previous approach is that the difference in performance be-
tween the algorithms might stem from different tree structures. This approach runs all six
algorithms on similarly structured trees of increasing size to verify whether this is the case.
Given that BU only works for tree-structured ADTs, all trees must have a tree structure.

The following steps are followed to maintain a similar structure across subsequent trees.
Starting with an ADT T “ pN,Eq, one of its attack leaves (BAS) is randomly replaced
with another ADT T 1 that has the same acyclic graph structure but distinct instances
for the nodes (refer to subsection 2.1.2 for the meaning behind the “instance of a node”).
This substitution process is performed multiple times to generate sequences of trees that
increase linearly in terms of |N |, |D| and |A|.

As Figure 4.1 has a tree structure and comes with various gate types and attack/defense
nodes, it is a suitable starting point for the cloning algorithm. This ADT has 9 nodes, of
which 2 are basic defense steps. Applying the method outlined above, we generate trees
that increase linearly by 8 in the number of nodes and 2 in the number of defenses. The
results are presented in Figure 8.5. To replicate the size of the ADTs found in the literature,
we cloned the tree from Figure 4.1, creating ADTs ranging from 9 to 129 nodes. As there is
still some randomness in the cost assignments and the leaf replacements, we do not expect
the run times to be strictly increasing but rather to have an increasing trend line. For the
precise runtime details of the ADTs presented in this figure, refer to Appendix A.

To begin with, the BU algorithm computes the Pareto front the fastest, with a runtime
of less than a millisecond, even for the largest tree containing 129 nodes. This algorithm
scales the best with an increasing tree size, making it the best-performing choice when the
ADT has a tree structure.

As anticipated, the Naive algorithm takes the longest time to run. For a tree with only
57 nodes, the algorithm requires over 3 hours, and thus, we intentionally stopped testing
it for a higher number of nodes due to time constraints.

On a broader scale, the BILP and BDDALL-DEF algorithms perform similarly. This is
expected, as both of them are computing ρpδ⃗q for each possible δ⃗. Unfortunately, they also
surpass the 104 seconds threshold, albeit for an ADT of nearly double the size compared
to the Naive approach. BDDALL-DEF is slightly faster, requiring only 2.08 hours for an ADT
with 97 nodes and 24 defenses, compared to 2.86 hours for BILP.

When comparing BDDPATHS and BDDBU, the bottom-up approach has a significantly lower
computation time. There are three factors that make BDDPATHS slower:
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Figure 8.5: Algorithms runtime comparison on trees cloned from Figure 4.1. The
labels on the horizontal axis follow the format “Tree size(defense count)” while the
vertical axis is the runtime is seconds.

1. The implemented memoization for BDDBU, which stores the Pareto fronts of intermedi-
ate nodes. This optimization is not feasible for BDDPATHS as there are no intermediate
results to store for later reuse.

2. The addition of infinity points at the end using Note 7.3, which also requires analyzing
all the failed paths.

3. In BDDBU all the non-optimal points are discarded at each BDD node w. However, in
BDDPATHS, the non-optimal points are discarded only for a specific path instead of all
paths starting from a node w, leading to an exponential input for FindPF at the end.

The observations of the cloning approach align with those of the Random ADTs ap-
proach. BU is the fastest algorithm, capable of analyzing a tree-structured ADT with
|N | “ 129 under one millisecond. As for algorithms capable of analyzing DAGs, BDDBU
computes the Pareto front the fastest, taking less than a millisecond for an ADT with
|N | “ 129. In contrast, other algorithms take minutes or even hours for the same ADT.
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Chapter 9

Conclusion & Discussion

In this thesis, we introduced a novel framework designed to support defender’s attribute
domains within attack-defense trees. The primary highlights of this framework include
a formal syntax and semantic model for representing ADT with attacker and defender
attribute domains and modelling the Pareto front between these attribute domains.

Starting with a naive enumerative approach, we delved into various techniques, in-
cluding bottom-up analysis, integer linear programming, and Binary Decision Diagram
methods, for computing the Pareto front of the defender’s and attacker’s cost. We evalu-
ated the performance of these approaches on a test suite of randomly generated ADTs with
sizes of up to 325 nodes. We observed significant variations in the speed of the algorithms.
However, most algorithms proved helpful under different ADT properties.

For tree-structured ADTs, the BU algorithm performs by far the best, with an average
processing time of less than 1 second, even for trees with several hundred nodes. On the
other hand, for ADTs with a DAG-structure absorbing semirings attribute domains, then
BDDBU was the next fastest, capable of analyzing trees up to 325 nodes under 30 minutes.

When the attribute domains do not meet these proprieties, from the approaches ana-
lyzed in this thesis, BILP remains the only option for DAGs. Since the performance of BILP
depends on the number of defense steps, giving expected time bounds solely in relation to
the tree size will not be accurate. In our experiments, varying the number of defense steps
from 0 to 50% of the total tree size, we found that on average BILP does not complete
within 104 seconds for trees with ą 100 nodes. In extreme cases, BILP is significantly faster
when the ADT contains only attacks and significantly slower when there is only a single
basic attack step.

Although the high runtime of the Naive approach makes it impractical for industrial
applications, its simplicity could still make it a suitable tool for educational purposes,
mainly because for very small ADTs (with approximately |N | ă 20 nodes) it outperforms
BILP and BDDBU.

9.1 Future work

The algorithms presented in this thesis primarily focus on the minimum cost attribute
domain for both the attacker and defender. Therefore, an exciting avenue to pursue in
future studies is to explore how well the presented concepts generalize to other attribute
domains. Below, we outline our initial considerations of the potential applicability of these
algorithms to different attribute domains.

All the statements made in the thesis remain valid for metrics based on the same
semiring as minimum cost (e.g. min. time in parallel). We hypothesize that the BU
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algorithm can still be applied for other metrics by substituting the
ř

and min operators
with those corresponding to the target attribute domains. Furthermore, given that a
bottom-up approach is effective for DAG-structured ATs when both the‘ andb operations
of the attribute domain are idempotent [26], it would be interesting to check whether this
still property extends to ADTs.

As all the BDD-based methods operate on Reduced Ordered BDDs, these techniques
do not apply to non-absorbing attribute domains [26]. In a BDD, all paths leading to 1T
represent successful attacks, yet not all are necessarily optimal. In the context of minimum
cost (and absorbing semirings in general), the optimal attacks constitute a subset of the
successful attacks, namely, all the minimum-length attacks. However, when considering
maximum damage pRě0,max,`q, a non-absorbing metric, attacks can be optimal even if
they are non-minimal. Consequently, the optimal attacks cannot be accurately modelled
with BDDs.

Some adjustments are needed for BILP to accommodate other metrics. For instance, in
the maximum challenge metric, pRě0,max,maxq replacing ‘ with max is pretty straight-
forward (i.e., minimize the negative amount value of the objective function). However,
substituting b with a non-linear operation such as max proves to be complex, as the ob-
jective function is not linear anymore. However, one can utilize auxiliary variables and
constraints to represent maxpx1, x2, . . . , xnq as follows: introduce an auxiliary variable z
and add constraints to ensure that z is at least at large as each xi; the objective function
would then involve maximizing z.

Another intriguing subject for future studies is identifying optimal variable orderings
for BDDBU, where all defense steps precede attack steps. In our experiments, we noticed
that using Rudell’s sifting algorithm to reduce the BDD resulted in such variable order-
ings. Therefore, formally verifying whether a minimum size BDD-encoded ADT (obtained
through Rudell’s algorithm or other heuristics) conforms to the desired order between
defenders and attacks could be a promising area for future research.

Lastly, one could investigate whether other techniques, such as Bayesian networks [56]
and game-theory-based methods [38] can be adapted to analyze DAGs with defender’s and
attacker’s attribute domains.
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Appendix A

Experiments appendix

Tree Size
(Defenses)

BU Naive BILP BDD-PATHS BDD-ALL-DEF BDD-BU

9(2) 0.00003 0.00025 0.00473 0.00018 0.00061 0.00018
17(4) 0.00005 0.00385 0.01149 0.00034 0.00210 0.00030
25(6) 0.00008 0.09358 0.03520 0.00068 0.01177 0.00049
33(9) 0.00010 8.18713 0.26824 0.00143 0.10872 0.00077
41(10) 0.00013 28.74272 0.68756 0.00356 0.29321 0.00100
49(11) 0.00015 318.31062 0.65856 0.00862 0.66012 0.00149
57(14) 0.00018 11573.80061 15.15551 0.05165 6.34288 0.00296
65(16) 0.00020 41.20634 0.11108 27.49014 0.00550
73(18) 0.00022 188.44514 0.12682 139.59304 0.00326
81(20) 0.00024 899.42525 0.21593 544.23795 0.00749
89(22) 0.00026 3169.23115 2.78935 2338.29016 0.01984
97(24) 0.00029 10301.89091 7.02696 7505.23592 0.01334
105(26) 0.00031 9.74501 0.01563
113(28) 0.00031 41.62705 0.02323
121(30) 0.00034 368.13453 0.07677
129(32) 0.00036 585.01345 0.06819

Figure A.1: Performance metrics representing the runtime in seconds for all al-
gorithms as tree sizes increase.
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Appendix B

Random ADT algorithm

Create random ADT
1: sÐ 0 # number of nodes already in the ADT

Input:
r: number of nodes that are reserved to be added in the ADT
n: maximum size of ADT

Output: Random ADT with a total size ă n
2: procedure RandomADT(r, n)
3: if s` r ą n then return # No space for more nodes
4: if create DAG then return A random existing node
5: v Ð new node
6: sÐ s` 1
7: Assign a random gate type γpvq to v
8: if γpvq “ BS then
9: βpvq Ð random integer

10: else if γpvq “ INH then
11: attack Ð RandomADT(r ` 1, n)
12: Add attack edge from v to attack
13: counter Ð RandomADT(r, n)
14: Add counter edge from v to counter
15: else # AND / OR gate type
16: children_noÐ randomly pick number of children
17: for iÐ 0 to children_no do
18: w Ð RandomADT(r ` pchildren_no´ i´ 1q, n)
19: Add edge from v to w

20: return v
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Appendix C

Random Trees Results

The tables from this appendix, the “Max” and “Median” rows illustrate the runtime in
seconds. Each column represents an interval rN,N ` 20s, where the column name denotes
the start of the interval.

|N| 0 20 40 60 80 100
Items 209 200 131 35 39 37
Max 0.0022 0.0026 0.0013 0.0034 0.0005 0.0024

Median 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003
120 140 160 180 200 220

Items 40 36 38 39 32 40
Max 0.003 0.0008 0.0009 0.0009 0.0013 0.0024

Median 0.0004 0.0005 0.0005 0.0006 0.0007 0.0007
240 260 280 300 320

Items 36 47 25 29 7
Max 0.0012 0.0015 0.0025 0.0015 0.0018

Median 0.0008 0.0009 0.001 0.0011 0.0011

Table C.1: Performance metrics for the BU method.

|N| 0 20 40
Items 174 158 28
Max 0.1127 888.9688 6515.199

Median 0.0018 10.0294 1284.8105

Table C.2: Performance metrics for the Naive method.

|N| 0 20 40
Items 276 284 158
Max 0.0914 148.2991 11804.3268

Median 0.0029 0.0515 8.086

Table C.3: Performance metrics for the BILP method.
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|N| 0 20 40 60 80 100
Items 117 112 71 57 54 9
Max 0.0012 0.0168 0.4919 22.4812 65.9565 671.2649

Median 0.0003 0.0019 0.0189 0.3757 2.6911 13.1905

Table C.4: Performance metrics for the BDD-PATHS method.

|N| 0 20 40
Items 112 109 19
Max 0.1664 24.7026 95.3972

Median 0.0007 0.0282 1.3857

Table C.5: Performance metrics for the BDD-ALL-DEF method.

|N| 0 20 40 60 80 100
Items 319 322 198 93 93 46
Max 0.0248 0.0295 0.0129 0.0317 0.213 0.138

Median 0.0004 0.001 0.0024 0.0076 0.0208 0.0353
120 140 160 180 200 220

Items 40 36 38 39 32 40
Max 0.3801 0.742 0.4673 4.0578 2.6165 12.9625

Median 0.0556 0.0837 0.133 0.1647 0.2053 0.7464
240 260 280 300 320

Items 36 47 25 29 7
Max 11.8757 47.5158 92.5837 549.1171 811.3014

Median 1.2932 1.6048 4.33 7.4171 8.2894

Table C.6: Performance metrics for the BDD-BU method.
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