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Abstract

The effects of the use of parallel computing on the solution quality in relation to the additional compu-
tational costs were unknown to ORTEC. This research seeks to provide ORTEC with relevant insights
into using parallel computing in the OHD software by providing a solution design that transfers a serial
algorithm into a parallel algorithm. In this way, a new parallel algorithm that uses multiple construction
and R&R methods is developed by modifying parameter settings from a single serial algorithm that is
used to solve the VRP of Company X. The results show that our new parallel algorithm outperforms
the current algorithm by 1.56% in terms of costs which shows that the use of parallel computing within
OHD can significantly improve the solution quality.
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Management Summary

This research was conducted at ORTEC which is a company that among others provides optimization
software to solve VRPs. Company X is a large supermarket that offers a delivery service for groceries
and uses ORTEC’s OHD software, designed for companies offering home delivery services. The OHD
software has recently been made available in the cloud, enabling the use of parallel computing. As a
result, the utilization of parallel computing at ORTEC is currently in its nascent stages. The fundamental
principle of parallel computing involves the concurrent utilization of multiple processors to solve a
computational problem. Consequently, a greater number of potential solutions can be computed within
the same computational time at the expense of higher computational costs. This approach typically
yields improved solutions within the equivalent computational time. This has led to the following
research question posed by ORTEC:

To what extent can parallel computing improve the performance of the OHD software?

To address this research question, we designed a new parallel algorithm that solves the VRPs of
Company X. This new algorithm is compared to the existing serial algorithm, known as the algorithm
of Company X, which currently handles their VRPs. The existing algorithm operates in three phases:
construction, local search, and ruin and recreate (R&R). Our research primarily focused on the construc-
tion phase but also considered the R&R phase. Since the algorithms used in OHD are very complex,
new algorithms included in the parallel algorithm were created by modifying the parameter settings
of the algorithm of Company X. This means that the problem we faced is a variant of the algorithm
configuration problem which is typically solved by automated methods. However, these methods are
unsuitable for our research due to the vast number of parameter settings and the lack of information
about the working of a parameter setting. For these reasons, we have introduced a new solution design
to tackle our problem.

Solution design

Our solution design consists of three steps which are visualised in Figure 1. In Step 1, the goal is to create
good algorithms that outperform the algorithm of Company X for various types of cases of Company X
such that they can be used in the new parallel algorithm. A data analysis is conducted to support the pa-
rameter setting changes. Subsequently, we investigated whether using multiple construction methods
and starting solutions is beneficial in Step 2, and if so, determine the optimal number of construction
methods and starting solutions that proceed to the local search and R&R phase. Finally, in Step 3, the
algorithms included in our new parallel algorithm are selected.

Figure 1: A visualization of the solution design used to address our problem
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Solution

In this way, a new parallel algorithm is constructed which is visualised in Figure 6.8. It includes 15
different construction methods of which all starting solutions proceed to the local search phase. After-
wards, the 3 best starting solutions after local search proceed to the R&R phase where 5 R&R methods
are applied on them. In this way, 15 different final solutions are created and finally the best one is pro-
vided to Company X. Note that we were restricted to use a maximum of 15 CPUs due to the current
contractual constraints with the cloud computing platform.

Figure 2: A visualization of the design of our new parallel algorithm including multiple construction and R&R methods.

Results

The main results of all experiments conducted in this research are as follows:

• Multiple construction methods and starting solutions are beneficial. We have created 653 al-
gorithms which are made by modifying the parameter settings of the construction phase of the
algorithm of Company X. It was observed that when running all 653 algorithms in parallel and
only proceeding with the best starting solution after construction to the local search and R&R
phase that the solution quality can be improved by 1.04% in terms of costs compared to the al-
gorithm of Company X. Note that in these costs the computational costs are also included. On
top of that, we observed that when we proceed with all starting solutions to the local search and
R&R phase, the solution quality could be improved by 1.34%. This shows that the use of multi-
ple construction methods and starting solutions is very beneficial. Furthermore, it shows that the
best starting solution does not always result in the best final solution where we observed that the
larger the case, the more important the starting solution. In case, we use 15 different construction
methods since we are restricted to the use of 15 CPUs, an improvement of 1.18% is obtained.

• Individual algorithms outperform the algorithm of Company X. While creating the algorithms
in Step 1 of our research design, individual algorithms were created that outperform the algo-
rithm of Company X. The best individual algorithm that is also included our parallel algorithm
outperformed the algorithm of Company X by 0.66% in terms of costs. This means that from the
total improvement of 1.18%, 0.66% is caused by the updated parameter settings. Consequently,
the implementation of parallel computing by using multiple construction methods and starting
solutions proceeding to the local search and R&R phase caused an improvement of 0.54%.

• Parallel computing is not useful when cases differ significantly. In the data analysis and exper-
iments, we have encountered that the cases from Country A and Country B differ significantly,
with different types of algorithms performing well for each. For this reason, it is better to use dif-
ferent (parallel) algorithms for the cases of Country A and Country B instead of using one parallel
algorithm.

• Multiple R&R methods and starting solutions are beneficial. We observed in the experiments
that the optimal way of using 15 CPUs in the R&R phase of our parallel algorithm, is to apply
5 R&R methods on the best 3 solutions after local search. This parallel phase of the R&R out-
performs the R&R method of the algorithm of Company X by 0.24% in terms of costs. The best
individual R&R method included in the R&R phase of our parallel algorithm outperforms the
R&R method of the algorithm of Company X by 0.18%. Consequently, the improvement caused
by using multiple R&R methods and starting solutions in parallel is 0.06%.
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• New parallel algorithm outperforms the algorithm of Company X. Our new parallel algorithm
including multiple construction and R&R methods outperforms the algorithm of Company X by
1.57% in terms of costs. Consequently, ORTEC can save Company X a significant amount a year
by using our new parallel algorithm instead of the algorithm of Company X which is mainly
caused by the fact that computational costs are extremely low compared to the planning costs of
Company X. However, our new parallel algorithm violates the maximum running time in 37.96%
cases since a stopping criterion is removed in the experiments. Since most and the largest im-
provements are made at the beginning of the algorithm, we believe the inclusion of the stopping
criterion will not have a large impact on the quality of the final solution.

Conclusions and recommendations

• Parallel computing is highly beneficial. This research has proven that the use of parallel comput-
ing is highly beneficial within OHD. Consequently, we recommend using it for every customer
while using our research design to transform a serial algorithm into a parallel algorithm.

• Implementation of our parallel algorithm. We recommend implementing our new parallel algo-
rithm for Company X after an agreement regarding the distribution of extra savings and compu-
tational costs has been made.

• Update parameter settings of algorithms regularly. We created individual algorithms that signif-
icantly outperform the algorithm of Company X by modifying parameter settings of the construc-
tion and R&R phase. For this reason, we recommend ORTEC to regularly update the parameter
settings of algorithms with the support of a data analysis since data can change over time.

• Scale up number of CPUs. In this research, we were limited to the use of 15 CPUs, however, we
have seen in the experiments that even more savings could be obtained by using more CPUs. For
this reason, we would like to recommend to ORTEC to investigate if it is beneficial to scale up
the number of CPUs in the contract with the cloud computing platform such that more CPUs are
available for parallel algorithms.

• Local search in parallel. We recommend ORTEC to do further research regarding the paralleliza-
tion of the local search phase of the algorithms since this research has proven that it is highly
beneficial for the construction and R&R phase.
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Chapter 1

Introduction

In this introductory chapter, we provide a comprehensive overview of the context, objectives, and struc-
ture of this Master thesis. Firstly, Section 1.1 discusses the background and context of the research,
highlighting the importance of optimizing vehicle routing problems in modern business operations.
Secondly, the vehicle routing problem of Company X is introduced in Section 1.2. Afterwards, the
problem statement, outlining the specific challenges faced by ORTEC while solving the problem of
Company X, is presented in Section 1.3. Subsequently, the research objectives of this master thesis are
stated in Section 1.4. Moreover, the sub-research questions that guide in answering the main research
question and achieving the research objectives are outlined in Section 1.5, aligning them with the con-
tent of subsequent chapters. Furthermore, we emphasize the significance of this study in addressing
real-world logistics challenges in Section 1.6, while Section 1.7 acknowledges the scope and limitations
of the research. Finally, Section 1.8 outlines the organization of this thesis.

1.1 Background and Context

Nowadays, people order groceries online instead of physically visiting the grocery market. This trend is
accompanied by a multitude of advantages such as the elimination of queuing, no longer experiencing
issues related to depleted inventory on shelves, the alleviation of carrying heavy bags and the absence
of additional leisure time devoted to visits to the supermarket. Alternatively, you can just simply or-
der your groceries online and you can schedule a delivery moment that aligns with your preferences.
However, in striving to fulfil the desires of the customers, several challenges are encountered by the su-
permarket providing the delivery service. First of all, every customer should get their products on time
in good condition. Secondly, cold products should be transported in different boxes than for example
chips. In addition, some addresses can not be accessed with every vehicle type. These are just examples
of the many constraints and restrictions that companies that are delivering groceries are facing. Com-
pany X is a large supermarket that is offering a delivery service of groceries. Company X is delivering
orders internationally which makes the planning of routes very complicated. Consequently, they want
to have a complete routing scheme that minimizes operational costs while satisfying all the needs of
the customers. The problem of Company X belongs to the class of the Vehicle Routing Problem (VRP)
which is a combinatorial optimization problem and will be introduced in the next section.

The company ORTEC is optimizing the routing problem for Company X. ORTEC B.V. stands for
Operation Research Technology, in this report referred to as ORTEC. ORTEC was founded in 1981 by
five Econometric students and is now a globally respected company. ORTEC provides optimization
software and analytical solutions to a wide range of companies addressing diverse problems. To solve
routing problems they created various products based on the characteristics of the problem. In this
research, our focus will be exclusively on the product that is designed for companies offering home
delivery services. This particular product is called ORTEC for Home Delivery (OHD) and is also em-
ployed by Company X.

1.2 The Vehicle Routing Problem of Company X

Company X has millions of customers spread over a large area in two different countries: Country A
and Country B. As a consequence, the logistics and transportation network of Company X is extensive.
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1.2. The Vehicle Routing Problem of Company X

To serve every customer, Company X has many warehouses located throughout the whole serving area.
They distinguish between two types of warehouses: main depots and subdepots. Main depots are as-
signed to a specific area and supply the subdepots located in this area. Customers are allocated to a sin-
gle main depot but may also be served by all subdepots that are supplied by this main depot. Company
X has 11 main depots in total and has separate plannings for the morning and evening. Consequently,
every day 22 routing problems of Company X need to be solved by ORTEC. These routing problems
include many restrictions and constraints which will be explained in the subsequent subsections.

1.2.1 Depots

Every main depot can have to supply up to five subdepots and are assumed to have unlimited capacity
whereas subdepots have limited capacity. The capacity per subdepot may be different. Company X
demands that all vehicles of the subdepots should be fully utilized before the vehicles of the main
depot are used.

1.2.2 Vehicle types

Company X uses different types of vehicles to serve every customer such as priority 1 vans, priority
2 vans, priority 3 vans and normal vans. However, the number of vehicles per vehicle type that are
available differs per depot. Logically, the different types of vehicles have different cost sets, speeds and
capacities. Company X requires every priority 1 and priority 2 van that is available for a depot to be
assigned to a route although this increases the overall costs since they are less efficient compared to
normal vans. priority 1 and priority 2 vans are expected to be assigned to easier routes. In this context,
easier routes are defined as those that visit customers close to a depot. Problem instances of Company
X can have up to 220 vehicles in their vehicle fleet.

1.2.3 Capacity restrictions

The capacity constraints per vehicle are handled by volume and weight. The weight restriction is in-
cluded since different driving rules are applied to vans above a certain weight. Customers are ordering
multiple kinds of products however for the planning of the routes, we do not have to take this into
account. The products are transported in boxes and the volume constraint ensures that vehicles will not
be overloaded. In this way, for example, huge orders will not be assigned to small vans.

1.2.4 Area restrictions

Some customers can only be visited by certain types of vehicles. For example, in some city centers, only
zero-emission vehicles are allowed to drive.

1.2.5 Multi-trips

Vehicles may be assigned to multiple trips and a maximum of ten trips per vehicle is allowed. All trips
have to start and end at the same depot. Furthermore, priority 1 and priority 2 vans are excluded from
the option to execute multi-trips.

1.2.6 Driver regulations

The total duration of all trips of a vehicle is restricted since employees are not allowed to work more
than a specific amount of hours by law. Additionally, the breaks of the drivers also need to be considered
while scheduling the routes. Besides, vehicles have also a time window in which all trips should be
planned.

1.2.7 Delivery Time Windows

Customers booked a timeslot that suits them in where the groceries need to be delivered. These are
hard-time windows and must be adhered to for customer satisfaction.
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1.2.8 Congestion

To adhere to the time windows of the customers, realistic travelling times have to be used. For this
reason, congestion is taken into account while planning the trips since travel times can vary significantly
depending on the time of the day. Road sections have different travel times per interval of 15 minutes
based on historical data to provide realistic plannings.

1.2.9 Input data

All input data are known before the planning is started which makes it a static and deterministic VRP.
Input data consists of customers’ information and the number of available vehicles per type per de-
pot. Customers’ information consists of the coordinates of their location, order quantity, time window,
expected service time and the vehicle types that are allowed to deliver. A distance and driving time
matrix per time interval of 15 minutes is constructed based on the locations of customers and depots
with the use of a map service.

1.2.10 Objectives

The main objective is to plan as many orders as possible without violating any of the above-mentioned
constraints and restrictions since these are hard constraints and restrictions. If more trucks are needed
than available, they hire extra employees and trucks such that more customers can be served. These
trips are called overflow routes and are logically assigned higher costs such that they are only used
when strictly necessary. Plannings are made well in advance such that extra vehicles and drivers can
be arranged. Secondly, the costs should be minimized. Costs are assigned to routes, working hours and
travelled distance. These costs depend on the vehicle type used for the route. Finally, the maximum
duration of the planning process per main depot is 20 minutes.

1.3 Problem Description

The OHD software has recently been made available in the cloud. In the past, customers were required
to install an application on their local computers to access the routing solvers. Currently, customers
can log in on their personalised page in the cloud to utilise the functionalities of the OHD software.
The migration of the OHD software in the cloud enables the use of parallel computing which was not
possible in the preceding application. The fundamental principle of parallel computing involves the
concurrent utilization of multiple processors to solve a computational problem. Consequently, a greater
number of potential solutions can be computed within the same computational time at the expense of
higher computational costs. This approach typically yields improved solutions within the equivalent
computational time. As a result, a better solution can probably be obtained in the same computational
time.

For each customer, a tailored algorithm is constructed, but they all consist of the same three phases:
construction, local search and ruin and recreate (R&R). In the software of ORTEC, many built-in con-
struction, local search, and R&R methods, including various settings, are available for the implemen-
tation consultants to construct a tailored algorithm for a certain client. In the construction phase, one
of the construction methods is used to create an initial solution from scratch. This solution is used as a
starting point for the local search method to improve the solution. The local search method generates
new solutions by making small adjustments to the current solution. Only solutions that improve the
current solution are accepted in this phase. In case no improvements can be found, the algorithm pro-
ceeds to the final phase. In the final phase, a ruin method is used to destroy a part of the solution and
a recreate method is used to rebuild the solution. In case the rebuilt solution is within a certain range
of the current objective value, a quick local search method is applied to the solution to check whether
a better global solution can be found. This process is repeated until a predetermined stopping criterion
is met. More detail about the algorithm that is used for the case of Company X is provided in Chapter
3. The algorithm that is currently solving the routing problem of Company X in the OHD software of
ORTEC is from now on referred to as the algorithm of Company X.

Given the recent transition of the ORTEC software to a cloud-based environment, the utilization
of parallel computing is currently in its nascent stages. ORTEC can build many different algorithms
by combining a large number of built-in methods including various settings but currently only one
particular algorithm is used for each customer. However, now the use of parallel computing is enabled
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1.4. Research Objectives

in the software, multiple distinct methods at the same time could be used to diversify the search and
potentially improve the solutions. Therefore, ORTEC is interested in the effects of incorporating parallel
computing within the OHD software. Since the creation of a tailor-made algorithm for customers is
a very time-consuming process, the different algorithms in the parallel algorithm will be created by
adjusting parameter settings within the algorithm of Company X. Consequently, the design of our new
parallel algorithm is a variant of a well-known problem in the literature: the algorithm configuration
problem.

In this thesis, the algorithm and data of Company X will be used as an example and validation
of our research about the implementation of parallel computing within the OHD software. Since the
algorithms of customers are unique, it is impossible to apply the research also to other cases in this
thesis due to time limitations. However, considering that all algorithms of customers follow a similar
structure, we decided to modify the data of the AH case a bit. In this way, the problem and data of
Company X will be more like other customer cases. Consequently, this research is not strictly limited
to the case of Company X but focuses on the OHD software in general. This has led to the following
research question asked by ORTEC:

To what extent can parallel computing improve the performance of the OHD software?

1.4 Research Objectives

The research objectives of this thesis are as follows:

1. To provide ORTEC with relevant feedback on the implementation of parallel computing in the
OHD software concerning the trade-off between computational costs and computational power.

2. To enhance the quality of solutions, measured in terms of the objective values, through the imple-
mentation of a new parallel algorithm within the same computational time.

1.5 Research Questions

To achieve the research objectives stated in the preceding section and to address the main research
question stated in Section 1.3, sub-research questions have been formulated to guide this research. Each
chapter of this thesis aligns with one or more sub-research questions addressing specific aspects of the
main research question. These sub-research questions are as follows:

Chapter 2: Literature Study

• RQ1: What can literature tell us about the various variants of the VRP and the heuristics used
within the algorithm of Company X?

ORTEC is solving a lot of different variants of the VRP including the one of Company X with algorithms
that use construction, local search and Ruin and Recreate (R&R) methods. Consequently, enhancing
knowledge about these variants and methods is essential.

• RQ2: What is parallel computing and how can it be used to solve VRPs?

We are conducting research about the effect of parallel computing, consequently, we need to have a
better understanding of the concept of parallel computing and how it can be used to solve VRPs.

• RQ3: What can literature tell us about the algorithm configuration problem and what solution
methods are available?

Since we will modify the parameters of the algorithm of Company X, we are dealing with an algorithm
configuration problem. For this reason, we need to conduct literature research about this problem and
its solving methods in order to formulate an appropriate solution approach.
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Chapter 3: Problem Context

• RQ4: What does the algorithm of Company X look like?

Since we will adjust the parameters of the algorithm of Company X, we need to have a detailed under-
standing of the algorithm.

• RQ5: How can parallel computing be implemented within the OHD software?

Given that we will design a new parallel algorithm, we need to know what forms of parallel computing
are available in OHD.

Chapter 4: Solution Design

• RQ6: How can the mathematical formulation of the encountered algorithm configuration prob-
lem be defined?

In this research, we are solving a variant of the algorithm configuration problem. However, before we
can create a solution approach, we need to formulate our problem such that the problem is clear.

• RQ7: What solution approach will be used to design a new parallel algorithm?

After the problem we are facing is formulated, we need to design a solution approach to solve it.

Chapter 5: Data Analysis

• RQ8: What are the characteristics of the input data of Company X that could be used by de-
signing new algorithms?

A data analysis will be conducted to gain a deeper understanding of the parameter settings of the algo-
rithm of Company X and to introduce new algorithms.

Chapter 6: Experiments

• RQ9: How should the construction and R&R phase of our new parallel algorithm look like?

After the solution approach is formulated and the data analysis is conducted, the construction and R&R
phase of our new parallel algorithm should be designed.

• RQ10: How does the new proposed parallel algorithm perform when applied to real-world
data from Company X, and how does it compare to the algorithm of Company X?

After the new parallel is designed, it needs to be tested against the algorithm of Company X on the data
of Company X in order to obtain the effect of parallel computing.

Chapter 7: Conclusions, recommendations and further research

• RQ11: What are the practical implications of the results obtained, and what recommendations
can be made to ORTEC for implementing parallel computing in their software?

Finally, after all research has been conducted and the solution has been designed and evaluated, con-
clusions can be made and recommendations for ORTEC and further research are provided.

1.6 Significance of the Study

The successful implementation of parallel computing into the OHD software of ORTEC will provide
better solutions in the same computational time to the routing problems of customers. This brings
several advantages. Firstly, ORTEC frequently needs to provide a Proof of Concept (PoC) before secur-
ing contracts with clients. Sometimes, companies request PoCs from multiple route-optimizing service
providers and ultimately sign contracts with the provider offering the best solution. Thus, improving
ORTEC’s solutions could lead to winning more PoC battles and acquiring more customers. Secondly,
customers will benefit from reduced transportation costs, increased efficiency and lower CO2 emis-
sions, resulting in enhanced satisfaction. Furthermore, due to value-sharing contracts, ORTEC stands
to benefit from these savings as well. Consequently, successfully implementing parallel computing into
OHD will result in increased profits for ORTEC. Additionally, this research contributes to the broader
field of combinatorial optimization and logistics by addressing a real-world problem with practical
implications.
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1.7 Scope and Limitations

It is important to acknowledge the scope and limitations of this thesis. While we aim to provide a
comprehensive solution to ORTEC’s problem, certain simplifications or assumptions must be made
due to the limited time to finish this master thesis assignment.

First of all, we will focus on the effect of using parallel computing in the construction and R&R phase
of the algorithm. Although it would be intriguing to test the implementation of parallel computing in
all three phases, ORTEC is mostly interested in the effect of using parallel computing in the construc-
tion and R&R phase, where the primary focus is directed towards the parallel construction of starting
solutions.

Furthermore, the implementation of parallel computing in the OHD software is exclusively executed
for the algorithm and datasets specific to Company X. Although the datasets are modified such that they
align to other customers’ datasets and some valid general observations can be made, we cannot state
with full certainty hard conclusions for the OHD software in general.

Besides, it is not possible to evaluate our proposed algorithm against datasets and algorithms doc-
umented in the literature since in this research we are testing within the software of ORTEC. In the
software of ORTEC, we can’t reproduce an algorithm from the literature because we can only make
use of their implementations. Simplifications and assumptions about the experimental settings will be
discussed later in this report.

1.8 Thesis Structure

This thesis is structured as follows:

• Chapter 2: Literature Study - This chapter provides an in-depth review of the existing literature
related to the different variants of VRP and its solution approaches. Furthermore, the concept of
parallel computing is explained and its application on VRPs is reviewed. Moreover, the algorithm
configuration problem will be introduced and an overview of the approaches used to solve it is
provided.

• Chapter 3: Problem Context - In this chapter, we provide a thorough explanation of the algorithm
of Company X, followed by a discussion on the possibilities of parallel computing within OHD.

• Chapter 4: Solution Design - This chapter presents the mathematical formulation of our variant
of the algorithm configuration problem and the solution approach used to address this problem.

• Chapter 5: Data Analysis - This chapter provides insights into the characteristics of the input data
of Company X which are crucial for solving the problem of Company X.

• Chapter 6: Experiments Construction phase - Here, we discuss the experimental design includ-
ing the results obtained from testing our new proposed parallel construction phase on Company
X’s data.

• Chapter 7: Experiments R&R phase - This chapter outlines the experimental design including
the results obtained from testing our new proposed parallel R&R phase on Company X’s data.

• Chapter 8: Conclusions, recommendations and further research - This final chapter analyzes the
results, discusses the implications, and provides the key findings, recommendations and future
research directions for ORTEC.
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Chapter 2

Literature Study

This chapter provides a comprehensive literature review such that we can answer the first three research
questions that were stated in Section 1.5. The purpose of this literature study is to acquire the necessary
knowledge and contextual understanding to develop a new parallel algorithm that can solve the routing
problem of Company X. In Section 2.1 an overview of various variants of the VRP is presented. The
solving methods used by ORTEC to solve all sorts of variants of the VRP are described in Section 2.2.
Moreover, in Section 2.3, an extensive overview of parallel metaheuristics is provided and relevant
applications of parallel computing for solving VRPs are reviewed in Section 2.4. Furthermore, the
algorithm configuration problem, along with several solving methods, is outlined in Section 2.5. Finally,
in Section 2.6 relevant insights obtained from the literature study are summarised.

2.1 Variants of the Vehicle Routing Problem

The vehicle routing problem is an extension of the well-known Traveling Salesman Problem (TSP) and
was first introduced by Dantzig and Ramser (1959). The TSP aims to visit every node in a single route
by minimizing the distance or costs. In the VRP the nodes represent customers that all satisfy a certain
amount of demand. The goal of the VRP is to deliver the demanded goods from a depot to the customers
in the most efficient way by minimizing costs or travelling time while allowing the use of multiple
vehicles. All routes have to start and end at the depot location. The distinction between the TSP and
VRP can be seen in Figure 2.1. There exist many variants and extensions of this classical VRP and some
of them are discussed in the following subsections.

Figure 2.1: Difference between TSP and VRP (Lin et al., 2022)

2.1.1 Capacitated Vehicle Routing Problem

The first extension of the classical VRP that will be discussed is the Capacitated Vehicle Routing Problem
(CVRP). In the CVRP a restriction is added on the capacity of the vehicles. The customers have to be
served by a vehicle fleet that has limited capacity, contrary to the classical VRP where the vehicles
have unlimited capacity. The fleet of vehicles is homogeneous, meaning that they all have the same
characteristics and thus the same capacity. The goal is to determine the most efficient routes for a
homogeneous fleet of vehicles to deliver goods from a depot to a set of customers while respecting the
capacity constraints of the vehicles.
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2.1. Variants of the Vehicle Routing Problem

2.1.2 Heterogeneous Vehicle Routing Problem

In the classical VRP and the CVRP only a homogeneous fleet of vehicles is considered however in
reality this is rarely the case. In the Heterogeneous Vehicle Routing Problem (HVRP) vehicles are not
considered to be identical anymore and different types of vehicles can be used to serve all the customers.
The term ’different types of vehicle’ can be interpreted in various ways. The characteristics of the
vehicles such as capacity, maximum driving speed, fixed and variable costs, serving areas etc. could
diverge. An extensive literature review of the HVRP has been written by Soonpracha et al. (2014).

2.1.3 Vehicle Routing Problem with Time Windows

In the previous variants of the VRP, it was assumed that the products could be delivered to the cus-
tomers at any time of the day. This is of course not realistic, especially not for the home delivery service
of a grocery store. Customers want their products to be delivered at times when they are at home. The
Vehicle Routing Problem with Time Windows (VRPTW) addresses this extra constraint. The time win-
dow assigned to a customer signifies the permissible timeframe for visiting the address of the customer.
The problem can include hard or soft time windows. In case of hard time windows, the vehicle should
arrive and leave within the time window of the customer. Note that handling time is also considered at
the customer location. No violations are allowed. If for example, a vehicle arrives before the start of the
time window, it has to wait until the start of the time window. In some cases, this waiting time is pe-
nalised with extra costs to improve the efficiency of the solution since in that case the driver and vehicle
are idle. On the other hand, soft time windows may be violated but penalty costs will be assigned to
penalise this violation and prevent the optimizer from ignoring the time window restrictions. The ad-
dition of the time window constraints can greatly impact the solution and its objective value. In Figure
2.2 a small vehicle routing problem is displayed. The dots with numbers are customers and the time
windows of the customers’ locations are provided within brackets. If time windows are ignored, the
sequence of the customers in the routes of the optimal solution would have been in the same sequence
as the corresponding numbers. We can see that including the time window restrictions has a relatively
large impact on the solution. The total distance travelled that is needed to deliver the products while
respecting the time windows is larger than the case where we exclude the time window constraint.

Figure 2.2: Impact of time windows restrictions in a VRP (AIMMS, 2020)

2.1.4 Time-Dependent Vehicle Routing Problem

Another variant of the VRP that includes a constraint related to time is the Time-Dependent Vehicle
Routing Problem (TDVRP). In the classical VRP, we assume that it always takes the same time to move
from Customer A to Customer B. However, the travelling time in rush hours is not equal to the trav-
elling time in night hours. Besides, the delay in rush hours is also depending on the location since the
traffic density is different in villages than in large cities. Consequently, congestion has to be taken into
account to make the VRP more realistic. This could be done by applying a factor on the travelling time
in rush hours or by using complex forecast models.
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2.1.5 Multi-Trip Vehicle Routing Problem

In the basic variants of the VRP, each vehicle is only assigned to one route during a planning period
which is typically a day. This is unrepresentative for many practical cases of companies where a vehicle
makes multiple trips during a day. The Multi-Trip Vehicle Routing Problem (MTVRP) allows the use
of a single vehicle for multiple routes. Brandão and Mercer (1998) showed that the number of vehicles
used could be reduced by allowing vehicles to make multiple trips instead of only single trips in a
real-life case at a company. As a consequence, the costs of delivering decreased.

2.1.6 Multi-Depot Vehicle Routing Problem

So far we have only considered VRPs that serve all the customers from one central depot. However, in
real-life applications of the VRP, there are often multiple depots that are used to serve the customers
(Lahyani et al., 2015). The Multi-Depot Vehicle Routing Problem (MDVRP) deals with this additional
restriction. There are many variants of the MDVRP in the literature. In the standard MDVRP, every
vehicle route must start and end at the same depot. There also exist extensions of the MDVRP where
vehicles are allowed to visit other depots. Moreover, the customer allocations to depots could diverge
between variants by allowing a customer to be served from only one specific depot or multiple depots.
Furthermore, the depots could have different characteristics such as capacity and costs. This variant
is called a Heterogeneous Multi-Depot Vehicle Routing Problem (HMDVRP). More variants and exten-
sions can be found in Montoya-Torres et al. (2015) which conducted a literature review on the MDVRP.

2.1.7 Site-Dependent Vehicle Routing Problem

In the previously discussed versions of the VRP, it was assumed that every vehicle is allowed to visit
every customer. However, in some real-life applications of the vehicle routing problem, some customers
can only be visited by a subset of the vehicles. For example, it may be possible that customers in
congested areas can only be visited by smaller types of vehicles. Furthermore, it could be the case that
the order of a customer requires specific facilities in the vehicle such as freezing compartments. This
variant of the VRP is called the Site-Dependent Vehicle Routing Problem (SDVRP) and Cordeau and
Laporte (2001) presents an algorithm capable of solving this problem.

2.1.8 Vehicle Routing Problem with driving hours regulations

In the formed subsections, the routing problems did not take into account the European Community
(EC) Regulation concerning driving and working hours also known as EC social legislation. In case this
legislation is neglected, severe fines can be received. Therefore, these regulations have an enormous
impact on the design of the routes Kok (2010). The Vehicle Routing Problem with EC social legislation
(VRP-EC) does take into account the driving and working hours rules imposed by the European Union
which are more restrictive than the Vehicle Routing Problem with Hours-Of-Service regulations (VRP-
HOS) that takes into account the driving rules of the United States. Consequently, any solution method
for the VRP-EC can also solve the VRP-HOS (Hans et al., 2010). These regulations include restrictions
on the maximum length of a driving and working period. A working or driving period is ended by a
long break. Furthermore, there is a restriction on daily and weekly driving, working and rest time.

2.1.9 Literature review on the VRP of Company X

In the preceding paragraphs, all features of the problem of Company X, introduced in Section 1.2, are ex-
amined individually. However, the problem of Company X encompasses all these characteristics collec-
tively. Consequently, the problem of Company X, introduced in Section 1.2, could be described as a vari-
ant of the Site-Dependent, Time-Dependent, Multi-Trip, Heterogeneous Multi-Depot, Heterogeneous
Vehicle Routing Problem with Time Windows and EC social legislation (SDTDMTHMDHVRPTWEC).
In this thesis, we will refer to the problem of Company X as VRPX to improve readability. We conducted
a systematic literature review to identify related articles that address VRP variants similar to the VRPX
in this section. The VRPX could be described as a rich, real-life or multi-attribute VRP but also as a vari-
ant of the E-grocery Delivery Routing Problem (EDRP). The EDRP is a subclass of the VRP and captures
a family of problems that an online grocery is commonly encountering. In Table 2.1 the findings of our
systematic literature research are visualized.
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The first column denotes which article is compared to the VRPX features that are listed in the head-
ers of the other columns. An ”✓” in a specific column indicates that the feature mentioned in the header
is addressed in the problem discussed by the corresponding article. Analyzing the table, we observe
that no other article comprehensively covers all features of the VRPX. On top of that, the systematic lit-
erature reviews conducted by Alcaraz et al. (2019), Caceres-Cruz et al. (2014), Liu et al. (2023), and Fan
et al. (2021), which collectively examined 151 articles on VRP variants, did not identify a VRP variant
with the same features as the VRPX. Consequently, we can conclude that to the best of our knowledge,
the VRPX is not yet addressed in the literature.

Table 2.1: Systematic literature research on the VRPX in which VRPs addressed in the articles in literature are compared to the
features of the VRPX. All features of the VRPX are listed in the column names and in case it is included in the VRP of the article
listed in the first column, the corresponding cell in the table is assigned a ”✓”, otherwise it is left blank

Article Problem features

SD TD MT MD HMD H TW EC
Zhen et al. (2020) ✓ ✓ ✓

Dondo and Cerdá (2007) ✓ ✓ ✓
Rincon-Garcia et al. (2020) ✓ ✓ ✓

Dayarian et al. (2015) ✓ ✓ ✓
Alcaraz et al. (2019) ✓ ✓ ✓ ✓

Ruinelli (2011) ✓ ✓ ✓ ✓
Viera and Tansini (2004) ✓ ✓

Zare-Reisabadi and Mirmohammadi (2015) ✓ ✓ ✓
Fan et al. (2021) ✓ ✓ ✓
Pan et al. (2021) ✓ ✓ ✓

Zhang et al. (2022) ✓ ✓ ✓

E-grocery routing problems
Liu et al. (2021) ✓ ✓ ✓

Zhou et al. (2016) ✓
Bouwstra et al. (2021) ✓

Vazquez-Noguerol et al. (2022) ✓ ✓ ✓
Carrabs et al. (2017) ✓ ✓ ✓

Liu et al. (2020) ✓ ✓
Ensafian (2023) ✓ ✓

Emeç et al. (2016) ✓
VRPX ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The following problem features are included in the table headers:

1. SD: Site-Dependent (Subsection 2.1.7)
2. TD: Time-Dependent (Subsection 2.1.4)
3. MT: Multi-Trip (Subsection 2.1.5)
4. MD: Multi-Depot (Subsection 2.1.6)
5. HMD: Heterogeneous Multi-Depot (Subsection 2.1.6)
6. H: Heterogeneous Vehicle Fleet (Subsection 2.1.2)
7. TW: Time Windows (Subsection 2.1.3)
8. EC: Driver Regulations (Subsection 2.1.8)

2.2 Heuristics for solving VRPs

The classical VRP is an NP-hard problem which means that all variants of the VRP are also NP-hard by
restriction. This means that the optimal solution cannot be guaranteed within polynomial time (Lenstra
and Kan, 1981). Consequently, to be applicable to real-life problem instances, recent research concen-
trates on approximate algorithms that can find high-quality solutions in a limited time (Kumar and
Panneerselvam, 2012). ORTEC uses an approximate algorithm that is created to solve the routing prob-
lems of customers in a reasonable time. For our research, it is important to get a better understanding of
the solving approach of ORTEC. Therefore, we dive deeper into the concepts of construction heuristics,
local improvement heuristics and ruin and recreate methods in this section.
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2.2.1 Construction heuristics

Construction heuristics are used to create a solution to a problem from scratch and are often part of
larger algorithms. The goal is to efficiently build an initial solution that can be improved by the heuris-
tics in the subsequent phases. In this subsection, we dive deeper into the three main decisions that must
be made while designing a construction heuristic within the software of ORTEC. First of all, we have to
consider whether we want to use sequential- or parallel insertion. Secondly, a criterion to find a seed
task needs to be selected. Finally, a strategy to insert the remaining tasks needs to be chosen.

Sequential- vs Parallel insertion

The difference between these two methods is that parallel insertion builds routes simultaneously, whereas
sequential insertion builds per route. This is visualised in Figure 2.3. In Figure 2.3a, it can be seen that
parallel insertion creates as many routes as a predetermined number of vehicles and a seed task is as-
signed to every route. Afterwards, the remaining tasks are inserted into the existing routes by a certain
strategy simultaneously. This is contrary to the example of sequential insertion in Figure 2.3b, where
one vehicle is selected and tasks are inserted until the insertion results in an infeasible solution. In that
case, a new vehicle is selected to build a route. This process is repeated until either all tasks are assigned
to a route or no more vehicles are available. The advantage of parallel insertion is that it provides a more
global view of the solution space because it considers multiple vehicles and customers simultaneously
whereas the sequential insertion focuses on the optimization of the current route. This leads to poor
solution quality of the last constructed routes and thus hampers the overall performance of the sequen-
tial insertion (Pang, 2011). For example in Laporte et al. (2000), the parallel insertion method dominates
the sequential insertion method in terms of the objective value. However, the disadvantage of parallel
insertion is that it needs a predetermined number of vehicles that need to be used to build an initial
solution. In practice, it is rarely the case that the number of vehicles that will be utilized is known in
advance. For this reason, sequential insertion is used most often since it does not require the number of
vehicles beforehand.

Figure 2.3: Difference between sequential and parallel insertion (Jansen, 2023)

Seed task selection

After the decision between sequential and parallel insertion has been made, we need to define a sorting
criterion such that we can choose the seed tasks for the routes. There are many ways to do this, but most
often in practice, the task that is most difficult to plan is chosen. This is done because there is a high
chance that it could not be scheduled later in the process. To maximize the number of tasks planned,
it needs to be planned first. Difficult task properties are for example the largest distance to the depot,
largest quantity or smallest time window length. In case sequential insertion is used, the vehicles could
also be sorted by for example their capacity or costs.
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Insertion strategy

Finally, when the first two decisions have been made, we need to find a strategy to insert the remaining
tasks into the routes. Often the task that is closest to the route is inserted into the route. However, we
could also consider multiple criteria for selecting the task that should be inserted. For example, the task
with the largest quantity within a certain distance to the route could be inserted. Moreover, if two tasks
within this area have the same ordering quantity, the one with e.g. the smallest time window could be
selected. In this way, many different insertion strategies could be created.

2.2.2 Local improvement heuristics

The initial solution that is created by the construction method can often be improved by applying local
improvement heuristics. A local improvement heuristic explores the neighbourhood of the starting so-
lution by making small changes. A list of candidate solutions is constructed and the new solution that
has the largest improvement is selected and used as the starting solution for the next iteration. This
process is repeated until either no improvement can be found or the maximum number of iterations is
exceeded. Improvement heuristics could be searching for improvements within routes (intra-route) or
between routes (inter-route). Multiple improvement heuristics can be used in recursion since one im-
provement heuristic may lead to the possibility of improvement by another improvement heuristic. In
the following paragraphs, some improvement heuristics that are relevant to this research are explained
and all of them can be used as well intra- and inter-route.

2-Opt

The 2-Opt improvement heuristic removes two connections from a route and by reconnecting the edges
a new solution is created. This method tries to improve the current solution by removing crossings from
the trips as can be seen in Figure 2.4.

Figure 2.4: Example of 2-opt improvement (Zunic et al., 2017)

Move

This improvement heuristic relocates a task or a group of tasks to another place. An example is pre-
sented in Figure 2.5, where task i is moved between task j and j + 1.

Figure 2.5: Example of a Move improvement (Tinarut and Leksakul, 2019)
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Swap

The Swap improvement heuristic exchanges the place in a route between two sets of task(s). In Figure
2.6 task i is placed on the position of task j and vice versa.

Figure 2.6: Example of a Swap improvement (Tinarut and Leksakul, 2019)

Cross Exchange

The Cross Exchange removes two times two crosses as is visualised in Figure 2.7. It can be seen as
performing 2-Opt twice between routes that cross paths or a swap between two sets of two tasks.

Figure 2.7: Example of a Cross Exchange improvement (Paraskevopoulos et al., 2008)

2.2.3 Ruin & Recreate methods

The main drawback of the local search is that it can get stuck in a local optimum that is significantly
worse than the global optimum (Lourenço et al., 2003). Since it does not accept worse solutions and
is only searching in a small neighbourhood, it cannot get out of this local optimum. This scenario is
illustrated in Figure 2.8. Suppose the starting solution is the green dot in the graph. Since we are ap-
plying local search we only accept downwards moves. As a consequence, we get stuck in the local
optimum. To overcome this problem and find the global optimum or, most likely, a better local opti-
mum, the metaheuristic ruin and recreate is used. R&R is capable of making the move of the orange
arrow by exploring a large neighbourhood. This is accomplished by destroying and rebuilding a part
of the solution. The size of the destruction is an important decision that largely affects the performance
of the R&R. If we destroy a too big part of the solution, the R&R may behave like a random restart, so
the chance of finding a better solution is small. On the other hand, if the perturbation is too small, the
R&R will often fall back into the same local optimum from which it is trying to escape. As a result, the
diversification of the search space will be limited (Lourenço et al., 2003). If a rebuilt solution is better or
within a certain threshold from the current solution, a short local search method is applied to intensify
the search in the newly discovered solution space. Afterwards, the new solution is compared to the
current best solution and the new solution is only accepted if it is better than the current one. In the
following paragraphs, we will explain some ruin and recreate methods that are used by ORTEC.
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Figure 2.8: Illustration of a local search method that is stuck in a local optimum (Simons, 2017)

Ruin methods

There are many ways of destroying a part of a solution. We can choose to remove tasks randomly. This
method is known as Random Removal. The Related Removal will randomly select a seed task, and
tasks that are most related in terms of distance will be removed as well. The most expensive tasks will
be removed in case the Worst Removal method is used. The Random Cluster Removal will randomly
select some seed tasks and remove those and all tasks in the direct neighbourhood from the current
solution. Similarly, the tasks in the neighbourhood of a predefined number of the most expensive tasks
are removed from the current solution by using the Worst Cluster Removal. In the Route Removal
method, entire routes are expunged from the current solution attempting to reduce the total number
of routes. In this method, more empty routes are preferred above full routes while selecting the routes
that will be removed.

Recreate methods

The construction heuristics mentioned in Subsection 2.2.1 are used as a recreating method to rebuild
the destroyed solution. Note that the parallel insertion method is beneficial in this case since we now
know the number of routes before rebuilding the solution.

2.3 Parallel computing

Parallel computing is defined as the application of two or more processing units to solve a single prob-
lem (Scott et al., 2005). Parallelism thus follows from a decomposition of the total computational load
and the distribution of the resulting tasks to available processors (Crainic, 2019). This decomposition of
the computational load can be done in numerous approaches, therefore a classification of parallel meta-
heuristic strategies is provided in Subsection 2.3.1. In Subsection 2.3.2, we briefly present the concept of
low-level parallelism. However, for our research high-level parallelism is more relevant since we desire
to find a better solution in the same computational time. Thus we review high-level parallelism in more
depth in Subsection 2.3.3. Finally, we provide an overview of the advantages of parallel computing in
Subsection 2.3.4.

2.3.1 Classification for parallel metaheuristic strategies

A frequently used classification method for the parallel metaheuristic strategies is presented by Crainic
(2008) and includes three dimensions. The first dimension, Search Control Cardinality, indicates whether
the global parallel search is controlled by a single processor (1-control, 1C) or distributed among several
processors (p-control, pC). The second dimension, Search Control and Communications, denotes the way
information is exchanged between the processors and distinguishes between synchronous and asyn-
chronous communication. In the case of synchronous communication, information is shared between
the processors on predefined moments (e.g. number of iterations or running time). This means that
all involved processes have to stop and wait for every processor to arrive at the synchronization point.
Afterwards, information is exchanged and the search continues. In Rigid Synchronization (RS), the pro-
cessors only communicate at the end of the algorithm to identify the best overall solution. If communi-
cation is exchanged at predetermined intervals while executing the algorithm, it is called Knowledge-
based Synchronization (KS). In the case of asynchronous communication, the processors autonomously
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undertake their search and initiate communications with other processors. The global search concludes
upon the completion of each search. In the case of collegial communication (C), a single solution is sent
whereas in knowledge-based collegial communication (KC) supplementary information is transmitted
to the other processors. Finally, the third dimension Search Differentiation, accounts for the way different
searches are executed. Solution methods can start from the same or different solutions and can make use
of the same or different search strategies. Consequently, the following four classes can be derived: Same
initial Point/Population, Same search Strategy (SPSS); Same initial Point/Population, Different search
Strategies (SPDS); Multiple initial Points/Populations, Same search Strategies (MPSS); Multiple initial
Points/Populations, Different search Strategies (MPDS). Logically, ”point” is used for trajectory-based
metaheuristics and ”population” is used for evolutionary methods. In SPDS and MPDS, the searches
may be performed by different algorithms or, more commonly, by the same algorithm with different
parameters (Ghiani et al., 2003).

2.3.2 Low-level parallelism

Low-level parallelism is also known as acceleration strategy or functional parallelism since it aims to
speed up a sequential metaheuristic and it does not modify the behaviour of the search trajectory. The
implementation of low-level parallelism is mostly targeted in 1C/RS/SPSS designs with the use of the
master-slave topology. In the classical master-slave approach the master executes a sequential meta-
heuristic but dispatches time-consuming tasks that will be executed by the slaves in parallel. In this
way, computational time is saved. The tasks can be to evaluate the neighbourhood of a solution or
calculate the objective value of a partial solution. The master receives and integrates the results ob-
tained from their slaves and moves on to the next procedure. The impact of such low-level strategies
has proved limited since the search trajectory of the parallel procedure is quite similar to its sequen-
tial counterpart (Crainic, 2008). However, when neighbourhoods are large, the reduction in computing
time may become interesting while using a large number of processors.

2.3.3 High-level parallelism

In high-level parallelism, multiple search processes are executed simultaneously. These methods have
generally offered better performances, in terms of solution quality and computing times, than the meth-
ods of low-level parallelism (Crainic, 2008). Most applications of multi-search methods belong to the
pC category described in Subsection 2.3.1. In the following paragraphs, some high-level parallelism
strategies will be discussed.

Domain decomposition methods

The basic idea of domain decomposition methods is to separate the search space into smaller and easier
subproblems that will be addressed by applying a sequential metaheuristic. From these partial solu-
tions, a global solution is constructed that tackles the entire problem. By fixing or discarding variables
and constraints, a separation of the search space can be obtained. ”This separation may result in a
partition (disjoint subsets) or a coverage (subsets may overlap) of the overall search space” (Schryen,
2020). The partitioning reduces the size of the solution space but it also leaves large portions of the so-
lution space unexplored. Consequently, the separation has to be repeated to explore the entire solution
space. Domain decomposition is usually implemented using a master-slave 1C/RS scheme with MPSS
or MPDS searching strategies. The master process determines the separation of the search space and as-
signs the partial subsets to the slaves. The slaves will simultaneously and independently execute their
search on their distributed subset. Afterwards, the master process collects partial solutions, reconstructs
the complete solution and modifies the separation. This process is continued until the termination cri-
terion is met. In contrast to sequential metaheuristic methods, domain decomposition methods have
different search behaviour and solution quality. These methodologies prove particularly advantageous
when dealing with larger problem instances.

Independent multi-search methods

The independent multi-search methods were one of the first parallelization methods published in the
literature because of its simplicity. This method belongs to the pC/RS class, in which MPSS, SPDS,
and MPDS can be used as search differentiation. It parallelizes the multi-start strategy by initiating
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concurrent solvers that explore the search space starting from the same or different initial solutions.
In this manner, the independent multi-search methods expedite the exploration of the search space
aiming for an improved solution compared to sequential searching methods. No advantage of running
multiple solvers in parallel is taken apart from the identification of the best solution among all searches
at the final synchronization step. The independent multi-search method is rather easy to implement
and generally offers an interesting performance (Crainic, 2019).

Cooperative multi-search methods

Cooperative multi-search has emerged as one of the most successful meta-heuristic methodologies to
address hard optimization problems (Crainic and Toulouse, 2010). Cooperative strategies often offer
superior performances compared to independent search because they take advantage of the parallel
diversified exploration of the search space (Crainic, 2008). Information is shared between processors
while the search is ongoing. The design of the information communication mechanism is a fundamental
element to the strong performance of the cooperative multi-search methods. Questions relative to when
and what information to exchange and among what processors are often asked. As mentioned in the
classification provided in Subsection 2.3.1, we distinguish two moments of information exchange either
synchronously (directly) or asynchronously (indirectly).

The synchronous cooperative strategies are generally used by population-based methods and be-
long to the pC/KS class. The goal is to re-generate a state of complete knowledge at specific points in
the search by exchanging the global best solution to all solvers, it assumes to find a superior solution.
This goal is generally only partially attained, although it generally outperforms the sequential versions
as well as simpler parallelization strategies (Crainic, 2019), the approach has a few drawbacks. Firstly,
sending the overall best solution to all cooperating solvers leads to the case that solvers are exploring
the same parts of the search space. This rapidly decreases the efficiency and diversity of the search and
causes an early convergence of the algorithm to a potentially not-so-good local optimum. To overcome
this drawback, instead of using a fully connected communication graph, less densely connected com-
munication topologies can be used. Twomey et al. (2010) presents an analysis of communication policies
including the ring, hypercube and fully connected topologies. Moreover, in synchronization informa-
tion sharing the communications are initiated when the slowest solver has completed his search. This
results in idle time for the other processors and thus in significant time inefficiencies. Consequently,
asynchronous information sharing seems more promising, guided by intuitive considerations.

As expected asynchronous information sharing generally outperforms synchronous methods (Crainic,
2019) and is used by most trajectory-based cooperative multi-search methods. The asynchronous ex-
changes of information are regulated by a central memory also referred to as solution- pool or ware-
house. In case a processor desires to send out information, such as a new local optimum, it is dispatched
to the central memory. Similarly, when a processor requires external information, perhaps to diversify
the search, it retrieves this information from the central memory. Communication in both directions is
initiated solely by individual processors. In case the central memory only stores complete solutions,
the cooperative multi-search method belongs to the pC/C class. If mechanisms that can create new
information and solutions based on the solutions stored in the central memory are included in the co-
operative multi-search methods, they belong to the class pC/KC.

A general observation for both synchronous and asynchronous cooperative strategies is that ex-
changes should not be too frequent to avoid excessive communication overhead as well as premature
convergence to local optima (Toulouse et al., 1999).

2.3.4 Advantages parallel computing

The main advantages of the implementation of parallel computing in metaheuristics are multi-faceted.
Firstly, it accelerates the research procedure since multiple processors are working on the computational
load instead of only one. In this way, a predetermined level of solution quality can be accomplished
faster. Secondly, very large instances of complex optimization problems that can not be solved by a
sequential machine could be solved by parallel metaheuristics. Moreover, the quality of the obtained
solutions can be improved since a larger part of the search space could be explored in the same or less
computational time compared to sequential methods. Last but not least, parallel metaheuristics can
improve the robustness of the algorithm. In this context, robustness means that the algorithm performs
equally well to a large and varied set of problem instances without excessive calibration.
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2.4 Parallel computing and VRPs

Many parallel computing applications that solve VRPs in the literature use population-based methods.
Since this would require a serious transformation of the software of ORTEC these applications are not
addressed in this review. For our research, it is relevant to find applications of multi-start algorithms
since we are interested in the effects of using more than one initial solution in the algorithm of Com-
pany X. According to Czapiński (2013), initial solutions have a small impact on the running time of
the algorithm but they can have a significant influence on the quality of the solutions. In the following
subsections, several methods to generate different initial solutions are discussed.

2.4.1 Different parameter settings

Polat (2017) proposes a parallel variable neighbourhood search that is initiated from different starting
solutions. To construct multiple different initial solutions for each processor different parameter settings
are used in the same construction heuristic. The parameters are randomly drawn from an interval.

2.4.2 Random seed values

In Cordeau and Maischberger (2012) each processor generates a unique initial solution by using differ-
ent random seed values. The different seed values will result in different seed customers while building
the routes. Customers are sorted in ascending order based on the angle they make with the depot and
are inserted in this sequence.

In Bräysy et al. (2004) randomly an unrouted customer among the customers farthest from the depot
or among the customers having the earliest end of the time window is selected as a seed for a new route.
The selection criterion is randomly chosen when constructing a new starting solution. While inserting,
only closely located customers are considered whereas insertion of customers that are located far away
from the depot is favoured. Since they are usually considered the most challenging ones to plan.

2.4.3 Different construction heuristics

Le Bouthillier and Crainic (2005) presents a parallel cooperative meta-heuristic that uses two phases to
produce initial solutions. First, four different fast-construction heuristics are used to create solutions
from scratch. Afterwards, a route elimination method is applied to these solutions before they are used
as starting points in the search.

2.4.4 Results

All above-discussed applications of multi-start methods performed well in terms of computational time,
robustness and objective values on a large set of benchmark instances. This proves the usefulness of
using multiple initial solutions in a parallel metaheuristic.

2.5 Algorithm configuration problem

Many high-performance algorithms designed for computationally hard problems have numerous pa-
rameters whose settings greatly impact their effectiveness (Hutter et al., 2009). Consequently, optimiz-
ing these parameters is an important task for algorithm developers (Hutter et al., 2010). Traditionally,
the optimization of the parameters was carried out through manual experimentation which can be a te-
dious task, especially when dealing with a large number of parameters. Hence, automated approaches
for finding good parameter settings have become available to address the algorithm configuration prob-
lem and have led to significant improvements in the state-of-the-art for solving computationally chal-
lenging problems (Hutter et al., 2012).

We are also dealing with a variant of the algorithm configuration problem because we will be creat-
ing different algorithms for the new parallel algorithm by modifying the parameter settings of the algo-
rithm of Company X. For this reason, we will elaborate more on the algorithm configuration problem
by providing the formal definition in Subsection 2.5.1. Subsequently, three state-of-the-art automatic
algorithm configuration approaches will be reviewed in Subsection 2.5.2. Finally, in Subsection 2.5.3, a
short discussion will be held to summarise the concepts of the solving methods that are relevant to this
research.
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2.5.1 Problem definition

The algorithm configuration problem involves the challenge of finding the optimal parameter settings
of an algorithm that maximizes its performance on a given dataset. Hoos (2012) describes this problem
formally as follows:

Given
• an algorithm A with parameters p1, . . . , pk that affect its behavior,
• a space C of configurations (i.e., parameter settings), where each configuration c ∈ C specifies

values for A’s parameters such that A’s behaviour on a given problem instance is completely
specified (up to possible randomization of A),

• a set of problem instances I,
• a performance metric m that measures the performance of A on instance set I for a given configu-

ration c,

find a configuration c∗ ∈ C that results in optimal performance of A on I according to metric m.

The algorithm A whose performance will be optimized is also referred to as the target algorithm and
A(c) is used to denote target algorithm A under a specific configuration c. The domain of p includes the
set of values any given parameter p can take. The parameters of algorithms can be classified into several
types: numerical, ordinal, categorical, boolean or conditional. Numerical parameters are characterized
by integer or real number values. Ordinal and categorical parameters have a finite set of discrete values,
but categorical parameters lack any meaningful order. Boolean parameters regulate the activation or
deactivation of heuristic mechanisms while conditional parameters are only active under specific values
of other parameters.

2.5.2 Automated algorithm configuration methods

In this subsection, three state-of-the-art automatic algorithm configuration approaches will be briefly
reviewed. Namely, the Iterated F-race, ParamILS and Sequential Model-based Algorithm Configuration
(SMAC).

Iterated F-race

The Iterated F-race, also known as I/F-Race, is a racing procedure and is a variant of the F-race. The con-
cept of the F-race is simple: sequentially evaluate all the candidates on a set of instances and eliminate
candidates as soon as they perform significantly worse than the candidate with the overall best perfor-
mance at a given stage of the race. The F-race requires every possible configuration to be evaluated in
the initial steps of a race, consequently, F-race is not suitable for large problems and discretization is
needed for continuous parameters. To overcome this problem, an iterative application of F-Race was
introduced by Balaprakash et al. (2007), namely the I/F-Race. Each iteration consists of two stages, in
the first stage a set of candidate configurations is sampled from a probabilistic model. Subsequently, in
the second stage, a standard F-Race is performed on the candidate set, where the configurations that
survived this race are used to update the probabilistic model that will be used in the next iteration. This
iterative process continues until a stopping criterion, such as reaching the computational budget, is met.
A more detailed explanation of the I/F-Race including applications can be found in Hoos (2012).

ParamILS

The core of the ParamILS framework is the Iterated Local Search (ILS), a well-known and versatile
method that has been successfully applied to a variety of difficult combinatorial problems (Rasku et al.,
2019). Within ParamILS, a one-exchange neighbourhood is used to search the space of all algorithm
parameter value combinations, altering only one parameter value at a time. The ParamILS algorithm
starts its search by identifying the best-performing parameter configuration from a pool comprising
the default configuration and randomly generated configurations. This best-performing configuration
serves as the starting point for the iterated local search process. Each iteration involves a perturbation
phase where small random changes are made to explore the solution space. This is followed by a local
search phase, which is aimed at reaching a new local optimum. Subsequently, an acceptance criterion is
used to determine whether to continue the search process from this newly discovered local optimum or
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not. The iterated local search process concludes upon meeting a specified stopping criterion, at which
point it returns the best configuration found. Hutter et al. (2009) provides a more elaborate description
of the ParamILS along with its variants and extensions.

SMAC

Hutter et al. (2011) introduced Sequential Model-based Algorithm Configuration (SMAC), an iterative
framework that operates by alternating between fitting a regression model to observed performance
data and using this model to predict the performance of new candidate configurations. SMAC starts
with an initial configuration set, which is evaluated on the instance set. Subsequently, it fits a predictive
model (such as Gaussian processes or random forests) on this performance data. Using this model, an
Expected Improvement function is formulated and local optimization techniques are applied to identify
the configuration that maximizes this function. Once the most promising configuration is identified, it
is evaluated on the instance set, and the results are used to update the regression model. This iterative
process continues until a specified stopping criterion, such as reaching a maximum running time, is
met. Finally, SMAC returns the best-evaluated configuration found during the process.

2.5.3 Discussion

The automated algorithm configuration systems discussed in the previous section have demonstrated
remarkable performance improvements across a broad range of applications (Geschwender et al., 2014).
However, these often lack transparency in their decision-making process, providing limited insight into
why specific parameter configurations are selected. This poses a significant drawback, particularly
in academic research, where understanding the reasoning behind optimization strategies is essential
(Rasku et al., 2019). This aspect holds significance for ORTEC as well, as the findings of this research
should be applicable to future projects.

Furthermore, these automated algorithm configuration methods are typically applied to single se-
rial algorithms, whereas our research focuses on a parallel algorithm comprising a set of algorithms.
Additionally, the size of this parallel algorithm as well as the number of starting solutions to proceed
to the local search and R&R phase are variable. In theory, an automated configuration method could
be applied to this problem by treating the whole parallel algorithm as one configuration. However, the
number of possible configurations will explode as will be shown in Chapter 4.

The performance of the automated algorithm configuration methods relies on the ability to evaluate
a large number, ideally thousands, of configurations (Styles and Hoos, 2013). Since the average run-
ning time of the algorithm of Company X is approximately 5 minutes, evaluating, for example, 5000
configurations on a single instance would already take 17.4 days. Consequently, computational times
for a representative dataset would be prohibitively long and costly. Cloud computing could be used to
reduce this computational time but it would incur additional expenses.

For these reasons, we have opted not to utilize an automated algorithm configuration method in
our research. However, we will integrate the main concepts of the automated tuning framework pre-
sented in Gunawan et al. (2011). Their framework consists of three phases: screening, exploration and
exploitation. Firstly, in the screening phase, an experiment is conducted to determine which parameters
are significantly unimportant. These unimportant parameters are set to a constant value to reduce the
search space. Furthermore, ranges of the important parameters are updated based on the results of this
first experiment. Secondly, in the exploration phase, these new ranges are explored and reduced such
that they can be used as a starting point for an automated tuning procedure such as ParamILS to find
the optimal parameter setting in the exploitation phase. In Chapter 4 our solution approach will be
explained in detail.

2.6 Conclusions

This chapter has presented a comprehensive literature study on relevant concepts related to this re-
search. Firstly, we presented various variants of the VRP that address features of the VRPX individually.
Moreover, a literature review was conducted on the VRPX in which we found out that to the best of our
knowledge, the vehicle routing problem of Company X does not yet exist in the literature. Furthermore,
different construction-, local improvement heuristics and R&R methods are introduced which are the
three core elements of the algorithms of ORTEC that are solving routing problems.
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Secondly, an overview of a classification for parallel metaheuristics based on the communication
between processors, the number of starting solutions and the number of different search strategies is
given. We have seen that multi-search methods in general improve the quality and robustness of the
solutions. Furthermore, we have seen that different initial solutions for parallel metaheuristics solving
VRPs were created by different parameter settings, seed values or construction heuristics.

Finally, a formal definition of the algorithm configuration problem and automated solving approaches
are presented and discussed. Unfortunately, the automated solving methods are not suitable for this
research however the main concepts of the automated tuning framework of Gunawan et al. (2011) will
be used to construct a new parallel algorithm to address the VRPX in the subsequent chapters.
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Chapter 3

Problem Context

In this chapter, we provide a more in-depth analysis of the problem context. In Section 3.1, we explain
how the algorithm of Company X is constructed, whereas this algorithm is explained in detail in Section
3.2. Finally, the options of using parallel computing within the software of ORTEC are elaborated on in
Section 3.3.

3.1 Design process of the algorithm of Company X

When Company X entered into a contract with ORTEC, an optimisation project was started to design
a tailored algorithm for Company X. Extensive discussions were conducted to identify the most impor-
tant Key Performance Indicators (KPIs) for Company X. Subsequently, Company X provided about 20
sets of data from 2 or 3 main depots, enabling the implementation consultants of ORTEC to develop
a new algorithm for Company X that meets their needs and performs well for their cases. This new
algorithm is also used for the cases of all the other main depots, despite the absence of data for those
depots beforehand. Afterwards, the algorithm was only modified in case Company X introduced new
requirements. For example, when they started to use priority 3 vehicles, the algorithm was extended
such that it was able to handle priority 3 vehicles. In the next section, the algorithm of Company X is
explained in detail.

3.2 The algorithm of Company X

In this section, we explain the algorithm of Company X in more detail which is solving the problem of
Company X, explained in Sections 1.2 and 2.1. This algorithm consists of three phases as can be seen in
Figure 3.1: construction, local search and ruin and recreate. In the following subsections, the methods
used in these phases to obtain the objectives stated in Subsection 1.2.10 will be elaborated on. Note that
in none of these phases, an infeasible or worse solution than the current solution is accepted as a new
solution.

Figure 3.1: Flowchart of the algorithm of Company X

3.2.1 Construction method

Since Company X requires that all vehicles of subdepots should be used, the vehicles of the subdepots
are planned first and the vehicles of the main depot last. The subdepots are decreasingly ordered based
on the distance to the main depot. Following this sequence, the construction is done separately per
depot but they use the same construction method. To comply with the business rules of Company X
about priority 1 and priority 2 vans, the routes are scheduled in the following order: priority 1, priority
2 and finally the normal and priority 3 vans. In this way, the customers close to the depot are not
taken up by the normal vans and all priority 1 and priority 2 vans will be used. The construction of
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the routes for the different types of vehicles follows the same structure: seed task selection, insertion of
tasks, short intra-route local search, insertion of unplanned tasks and if possible multi-trip construction.
Afterwards, when all vehicles of a depot are planned, a local search procedure is applied to all the
routes assigned to this specific depot. Finally, unplanned tasks, if any, are trying to be inserted into the
routes. The above-mentioned structure of the construction is visualised in a flowchart in Figure 3.2. In
the subsequent paragraphs, the main elements of the flowchart are explained in detail. Although the
whole structure includes some local search procedures, it is considered as the construction phase.

Figure 3.2: Flowchart of the construction phase of the algorithm of Company X

Seed task selection

For the priority 1 and priority 2 van routes, the seed task is the closest unassigned customer to the
selected depot. The seed task of priority 3 and normal vans is based on the largest difference between
the distance to the nearest depot that is not the depot of the selected vehicle and the depot of the
selected vehicle. In this criterion, a scale of 10 kilometres is used. This means that customers are sorted
in scales of 10 kilometres based on the difference between the distance to the nearest depot that is not
the depot of the selected vehicle and the depot of the selected vehicle. The first scale corresponds to
the customers with a difference between 0 and 10 kilometres, the second scale to the customers with a
difference between 10 and 20 kilometres and so on. The customer that is assigned to the largest scale is
used as a seed task. In case multiple customers are assigned to this scale, the one that is located furthest
away from the depot of the selected vehicle is selected as a seed task. Additionally, there is also a third
sorter based on the quantity included however this one is at the moment not used since the scale of
the second sorter is 0. In case a scale is 0, the tasks are ranked and either the first or the last one is
selected depending on the sorting direction. Finally, for multi-trip routes, the seed task is the same for
all vehicles. Namely, the closest unassigned customer to the depot because it is assumed that there is
not enough time to do another long trip.
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Insertion of tasks

After the seed task is selected, customers are inserted in the route one by one. The remaining customers
are sorted increasingly based on their distance relative to the seed task with a scale of 1 kilometre. This
means that we could have selected multiple customers. Consequently, if needed the selected customers
are sorted based on the start of the time window with a scale of 1 hour. If these two criteria are not
strict enough to select one single customer, the customer of the remaining ones that is located closest
to the seed task, is inserted. The selected customer is inserted using the cheapest insertion method
while respecting the time window of the customer. This procedure is repeated until insertion leads to a
violation. This insertion method is used for all types of vehicles.

Short intra-route local search

If all vehicles of a certain type are planned, a short local search method is applied that only allows
changes within a route. This is done to minimize the waiting time per route. The 2-Opt and Move
improvement heuristics are applied to every route of the specific vehicle type. These two improvement
heuristics are explained in Subsection 2.2.2.

Insertion of unplanned tasks

The intra-route local search method could result in modifications in the trips, creating opportunities for
the inclusion of new customers in the route. Therefore, unplanned tasks close to one of the stops in a
route are tried to be inserted into the route of a certain vehicle type with the use of sequential cheapest
insertion.

Multi-trip construction

After the first trip for every vehicle of a certain type is constructed, multi-trips are considered for all
types of vehicles except for priority 1 and priority 2 vans. If feasible, an extra trip is added to a vehicle
following the same construction process as the first route. However, before applying the short local
search method, an extra trip is constructed and added to the vehicle if feasible. This is done for all
vehicles of a certain type until the addition of a new trip leads to a violation. Subsequently, the same
short intra-route local search is applied and unplanned tasks are tried to be inserted.

Local search after construction of one depot

After each vehicle of a depot is fully utilised or all customers are inserted, a local search procedure is
applied to all routes of this depot. The local search method contains five different improvement heuris-
tics that run recursively: 2-Opt, Cross Exchange, Move&Swap, Move and a route elimination method
that tries to shift all tasks of a route to a different route. In Subsection 2.2.2 the Move, Swap, 2-Opt and
Cross Exchange improvement heuristics are explained. The Move&Swap improvement heuristic is a
combination of the Move and Swap improvement heuristics. The local search procedure stops either
after a recursion without improvement or after five recursions.

Planning remaining tasks

Similar to the previous applications of local search procedures, successively unplanned customers are
trying to be inserted into the existing routes. However, in this case, parallel cheapest insertion is used.
First, customers are tried to be inserted into non-empty trips. If the insertion of an unplanned customer
is not feasible in any non-empty trip, a new trip is created if any vehicle is available. Otherwise, it
remains unplanned.

3.2.2 Local search

The initial solution, created by the construction method explained in the previous subsection, will be
improved via some local search procedures that are allowed to modify routes that belong to different
depots. The flowchart of the local search phase of the algorithm of Company X can be seen in Figure 3.3.
First of all, the number of trips is attempted to be decreased by moving all tasks from one trip completely
to another trip. Secondly, the short intra-route local search method, explained in Paragraph 3.2.1 is
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applied to optimize the sequence of the routes. Subsequently, the recursive local search, described
in Paragraph 3.2.1, is applied to the current solution. Afterwards, a new attempt to insert unplanned
customers is made. First, they are tried to be inserted in non-empty routes. If all insertions of a customer
will lead to a violation, a new trip is created if any vehicle is available. Otherwise, the customer remains
unplanned. If at least one unplanned customer is successively inserted into a route, the recursive local
search is again applied to the new solution. Finally, a new effort is made to decrease the number of trips
via a route elimination method. These methods together form the local search phase of the algorithm
of Company X.

Figure 3.3: Flowchart of the local search phase of the algorithm of Company X

3.2.3 Ruin and Recreate

The algorithm of Company X incorporates the six ruin methods mentioned in Subsection 3.2.3, coupled
with the parallel cheapest insertion method as the recreation method. Consequently, there are six possi-
ble combinations of R&R methods. To guarantee that the priority 1 and priority 2 vans are still assigned
to the customers located close to the depots, the ruin methods are not applied to the routes of prior-
ity 1 and priority 2 vans. However, customers who are removed from the solution are allowed to be
inserted into priority 1 and priority 2 van routes. Moreover, routes starting at subdepots are favoured
over routes starting at the main depot for the insertion of removed customers. Note that the removed
customers from the solution by the ruin method will be added to the list of unplanned customers. If
it is not possible to plan all customers into the existing routes, overflow routes can be used. The ruin
and recreate phase is presented with a flowchart in Figure 3.4 and works with a roulette wheel that
is used for 40 iterations in 5 recursions. The roulette wheel chooses one of the six R&R methods that
will be used at each iteration. In the first iteration, every method has the same probability of being
chosen. If the newly obtained solution by the chosen R&R method is within the threshold margin of
5% of the current solution, a fast local search method is applied. This fast local search method consists
of the 2-Opt and Move improvement heuristics that are allowed to make changes inter-route as well as
intra-route. If this new solution is better than the current solution, the probability of getting chosen in
the next iteration is higher for the used R&R method. On the other hand, if the newly obtained solution
is not better than the current solution, the probability of getting chosen in the next iteration decreases
for the used R&R method. In this way, the probabilities are updated after each iteration. After each
recursion, the probabilities are reset. In case one recursion does not result in an improved solution,
the recursion will stop. The short intra-route- and recursive local search are once again applied to the
best solution obtained after the recursion of the roulette wheel. Finally, the route elimination method is
applied to see whether the number of vehicles used could be decreased or that routes could be assigned
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to cheaper vehicles.

Figure 3.4: Flowchart of the ruin and recreate phase of the algorithm of Company X

3.2.4 Final solution

The final solution that will be provided to Company X is either the solution obtained after the whole
algorithm was run or the solution that is obtained when the maximum running time is reached. The
algorithm will expire well before the maximum duration for the smaller cases. However, for big in-
stances, the algorithm has to be terminated to avoid violating the maximum running time. In the latter
case, the best solution achieved up till that point will be provided to Company X.

3.3 Parallel computing at ORTEC

In this section, the experiences and opportunities with the use of parallel computing at ORTEC are
discussed. In the OHD software, it is not possible to speed up calculations by the use of low-level
parallel computing which concept is explained in Subsection 2.3.2. However, for this thesis high-level
parallel computing is relevant and fortunately, that is possible to implement into an algorithm. In the
following paragraphs, the use of domain decomposition and multi-search methods within the OHD
software will be examined.

3.3.1 Domain decomposition methods

The OHD software offers the ability to make use of the in Subsection 2.3.3 clarified domain decomposi-
tion methods. Problems can be split via multiple splitting strategies into disjunct parts and these can be
separately optimized in parallel. This type of high-level parallel computing is already used by ORTEC
in the algorithm of some customers. The problems of these customers are too large to be solved by a
sequential algorithm in a reasonable time. Consequently, the problem is split into disjunct subproblems
that are then solved in parallel. This is repeated several times with different splitting criteria to explore
a larger search space. Hence, customers located on the edge of multiple areas are included in routes of
all of these areas. Afterwards, it can be concluded as to which route it is most optimal to be assigned.
In this way, large problems of customers are solved in a reasonable time.
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3.3.2 Multi-search strategies

In the OHD software, it is also possible to apply multiple search strategies concurrently. However, this
is not yet used in practice in a customer case because it is not clear how much better the solutions will
be if multi-search strategies are included. Therefore, ORTEC has not been using multi-search strategies
because it would only increase computational costs while no extra revenue is generated. The computa-
tional cost per Central Processing Unit (CPU) amounts to 16 cents per hour.

In case multi-search strategies are used in the OHD software, it is only possible to continue with
one solution to the next phase of the algorithm. For example, if four different initial solutions are
constructed in the construction phase of the algorithm of Company X, only the best solution of those
four generated starting solutions may proceed to the local search phase. This logic applies also to the
use of parallel computing in the other phases. One exception to use multiple starting solutions is the
fact that it is possible to execute complete algorithms in parallel however processors are not able to
communicate with each other. In this way, it is still possible to employ the MPDS search differentiation
but each implemented algorithm must be executed independently from start to finish, with the optimal
solution selected upon completion of each algorithm’s run. Moreover, the construction-, local search-
and R&R methods are inherently tied and cannot be interchanged during execution. Consequently,
while technically feasible, the utilization of the MPDS search differentiation is limited.

3.4 Conclusions

This chapter has provided an in-depth understanding of the problem context. We have explained how
the algorithm of Company X was constructed by the employees of ORTEC. Subsequently, a detailed
explanation of the three phases of the algorithm of Company X is provided. We have seen that it
includes a lot parameters of which it settings could be modified. Moreover, we have seen that both
the seed task selection as the insertion method consist of different sorting criteria with scales. Finally,
the current opportunities for implementing parallel computing into an algorithm in the OHD software
are explored. We found out that communication between processors is not possible but independent
multi-search methods are possible in case you either use one starting solution or all.
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Solution Design

We have seen in the literature study in Chapter 2 that the use of multiple construction methods by
changing parameter settings led to good results. Furthermore, it can be concluded from Subsection
3.2.1 that the entire construction method of the algorithm of Company X is quite complex. For this
reason, we are going to create different construction methods by modifying the parameter settings of
the seed task selection- and insertion method of the algorithm of Company X instead of designing
completely new construction methods. The latter method would require a lot of construction work
compared to the former one. Consequently, it would then cost ORTEC a lot of time and thus money to
adapt algorithms into a parallel version. Section 4.1 provides an overview of the available parameter
settings of the seed task selection- and insertion method of the algorithm of Company X. Subsequently,
as mentioned in Section 1.3 the problem of Company X is slightly modified to align closer with other
customers problems. The modification made to the problem of Company X will be explained in Section
4.2. Furthermore, the mathematical formulation of the problem we are facing is given in Section 4.3.
Finally, the solution approach employed to tackle this problem is outlined in Section 4.4.

4.1 Parameters construction method

In this section, we elaborate in-depth on the seed task selection procedure and the insertion method
since the parameters of these will be modified to construct multiple construction methods for our new
parallel algorithm.

4.1.1 Seed task selection methods

As mentioned in Section 3.2.1 currently, the seed task for the normal and priority 3 vans is selected
considering three different criteria:

1. The difference between the nearest depot that is not the depot of the selected vehicle and the depot
of the selected vehicle

2. The distance of the customer with respect to the starting depot of the selected vehicle

3. The order quantity of a customer in terms of weight

Currently, the first sorter operates on a scale of 10 kilometers, decreasingly. Similarly, the second
sorter also operates decreasingly, with a scale of 0, indicating that the third sorter, which sorts based on
the order quantity of customers in decreasing order, is not utilized. This setup allows us to experiment
with adjusting the scales to alter the significance of other sorters. For example, reducing the scale of
the first sorter would increase its importance, as a smaller scale would result in greater differentiation
between customers based on the distance between their nearest depot which is not the depot of the
selected vehicle and the selected vehicle’s depot, and vice versa.

Moreover, we have the flexibility to modify the direction of the scales and introduce additional or
alternative sorting criteria. In total, there are 24 different sorting criteria available in OHD, such as the
start, duration and finish times of time windows, x- and y-coordinates, and distance to the selected
depot. Each criterion includes a scale that can take positive real values and can be used in either de-
creasing or increasing order. This versatility allows us to create a wide range of seed task selection
strategies.
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4.1.2 Insertion methods

In Section 3.2.1 is explained that we use three sorting criteria to select the customer that will be inserted
in the route:

1. The distance of the customer with respect to the seed task

2. The start of the time window of the customer

3. The distance of the customer with respect to the seed task

Currently, the scale of the first sorter is 1 kilometer and increasing. The second sorter also operates
increasingly, with a scale of 1 hour. The third sorter is also increasing and uses a scale of 0. As described
in the previous subsection, we have the flexibility to experiment with adjusting the scales and directions
of the sorters, as well as adding or replacing sorting criteria. However, in the insertion method, there
are even more parameter settings that can be modified.

Firstly, tasks are at the moment inserted with a batch size of 1, meaning that customers are inserted
one by one. However, we have the option to insert multiple tasks at once, for example, inserting 5 tasks
simultaneously. The batch size is variable, as is the number of batches created. Furthermore, tasks are
now inserted by the cheapest insertion method however a parallel cheapest insertion method is also
available. Moreover, tasks could be resorted after each insertion of a batch such that the customers
are not only selected based on the distance to the seed task but also on the distance to every other
task that is already in the route. Additionally, batch sizes larger than 1 could be sorted while using
cheapest insertion. Finally, the estimator used in the cheapest and parallel cheapest insertion could be
changed. As a result, an exorbitant number of insertion methods could be created by experimenting
with above-mentioned parameter settings.

4.1.3 Degree of complexity

In the preceding subsections, it could be obtained that an immense number of different construction
methods could be created by adjusting the parameter settings of the seed task selection- and insertion
methods of the algorithm of Company X in OHD. To illustrate the complexity of the problem consider
the following example: if we allow each sorter’s scale to have only 10 values, each sorting criterion can
be varied in 20 different ways (since it can be sorted in both increasing and decreasing directions), then
with 24 different sorting criteria, we have a total of 480 unique sorting criterion variants (assuming no
sorter is used twice). Consequently, 480! unique seed task selection methods could be created, resulting
in a staggering 1.9× 101080 possible methods.

Note that even more insertion methods could be created since it concludes more parameter settings.
On top of that, the combination of seed task selection- and insertion methods that lead to a unique
construction method will be even larger. Furthermore, note that we restricted the scale of the sorters to
only 10 values whereas all positive real numbers are in fact allowed. This proves the extremely large
solution space of the problem and its high level of complexity.

4.2 Modification of the problem of Company X

In Chapter 1, we mentioned that Company X makes use of different types of vehicles: priority 1, priority
2, priority 3 and normal vans. In this research, the priority 1 routes are removed from the datasets and
the priority 2 routes are replaced with normal routes. This has been done since we can not judge for
Company X whether a solution is better than another if we include the priority 1 and priority 2 routes.
These routes should all be used and assigned to the relatively easier routes, however, we cannot decide
for Company X if they would be satisfied with a solution in which a priority 2 route is replaced by a
normal route to improve the costs substantially.

Furthermore, the term ‘relatively easier routes’ is subjective too thus we cannot decide for Company
X what easier routes are and if they are satisfied with the provided solution.

Moreover, by removing the priority 1 and priority 2 routes the problem will look more like VRPs
from other customers since those types of routes are not used by other customers. In this way, our
research findings are more likely to be applicable to other customers using the OHD software.

For these reasons, we have decided to remove the priority 1 routes and replace the priority 2 routes
with normal routes such that we can decide based on the number of planned tasks and total costs which
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solution is the best. Besides, it barely changes the VRPX as we maintain a heterogeneous vehicle fleet
for almost all of the main depots. This is the only modification made to the problem of Company X that
is explained in Section 1.2.

4.3 Mathematical formulation

In order to provide ORTEC valuable insights into the utilization of parallel computing within OHD,
we will develop a parallel algorithm. As mentioned before, the algorithms included in the parallel
algorithm will be created by adjusting the parameter settings of the seed task selection and insertion
methods which are introduced in Section 4.1. Both the number of algorithms included and the number
of starting solutions that will proceed to the local search and R&R phase are variable. This problem can
be framed as an algorithm configuration problem, akin to the one outlined in Section 2.5.1:

Given

• the algorithm of Company X with parameters s1, . . . , sk that affect its behavior,

• a space A of algorithms, where each algorithm a ∈ A is a unique variant of the algorithm of
Company X where a0 denotes the algorithm of Company X,

• a set of problem instances I,

• a space P of configurations (i.e. parallel algorithms), where each p ∈ P consists of algorithms
a1, . . . , an, where a subset s of starting solutions S will proceed to the local search and RR phase,

• a performance metric m that measures the performance of p on instance set I,

find a configuration p∗ ∈ P including a set of algorithms {a1, . . . , an}* ∈ A where a subset s∗ ∈ S
starting solutions will proceed to the local search and R&R that results in optimal performance on I
according to performance metric m. The design of the new parallel algorithm is visualized in Figure 4.1

The performance is evaluated firstly on the number of planned tasks and secondly on the total costs
which includes the computational costs as well as the planning costs. Furthermore, while solving the
above-formulated problem, research about the importance of the initial solution and the relationship
between input data and parameter settings should be conducted.

Figure 4.1: A visualization of the design of the new parallel algorithm that uses multiple construction methods and starting
solutions.

4.3.1 Degree of complexity

Suppose we continue the example given in Subsection 4.1.3, where we discovered that we can create
1.9× 101800 unique seed task selection methods assuming that the scales of the sorters are limited to
only 10 values. Additionally, the number of insertion methods is even larger since it involves more
parameters. However, for this new example, we will assume that the number of different seed task
selection and insertion methods are equal. This implies that we are able to create (1.9× 101080)2 thus
3.5× 102160 unique algorithms. Since the number of algorithms n included in the parallel algorithm p is
variable, we can create 23.5×102160

different parallel algorithms. This is already an extremely large num-
ber however since we also restricted the scales to 10 values and assumed that the number of insertion
methods is equal to the number of seed task selection methods, we can say that we can create, without
restrictions, a myriad number of parallel algorithms p. Besides, we also ignored the fact that we have
to select a subset of starting solutions to proceed to the local search and R&R phase. This underwrites
again the high degree of complexity of the problem we are facing.
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4.4 Solution Design

The primary objective of this research is to provide ORTEC with relevant insights regarding the impact
of parallel computing within OHD. We are going to address this goal by constructing a new parallel
algorithm that incorporates multiple construction methods and evaluating its performance against the
algorithm of Company X. To do so, we have to address the problem, formulated in the previous section.
In this section, we will present our solution approach for solving this problem and gather relevant infor-
mation for ORTEC about the use of parallel computing with the use of multiple construction methods
during the process. We have seen in Section 4.3, that a myriad number of unique parallel algorithms
could be created within OHD and in Section 2.5 that automated algorithm configuration methods are
not suitable for our problem. For this reason, we have to devise an efficient way of solving this problem,
which involves breaking down the design process into multiple steps. The solution design is visualised
in Figure 4.2 and explained in the subsequent paragraphs.

Firstly, we are going to create multiple algorithms that include different construction methods in
which our goal is to find good construction methods for various types of cases of Company X. This
means that it is crucial to not solely evaluate configurations based on their average performance but
also on their performance for specific types of cases. Since if an algorithm only performs well for
specific cases and very poorly for others, it remains relevant for parallel computing. This search for
good construction methods will be combined with a data analysis, enabling us to provide ORTEC with
information about the relationship between input data and construction strategies. Since the intrinsic
complexity of the cases of Company X for any configuration of the algorithm of Company X may differ
substantially, comparisons between different configurations are always based on the same dataset and
seed number (Hoos, 2012).

Secondly, we will investigate whether using multiple starting solutions is beneficial, and if so, deter-
mine the optimal number of construction methods for generating these solutions and how many should
proceed to the local search and R&R phase.

Finally, after we have determined the number of construction methods and solutions that will pro-
ceed to the local search, we have to select the construction methods that will be used in the new parallel
algorithm that optimizes the performance and robustness. In the following subsections, the solution
approach for the three steps will be explained in more detail.

Figure 4.2: A visualization of the solution design used to address our problem
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4.4.1 Step 1: Identifying good construction methods

In the first step, it is important that we create good construction methods for various types of cases of
Company X such that we are able to select a robust set of construction methods that will be used in the
parallel algorithm. This will be done using the framework of Gunawan et al. (2011) which consists of
three phases: screening, exploration and exploitation and is visualised in Figure 4.3.

Figure 4.3: A visualization of the first step of the solution design used to address our problem

Screening

The screening phase aims to identify parameters with insignificant impact on algorithm performance,
termed as unimportant parameters. These parameters are then set as constants to reduce the solution
space. To achieve this, we consulted the creators of the algorithm of Company X and experts from
ORTEC to detect parameter settings worthy of variation, leveraging their extensive knowledge of OHD
and the algorithm of Company X. They recommended not varying much with the sorting criteria since
the first sorting criterion for the seed task was specifically constructed for the cases of Company X.
Furthermore, most insertion methods include as first scale the distance and the second scale is chosen
based on customer-specific information. In this way, our solution space is reduced significantly.

To screen the solution space of the sorting criteria, some new sorting criteria are introduced based
on the data analysis which is presented in the next chapter. These are tested in the screening experiment
together with various values for the scales of the first sorter in both seed task selection and insertion
method. Notably, changes to the algorithm of Company X are made via a one-exchange neighborhood
as has been done in Rasku et al. (2019), allowing us to observe the effect of the single change to the
algorithm of Company X.

For the experiments, a subset of the dataset was selected based on their characteristics to facilitate the
detection of potential relationships between construction strategies and input data. The most promising
parameter settings identified will be further explored on the complete dataset in the subsequent phase:
exploration.

Exploration

In the second phase, we are going to explore the promising ranges of scales found in the screening
phase. Additionally, we will experiment with other parameters suggested by the creators of the algo-
rithm of Company X that will be introduced in Section 6.2. These configurations will be tested on the
full dataset in the exploration experiment. The goal of this phase is to detect the best parameter settings.
Note that in our case, best parameter settings may comprise multiple settings per parameter.

Exploitation

In the concluding phase, exploitation, we are no longer using the one-exchange neighbourhood struc-
ture and instead leverage the solution space insights obtained from previous experiments. We will
implement multiple changes to the algorithm of Company X simultaneously, combining the best set-
tings identified in earlier phases. Priority will be given to parameter settings that individually yield the
most significant improvement in solution quality, while those with the least impact will receive less em-
phasis. The objective of the exploitation experiment is to develop highly effective construction methods
to facilitate the creation of an efficient parallel algorithm.
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4.4.2 Step 2: Effect of parallel computing

In this step, we will assess the effect of parallel computing. In Step 1, we will create a lot of algorithms
with different construction methods and from these experiments on the dataset we will store the KPIs
of all construction solutions and final solutions. This approach enables us to simulate the outcomes if all
solutions were executed concurrently. Additionally, we can analyze the effects of employing multiple
starting solutions that proceed to the local search and R&R phase. As a result, we can determine the
optimal number of different construction methods to include in our new parallel algorithm, as well as
the number of resulting starting solutions that should proceed to the local search and R&R phase.

4.4.3 Step 3: Design of new parallel algorithm

In the final step of our solution design, we will design the new parallel algorithm based on the outcomes
of the previous phase, where we determined the number of different construction methods to include
and the number of starting solutions that proceed to the local search and R&R phase. The new parallel
algorithm should encompass algorithms that consistently perform well on average, providing a strong
lower bound for every case of Company X. Additionally, it should incorporate construction methods
that excel for specific types of cases, allowing us to capitalize on the benefits of parallel computing. In
this way, we aim to create a robust and high-performing parallel algorithm that enhances the solution
quality of the algorithm of Company X. The performance of this new parallel algorithm compared to
the algorithm of Company X is evaluated on a new testing dataset that contains a week of data of all
main depots of Company X which is executed in the final experiment.

4.5 Conclusions

In this chapter, we have provided a detailed overview of our solution approach, which will be used to
answer the main research question stated in Section 1.3. We presented the various options of different
seed task selection- and insertion methods within OHD. Subsequently, the modification of the problem
of Company X is explained and the mathematical formulation of the problem at hand is given. Finally,
we outlined the solution approach employed in our research to address this problem which consist of
three steps. Firstly, in Step 1 we will create new algorithms that perform well such that they could
be used in the new parallel algorithm. Secondly, the effect of parallel computing while using multiple
construction methods and starting solution will be evaluated such that the size of the parallel algorithm
could be determined in Step 2. Finally, in Step 3, we will select the specific algorithms that will be
included in the new parallel algorithm. Afterwards, this new parallel algorithm is evaluated against
the algorithm of Company X on a large dataset to observe the effect of using parallel computing within
OHD.
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Chapter 5

Dataset Analysis

In this chapter, we provide an analysis of the input data of cases of Company X. The goal of this data
analysis is to detect potentially difficult tasks which could be selected as seed tasks. Furthermore, it is
used to detect promising ranges for the scales of the first sorter in the seed task selection and insertion
method. Besides, it is used to classify the cases such that we can find potential relationships between
construction strategies and input data. In Section 5.1, we discuss how we selected and obtained the
datasets for the experiments and the main characteristics of the dataset are visualized. In the following
sections, we dive deeper into the characteristics of the input data of the customers regarding their
order quantities (5.2), distance to depots (5.3), distance to other customers (5.4) and time windows (5.5).
Finally, in Section 5.6 we explain how the cases are classified based on their input data among the
above-mentioned characteristics.

5.1 Dataset experiments

For the screening, exploration, and exploitation experiments, we have curated a diverse dataset of Com-
pany X’s cases to reflect a typical week of operational activities. Seven main depots out of a total of
twelve were selected, chosen to encompass a range of scenarios. These depots vary in size, with some
catering to only a few hundred customers while others serve several thousand. Additionally, the num-
ber of subdepots, the vehicle fleet and the usage of priority 3 vehicles vary among these selected de-
pots. Our dataset comprises morning and evening cases for three different days of the week: Monday,
Wednesday, and Saturday, totalling 42 cases. These days were specifically chosen for their contrast-
ing characteristics in terms of order volumes and operational complexity. Mondays typically witness
large orders as companies stock up for the week ahead, while Wednesdays tend to be less demanding.
Saturdays, on the other hand, usually present a mix of both high and low-order volumes.

Table 5.1 provides an overview of the average number of tasks, number of vehicles, vehicle types,
priority 3 vehicles, and subdepots per main depot. Furthermore, the corresponding minimum, average
and maximum values across the entire dataset are presented. The significant difference between the
minimum and maximum values indicates the diversity of the dataset. Notably, the cases of main depots
3 and 4 incorporate significantly fewer customers and vehicles compared to others. These two main
depots serve customers in Country B whereas the alternative main depots serve customers in Country
A.
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5.2. Order quantity

Table 5.1: High-level characteristics presented per main depot, encompassing the average number of customers, vehicles, types of
vehicles, priority 3 vehicles and subdepots. Additionally, the minimum, average, and maximum values for these characteristics
across the dataset cases are shown. This dataset consists of six cases per main depot, including morning and evening cases for
three days of the week. Note that ranges are used instead of absolute values for confidential issues.

Main depot (Country) Customers Vehicles Types of vehicles Priority 3 vehicles Subdepots
1 (A) 3000-3500 150-200 2 0-10 4
2 (A) 2500-3000 150-200 4 30-40 3
3 (B) 0-500 0-50 2 0-10 1
4 (B) 500-1000 0-50 2 0-10 2
5 (A) 2500-3000 150-200 3 10-20 1
6 (A) 3000-3500 150-200 1 0-10 4
7 (A) 3000-3500 150-200 3 0-10 3
Min 0-500 13 1 0-10 1

Average 2000-2500 128.9 2.4 0-10 2.6
Max 4000-4500 227 4 30-40 4

5.2 Order quantity

The first characteristic of the input data that we are going to analyze is the order quantity. As previously
noted, vehicle capacities encompass both volume and weight, which aligns with the volume and weight
attributes of customer orders. As mentioned before in Subsection 2.2.1, ideally we want a seed task to
be a difficult task. To observe the difficult tasks concerning their order quantities, we are going to look
at the ratio between the largest order relative to the capacity of the largest vehicle. This problem feature
is introduced by Steinhaus (2015).

We have examined the utilization concerning volume and weight relative to the largest vehicle ca-
pacity for the largest order as well as for the averages of the largest 1%, 4%, and 10% orders across all
cases in the dataset. This has been done since on average approximately 25 orders are included in a
route which means that in a planning the routes needed to serve all customers are about 4 percent of
the number of tasks. As a result, we need to select approximately 4 percent of the total tasks as seed
tasks. Consequently, we opted to include the largest 4 percent of orders in the analysis. Additionally,
we included the top 1 and 10 percent to offer a more comprehensive perspective on the peak values of
the orders. A pseudocode of the calculations for the top 1, 4 and 10 percent is provided in Figure 1.
The same code is also used for the calculations of the characteristics in the following sections. Table 5.2
presents the corresponding minimum, average, and maximum values per category in the dataset. For
instance, the largest order by weight in the dataset occupies 93% of the largest truck’s capacity. Note
that the capacity of the largest truck is equal for every case. Furthermore, on average the largest order
in a case by volume utilizes 26% of the capacity of the largest truck. Conversely, the smallest largest
order of a case regarding weight in the dataset covers only 11% of the largest vehicle.

In Table 5.2, it’s evident that the ratios between the maximum order quantity and the capacity of
the largest vehicle in terms of weight are higher for peak values compared to volume-based order
quantities. This suggests that order weight is more likely to cause violations during route insertion than
order volume. Furthermore, the maximum utilization rate of the largest order by weight in the dataset
(0.93) indicates the presence of very large orders. However, on average, the largest orders across all
cases only cover 33% of truck capacities. Furthermore, the maximum ratio of the largest 1, 4 and 10%
orders is also relatively low compared to the maximum utilization. This indicates that orders with
extremely high quantities and thus difficult orders are rare. Additionally, the case in the dataset that
has the lowest largest order in terms of weight only utilizes 11% of the capacity of the largest vehicle
in that case. This means that there is a lot of variety across all cases in the dataset concerning the order
quantities.

Table 5.2: The minimum, average and maximum value of the utilization rates of the largest order, the largest 1, 4, 10% orders of
cases across the dataset are visualised in terms of volume and weight.

Max Top 1% Top 4% Top 10%

Volume Weight Volume Weight Volume Weight Volume Weight

min 0.11 0.11 0.09 0.09 0.07 0.07 0.06 0.06
average 0.26 0.33 0.13 0.16 0.10 0.11 0.08 0.08
max 0.59 0.93 0.26 0.29 0.18 0.20 0.14 0.15
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Algorithm 1: Pseudo code calculations top x% of KPIs
Input: KPI and Percentage
Output: minimum, average and maximum

1 Function Calc(KPI, Percentage)
2 V = ∅
3 if KPI = ’Distance to Depots’ or ’Order quantity’ then
4 direction = ’largest’

5 else
6 direction = ’smallest’

7 for case in dataset do
8 value = average of direction Percentage values of KPI in case
9 V ← value

10 minimum = min(V)
11 average = average(V)
12 maximum = max(V)
13 return minimum, average, maximum

5.3 Distance to Depots

In this section, we will delve into the distance and driving time of customers to the nearest and second
nearest depots. This analysis helps us gain insights into the spatial distribution of customers in relation
to depot locations and scale values of the sorters of the algorithm of Company X. This will help us iden-
tify difficult customers regarding their location. While there is typically a strong correlation between
the shortest distance and shortest driving time to the nearest depot, differences can arise due to factors
such as route characteristics. For instance, a customer may be relatively far from a depot in terms of
distance, but if the route primarily traverses highways, the driving time could be considerably lower
compared to a customer located closer but requiring travel through congested city centers. To account
for these nuances, we examine distance and driving time separately.

The ’AvgShortDistToDepot’ column in Table 5.3 presents the minimum, average, and maximum dis-
tances in kilometers for the average distance of customers to the closest depot across the dataset cases.
For example, customers in the case with the shortest distance to the nearest depot are, on average, 12.47
kilometers away from the nearest depot. Additionally, other columns display the minimum, average,
and maximum average distances of the x% furthest customers from the nearest depot across dataset
cases. As an illustration, there is a case where the top 1% of the furthest customers are, on average,
83.86 kilometers away from the nearest depot. It is notable that the maximum value is nearly three
times larger than the minimum value of the average shortest distance to a depot over all columns. This
indicates substantial variation across dataset cases regarding the distance of each customer to the near-
est depot. This discrepancy is reasonable as some depots primarily serve rural areas, while others serve
customers in urban centers, resulting in significant differences in the shortest distance to the nearest
depot for each customer.

Table 5.3: ’AvgDistToNearestDepot’ denotes the average distance to the nearest depot of every customer in a case whereas Top 1,
4, and 10% denote the average of the x% customers with the largest distance to the nearest depot in case. The minimum, average
and maximum values of the cases in the dataset are visualised. The distances presented in the tables are expressed in kilometers.

AvgDistToNearestDepot Top1% Top4% Top10%

min 12.47 28.60 27.01 22.92
average 20.17 50.09 44.27 39.84
max 35.18 83.86 71.84 68.36

The same trend is observed in the difference in distance between the second nearest depot and the
nearest depot, as depicted in Table 5.4 where the maximum values are significantly larger than the
minimum values. The column ’AvgDiffDepot2To1’ denotes the average difference in distance between
the nearest and second nearest depot for all customers within a case, with only the minimum, average,
and maximum values of the dataset presented in the table. Similarly, the other columns denote the
average of the x% largest differences in distances between the nearest and second-nearest depot within a
case, again with only the minimum, average, and maximum values of the dataset displayed in the table.
Furthermore, we observe relatively high maximum values in both tables, with a marginal discrepancy
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between the largest 1 and 10 percent distances. This suggests that there aren’t just a few outliers in
the dataset, but rather clusters of customers located far away from the depots. Additionally, the stark
contrast between the minimum and maximum values of the difference between the second nearest and
nearest depot highlights the significant variance in the importance of depot assignments for customers
within each case.

Table 5.4: ’AvgDiffDepot2To1’ denotes the average of the difference in distance between the nearest and second nearest depot
for every customer in a case whereas Top 1, 4, 10% denote the largest x% differences in distance between the nearest and second
nearest depot in a case. The minimum, average and maximum values of the cases in the dataset are shown. The distances
presented in the tables are expressed in kilometers.

AvgDiffDepot2To1 Top1% Top4% Top10%

min 7.29 26.87 25.15 21.60
average 25.75 49.69 47.63 44.98
max 46.29 71.13 70.10 68.40

Table 5.5 shows the same characteristics as in Table 5.3 however in this case the driving time without
congestion is used instead of the distance. This immediate comparison reveals that the factor between
the maximum and minimum values is approximately 2, as opposed to 3 in the case of distance. This
suggests that there is less variability across cases when considering driving time compared to distance.
However, it’s worth noting that customers located furthest away from the closest depot have driving
times extending up to over an hour which is relatively long. In Table 5.6, differences between the nearest
and second-nearest depot are explored in terms of driving times. Here, we observe similar proportions
as in Table 5.4, which focuses on the difference in distance between depots.

Table 5.5: ’AvgTimeToNearestDepot’ denotes the average driving time to the nearest depot of every customer in a case whereas
Top 1, 4, and 10% denote the average of the x% customers with the largest driving time to the nearest depot in case. The minimum,
average and maximum values of the cases in the dataset are visualised. The driving times presented in the tables are expressed
in minutes.

AvgTimeToNearestDepot Top1% Top4% Top10%

min 15.01 31.36 29.36 25.48
average 21.60 45.07 40.22 36.61
max 32.31 66.18 58.81 55.27

Table 5.6: ’AvgTimeDepot2To1’ denotes the average of the difference in driving time between the nearest and second nearest
depot for every customer in a case whereas Top 1, 4, 10% denote the largest x% differences in driving time between the nearest
and second nearest depot in a case. The minimum, average and maximum values of the cases in the dataset are shown. The
driving times presented in the tables are expressed in minutes.

AvgTimeDepot2To1 Top1% Top4% Top10%

min 6.61 17.49 16.95 16.18
average 17.20 35.71 33.72 31.69
max 29.64 57.48 51.93 47.22

5.4 Distance to other customers

In this section, we will examine the statistics regarding the distances between customers. This will help
us understand the density of the cases in the dataset and give us insights into the scale of the first sorter
of the insertion method. We have a look at the average distances among the k-nearest neighbours of cus-
tomers in the cases of the dataset. This subset includes the closest customer (Rasku et al., 2016), as well
as the closest 1%, 4%, and 10% of customers within each case. Table 5.7 presents the minimum, average,
and maximum values of the cases in the dataset. Once again, substantial variations between cases in
the dataset are apparent, as evidenced by the large differences between the minimum and maximum
values. These disparities underscore the diverse nature of the dataset, with cases exhibiting signifi-
cantly different customer densities. Furthermore, considering the driving time between customers, as
shown in Table 5.8, reveals a lower factor compared to distance estimates. Nevertheless, considerable
differences in density persist across cases in the dataset.
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Table 5.7: ’AvgClosestDist’ denotes the average distance for all customers in a case to its closest neighbour where the Top 1, 4,
10% denote the average distance of all customers to the x% closest neighbours. The minimum, average and maximum values of
cases across the dataset are presented. The distances presented in the tables are expressed in kilometers.

AvgClosestDist Top1% Top4% Top10%

min 0.24 0.69 1.71 2.55
average 0.61 1.74 4.39 6.84
max 1.76 4.34 11.30 18.59

Table 5.8: ’AvgClosestTime’ denotes the average driving time for all customers in a case to its closest neighbour where the Top
1, 4, 10% denote the average driving time of all customers to the x% closest neighbours. The minimum, average and maximum
values of cases across the dataset are presented. The driving times presented in the tables are expressed in minutes.

AvgClosestTime Top1% Top4% Top10%

min 0.67 1.81 4.01 5.58
average 1.43 3.69 7.87 10.81
max 3.45 7.74 15.80 21.95

5.5 Time Windows

In this section, we will have a closer look at the time windows that are set by the customers in the input
data. Table 5.9 provides the minimum, average and maximum values of the shortest time windows,
average time windows and the shortest 1%, 4% and 10% time windows across all cases in the dataset.
Since the shorter the time window, the more difficult the task, we are interested in the length of the
shortest time windows. It is important to note that the service time is subtracted from the time window
length in the values presented in the table. This has been done since the delivery should start and end
within the designated time window specified by the customers. Consequently, this reduces the space to
schedule the task in a route. The average service time of all customers in the dataset is about 8 minutes,
with variations ranging from 5 to 45 minutes.

We can conclude from Table 5.9 that the time windows of the customers of Company X are relatively
short since on average they have a length of about 3 hours. Furthermore, it can be seen that some cases
include customers with a time window shorter than an hour, indicating tight scheduling constraints.
Moreover, the differences between the shortest 1% and 10% time windows are not that large, suggesting
a significant proportion of customers with relatively small time windows across the cases. Finally, it can
be observed that the differences between the minimum and maximum are relatively large, implying
substantial variability among cases in the dataset in terms of the time window lengths.

Table 5.9: ’ShortestTW’ implies the shortest time window of a case whereas ’AvgTWLength’ denotes the average length of all time
windows in a case. The Top 1, 4, 10% stands for the average length of the x% shortest time windows of a case. The minimum,
average and maximum values of the cases in the dataset for each characteristic are shown in the table. The time window lengths
are expressed in minutes.

ShortestTW AvgTWLength Top1% Top4% Top10%

min 5.57 123.05 38.00 43.42 47.81
average 68.02 171.42 75.45 81.86 91.67
max 107.12 235.51 108.21 108.91 109.51

Moreover, it can be concluded from Table 5.10 that the maximum percentage in the dataset of tasks
finishing within 5 hours after the start of the shift is 30.91. Besides, some cases have no tasks with
time windows ending within 5 hours. Additionally, the average start of a time window after the start
of a shift is approximately 4 hours. This suggests that tasks typically commence relatively late com-
pared to the beginning of the shift, indicating that a relatively small number of tasks require immediate
completion at the onset of the shift.
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Table 5.10: ’TasksFinishin5hours’ denotes the percentage of customers that need to be served within 5 hours after the shift start
of a case and ’AvgTWStartAfterShiftStart’ stands for the average start of the time window of customers after the shift has started
of a case. The minimum, average and maximum values of the cases in the dataset are visualised.

TasksFinishin5hours(%) AvgTWStartAfterShiftStart(h)

min 0.00 2.50
average 13.63 3.97
max 30.91 5.33

5.6 Classification of the cases

To facilitate the detection of relationships between the input data and the newly designed construction
methods in the subsequent chapters, the datasets will be categorized based on the above-discussed
categories. Each category will be assigned a label of ’Small’, ’Average’, or ’Large’. For the categories
pertaining to time windows, the labels ’Short’, ’Average’, and ’Large’ will be used. This classification
will be performed by dividing the data into quartiles. The first quartile will correspond to the ’Small’
or ’Short’ label, the fourth quartile will correspond to the ’Large’ or ’High’ label, and the quartiles in
between will denote the ’Average’ label. Subsequently, cases may be reassigned to a different label if
they are outliers in their current classification and are better suited to another label. For instance, if the
largest value in the ’Average’ label is twice as high as the second-largest value in the ’Average’ label and
is nearly as large as the smallest value in the ’High’ label, this case will be shifted from the ’Average’
label to the ’High’ label.

5.7 Conclusions

In this chapter, we have conducted a thorough examination of the cases from Company X included
in our dataset, covering every aspect of the input data. We observed significant variability between
cases concerning order quantities, task density, and time windows within the dataset. The substan-
tial diversity observed across these aspects implies that the use of multiple starting solutions could be
highly advantageous for the algorithm of Company X. By incorporating diverse starting solutions, the
algorithm can better adapt to the varying characteristics of different cases within the dataset, thereby
enhancing its overall effectiveness.
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Chapter 6

Experiments

In this chapter, all experiments that are executed in order to design the new parallel algorithm of Com-
pany X are presented where we start with the experiments regarding the construction phase. This
chapter is structured by the steps of our research design which is presented in Figure 4.2. The first three
sections correspond to the three phases of Step 1 of the research design which is visualised in Figure
4.3. As a result, the experiments conducted with respect to the screening phase in which we create
new algorithms based on the data analysis conducted in Chapter 5 are presented in Section 6.1. Sub-
sequently, the results of the experiments regarding the exploration phase in which we will explore the
most promising parameter settings found in the screening phase are shown in Section 6.2. Finally, in
Section 6.3, the results of the experiments of the last phase of Step 1 of the research design are presented.
In this final phase, the best-found parameter settings in the previous phases will be combined to create
good algorithms that could be used in the new parallel algorithm. Note that every newly created algo-
rithm will be compared against the algorithm of Company X which is explained in Section 3.2. Section
6.4 presents the outcomes of the experiments related to Step 2 of the research design which include the
evaluation of the use of multiple construction methods and starting solutions. Finally, in Section 6.5,
the new parallel algorithm using multiple construction methods is created and evaluated against the
algorithm of Company X to obtain the effect of the use of multiple construction methods in parallel
within OHD which corresponds to Step 3 of our research design.

Afterwards, we apply the research design to the R&R phase of the algorithm of Company X. At
ORTEC, it is known that the current R&R method scarcely improves the solution after local search. Due
to time constraints and recent research at ORTEC, modifications have been made to both the research
design and the R&R method of the algorithm of Company X. These modifications are detailed in Section
6.6. Following this, Section 6.7 presents the experimental results and the decisions made in develop-
ing a new parallel version of the R&R phase that will be used in our new parallel algorithm. Finally,
the complete new parallel algorithm including multiple construction and R&R methods is evaluated
against the algorithm of Company X to obtain the effect of parallel computing within OHD.

6.1 Screening experiment

In this section, we examine the experimental outcomes of the screening experiment, which entail the
algorithms formulated based on data analysis. The primary aim of this experiment is to identify promis-
ing parameter settings that will be further tested on a larger scale in the exploration experiment. We
commence with Subsection 6.1.1, where we explore experiments centred around construction methods
focused on order quantity in terms of weight. Following that, in Subsection 6.1.2, we undertake the
creation and testing of multiple construction methods based on the distance between customers and
the depot(s). Additionally, in Subsection 6.1.3, we develop and evaluate various construction methods
based on the distance between customers. Finally, Subsection 6.1.4 encompasses the creation and test-
ing of construction methods related to the time windows of customers. Note that we will not evaluate
the performances of new algorithms against the data characteristics with respect to driving times since
the difference in classification is that small with respect to the distance. Each subsection follows a sim-
ilar structure: first, the new algorithms are explained, and then the experimental results of these new
algorithms are discussed.
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6.1.1 Order quantity

Algorithms explanation In Section 5.2, we observed that some cases include very large orders which
underwrite the potential value of selecting large orders as seed tasks. Consequently, we designed a seed
task strategy primarily focusing on the weight of customer orders. This new seed task strategies sort
customers firstly based on their order weight, followed by utilizing the same sorting criteria employed
by the algorithm of Company X which are explained in detail in Section 4.1.1. We established scales
of 0, 10, and 30 for sorting order quantity in terms of weight. A scale of 0 ensures selection based
solely on order quantity, while a scale of 10 emphasizes order quantity but also considers the other
sorters. The scale of 30, chosen as the average value of all order quantities in the dataset, distinguishes
tasks only if the gap is notably large. These three new construction methods are then applied to a
subset of dataset cases selected based on their order quantity characteristics. This approach enables us
to investigate potential correlations between seed task selection strategies based on order quantity and
the order quantity characteristics of each case. We have chosen not to design an insertion strategy based
on order quantity since this will result in very disorganized routes with a lot of crossovers since time
windows and travel times between nodes are ignored.

Experimental results Table 6.1 summarizes the results of the experiment by presenting the average
performance of the three new algorithms compared to the algorithm of Company X across the 12 cases
for the most significant KPIs per algorithm. Among these 12 cases, 6 cases feature orders with a rela-
tively high utilization rate of the capacity of the largest vehicles. For both low and average utilization
rates of the largest orders in the case, 3 cases are selected. As previously stated, the number of planned
tasks is the most important KPI, and from the table, it is evident that all algorithms perform equally
well on this criterion. However, when comparing costs, it becomes apparent that the algorithm of Com-
pany X clearly outperforms the newly constructed algorithms that select the seed task based on order
quantity. Additionally, the solutions generated by the new algorithms utilize significantly more routes
and trips to serve all customers, logically resulting in higher costs. It’s worth noting that the number of
routes corresponds to the number of vehicles used in the solution, and each vehicle can make multiple
trips. Finally, we can see that the calculation time is also a lot higher which could imply that the chosen
seed tasks cause a bad starting solution. As a consequence, the local search and R&R require more time
to fix these routes. All in all, we can conclude that the new algorithms score on average a lot worse than
the algorithm of Company X.

Table 6.1: Results of the experiments for the new algorithms that use the order weight as the first sorter for their seed task selection
method, followed by the same sorting criteria used by the algorithm of Company X. The first column denotes the scale of the
order weight sorter whereas the other columns display the percentile difference with respect to the algorithm of Company X for
the number of planned tasks, costs, number of routes and trips and finally the calculation time (Calc time). (1)

Scale Planned
tasks (%) Costs (%) Routes (%) Trips (%) Calc time (%)

0 0.00 2.01 5.57 2.06 23.31
10 0.00 1.82 5.19 2.14 36.45
30 0.00 1.77 4.92 1.61 30.59

However, one advantage of parallel computing is the ability to select algorithms that excel in cer-
tain cases while performing worse in others. In the parallel algorithm, an algorithm’s solution is only
utilized if it proves to be exceptionally good; otherwise, a better solution from another algorithm is
chosen. Consequently, while the average performance of an algorithm may be lower than that of the
algorithm of Company X, it can still be valuable for the new parallel algorithm. Table 6.2 illustrates the
instances where an algorithm outperforms the Company X algorithm, categorized by label type, with
the number in brackets indicating the number of cases of each type used in the experiment. Notably, the
new algorithms demonstrate superior performance in cases where the largest orders have a relatively
low utilization rate of the largest vehicle. Interestingly, these are all cases from Country B that include a
relatively low number of tasks as shown in Table 5.1. Despite their overall poorer average performance,
these new algorithms outperform the algorithm of Company X in the cases of Country B. However, it
is noteworthy that the new algorithms do not exhibit better performance in cases with larger orders,
which is contrary to expectations. Although the dataset analysis in Chapter 5 revealed the presence of
very large orders, the seed task strategies based on the largest orders do not seem to function well. As
a result, we have decided to introduce two new algorithms with significantly larger scales, ensuring
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that only the very large orders are selected as seed tasks. If no large orders are remaining, the seed task
selection method of the algorithm of Company X is applied. The new scales are 300 and 500.

Table 6.2: An overview of the number of times the solution of the new algorithms, which use the order weight as the first sorter
for the seed task selection method, is better than the solution of the algorithm of Company X visualized per case type in terms of
the utilization rate of the largest orders in the case. The first column denotes the scale of the order weight sorter and the number
in brackets behind the classification indicates the total number of cases of the corresponding type used in the experiments. (1)

Case classification of utilization rate of largest orders

Scale Low (3) Average (3) High (6) Total (12)

0 3 0 0 3
10 2 0 0 2
30 2 0 0 2

Table 6.3 includes the results of the two new algorithms. These new algorithms perform significantly
better across all KPIs compared to the initial three algorithms based on order quantity. However, the
algorithm of Company X still performs the best on average, although the differences are much smaller
than those in Table 6.1. In Table 6.4, we observe the number of instances where each algorithm equals
or outperforms the algorithm of Company X, categorized by case type. The number in brackets behind
each label type represents the number of cases used in this experiment per label type. Additionally, the
number in brackets within the table denotes the number of solutions equal to those of the algorithm of
Company X. In cases where there are no orders exceeding a weight of 300 or 500, the algorithms perform
identically to the algorithm of Company X, resulting in solutions equal to those of the algorithm of
Company X. From Table 6.4, we can see that the new algorithms perform relatively well in cases with
larger orders. However, we also observe instances where the algorithm of Company X outperforms
the new algorithms with larger scales for cases with relatively large orders. All in all, we see that the
new algorithms are on average a bit worse than the algorithm of Company X but do outperform the
algorithm of Company X for some cases that include larger orders. This suggests that very large orders
could indeed serve as effective seed tasks, while the remaining seed tasks might be selected using a
different strategy. Therefore, we need to determine the threshold for defining when a task is large
enough to be considered a seed task. This will be explored in the exploration experiment detailed in the
next section, where we will test scales corresponding to a utilization rate of the largest vehicle of 0.2,
0.3, 0.4, and 0.5. These scales will be set at 190, 285, 380, and 475, respectively.

Table 6.3: Results of the experiments for the new algorithms that use the order weight as the first sorter for their seed task selection
method, followed by the same sorting criteria used by the algorithm of Company X. The first column denotes the scale of the
order weight sorter whereas the other columns display the percentile difference with respect to the algorithm of Company X for
the number of planned tasks, costs, number of routes and trips and finally the calculation time (Calc time).

Scale Planned tasks (%) Costs (%) Routes (%) Trips (%) Calc time (%)

0 0.00 2.01 5.57 2.06 23.31
10 0.00 1.82 5.19 2.14 36.45
30 0.00 1.77 4.92 1.61 30.59
300 0.00 0.11 0.37 0.54 -4.70
500 0.00 0.05 0.19 0.98 -2.83

6.1.2 Distance to depots

Algorithms explanation In Section 5.3, it was observed that certain tasks exhibit a significant disparity
between the distance to the nearest and second nearest depot. This suggests a preference for selecting
such tasks as seed tasks for the nearest depot to optimize routing. Otherwise, scheduling these tasks
in routes of the second nearest depot may not be optimal due to the considerable difference in distance
between the two depots. Moreover, the range between the minimum and maximum values of the
difference between the nearest and second nearest depot is relatively large. Hence, it becomes intriguing
to investigate whether using different scales could yield better results and if for example, smaller scales
work better for cases in which the difference in distance between the nearest and second nearest depot
is relatively small. To explore this hypothesis, we will alter the scale of the first sorter of the seed task
selection method of the algorithm of Company X, which is based on the difference in distance between
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Table 6.4: An overview of the number of times the solution of the new algorithms, which use the order weight as the first sorter
for the seed task selection method, is better than or equal to the solution of the algorithm of Company X visualized per case
type in terms of the utilization rate of the largest orders in the case. The numbers in brackets in the table denote the number of
times a solution is equal to the ones of the algorithm of Company X. The first column denotes the scale of the order weight sorter
and the number in brackets behind the classification indicates the total number of cases of the corresponding type used in the
experiments. (2)

Case classification of utilization rate of largest orders

Scale Low (3) Average (3) High (6) Total (12)

0 3 0 0 3
10 2 0 0 2
30 2 0 0 2
300 3 (3) 2 (1) 2 7 (4)
500 3 (3) 3 (1) 3 9 (4)

the nearest depot and the second nearest depot. Consequently, six algorithms with different scales of
the first sorter of the seed task selection method of the algorithm of Company X were constructed,
with three estimated based on distance and three based on driving time. These scales include 0, 5,
and 20 kilometers, as well as 0, 10, and 20 minutes. Recall that the algorithm of Company X employs
a scale of 10 kilometers. These 6 new algorithms are tested across 19 different cases. Among these,
five cases were labelled ’Small’, two were labelled ’Average’, and 12 were labelled ’Large’, based on
the largest 4% difference in distance between the nearest depot and the second nearest depot of the
customers within each case. Similar to the algorithms designed for handling customer order quantities,
insertion strategies based on customer distance to the depot were not developed to avoid generating
messy routes.

Additionally, there are cases where only two depots exist, with one operating as the main depot and
the other as a subdepot. However, the main depot primarily supplies the subdepot, and vehicles from
the main depot are not used unless the subdepot cannot fulfil all customer demands. Consequently,
these cases essentially represent vehicle routing problems with only one depot. To address this specific
problem, a seed task selection strategy was devised which is selecting the customer furthest away from
the subdepot as a seed task. Two new algorithms were developed based on this strategy: one using
distance as an estimator and the other using driving time. This seed task selection strategy is called
SeedFarAway. These two new algorithms are tested on 6 cases where a single subdepot is serving most
customers.

Experimental results The outcomes of the experiments regarding the 6 new algorithms based on the
different scale values of the first sorter of the seed task selection method of the algorithm of Company X
are presented in Table 6.5. This table lists the average performance of these new algorithms compared to
the algorithm of Company X for the most important KPIs over the 19 cases. As previously mentioned,
the most critical KPI for Company X is the number of planned tasks, and it is noteworthy that the
algorithm with a scale of 5 kilometer performs the worst as it is unable to plan all tasks across the
19 different cases contrary to the other scales. However, the presence of unplanned tasks occurs only
in one case, and with the use of parallel computing, it is not detrimental if an algorithm fails to plan
all tasks for every case, as another algorithm can compensate. Consequently, if this algorithm yields
favourable results for other cases, it could still be valuable for inclusion in the new parallel algorithm.
It is important to note that the presence of unplanned tasks has a slightly positive influence on costs,
routes, and trips. However, the percentual difference in planned tasks is so small that it will not affect
the rankings in the table. Furthermore, every new algorithm outperforms the algorithm of Company X
on average, indicating that varying the scale of the difference between the distance of the nearest and
second-nearest depot could hold significant potential.

Table 6.6 displays the number of instances where an algorithm performs better than or equal to the
algorithm of Company X per label. The number in brackets within the table indicates the occurrences
where a solution is equal to the one of algorithm of Company X, while the number outside the brackets
represents the instances where the solution is better, including those where it is equal. Additionally,
the number in brackets behind the label type indicates the number of cases used per type. We can
conclude from the table that all algorithms outperform the algorithm of Company X in more than half
of the total number of cases. This reaffirms the potential impact of varying the scales for the difference
in distance between the nearest and second-nearest depot. To explore this further, we have created
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Table 6.5: Results of the experiments for the new algorithms that use different scales for the first sorter of the seed task selection
method of the algorithm of Company X which is the difference between the nearest depot that is not the depot of the selected
vehicle and the depot of the selected vehicle. The first column denotes the scale of this sorter where the scales based on driving
time are presented with ”min” and the scales based on the distance with ”km”. The other columns show the percentile difference
with respect to the algorithm of Company X for the number of planned tasks, costs, number of routes and trips and finally the
calculation time (Calc time).

Scale Planned tasks (%) Costs (%) Routes (%) Trips (%) Calc time (%)

0 min 0.00 -0.37 -1.11 0.27 -13.34
10 min 0.00 -0.35 -0.83 -1.19 -20.71
20 min 0.00 -0.35 -0.83 -1.19 -18.46
5 km -0.02 -0.26 -0.46 0.27 -0.46
0 km 0.00 -0.22 -0.83 0.73 -4.81
20 km 0.00 -0.06 -0.28 -0.73 -5.18

numerous algorithms with varying parameters for this scale. In the exploration experiment, we will
use scales of 0, 2.5, 5, 7.5, 15, 20, 40 and 60 kilometers for distance estimation, and 0, 1, 5, 10, 30 and 60
minutes for driving time estimation.

Table 6.6: An overview of the number of times the solution of the new algorithms, which differ in scales of the first sorter of the
seed task selection method of the algorithm of Company X, is better than or equal to the solution of the algorithm of Company
X visualized per case type in terms of the difference in distance between the nearest and second nearest depot. The numbers
in brackets in the table denote the number of times a solution is equal to the ones of the algorithm of Company X. The first
column denotes the scale of the first sorter of the algorithm of Company X where the scales based on driving time are presented
with ”min” and the scales based on the distance with ”km”. The number in brackets behind the classification indicates the total
number of cases of the corresponding type used in the experiments.

Case classification of difference between nearest and second nearest depot

Scale Small (5) Average (2) Large (12) Total (19)

0 min 3 1 6 10
10 min 4 2 7 13
20 min 4 2 7 13
0 km 3 1 7 11
20 km 3 0 7 (1) 10 (1)
5 km 4 1 8 13

Table 6.7 shows the results of the experiments regarding the algorithms that use the SeedFarAway
seed task selection strategy based on distance and driving time. It can be concluded that both algo-
rithms significantly outperform the algorithm of Company X on almost all KPIs. For this reason, both
algorithms will also be added to the exploration experiment to see how they perform on a larger scale
for other types of cases that include more depots.

Table 6.7: Results of the experiments for the algorithms that use the SeedFarAway seed task selection strategy based on distance
(km) and driving time (min). The corresponding names are listed in the first column and the other columns show the percentile
difference with respect to the algorithm of Company X for the number of planned tasks, costs, number of routes and trips and
finally the calculation time (Calc time).

Algorithm Planned tasks (%) Costs (%) Routes (%) Trips (%) Calc time (%)

SeedFarAway (km) 0.00 -1.04 -1.61 -1.61 3.95
SeedFarAway (min) 0.00 -1.80 -1.61 -1.61 -10.66

6.1.3 Distance to other tasks

Algorithms explanations In Section 5.4, we observed significant variation in task density across dif-
ferent cases. Given this variability, it would be interesting to explore the effects of using different scales
for the first scale of the insertion strategy method used by the Company X algorithm, particularly in
relation to customer density. Currently, a scale of 1 kilometer is utilized as the first sorter. We have
created four new algorithms with scales of 0.2, 0.5, 3, and 5 kilometers. Additionally, four similar algo-
rithms were created, but with driving time used as an estimator instead of distance. The scales for these
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algorithms are 1, 2.5, 5, and 7.5 minutes. These eight new algorithms are evaluated across 22 cases, each
varying in customer density. The results will be presented in the following paragraph.

Experimental results Table 6.8 presents the performance of these eight new algorithms compared to
the algorithm of Company X for the most important KPIs. The insertion strategies with lower scale val-
ues for both distance and driving time outperform, on average, those with larger scales. Additionally,
their calculation times are significantly lower compared to the larger scales.

Table 6.8: Results of the experiments for the new algorithms that use different scales for the first sorter of the insertion method
algorithm of Company X which is the difference compared to the seed task. The first column denotes the scale of this sorter where
the scales based on driving time are presented with ”min” and the scales based on the distance with ”km”. The other columns
show the percentile difference with respect to the algorithm of Company X for the number of planned tasks, costs, number of
routes and trips and finally the calculation time (Calc time).

Scale Planned tasks (%) Costs (%) Routes (%) Trips (%) Calc time (%)

0.5 km 0.00 -0.07 -0.42 0.07 -3.88
0.2 km 0.00 -0.03 -0.21 0.41 -14.91
1 min 0.00 0.00 0.00 0.61 -7.26
2.5 min 0.00 0.04 0.28 0.14 4.83
5 min 0.00 0.62 1.96 0.20 -0.31
5 km 0.00 0.76 2.80 0.95 47.05
3 km 0.00 0.78 2.73 0.68 9.45
7.5 min 0.00 1.31 3.15 1.15 17.74

In Table 6.9, we can see that the smaller scales outperform the larger scales, especially for cases
where customers are located close to each other. Furthermore, the scale of the algorithm of Company X
proves effective for cases where customers are averagely close to each other, as most algorithms were
unable to find a better solution for the three average cases. Additionally, many algorithms surpass the
algorithm of Company X for cases where customers are situated far from each other. It is worth noting
that the 12 cases where the distance between customers is relatively large are all cases from Country
B that include a relatively small number of tasks. Moreover, considering Table 6.10, which illustrates
the percentage difference for each new algorithm compared to the algorithm of Company X for cases
where customers are located far from each other, it can be concluded that the algorithms with larger
scales, such as 3 kilometer and 7.5 minutes, perform well. This suggests a potential correlation between
the scale of the insertion strategy and the distance between customers in the case, given that we also
observed strong performance from the smaller scales in cases where the distance between customers
is small. However, further testing is required to validate this hypothesis on a larger scale in the next
experiment. Since both smaller and larger scales demonstrated promising results, we will introduce
numerous new scales to test in the exploration experiment. These scales will include: 0, 0.1, 0.25, 0.5,
0.75, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 7.5, and 10 kilometers, as well as 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, and 10
minutes.

Table 6.9: An overview of the number of times the solution of the new algorithms, which differ in scales of the first sorter of the
insertion method of the algorithm of Company X, is better than the solution of the algorithm of Company X visualized per case
type in terms of the difference in distance between customers. The first column denotes the scale of the sorter where the scales
based on driving time are presented with ”min” and the scales based on the distance with ”km”. The number in brackets behind
the classification indicates the total number of cases of the corresponding type used in the experiments.

Case classification of difference between customers

Scale Small (7) Average (3) Large (12) Total (22)

0.2km 5 1 6 12
0.5km 5 0 6 11
3km 0 0 8 8
5km 1 0 6 7
1min 3 1 7 11
2.5min 3 1 5 9
5min 0 1 3 4
7,5min 0 0 6 6
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Table 6.10: Results of the experiments for the new algorithms that use different scales for the first sorter of the insertion method
algorithm of Company X in case only the cases where customers are located relatively far away from each other are considered.
The first column denotes the scale of this sorter where the scales based on driving time are presented with ”min” and the scales
based on the distance with ”km”. The second column shows the percentile difference with respect to the algorithm of Company
X in terms of the costs.

Scale Costs (%)

7,5 min -0.32
3 km -0.29
1 min -0.26
0.5 km -0.14
2.5 min -0.10
5 km -0.03
0.2 km 0.04
5 min 0.30

6.1.4 Time windows

Algorithms explanation We have seen in Section 5.5 that some cases have relatively short time win-
dows. For this reason, we devised three algorithms aimed at selecting seed tasks primarily based on
the shortest length of the time window of the customers. We utilized the length of the time window
of the customers as the new first sorter, with scales of 0, 15, and 30 minutes. Additionally, we created
three algorithms wherein tasks with the earliest start of the time window are chosen as seed tasks. In
these algorithms, the start of the time window is employed as the first sorter, with scales of 0, 5, and 15
minutes. It is important to note that in these six algorithms, the sorters of the algorithm of Company X
are utilized in case multiple tasks fall within the first scale. These six new algorithms were evaluated
across 14 cases varying in the length of time windows and earliest finish time of tasks.

In addition to these new seed task selection strategies, we developed six additional algorithms that
use the length or the start of the time window as the first sorter of the insertion method. Three algo-
rithms were created using scales of 0, 30, and 60 minutes for both the first sorter regarding the length of
the time window and the one sorting based on the start of the time window. Similarly, as for the new
seed task selection strategies, the sorters of the Company X algorithm are utilized in these algorithms
if the first scale of the new insertion method includes multiple tasks. These six new algorithms were
tested across 20 different cases with varying time window characteristics.

Experimental results Table 6.11 presents the results of the experiments conducted with the algorithms
incorporating seed task selection strategies based on the length and start of the time window. It is ev-
ident from the table that the new algorithms perform significantly worse than the algorithm of Com-
pany X in terms of costs, number of routes, and trips. Furthermore, it is notable that the costs, number
of planned tasks, routes, and trips are exactly the same for all three scales, as well as for the strategy
based on the start of the time window and the strategy based on the length of the time window. This
suggests that the scales may not differ significantly enough to yield differences in solutions. It could
also be caused by many time windows starting and ending at the same time.

Table 6.11: Results of the experiments for the new algorithms that use different seed task selection methods based on the length
and start of the time window. The first column denotes the sorter and scale of the algorithm where ”TW Length” stands for
the length of the time window and ”TWStart” for the start of the time window. The scales are presented in minutes. The other
columns show the percentile difference with respect to the algorithm of Company X for the number of planned tasks, costs,
number of routes and trips and finally the calculation time (Calc time).

Algorithm Planned tasks (%) Costs (%) Routes (%) Trips (%) Calc time (%)

TWLength Scale 0 0.03 0.96 2.69 0.54 13.20
TWLength Scale 15 0.03 0.96 2.69 0.54 4.82
TWLength Scale 30 0.03 0.96 2.69 0.54 3.27
TWStart Scale 0 0.00 1.30 3.61 1.35 23.84
TWStart Scale 5 0.00 1.30 3.61 1.35 19.27
TWStart Scale 15 0.00 1.30 3.61 1.35 21.28

In Table 6.12 and Table 6.13, we observe that although the algorithms selecting the seed task based on
the time window length or start perform on average notably worse than the algorithm of Company X,
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they still outperform the algorithm of Company X for 3 and 5 cases out of 14, respectively. Remarkably,
these cases correspond to those with the easiest time window characteristics, and once again, their
main depots are located in Country B and thus include a relatively small number of tasks. Additionally,
we can conclude that the location of customers with respect to the depots poses a more restrictive
characteristic than the time windows. This is evidenced by the algorithm of Company X that selects
the most difficult customers regarding their location with respect to the depots outperforming the new
algorithms that are selecting customers based on their time window features.

Table 6.12: An overview of the number of times the solution of the new algorithms, which use the length of the time window as
the first sorter of the seed task selection method, is better than the solution of the algorithm of Company X visualized per case
type in terms of the length of the time windows. The first column denotes the scale of the sorter in minutes. The number in
brackets behind the classification indicates the total number of cases of the corresponding type used in the experiments.

Case classification of time window length

Scale Short (5) Average (3) Large (6) Total (14)

0 0 0 3 3
15 0 0 3 3
30 0 0 3 3

Table 6.13: An overview of the number of times the solution of the new algorithms, which use the start of the time window as
the first sorter of the seed task selection method, is better than the solution of the algorithm of Company X visualized per case
type in terms of the percentage of tasks that needs to be completed within 5 hours after the start of the shift. The first column
denotes the scale of the sorter in minutes. The number in brackets behind the classification indicates the total number of cases of
the corresponding type used in the experiments.

Case classification of % tasks that finish in 5 hours

Scale Few (7) Average (4) Many (3) Total (14)

0 3 2 0 5
5 3 2 0 5
15 3 2 0 5

We see similar results for the insertion strategies based on the start and length of the time windows
as for the seed task selection strategies in Table 6.14, where the algorithm of Company X outperforms the
new algorithms in all KPIs. Furthermore, it stands out that the calculation times of the new algorithms
are much larger than the calculation time of the algorithm of Company X. This implies that the insertion
of tasks based on time window characteristics produces relatively bad initial solutions and the local
search and R&R need extra time to fix these routes however in the end, the final solutions are still
worse.

Table 6.14: Results of the experiments for the new algorithms that use different insertion methods based on the length and start
of the time window. The first column denotes the sorter and scale of the algorithm where ”TW Length” stands for the length of
the time window and ”TWStart” for the start of the time window. The scales are presented in minutes. The other columns show
the percentile difference with respect to the algorithm of Company X for the number of planned tasks, costs, number of routes
and trips and finally the calculation time (Calc time).

Algorithm Planned tasks (%) Costs (%) Routes (%) Trips (%) Calc time (s)

TWLength Scale 30 -0.01 1.71 3.94 1.85 92.34
TWLength Scale 60 -0.01 1.76 4.10 2.09 96.38
TWLength Scale 0 0.00 1.86 4.27 2.25 60.54
TWStart Scale 60 -0.02 1.97 5.00 2.73 92.69
TWStart Scale 0 -0.02 2.01 5.17 2.89 72.10
TWStart Scale 30 -0.02 2.01 5.17 2.89 89.80

In Table 6.15 and Table 6.16, we once again observe that the new algorithms outperform the algo-
rithm of Company X for the cases that have the easiest time window characteristics. It is noteworthy
that all these cases are once more cases of which their main depot is located in Country B and includes
a relatively small number of tasks. Since the results for both the seed task selection strategies and the
insertion strategies were subpar, we decided to leave them out of the exploration experiment.
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Table 6.15: An overview of the number of times the solution of the new algorithms, which use the length of the time window
as the first sorter of the insertion method, is better than the solution of the algorithm of Company X visualized per case type in
terms of the length of the time windows. The first column denotes the scale of the sorter in minutes. The number in brackets
behind the classification indicates the total number of cases of the corresponding type used in the experiments.

Case classification of time window length

Scale Short (6) Average (2) Large (12) Total (20)

0 0 0 4 4
30 0 0 3 3
60 0 0 3 3

Table 6.16: An overview of the number of times the solution of the new algorithms, which use the start of the time window as the
first sorter of the insertion method, is better than the solution of the algorithm of Company X visualized per case type in terms of
the percentage of tasks that needs to be completed within 5 hours after the start of the shift. The first column denotes the scale of
the sorter in minutes. The number in brackets behind the classification indicates the total number of cases of the corresponding
type used in the experiments.

Case classification of % tasks that finish in 5 hours
Scale Few (10) Average (8) Many (2) Total (20)

0 2 2 0 4
30 2 2 0 4
60 2 2 0 4

6.1.5 Summary

In the preceding section, we investigated the outcomes of the screening experiment. Subsection 6.1.1
illustrated that relying solely on order quantity for selecting seed tasks yielded inferior solutions com-
pared to the algorithm of Company X. Nonetheless, a hybrid approach wherein only the largest orders
were chosen as seed tasks and the selection strategy of the algorithm of Company X was employed for
the remaining seed tasks, displayed promising outcomes. In the exploration experiment, various scales
will be explored to test when a task is large enough to be selected as a seed task. In Subsection 6.1.2
different scales of the initial sorter of the seed task selection method of the algorithm of Company X,
which sorts based on the difference in distance between the nearest and second nearest depot, were
evaluated. Furthermore, we introduced a seed task selection strategy that selects the task that is located
furthest away from the selected depot. This new strategy showed some good results compared to the
algorithm of Company X and will be tested on a larger scale in the exploration experiment. Moreover, in
Subsection 6.1.3, multiple scales of the first sorter of the insertion method of the algorithm of Company
X, sorting tasks based on their distance from unplanned tasks to the seed task, are inspected. These
alternative strategies exhibit promising results compared to the algorithm of Company X, prompting
their evaluation on a larger scale in the next experiment. Conversely, diverse seed task selection and
insertion methods grounded on the start and duration of the time window are assessed in Subsection
6.1.4. Regrettably, these approaches yielded subpar performance compared to the algorithm of Com-
pany X, leading to their exclusion from the exploration experiment. Finally, it stands out that many
algorithms despite performing badly on average, still surpassed the algorithm of Company X for the
cases in which the main depot is located in Country B and thus has a relatively small number of tasks.

6.2 Exploration experiment

In the exploration experiment, various construction methods that are created based on the data anal-
ysis and advice from the creators of the algorithm of Company X are tested on the full dataset which
is explained in Section 5.1. In this way, the results are more reliable. As mentioned in Section 4.4, the
goal is to detect the most promising seed task selection and insertion strategies that will be used in
the exploitation experiment where we are going to test combinations of changes instead of testing with
single changes to the algorithm of Company X. Furthermore, we hope to find a correlation between
the input data and certain strategies such that employees of ORTEC know in the future beforehand
which strategies and scales potentially works well. In Subsection 6.2.1, we will explain how we came
up with the different construction methods that are used in this experiment. Moreover, we will in-
troduce the categories that are used to split up the analysis to detect per category the most promising
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ones in Subsection 6.2.2. Afterwards, we will present the outcomes of the experiment per category in
the subsequent sections. Finally, the main findings of the exploration experiment are summarised in
Subsection 6.2.8.

6.2.1 Construction methods of the exploration experiment

In the exploration experiment, we are testing with a total of 113 algorithms that all have different con-
struction methods that are created by changing a single parameter setting of the algorithm of Company
X. The corresponding parameter settings of the new algorithms can be found in Table A.1 where the set-
tings of the algorithm of Company X are presented in bold. In the previous section, 42 algorithms are
already introduced which are all based on the results of the screening experiment that was supported
by the data analysis of Chapter 5. The remaining algorithms are created by interesting parameters that
could be changed which are mentioned by the creators of the algorithm of Company X and experts in
OHD.

First of all, different batch sizes and number of batches are used in combination with different inser-
tion methods. The algorithm of Company X uses batch sizes of 1 and a total of 40 batches are created
and these batches are inserted with the use of cheapest insertion. The following combinations of batch
sizes and number of batches are tested: 1x40, 2x20, 3x14, 4x10, 5x8, 6x7, 7x6, 8x5, 10x4, 14x3, 20x2, 40x1
where the first number denotes the batch size and the second number the number of batches that are
created. Note the product of the batch size and number of batches does not exceed 42. This has been
done since there are never routes that contain more than 42 customers. Consequently, creating more
batches is useless and increases the calculation time. These batches are inserted with the use of cheap-
est insertion which inserts the tasks in the batch based on the task ID, cheapest insertion which inserts
the tasks based on the closest distance to one of the tasks already present in the route and parallel cheap-
est insertion. It is important to note that after each batch is inserted, the batches are updated contrary
to what occurs in the algorithm of Company X. This means that if for example, we use batch sizes of 2
that after we inserted the first two tasks, the next batch is created for the updated route including the
first two inserted tasks. These combinations of different batch sizes and insertion methods result in 36
new algorithms.

Secondly, five different estimators could be interesting to use for the cheapest insertion according to
the creators of the algorithm of Company X. Besides the current estimator, CostAndTimeWindowOrdering
(CostsTW), Distance, DrivingTime, Costs and WaitTimeCosts could be used. In case the distance
is used as an estimator, the task is inserted at the place where the increase in distance of the route is min-
imized. Similarly, the other estimators are used where the WaitTimeAndCosts estimator is a weighted
average between the increase in waiting time and costs in the route. This results in an extra 4 algorithms.

Furthermore, different scales for the second sorter of the seed task selection could be used in which
we could also change the direction of the sorting. In Section 4.1.1 the consequences of changing the
scales and direction of the second sorter are explained. We have chosen 0, 1, 2.5, 5, and 7.5 kilometers
and 0, 1, 2.5, 5, and 10 minutes as scales both sorted increasingly as decreasingly. This results in an extra
20 algorithms.

Finally, the second sorter in the insertion strategy of the algorithm of Company X that sorts based
on the start of the time window of the tasks is tested with different scales. The current scale is 60
minutes and the following scales are experimented with: 0, 20, 80, 120 minutes. This adds another four
algorithms to this experiment.

In addition, some algorithms with bad construction methods are added to compare the final solu-
tions of the algorithms to the ones that come from bad initial solutions. In this way, we can see the
effect of a good initial solution compared to a bad initial solution. We have included an algorithm that
inserts customers based on the largest order quantities, an algorithm that selects the largest orders as a
seed tasks, an algorithm that uses the task ID as the first sorter for both the seed task selection as the
insertion method and an algorithm that chooses the task with the shortest time window length as seed
task. In case the latter one has multiple tasks with the same shortest time window, a seed task is chosen
based on the task ID. Consequently, an extra four algorithms are added to the exploration experiment
which function as benchmarks.

6.2.2 Categories exploration experiment

To make fair comparisons, we are going to split the new algorithms into several categories where 3
categories belong to the seed task selection methods and 4 belong to the insertion methods. The 3 cate-
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gories of the seed task selection methods are the strategies that select customers based on their locations
to depot(s) as seed task, the different scales of the second sorter of the seed task selection method of the
algorithm of Company X and the seed task selection strategies that focus on the orders with the largest
quantity. The four categories of the insertion methods include the first and second sorters of the inser-
tion method of the algorithm of Company X which are the sorters based on distance to the seed task and
the start of the time window. Moreover, it includes the different estimators of the cheapest insertion.
Finally, it also includes the different batch sizes and number of batches in combination with different
insertion methods. Note that these 7 categories are listed in the first column in Table A.1 where the
SeedFarAway is joined together with the scale of the first sorter of the seed task selection method into
one category and ”Batch size x number of batches” and ”Insertion procedure” are merged.

6.2.3 Performances of categories

In order to decide which parameter changes will be used in the exploitation experiment, where we
are going to use combinations of changes, we look at a few different KPIs. First of all, we look at the
algorithms that have the best performance on average, however, as mentioned before a big advantage
of parallel computing is the ability to compensate for algorithms that work really well for particular
cases but bad for other cases. For this reason, we are also going to look at the peak values of algorithms
thus the best 3 and best 25% rankings. Note that the ranking is determined firstly based on the highest
number of planned tasks. In case this results in a tie, the algorithm with lower costs will be ranked
higher. Finally, we look at the potential of an algorithm and if some particular algorithms work very
well for specific sorts of cases. In this way, we hope to create a diverse set of construction methods that
perform well over a varied set of data of Company X.

If we have a look at the performances of the algorithms over the whole dataset in terms of average
costs in Table A.2, we see that the best-performing algorithms are the ones with changes to the first
sorter of the seed task selection method and the batch size in combination with the number of batches
and the insertion method. Furthermore, we can see that the third category that is relatively highly
ranked is the first sorter of the insertion method of Company X. Note that we sorted in this table only
on the costs and ignored the fact that some algorithms have a really small difference in planned tasks.
This could of course lead to a slightly lower amount of costs and thus in a higher rank but in total
there are 92823 tasks in the dataset and in the top 50, the highest number of unplanned tasks is 6.
Consequently, we believe the effect of these unplanned tasks on the costs is negligible.

If we have a look at Table A.3, that is sorted based on the average of the best 25% rankings of the
algorithms, we see a similar performance of the categories except that the first sorter of the insertion
method of the algorithm of Company X has some more top rankings. If we zoom in even more on
the peak values by looking at the 3 best performances of the algorithms on the dataset, and we sort
increasingly on the third rank, we see similar performances of the categories in Table A.4 as in Table A.2
for the average performance. In which the top is dominated by the combination of batch sizes, number
of batches and insertion methods and the first sorter of the seed task selection method. In the following
sections, we are going to dive deeper into the performance of the different categories concerning specific
cases to detect some potentially good parameter settings and strategies.

6.2.4 Seed task selection strategies

Order quantity In Figure 6.1, the gap in percentage between the best individual solutions found and
solutions found by the algorithms per case type concerning the utilization rates of the largest orders
is provided. We can see that the algorithm with the largest scale of 475, which is half the capacity of
the largest truck, performs in general the best. For the cases, with lower utilization rates of the largest
orders it provides exactly the same solutions as the algorithm of Company X, for the cases with average
utilization rates of the largest orders almost the same and for the cases with high utilization rates of the
largest orders it provides the best solutions for the algorithms that select the seed task primarily on the
order quantity. Consequently, this algorithm does exactly for which it is created, namely, to tackle the
largest orders. This graph also shows us that a relatively large scale in terms of the order quantity as the
first sorter of the seed task selection method is also useful in a non-parallel algorithm since it performs
better for cases that include large orders and provides the same results as the algorithm of Company X
for cases that do not include orders above this scale.
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Figure 6.1: A visualization of the performance of algorithms that primarily select the seed task based on order quantity per case
classification, showing the percentage gap to the best individual solutions found. The case classification used is the utilization
rate of the largest orders in the case. The x-axis represents the scale of the sorter, with the algorithm of Company X labelled by
its name since it doesn’t use such a scale. The y-axis represents the percentage gap. Additionally, the case classification agenda is
presented on the right side of the graph.

Difference in distance between nearest and second nearest depot In Figure 6.2 and 6.3, the gap in
percentage between the best individual solutions found and solutions found by the algorithms per case
type concerning the difference in distance and driving time between the nearest and second nearest
depot is provided. From these graphs, it can be concluded that the seed tasks should be selected not
only on the difference in distance between the nearest and second nearest depot since the scale 0 is
outperformed for each case type by another scale. Furthermore, it could be seen that the scale of the
algorithm of Company X is outperformed by many different scales for each case type. Moreover, we
can see that the relatively larger scales of 40 kilometers and 30 minutes provide good results for each
type of case and that the small scale of 2.5 kilometers performs really well for the cases where the
difference between the nearest and second nearest depot is small. Finally, it is difficult to detect hard
relationships between the input data characteristics and the scales based on this so further research
needs to be conducted for this.

Figure 6.2: A visualization of the performance of algorithms that primarily select the seed task based on the difference in distance
between the selected depot and the nearest depot that is not the selected depot per case classification, showing the percentage
gap to the best individual solutions found. The case classification used is the difference in distance between the nearest and
second nearest depot of the customers in the case. The x-axis represents the scale of the sorter, where the scale of the algorithm
of Company X is shown with white dots. The y-axis represents the percentage gap. Additionally, the case classification agenda is
presented on the right side of the graph.
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Figure 6.3: A visualization of the performance of algorithms that primarily select the seed task based on the difference in driving
time between the selected depot and the nearest depot that is not the selected depot per case classification, showing the percentage
gap to the best individual solutions found. The case classification used is the difference in distance between the nearest and second
nearest depot of the customers in the case. The x-axis represents the scale of the sorter and the y-axis represents the percentage
gap. Additionally, the case classification agenda is presented on the right side of the graph.

Parameter selection exploitation experiment In case we only consider the seed task selection strate-
gies for the average performance, the best 25% rankings and the best 3rd rank in Tables A.5, A.6 and
A.7, we can see that the first sorter of the seed task selection strategy dominates the top rankings.

Furthermore, we could see the perfect example of an algorithm that is very suitable for a parallel al-
gorithm but not for the current non-parallel algorithm of Company X, namely the SeedFarAwayDistance
which selects the customer that is furthest away in terms of distance from the selected depot as seed
task. We can see from Table A.5, that it performs relatively badly on average however the average of the
25% best rankings is extremely low as could be seen in Table A.6. This means that this algorithm either
performs extremely well or bad. If we had only considered the average performances of the algorithms,
we would never have determined that this algorithm performed for some cases extremely well. For the
above-mentioned reasons, the SeedFarAwayDistance is the first seed task selection method that we will
select for the exploitation experiment.

Secondly, we will use SeedTaskFarToNearDiffDepot2,5KM and SeedTaskFarToNearDiffDepot40KM

because these are performing really well for the KPIs mentioned in the start of Subsection 6.2.3. We
can also see that the scales 60 kilometers, 30 and 60 minutes for the first sorter of the algorithm of
Company X score also quite well behind the first two chosen parameter settings. We have only cho-
sen to go for the scale of 30 minutes since the algorithms with such large scales are kind of similar to
the SeedFarAwayDistance algorithm since there are quite some cases that do not include such large
differences between the distance or driving time between the nearest and second nearest depot. Conse-
quently, the second sorter of the algorithm of Company X will be used mainly which is the sorter that
selects the customer that is furthest away from the selected depot. In order to have a good but also
varied set of seed task selection methods, we have decided to choose only the scale of 30 minutes.

Finally, we have selected the scale of 20 kilometers since this algorithm also performs relatively well
on the KPIs. Furthermore, we only had selected the scale of 2.5 and 40 kilometer which are relatively
low and high scales. For this reason, to increase the variety of the selected set of seed task selection
methods we have chosen to include the scale of 20 kilometers. This means that we have chosen 5
different seed task selection methods that will all be used in combination with the scale of 475 in terms
of the order quantity as the first sorter. Consequently, we have in total 10 different seed task selection
strategies that will be used in the exploitation experiment.

Remark that we have not chosen to use any different scales for the second sorter of the algorithm
of Company X. First of all, from Table A.2 can be concluded that the decreasing scales work in general
better than the increasing ones and the current scale is also decreasingly. Moreover, by increasing the
scale, the third sorter will be become more important which is in this case the order quantity. By using
the 475 scale as first sorter, we will filter out all difficult tasks in terms of order quantity and we no longer
need the third sorter to be used. Additionally, this will also help to not let the number of combinations
explode in the exploitation experiment.

6.2.5 Insertion methods

Batch sizes, number of batches and insertion procedure In case we only consider the insertion meth-
ods for the average performance, the best 25% rankings and the best 3rd rank in Tables A.8, A.9 and
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A.10, we can see that for all KPIs the combination of different batch sizes, number of batches and in-
sertion methods are by far the best. Consequently, we are going to select significantly more parameter
settings from this category than from the others.

We have compared all the algorithms within this category for the main KPIs which can be found
in Tables A.11, A.12 and A.13. It stands out that the smaller batch sizes in combination with a larger
number of batches outperform the algorithms that include larger batch sizes in combination with a
lower number of batches. This is also logical since the first batch is created purely based on the seed
task. In case this batch is very large, we are inserting a lot of tasks with respect to the seed task while
ignoring that the route is growing. Consequently, it is more logical to insert smaller batch sizes since
we then observe more often what the nearest tasks are with respect to all already inserted customers in
the route.

Furthermore, it could be seen that resorting after inserting a batch improves the results which could
be concluded if we compare the CloseToSeedBatch1x40ResortTrue with the algorithm of Company X
in the Tables. The only difference between those two algorithms is that we resort after each inserted
batch. We can see that this algorithm outperforms the algorithm of Company X at all KPIs and is on
average 0.32% better in terms of costs than the algorithm of Company X. However, this result comes
at the cost of a 40% larger running time at the construction phase and a 20% larger running time while
executing the whole algorithm since the resorting costs logically extra time. Nevertheless, in case we
use for this case parallel cheapest insertion instead of cheapest insertion, the increase in running time
while executing the whole algorithm is only 5% and the same solution will be achieved. In Table A.14,
the average running times for all the phases in this category are presented. From this Table, it can be
concluded that the running times are almost always lower than the algorithm of Company X in case
we use parallel cheapest insertion. On top of that, most of the algorithms including parallel cheapest
insertion provide good solutions so this is a win-win situation.

Moreover, we can see that while inserting with cheapest insertion, it is most of the time better to sort
the batch based on distance instead of inserting them on task ID except for the batch sizes of 2 and 3. An
explanation for this could be that these batch sizes are so small that the sequence of insertion matters less
and of course the chance of inserting them in the ‘right’ sequence is a lot higher for smaller batch sizes
since there are fewer options. Logically, resorting the batches increases the running time. However, it
could be seen that the average running times are not even close to the limit of 20 minutes thus a small
increase in running time is not insurmountable. The limit is only reached for some large cases in which
the local search and R&R have to do a lot of work in improving a very bad initial solution. Since the
worst construction methods will not be selected for the new parallel algorithm, an improvement in
terms of solution value can come at the cost of an increase in running time since there is enough space
towards the maximum running time limit of 20 minutes. We have chosen in total 9 different parameter
settings from this category that perform well on the KPIs and these are listed in Table 6.19. In order to
diversify the search, we have chosen combinations of batch sizes and number of batches from the three
different insertion methods.

Distance between customers Although the top rankings in Tables A.8, A.9 and A.10 are dominated
by the insertion methods including the different batch sizes and number of batches in combination
with different insertion methods, some scales of the first sorter of the insertion method of the algorithm
of Company X also perform relatively well for the KPIs. Furthermore, these good-performing scales
outperform by far the insertion methods that include the scale of the second sorter of the algorithm of
Company X and the different estimators of the insertion procedure.

From Figures 6.4 and 6.5, it could be concluded that the scale of the algorithm of Company X is
performing for all case types decently but some scales perform better. Moreover, it stands out from
both graphs that, in general, the lower the scales, the better the solutions. However, we can see that a
scale of 0 is never the best scale, except for the case where customers are located close to each other and
the scale is estimated with driving time. This implies that the time window of customers is relevant
while inserting but not too much as could be seen in the performance of the larger scales in which
the time window is becoming more important while inserting. Furthermore, it could be seen that the
best scale value based on distance decreases with the customer density of the case. This suggests a
correlation between the scale of the first sorter of the insertion method of the algorithm of Company X
and the customer density in a case. Besides, we can see the scales estimated with distance outperform
the scales based on the driving time. This can also be obtained from Tables A.15, A.16 and A.17 which
include the performance of the algorithms that use different scales of the first sorter of the insertion
method of the algorithm of Company X.
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We can see in the tables that the following three scales dominate the top rankings of the KPIs: 0.1,
0.25, and 1.5 kilometers. We have chosen to use these scales in the exploitation experiment since these
were also the best-performing scales for the 3 different types of cases labelled based on the density of
customers. In this way, we have a small but diverse set of scales that is suitable for the different types
of cases in terms of customer density.

Figure 6.4: A visualization of the performance of algorithms that use different scales of the first sorter of the insertion method of
the algorithm of Company X per case classification, showing the percentage gap to the best solutions found. The case classification
used is the difference in distance between the customers in the case. The x-axis represents the scale of the sorter in kilometers
and the y-axis represents the percentage gap. The scale of the algorithm of Company X is denoted with white dots in the graph.
Additionally, the case classification agenda is presented on the right side of the graph.

Figure 6.5: A visualization of the performance of algorithms that use different scales of the first sorter of the insertion method of
the algorithm of Company X per case classification, showing the percentage gap to the best solutions found. The case classification
used is the difference in distance between the customers in the case. The x-axis represents the scale of the sorter in minutes and
the y-axis represents the percentage gap. Additionally, the case classification agenda is presented on the right side of the graph.

Insertion method estimator and second scale of insertion method The selected parameter settings
result already in 10 * 9 * 3 = 270 different algorithms. In order to prevent the number of algorithms and
thus the number of runs in the exploitation experiment from exploding, we have decided to choose only
two parameter settings from one of the two remaining categories such that the number of algorithms
will be 540 in total.

In Tables A.18, A.19 and A.20, the results in terms of the KPIs of both categories are provided. We
have chosen the Distance estimator and the current estimator (CostsTW) of the cheapest insertion as the
last parameter settings for the exploitation experiment. First of all, we believe that this improves the
variety of the new algorithms and thus the robustness of the new parallel algorithm the best. We can see
from Table A.18, that the solutions of the scales of 0, 20, 60 and 120 minutes for the second sorter of the
algorithm of Company X are almost identical which implies that a change in this scale barely changes
the solutions. Furthermore, the estimator of the cheapest insertion method is used for every insertion of
a task and the second sorter of the insertion method of the algorithm of Company X is only used in case
the first sorter is not able to filter out one task. Since we have chosen two relatively small scales for the
first sorter of the insertion method, respectively 0.1 and 0.25 kilometers, the second sorter will be used
even less. Moreover, in the algorithm of Company X, the estimator is the weighted average of the costs
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and the placement of the task with respect to its time window. Thus we expect that inserting based on
distance will have quite a large impact on the insertion place of a task although the distance is of course
also a bit included in the costs. Finally, in Table A.19, it can be seen that the absolute peak values of
the Distance estimator are the best. Likewise, in Table A.18, it can be seen that the CostsTW estimator
performs the best on average which is also logical since this estimator was specially created for the
algorithm of Company X. For these reasons, we have chosen the Distance and CostsTW estimators as
the last parameter settings for the exploitation experiment.

6.2.6 Comparisons against benchmarks

As mentioned in Subsection 6.2.1, we have added a few bad algorithms that function as benchmarks
such that we can see how important the starting solution is with respect to the quality of the final
solution. We can see in Table 6.17 that these algorithms indeed perform poorly considering their high
costs and low rankings. Additionally, the running times are also really high since the local search and
R&R have to do a lot of work to fix these bad constructions. On the other hand, we can see in Table A.21
that the local search and RR are able to transform the very bad initial solution into a good final solution
in some occasions considering some high rankings. SeedTaskShortestTWLength even finds the best
solution for all 113 algorithms for one case. If we have a closer look at these higher rankings, we can see
that they all occur for cases of Country B which include a relatively low number of customers. For the
larger cases, the highest ranking of these benchmark algorithms is 63 implying that they provide very
poor solutions for the larger cases. Since the local search and R&R can explore a relatively large part of
the solution space for the cases of Country B compared to the larger cases where the number of possible
solutions is extremely larger, the initial solution is of less importance. However, these good solutions
initiate from pure randomness and occur on a very rare base thus are not useful for our new parallel
algorithm. All in all, we can conclude that the initial solution is quite important for the algorithm of
Company X where the larger the problem, the more important the initial solution.

Table 6.17: Results of the benchmark algorithms where the percentile difference in costs to the algorithm of Company X is shown
in the second column. The third column denotes the average ranking of the final solution and the last column shows the average
calculation time in seconds.

Algorithm Diff (%) Avg Ranking Calc Time (s)
Algorithm of Company X 0.00 42.00 337.97
SeedTaskShortestTWLength 1.22 102.53 430.71
SeedTaskLargestOrderQuantity 1.41 104.63 445.61
InsertionLargestOrderQuantity 2.40 111.23 641.74
SeedTask&InsertionTaskID 3.09 112.10 662.08

6.2.7 Parallel vs algorithm of Company X

Table 6.18 includes the results in case we would use all 113 algorithms in parallel compared to the
solutions of the algorithm of Company X. For this evaluation, the parallel design displayed in Figure 4.1
is used where n equals in this case thus 113. The first column of the table denotes how many of the best
initial solutions will proceed to the local search and R&R phase which corresponds to the p in the figure.
The initial solutions are ranked firstly based on the number of planned tasks and in case this number is
equal then the solution with the lower costs will be ranked higher. The second column shows the total
costs of all solutions in the dataset per number of starting solutions that proceed to the local search and
RR. The third column shows us the difference in costs to the solution of the algorithm of Company X.
The fourth column denotes the difference in percentage compared to the case where we would run all
113 algorithms fully in parallel. For example, we would lose 0.32% if we only proceed with the best
starting solution instead of proceeding with all 113 starting solutions. The fifth column visualizes the
extra computational time in hours compared to the algorithm of Company X. Note that no matter how
many starting solutions will be used in the local search and RR phase, first the constructions of all 113
have to be executed. For example, the extra calculation time of using 3 starting solutions is calculated
by the sum of the total construction time of all 113 algorithms over all 42 cases and the local search and
RR calculation time of the 3 best starting solutions for each case. The sixth column shows us the savings
compared to the solution of the algorithm of Company X. The seventh column visualizes the costs of
the extra computational time that was denoted in the fifth column where each hour of computational
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time costs 16 cents as mentioned in Section 3.3.2. The last column denotes the net savings for Company
X in case they would pay for all extra computational costs.

Remark that it is already possible in the software of ORTEC to proceed with either the best or all
starting solutions to the local search and RR phase. Consequently, by single adjustments to the algo-
rithm of Company X, large savings could already be obtained. Furthermore, we can see that the values
of net savings are increasing with the number of starting solutions which is a consequence of the pro-
portion of the calculating costs and the costs of route planning of Company X. Note that we have to
improve an extremely small percentage of the total solution value of this dataset to make an extra hour
of computational time beneficial. On top of that, the average running time of the algorithm of Company
X is about 5 minutes implying that an extra hour of running time is a lot. This explains the proportions
of the savings versus the extra computational time and results in the case that it is optimal to proceed
with every starting solution.

Table 6.18: The results of using the 113 single change algorithms in parallel compared to the algorithm of Company X, where the
net savings are presented in proportions to the total planning costs while using the algorithm of Company X.

Nr Solutions to LS&RR Diff algorithm of Company X (%) Diff best (%) Extra Calc Time (h) Extra Calc Costs (€) Net Savings (%)

1 -0.76 0.32 167.41 26.78 0.76
3 -0.94 0.14 169.63 27.14 0.94
5 -0.97 0.11 171.88 27.50 0.97
10 -1.01 0.06 174.09 27.86 1.01
25 -1.03 0.05 176.37 28.22 1.03
50 -1.04 0.04 178.74 28.60 1.04
75 -1.05 0.03 181.30 29.01 1.05

100 -1.07 0.01 183.57 29.37 1.07
113 -1.08 0.00 185.87 29.74 1.08

Furthermore, it stands out that the best starting solution does not always result in the best final
solution since the costs are 0.32% higher if we only proceed with the best starting solution instead of
proceeding with all 113 starting solutions. The starting solution of the best final solution is on average
1.08% worse than the best starting solution and has an average ranking of 27.31 after construction. This
confirms the numbers in Table 6.18 that it is beneficial to proceed with multiple starting solutions to the
local search and RR phase. Additionally, it means that the initial solution is not extremely important
in case we include relatively good construction methods contrary to the bad benchmark algorithms in
Subsection 6.2.6.

Moreover, we obtained that the percentual savings are a lot higher for the cases of Country B than
the cases of Country A. The average saving for the Country B cases is 3.18% whereas for the Country
A cases, this saving is 0.95%. Consequently, we can conclude that the algorithm of Company X does
not perform well for these smaller cases which also matches with the observations in Subsection 6.1.5.
Besides, the average ranking of the starting solution resulting in the best final solution is lower for
the Country A cases than for the Country B cases, respectively 20.03 vs 45.50. This also aligns to the
conclusions made in Subsection 6.2.6 about the importance of starting solutions for the smaller cases.

6.2.8 Summary

In this subsection, we have analysed the results of the exploration experiment and have selected the
parameter settings of the seed task selection and insertion methods that will be used in the exploitation
experiment. We have chosen a varied set of parameter settings based on the average performance in
terms of costs and the best rankings in terms of the final solution for all cases. Where we have selected
more parameter settings from the best-performing categories than the categories that performed worse.
The best-performing categories were the first sorter of the seed task selection method, the batch size and
number of batches in combination with different insertion methods and the scale of the first sorter of the
insertion method. The chosen strategies and corresponding parameter settings can be found in Table
6.19. In Subsection 6.2.4, we saw that the additional sorter on top of the first sorter of the algorithm
of Company X that selects very large orders as a seed task has on average a positive effect on the
solution values of cases that include large orders. Additionally, we detected some correlation between
the scales of the first sorter of the insertion method of Company X and the difference in distance between
customers in a case. For the case types where the difference between customers is relatively small,
the smaller scales outperform the somewhat larger scales. For the cases where the difference between
customers is larger, we saw that the somewhat larger scales outperform the other scales. Besides, we
saw that the insertion methods based on distance outperform the insertion methods based on driving
time. Since the scales above 2 kilometer performed really poorly, it could also be concluded that the
insertion of customers should be mainly done by distance since the larger the scale the less important
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the distance and the more important the start of the time window of the customer. In Subsections 6.2.6
and 6.2.7, we saw that the initial solution is quite important for the algorithm of Company X, especially
for the larger cases and that is beneficial to use multiple construction methods and also to proceed with
multiple starting solutions to the local search and R&R phase. As a result, we observed that we could
already save a lot of costs by running multiple algorithms in parallel that are created from a single
change to the algorithm of Company X. Finally, we can conclude that the algorithm of Company X does
not work well for the smaller cases of Company X.

6.3 Exploitation experiment

In Section 6.2, we have chosen the parameter settings that will be used in the exploitation experiment
where we will create algorithms with all combinations of these parameter settings. The chosen pa-
rameters per category are listed in Table 6.19. The second row denotes that we are including and ex-
cluding the order quantity sorter in the seed task selection strategies. In case the sorter is included, a
scale of 475 will be used. In the row of the seed task selection strategies, we can see that we have the
SeedFarAwayDistance and four different scales of the difference between the selected depot and the
nearest not-selected depot as our five seed task selection methods. We have nine different combinations
of batch sizes, number of batches and insertion methods and these are listed in the fourth row. Finally,
we have three different scales for the first sorter of the insertion method and two different estimators
that will be used for the insertion procedures. Thus, we have 2*5*9*3*2 = 540 different combinations of
parameter settings. These 540 algorithms are also tested on the dataset while using the parallel design
of Figure 4.1 and the results are shown in Table 6.20. From the table, we can see that these new com-
bination algorithms provide even better solutions for the 42 cases in the dataset than the algorithms of
the exploration experiment in which only single changes were made to the algorithm of Company X.
Furthermore, we can see just as in Table 6.18 that it is more profitable to use multiple starting solutions
because the higher the number of starting solutions the higher the profit.

Table 6.19: Overview of all selected parameters settings per category that will be used in the exploitation experiment

Category Parameter setttings
Order quantity sorter (2) 475, none

Seed task selection strategies (5) SeedFarAwayDistance, DiffDepot2.5KM, DiffDepot20KM, DiffDepot30Min, DiffDepot40KM
Insertion strategies (9)

BatchSize x NumberOfBatches + Insertion method

5x8 Parallel Cheapest Insertion, 3x14 Parallel Cheapest Insertion,
2x20 Parallel Cheapest Insertion, 1x40 Parallel Cheapest Insertion,
4x10 Parallel Cheapest Insertion, 3x14 Random Cheapest Insertion,
2x20 Random Cheapest Insertion, 3x14 Sorted Cheapest Insertion,

6x7 Sorted Cheapest Insertion
Scale first sorter insertion method (m) (3) 100, 250, 1500

Insertion Estimators (2) CostAndTimeWindowOrdering, Distance

Table 6.20: The results of using the 540 algorithms of the exploitation experiment in parallel compared to the algorithm of Com-
pany X, where the net savings are presented in proportions to the total planning costs while using the algorithm of Company X.

Nr Solutions to LS&RR Diff algorithm of Company X (%) Diff best (%) Extra Calc Time (h) Extra Calc Costs (€) Net Savings (%)

1 -1.04 0.30 782.94 125.27 1.03
5 -1.13 0.21 791.51 126.64 1.13
10 -1.16 0.18 801.81 128.29 1.15
50 -1.26 0.08 889.31 142.29 1.25

100 -1.29 0.05 1001.63 160.26 1.28
200 -1.31 0.02 1233.38 197.34 1.30
400 -1.32 0.02 1737.06 277.93 1.30
541 -1.34 0.00 2181.52 349.04 1.32

6.4 Exploration and exploitation experiments

In the exploration and exploitation experiments, we have applied a total of 653 unique algorithms on
the dataset. In this section, we are going to analyse the outcomes if we would run all these algorithms
in parallel on this dataset. In this way, we can answer the questions of Chapter 4 and design our new
parallel algorithm.
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6.4.1 Single changes vs Combination algorithms

In Table 6.21, the results of these 653 unique algorithms while using the parallel design presented in
Figure 4.1 are shown. We can see that the results are slightly better as in Table 6.20, implementing that
the algorithms that only include single changes do not add many extra savings to the algorithms that
include multiple changes. Consequently, we can say that the algorithms with single changes provide
relatively good results but the algorithms that include multiple changes provide even better results
since they explore the solution space more extensively. Furthermore, this could also be seen from the
rankings of the 653 algorithms based on the average costs on this dataset where the best single change
algorithm is at the 128th rank. All in all, this shows us that the algorithms with multiple changes are
performing better than the single change algorithms. This is also logical since we expected that multiple
changes that worked well individually, would perform even better together.

Table 6.21: The results of using the 653 algorithms of the exploration and exploitation experiments in parallel compared to the
algorithm of Company X, where the net savings are presented in proportions to the total planning costs while using the algorithm
of Company X.

Nr Solutions to LS&RR Diff algorithm of Company X (%) Diff best (%) Extra Calc Time (h) Extra Calc Costs (€) Net Savings (%)

1 -1.04 0.31 947.81 151.03 1.03
5 -1.14 0.22 956.33 152.39 1.13
10 -1.17 0.18 966.75 154.06 1.16
50 -1.28 0.07 1054.52 168.10 1.27

100 -1.30 0.05 1167.37 186.16 1.29
200 -1.32 0.03 1398.53 223.14 1.30
400 -1.33 0.02 1884.44 300.89 1.31
651 -1.35 0.00 2649.33 423.27 1.32

6.4.2 Starting solutions vs profit

In the previous experiments, we have seen that the profit increased by using more construction meth-
ods and starting solutions. This is illustrated by Figure 6.6, where we plotted the number of starting
solutions against the net savings. Note that we first run all 653 construction methods and afterwards
the x best starting solutions proceed to the local search and R&R. The arrow in the graph denotes the
maximum value of the net savings and is located at 600 starting solutions. Consequently, it can be
concluded that it is profitable for ORTEC to work with plenty of construction methods and starting
solutions caused by the fact that the computational costs are very low compared to the costs of a daily
planning of Company X. Furthermore, it can be obtained that the slope is the highest at the start of the
graph. This means that the most savings are gained while using more than one starting solution that
will proceed to the local search and R&R phase.

Figure 6.6: Number of starting solutions that will proceed to the local search and R&R phase plotted against the net savings where
the arrow points out the maximum net savings
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6.4.3 Country A vs Country B cases

We have seen in Section 6.1 and 6.2 that the algorithm of Company X performs poorly for the Country
B cases since very many different algorithms outperformed it. In this subsection, we are going to dive
deeper into this observation. In Subsection 6.2.6, we have seen that the average savings for the Country
B cases are 3.18% and for the Country A cases 0.95%. Furthermore, we saw that the initial solutions
are less important for the Country B cases than for the Country A cases because they profit a lot more
from randomness. Since they are that much smaller, a relatively larger part of the solution space can be
explored by the algorithms. Moreover, the difference between the Country B and Country A cases could
also be obtained in the algorithms that work well for both cases. The 10 best algorithms on average for
the Country A cases have an average ranking of 318.1 for the Country B cases and vice versa the 10
best algorithms on average for the Country B cases have an average ranking of 263.9 for the Country A
cases. This means that the algorithms that perform well for the Country B cases, do not perform well
for the Country A cases and vice versa. Consequently, we can conclude that the cases of Country B and
Country A differ too much from each other and therefore different (parallel) algorithms should be used
on each.

The algorithm of Company X is constructed for the main depots located in Country A and is after-
wards also applied to the Country B cases. This means that if we construct a new parallel algorithm
for the Country B cases too, we will not get a good perspective of the effect of parallel computing since
savings are also gained from the fact that the algorithm of Company X was not constructed for the
Country B cases and does not perform well on these cases. As a result, we are going to design and test
our new parallel algorithm against the algorithm of Company X only for the Country A cases such that
the conclusions of our research are reliable.

6.5 Construction phase of new parallel algorithm

In this section, we are first constructing the construction phase of our new parallel algorithm in Subsec-
tion 6.5.1. Afterwards, its performance is evaluated against the algorithm of Company X and the effect
of parallel computing in the construction phase is determined in Subsection 6.5.2.

6.5.1 Design of construction phase of new parallel algorithm

Ideally, we would want to use as many construction methods as possible and proceed with all starting
solutions to the local search and RR phase as could be seen in Figure 6.6. However, this is not possible
in practice since ORTEC does not have that many processors available. The new parallel algorithm is
restricted to the use of 15 CPUs concurrently. Since we have seen in the previous experiments that it
is very beneficial to use a lot of construction methods and starting solutions that proceed to the local
search and R&R, we are going to use 15 different construction methods of which all starting solutions
will proceed to the local search and RR in our new parallel algorithm. This means that n and p equal
15 for our new parallel algorithm in Figure 4.1. In order to select these 15 construction methods, we
are going to use the same criteria as in Subsection 6.2.3 where we selected the parameter settings that
were going to be used in the exploitation experiment. Namely, the average costs, best 3rd rank and
the average of the best 25% rankings with respect to all the cases in the dataset from Country A. We
have selected the top 15 of all categories and these are listed in Table A.22. Note that the names of
the algorithms are constructed by merging the parameter settings of Table A.1 where a ” ” is used as a
separator.

It stands out that many algorithms in this list are included with both the 475 scale of order quantity
and without. Remark that if a case does not have an order larger than 475, the solution of the two
versions of the algorithms is exactly the same. Since only 8 out of the 30 cases in the dataset have
orders that are larger than 475 and we are only allowed to use 15 different construction methods, we
have decided that we will only include one of these two versions of an algorithm in the construction
phase of our new parallel algorithm. In this way, we will have a varied set of starting solutions. Note
that the dataset of the final experiment includes a whole week of data and that the proportion of cases
with orders larger than 475 will be even smaller since most of the large orders are from Mondays.
Furthermore, the algorithms including the 475 scale are on average better than the ones without but
not per se for every single case. Consequently, not only the algorithms including the 475 scale of order
quantity will be selected. In order to have a good balance between algorithms from these 3 criteria
in the new parallel algorithm, we start by selecting the best algorithm per criteria. If an algorithm is
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selected, it is removed from the ranking as well as its 475 order quantity scale equivalent. This process
is repeated 5 times such that we have selected 15 algorithms. In this way, we have a good mix of
algorithms that perform well on average and algorithms that perform well for only a subset of cases.
These 15 algorithms are bold in Table A.22 and will be included in the construction phase of our new
parallel algorithm and will be tested on a large set of data in the final experiment in the next section.

6.5.2 Performance of new parallel algorithm

In this section, we are going to evaluate the performance of our new parallel algorithm that uses 15
different construction methods against the algorithm of Company X on a week of data from all the
main depots located in Country A. This dataset consists of 108 cases. The results of this experiment are
shown in Table 6.22. We can see that our new parallel algorithm clearly outperforms the algorithm of
Company X on the two most important KPIs. First of all, our new proposed parallel algorithm is able
to increase the number of planned customers by 0.004% and decrease the costs by 1.18%. Logically,
our new proposed parallel algorithm uses significantly more calculation time than the algorithm of
Company X. However, the corresponding extra calculation costs are negligible with respect to the total
costs. Consequently, by taking into account as well the planning costs as the computational costs, the
new parallel algorithm outperforms the algorithm of Company X still by 1.18%.

Every algorithm in the parallel algorithm provides at least three times the best solution for a case,
implying that we have selected a well-varied set of algorithms for our new parallel algorithm. Further-
more, the average ranking after construction for the best final solution is 5.6 and in one case the worst
starting solution ends up in the best final solution. This ratifies the choice of using all starting solutions
to proceed to the local search en R&R phase.

An important note has to be made on the effects of parallel computing with respect to the total
savings of 1.18% since some savings are down to the creation of new algorithms with the help of data
analysis and experiments. The best algorithm out of the 653, logically also included in the new parallel
algorithm, outperforms individually the algorithm of Company X by 0.66% in terms of costs. This
means that we can conclude that the savings caused by the parallelism of the algorithm are 0.52%.

Table 6.22: Results final experiment where the percentile difference between our new parallel algorithm and the algorithm of
Company X is presented for the most important KPIs.

Costs (%) Planned customers (%) Calculation time (%) Calculation costs (%) Total costs (%)
-1.18 0.004 1343.68 1343.68 -1.18

6.6 Modified Research design for the R&R phase

In this section, the changes made to the R&R are explained in Subsection 6.6.1. Subsequently, Subsection
6.6.2 explains the modifications made to our research design.

6.6.1 New RR

During our research, the R&R described in Section 3.2 was modified based on internal research within
ORTEC to enhance its performance. Consequently, the R&R used for the experiments with multiple
construction methods differs from the R&R used in experiments on parallel R&R methods in this chap-
ter. This means that the R&R for which parameter settings will be modified also differs. The new R&R
method is similar to the previous one which is visualised in the flowchart in Figure 3.4, however, the
R&R methods included in the roulette wheel and the number of iterations and recursions have been
changed.

Recall that the former R&R method used six ruin methods (Random Removal, Related Removal,
Route Removal, Random Cluster Removal, Worst Removal, Worst Cluster Removal) in combination
with one recreate method (Parallel Cheapest Insertion (PCI), totalling six R&R methods. The new
roulette wheel includes eight R&R methods, featuring Random Removal, Related Removal, Route Re-
moval, and the new Route and Adjacent Task Removal as removal methods where Regret Insertion (RI)
and PCI procedures are used as recreate methods. Route and Adjacent Task Removal randomly re-
moves a predetermined number of routes and adjacent tasks from the solution. Moreover, the number
of recursions has been set to 2 and the number of iterations to 125, instead of the previous 5 recursions
of 40 iterations.
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We will modify the parameter settings of the following four categories: removal percentage of ruin
methods, the ruin and recreate methods included in the roulette wheel, the estimator of the recreate
method, and the combination of recursions and iterations.

6.6.2 Research design

Due to the limited time available for researching the R&R of the algorithm of Company X, we modified
the research design described in Chapter 4. We will use the coordinate descent method to tune the pa-
rameters of the four categories. The coordinate descent method is simple but efficient because it breaks
down complex multidimensional problems into simpler one-dimensional problems (Wright, 2015).

It optimizes one parameter at a time while keeping others constant where the optimized parameter
is updated before moving to the next. This means that we will conduct screening and exploration
experiments for the first parameter, select the most promising settings for the exploitation experiment,
and then proceed to the next parameter using the best setting of the previous parameter. This process
is repeated for all four categories. These are the only changes made to the research design described in
Chapter 4.

6.7 RR experiments

In this section, we present all experiments related to the creation of a new R&R phase for our new
parallel algorithm. First, the experimental setup is discussed in Subsection 6.7. Next, Subsection 6.7.1
covers the screening and exploration phase of Step 1 of the research design, with each subsection ad-
dressing one of the four categories: removal percentage of ruin methods, the ruin and recreate methods
included in the roulette wheel, the estimator of the recreate method, and the combination of recursions
and iterations. These categories are used in this sequence in our research design based on advice from
experts within ORTEC. In Subsection 6.7.2, we combine the best parameter settings from these experi-
ments to create effective R&R methods for the R&R phase of our new parallel algorithm. Subsequently,
Subsection 6.7.3 executes experiments for Steps 2 and 3 of our research design, constructing the new
R&R phase of our parallel algorithm. Finally, Subsection 6.7.4 compares the new R&R phase of our par-
allel algorithm to the R&R method of the algorithm of Company X and evaluates the complete parallel
algorithm against the complete algorithm of Company X. Note that in all experiments except the final
evaluation of our new complete parallel algorithm against the algorithm of Company X, only a single
seed value is used due to time and budget restrictions.

Experimental set-up

In Step 1 of the research design, we will use a single starting solution per case for all R&R methods, as
the primary objective is to develop good R&R methods. This starting solution will be generated using
the construction and local search phase of the best individual algorithm identified in Chapter 6. The
Country A cases from the dataset described in Chapter 5 will be used for all experiments except the
final one, resulting in a training dataset of 30 cases. Additionally, we will remove the stopping criterion
triggered when a complete recursion of the roulette wheel yields no improvement, ensuring each R&R
method has the same number of iterations for fair comparisons. Lastly, the number of planned tasks
will not be shown in the tables since they are zero, except for the final experiment.

6.7.1 Screening and exploration experiments RR

Removal percentage

In a previous study on the R&R method at ORTEC, Simons (2017) recommended using a removal per-
centage between 5% and 20%. Since the removal percentage must be an integer, we tested the following
values: 5, 7, 10, 12, 15, 17, and 20. Note that 5% is the current removal percentage used for the algo-
rithm of Company X. The Route and Adjacent Task Removal method in the roulette wheel operates
with absolute numbers rather than percentages. We adjusted its parameter settings to approximate the
correct number of tasks removed, using the average number of tasks in the dataset for calculations. The
settings used per removal percentage are detailed in Table A.23.

The results of this experiment are shown in Table 6.23. It is notable that removal percentages greater
than 7 do not improve the starting solution, while lower percentages rarely provide improvements.
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Additionally, larger removal percentages increase calculation time, as more routes need to be recreated
per iteration. Given the poor performance of the tested removal percentages and the relatively better
results with smaller percentages, we decided to also test percentages below 5: specifically, 1, 2, 3, and 4.

Table 6.23: The results of various removal percentages used for the removal methods included in the roulette wheel of the
algorithm of Company X where in the table the percentual difference between the solution before and after the R&R is presented
for the costs, number of routes and trips. The ”Nr of improvements” column denotes the number of times that the R&R was able
to improve the starting solution. The last column shows the average calculation time of the R&R in seconds

Removal Percentage Costs (%) Routes (%) Trips (%) #Improved (Out of 30) CalcTime (s)
5 -0.04 -0.06 -0.06 3 576.18
7 -0.02 -0.03 -0.03 1 660.28

10 0.00 0.00 0.00 0 797.96
12 0.00 0.00 0.00 0 879.89
15 0.00 0.00 0.00 0 995.31
17 0.00 0.00 0.00 0 1049.52
20 0.00 0.00 0.00 0 1135.61

Table 6.24 presents the results of experiments with smaller removal percentages. It can be observed
that smaller percentages yield better solutions, with removal percentage values of 1% and 2% improv-
ing almost every starting solution. Since 1% provides the best results, it will be used for subsequent
experiments. To identify the most promising settings for the exploitation phase, we examined which
percentage yields the best results when run in parallel with 1%. It turns out that a removal percentage
of 3% is the most complementary. Consequently, removal percentages of 1% and 3% will be used in the
exploitation experiment.

Table 6.24: The results of various removal percentages used for the removal methods included in the roulette wheel of the
algorithm of Company X where in the table the percentual difference between the solution before and after the R&R is presented
for the costs, number of routes and trips. The ”Nr of improvements” column denotes the number of times that the R&R was able
to improve the starting solution. The last column shows the average calculation time of the R&R in seconds

Removal Percentage Costs (%) Routes (%) Trips (%) #Improved (Out of 30) CalcTime (s)
1 -0.15 0.00 -0.25 29 437.26
2 -0.11 -0.03 -0.14 26 470.54
3 -0.09 -0.06 -0.14 14 499.44
4 -0.06 -0.06 -0.08 9 495.38
5 -0.04 -0.06 -0.06 3 576.18
7 -0.02 -0.03 -0.03 1 660.28

10 0.00 0.00 0.00 0 797.96
12 0.00 0.00 0.00 0 879.89
15 0.00 0.00 0.00 0 995.31
17 0.00 0.00 0.00 0 1049.52
20 0.00 0.00 0.00 0 1135.61

Removal and recreate methods

In this experiment, we are going to experiment with the removal and recreate methods included in
the roulette wheel. As discussed in Subsection 6.6.1, the current roulette wheel includes four differ-
ent removal methods and two recreate methods. While more methods are available in OHD, recent
internal research indicated that adding them does not improve the performance of the R&R. Thus, we
will only investigate using fewer removal and recreate methods. We have created all unique roulette
wheels containing two and three removal methods and include two algorithms that use only one recre-
ate method. Roulette wheels including a single removal method are excluded based on Simons (2017),
which showed multiple removal methods are superior. Using 1% as removal percentage, the results in
Table 6.25 indicate several modifications to the removal methods included in the current roulette wheel
lead to better solutions. Notably, using only PCI as the recreate method improves results, whereas using
only RI worsens them. For this reason, we have opted for further testing of all different removal method
combinations in combination with PCI. These results are provided in Table 6.26 where we can see that
most changes in removal methods lead to decreased performance. The best-performing roulette wheel
excluded the related removal method and used both recreate methods, which will be used in subse-
quent experiments. Due to many improvements from changes to the R&R methods included in the
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roulette wheel, we will include four different roulette wheels in the exploitation phase. Evaluating all
combinations of four in parallel is very time-consuming, so we select the two best-performing wheels
on average and the two with the most top-three rankings. This approach ensures a varied set of roulette
wheels: NoRelated (PCI & RI), Related-Route (PCI & RI), Random-Adjacent (PCI), and NoRandom

(PCI), where changes in removal methods are noted outside the brackets and recreate methods used
are in brackets. For example, NoRelated (PCI & RI) defines the roulette wheel including all four re-
moval methods except for the Related Removal and both recreate methods: Parallel Cheapest Insertion
(PCI) and Regret Insertion (RI)

Table 6.25: The results of various removal and recreate methods included in the roulette wheel of the algorithm of Company X
where in the table the percentual difference between the solution before and after the R&R is presented for the costs, number of
routes and trips. The first column denotes the change to the roulette wheel methods of the algorithm of Company X. The ”Nr of
improvements” column denotes the number of times that the R&R was able to improve the starting solution. The last column
shows the average calculation time of the R&R in seconds

RR change Costs (%) Routes (%) Trips (%) #Improved (Out of 30) CalcTime (s)
NoRelated -0.19 -0.06 -0.31 30 444.73

PCI -0.18 0.00 -0.20 30 448.61
Random-Adjacent -0.16 -0.06 -0.20 29 460.72

Random-Route -0.16 0.00 -0.14 30 435.03
Route-Adjacent -0.16 -0.03 -0.36 23 406.73

Related-Adjacent -0.16 -0.03 -0.25 23 414.35
NoRoute -0.16 0.00 -0.22 29 436.41

NoAdjacent -0.15 -0.03 -0.28 29 418.05
No Change -0.15 0.00 -0.25 29 426.79

RI -0.14 0.00 -0.20 29 429.21
Random-Related -0.14 0.00 -0.06 29 426.49

Related-Route -0.14 0.00 -0.14 24 368.36
NoRandom -0.13 0.00 -0.25 22 402.85

Table 6.26: The results of various removal methods included in the roulette wheel of the algorithm of Company X while using the
parallel cheapest insertion as recreate method where in the table the percentual difference between the solution before and after
the R&R is presented for the costs, number of routes and trips. The first column denotes the change to the removal methods in
the roulette wheel of the algorithm of Company X. The ”Nr of improvements” column denotes the number of times that the R&R
was able to improve the starting solution. The last column shows the average calculation time of the R&R in seconds

Removal methods Costs (%) Routes (%) Trips (%) #Improved (Out of 30) CalcTime (s)
Random-Adjacent -0.18 0.00 -0.14 29 447.44

No Change -0.18 0.00 -0.20 30 433.90
Related-Adjacent -0.17 -0.03 -0.20 24 411.79
Route-Adjacent -0.16 -0.06 -0.33 22 379.05

NoAdjacent -0.16 -0.03 -0.20 30 421.80
NoRandom -0.16 -0.03 -0.22 25 388.63
NoRelated -0.15 0.00 -0.25 29 441.45

Random-Route -0.15 -0.03 -0.20 30 403.10
Random-Related -0.15 0.00 -0.14 29 444.45

Related-Route -0.14 -0.03 -0.22 24 362.96
NoRoute -0.11 0.00 -0.11 29 324.63

Estimators

In this subsection, we discuss the results of experiments using different estimators for the recreate meth-
ods used in the roulette wheel where the current estimator used is DrivingTime. The results, shown
in Table 6.27, indicate that the WaitTimeCosts estimator significantly outperforms the others, at the ex-
pense of higher computational time. The Costs, CostsTW, and Distance estimators even deteriorate the
solutions compared to the current estimator. For the next experiment, we will use the WaitTimeCosts

estimator. Since the DrivingTime estimator provides the best results when used together in parallel
with WaitTimeCosts, these two estimators are selected for the exploitation experiment.
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Table 6.27: The results of using various estimators for the recreate methods included in the roulette wheel of the algorithm of
Company X where in the table the percentual difference between the solution before and after the R&R is presented for the costs,
number of routes and trips. The first column denotes the estimator used and the ”Nr of improvements” column denotes the
number of times that the R&R was able to improve the starting solution. The last column shows the average calculation time of
the R&R in seconds

Estimator Costs (%) Routes (%) Trips (%) #Improved (Out of 30) CalcTime (s)
WaitTimeCosts -0.22 0.00 -0.17 30 604.00

DrivingTime -0.19 -0.06 -0.31 30 450.01
Costs -0.18 0.00 -0.31 30 476.35

CostsTW -0.16 -0.03 -0.17 21 434.34
Distance -0.14 0.00 -0.17 25 409.40

Number of iterations vs number of recursions

In Subsection 6.6.1, it is explained that the R&R of the algorithm of Company X uses a total of 250
iterations. Different configurations achieve this number due to the roulette wheel’s learning layer with
recursions. After each recursion, the probabilities for a R&R method to be selected are reset and a local
search is executed. In this experiment, we tested various ways to reach 250 iterations.

The results, shown in Table 6.28, indicate that resetting probabilities and performing local searches
after recursions benefit the R&R since the configurations with the smallest number of recursions pro-
vided the worst results on average. Additionally, a higher number of recursions increased calculation
time, as local searches were performed more frequently. The 63x4 configuration provided the best so-
lutions on average. When run in parallel with other configurations, 63x4 and 125x2 together provided
the best results. Therefore, 63x4 and 125x2 are selected for the exploitation experiment.

Table 6.28: The results of using various combinations of recursions and number of iterations per recursions while using a total
of 250 iterations for the roulette wheel of the algorithm of Company X. The percentual difference between the solution before
and after the R&R is presented for the costs, number of routes and trips. The first column denotes the number of iterations
and recursions used and the ”Nr of improvements” column denotes the number of times that the R&R was able to improve the
starting solution. The last column shows the average calculation time of the R&R in seconds

Iterations x Recursions Costs (%) Routes (%) Trips (%) #Improved (Out of 30) CalcTime (s)

63x4 -0.230 0.00 -0.22 30 675.28
84x3 -0.225 -0.03 -0.20 30 663.29
50x5 -0.218 0.00 -0.20 30 703.48
125x2 -0.216 0.00 -0.17 30 632.69
250x1 -0.199 -0.03 -0.20 30 554.22

6.7.2 Exploitation experiment RR

In this experiment, we will create R&R methods by combining the selected parameter settings of the
experiments in the previous subsection which are presented in Table 6.29. By combining all settings,
we can create 32 unique R&R methods. Additionally, we included roulette wheels including removal
methods with both 1 and 3 as removal percentage values resulting in 48 different R&R methods. These
methods are tested on the 30 Country A cases. Afterwards, the best 15 R&R methods are selected in the
same manner as in 6.4 where we selected the construction methods based on the average performance,
best 3rd rank and the average of the best 25% rankings. These 15 R&R methods are presented in Table
A.24 and will be used in the next experiment to determine the optimal number of starting solutions and
R&R methods to include in the R&R phase of our new parallel algorithm.

Table 6.29: Overview of all selected parameters settings per category that will be used in the exploitation experiment

Category Parameter settings
Removal percentage (2) 1,3

Roulette wheel (4) NoRelated (PCI & RI), Related-Route (PCI & RI), Random-Adjacent (PCI) and NoRandom (PCI)
Estimator (2) WaitTimeCosts, DrivingTime

Iterations x Recursions (2) 63x4, 125x2
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6.7.3 Creation of parallel RR

In this subsection, we are going to determine how many starting solutions and R&R methods will be
used in the R&R phase of our new parallel algorithm such that we optimally make use of the 15 CPUs
that we are allowed to use. We will test this by applying the construction and local search phase of
our new parallel algorithm created in the previous chapter on the dataset consisting of 30 Country A
cases. As a result, 450 starting solutions are created which need to go the R&R phase and the 15 best
R&R methods determined in the previous section will be applied on these starting solutions. This will
generate 225 final solutions per case and thus a total of 6750 final solutions. Afterwards, we are able to
determine what the best combination of the number of starting solutions and R&R methods is. Since
we are restricted to using 15 CPUs, we have the following options for the combination of the number of
starting solutions and R&R methods: 1x15, 2x7, 3x5, 5x3, 7x2, 15x1. For the starting solutions, we will
use the x best starting solutions since in Table A.25 can be seen that on many occasions the best starting
solution also results in the best final solution. The average ranking of the starting solution of the best
final solutions is 2.67. This indicates that in general the better the starting solution, the better the final
solution. For this reason, we have decided to use the x best starting solutions. For the selection of the
R&R methods, we will use the same selection procedure as in Subsection 6.7.2 where we will use the
following sequence of importance of the categories: average performance, average of best 25% rankings
and best 45th rank. Note that we now use the 45th rank since we now have 15 times as many starting
solutions. The design of our new parallel algorithm including multiple R&R methods is visualised in
Figure 6.7 where we want to find the optimal values for r and k.

Figure 6.7: A visualization of the solution design used to address our problem

The outcomes of all combinations of the number of starting solutions and R&R methods are pre-
sented in Table 6.30. It can be concluded that the combination of three starting solutions and five R&R
methods provides the best results. Consequently, the R&R phase of our new parallel algorithm will
include five R&R methods which will all be applied to the three best solutions after local search. This
means that in Figure 6.7 r equals 3 and p equals 5. This makes our new parallel algorithm an indepen-
dent multi-search method using MPDS as search differentiation. In the next subsection, the R&R phase
of our new parallel algorithm will be tested on a larger dataset to evaluate its performance against the
R&R method of the algorithm of Company X. On top of that, our new complete parallel algorithm in-
cluding multiple construction- and R&R methods will be evaluated against the algorithm of Company
X.

Table 6.30: Comparison of the different combinations of the number of starting solutions and R&R methods where their perfor-
mances are compared with respect to the R&R method of the algorithm of Company X

Starting solutions x RR methods Difference with R&R of the algorithm of Company X (%)
15x1 -0.201
7x2 -0.238
5x3 -0.244
3x5 -0.252
2x7 -0.248

1x15 -0.249
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6.7.4 Final experiment RR

In this experiment, we will first evaluate the R&R phase of our new parallel algorithm against the R&R
phase of the algorithm of Company X where both make use of the 15 starting solutions created by
the algorithm constructed in the previous chapter. In addition, we have also applied the best-found
individual R&R method of the preceding experiments on the 15 starting solutions to determine what
part of the improvement actually belongs to the use of multiple different R&R methods. This evaluation
is conducted on a dataset that consists of a week of data of Company X for all main depots in Country
A. The results of this experiment can be found in Table 6.31.

We can clearly see that our R&R method outperforms the R&R method of the algorithm of Company
X by 0.24% in terms of costs. However, we can also see that most improvements come from the fact that
we improved the parameter settings of the R&R method of Company X since the best-found individual
R&R method outperforms the R&R method of the algorithm of Company X by 0.18% in terms of costs.
Consequently, the use of multiple different R&R methods only caused a 0.06% in terms of costs and
0.001% in terms of planned tasks improvement over the best individual R&R method.

Table 6.31: Results of the experiment regarding the comparison of the new R&R phase of our new parallel algorithm against the
R&R method of the algorithm of Company X and the best individual R&R method. In the table, the percentual difference with
respect to the R&R method of the algorithm of Company X per KPI is presented.

Algorithm Planned tasks (%) Costs (%) CalcTime (%)
New RR phase -0.001 -0.24 11.84

Best individual RR -0.002 -0.18 6.88

We have also evaluated our new complete parallel algorithm including multiple construction and
R&R methods, visualised in Figure 6.8, against the complete algorithm of Company X which is ex-
plained in Chapter 3. For this final evaluation, we used five different seed values to ensure that our
observed improvements are not attributable to randomness. The average outcomes of the five runs are
presented in Table 6.32 and it stands out that our new parallel algorithm outperforms the algorithm
of Company X by 1.56% in terms of costs. Consequently, ORTEC can save Company X a significant
amount a year by using our new parallel algorithm instead of the algorithm of Company X to generate
all the routing schedules. However, our new parallel algorithm performs slightly worse on the number
of planned tasks, namely 0.003%. This worse performance in the KPI of the number of planned tasks is
caused by one case in the dataset where the solution of our new parallel algorithm includes significantly
fewer unplanned tasks than the solution of the algorithm of Company X. For all other 107 cases in the
dataset, our new parallel algorithm outperforms the algorithm of Company X for both KPIs.

However, our new parallel algorithm violates the time limit of 20 minutes in 41 out of the 108 cases.
This is mainly caused by the fact that we removed the stopping criterion that is used when a recursion
of a roulette wheel without improvement is executed. We have removed this stopping criterion in order
to make fair comparisons between the roulette wheels that have the same number of total iterations but
differ in the number of recursions. Note that the algorithm is not stopped after 20 minutes since we have
run the first two phases, construction and local search, separately from the R&R phase. Furthermore,
the most and largest improvements are made in the first iterations of the R&R method thus we believe
that time limit violations do not have a very large impact on the result of the best final solution.

Figure 6.8: A visualization of the design of our new parallel algorithm including multiple construction and R&R methods.
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Table 6.32: Results of the final experiment where our new complete parallel algorithm is evaluated against the algorithm of
Company X on a full week of data of Company X where we have used 5 different seed values. The percentile difference compared
to the algorithm of Company X of the average of these 5 runs is presented for each KPI in the table.

Planned tasks (%) Costs (%) Calculation time (%) Calculation costs (%) Total Costs (%)
-0.003 -1.56 2796.49 2796.49 -1.56
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Chapter 7

Conclusions, recommendations and
further research

This final chapter concludes the research conducted in the previous chapters where in Section 7.1 the
most important conclusions are presented. Recommendations for ORTEC are provided in Section 7.2
whereas recommendations for further research are provided in Section 7.3.

7.1 Conclusions

This section includes a recap of the key findings from our research conducted to answer the following
main research question stated in Section 1.3:

To what extent can parallel computing improve the performance of the OHD software?

To answer this question, the sub-research questions formulated in Section 1.5 were answered and the
data of Company X is used. Currently, the algorithm of Company X is solving the problem of Company
X within OHD and consists of three phases: construction, local search and ruin and recreate (R&R). In
the literature research in Chapter 2, multiple variants and solving methods of the VRP are reviewed
however the variant of Company X, Vehicle Routing Problem of Company X (VRPX), is novel to the
best of our knowledge. Furthermore, we introduced several parallel computing approaches for solving
VRPs of which the high-level parallelism method Multiple initial Points/Populations, Different search
Strategies (MPDS) is used in this research to develop a new parallel algorithm. The multiple different
starting solutions and search strategies are created by adjusting the parameter settings of the algorithm
of Company X. Consequently, our problem became a variant of a well-known problem in the literature,
namely the algorithm configuration problem. Automated methods typically solve this problem, but
they were unsuitable for our research due to the vast number of parameter settings and the lack of
information about the working of a parameter setting.

Solution design

To address our problem, we created a solution design consisting of 3 steps. In Step 1, the goal is to create
good algorithms that work well for various types of cases of Company X such that they can be used
in the new parallel algorithm. Subsequently, we will investigate whether using multiple construction
methods and starting solutions is beneficial in Step 2, and if so, determine the optimal number of con-
struction methods and starting solutions that will proceed to the local search and R&R phase. Finally,
in Step 3, the algorithms included in our new parallel algorithm will be selected.

To create good algorithms in Step 1, we used a modified version of the framework of Gunawan et al.
(2011) which consists of three phases: screening, exploration, and exploitation. Firstly, in the screening
phase, we reduced the number of parameter settings by identifying the least promising parameter set-
tings with the help of experts from ORTEC. Moreover, we have conducted a data analysis on the cases
of Company X in Chapter 5 to detect difficult tasks that could fit as a seed task and to find possible
correlations between the parameter settings and data characteristics. In the data analysis, we have seen
a lot of variety across the cases in the dataset in terms of the number of customers, order quantities
and distances between customers and depots. This variety indicated the potential benefit of a parallel
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algorithm, as in the experiments of this phase different parameter settings performed well for different
types of cases.

In these experiments, we only modified a single parameter setting of the algorithm of Company X
to observe its effects and detect promising ranges. Subsequently, in the exploration experiment, the
solution space of the promising parameter setting ranges is examined to find the best setting(s) per
parameter. It is important to note that in our context, ”best” does not always mean the best on average.
Instead, it could also refer to the best for particular cases since the main advantage of parallel computing
is its ability to leverage different algorithms simultaneously. This way, if one algorithm produces an
exceptionally good solution for a specific case, that solution can be utilized. If an algorithm’s solution
is mediocre, it can be compensated by a better solution from another algorithm running in parallel. In
this way, multiple settings per parameter could be selected. Afterwards, in the exploitation experiment,
new algorithms were created by combining these best parameter settings to develop good algorithms
that could be used in the new parallel algorithm.

Experimental results construction phase

From these experiments, several insights on the parameter settings of the construction method of the
algorithm of Company X were gained such as that the smaller batch sizes enhance better solutions
than the larger batch sizes and that there is a correlation between the scale of the first sorter of the
insertion method and the customer density of a case. In Chapter 6, relevant observations about the
usage of certain parameters are provided however more research is needed for definitive conclusions.
Furthermore, we have seen in the data analysis that the Country B cases differ significantly from the
Country A cases which caused different sorts of algorithms to perform well for the Country A cases than
for the Country B cases. As a consequence, it can be concluded that if cases differ significantly from each
other parallel computing is not the appropriate solution, however, different (parallel) algorithms should
be designed and used. Since the algorithm of Company X was originally only created for Country A
cases and the Country B cases were added later without changing the algorithm, the performance of
the algorithm of Company X for the Country B cases is relatively poor. As a consequence, some part
of the improvements of our new parallel algorithm would be because of the fact that the algorithm of
Company X was not made for the Country B cases if we use both Country B and Country A cases in
our testing dataset. For this reason, we have concluded to construct a new parallel algorithm solely for
Country A cases to make sure the results of our research are reliable and valid.

Up to this stage, we have constructed a total of 653 different algorithms by modifying parameter
settings in Step 1 which we all run in parallel to observe the effect of using multiple construction meth-
ods and starting solutions that proceed to the local search and R&R phases. From this experiment, we
obtained that proceeding with only the best starting solution to the local search and R&R can improve
the solution quality in terms of costs by up to 1.04%. On top of that, we observed that in case more
than just one starting solution that proceeds to the local search and R&R is used, the solution quality
improved further, with a 1.34% improvement when all starting solutions are used. Consequently, we
can conclude that the use of many construction methods as well as the use of multiple starting solutions
that will proceed to the local search and R&R phase is very beneficial mainly because of the extremely
low hourly computational costs assigned to a single Central Processing Unit (CPU) in relation with the
relatively high routing costs of Company X. As a result, the more construction methods and starting so-
lutions proceeding to the local search and R&R, the better the objective value which includes the extra
computational costs. Besides, this proves that the best initial solution does not always result in the best
final solution. However, we saw that the initial solution is important for the cases of Company X since
the very bad initial solutions also result in poor final solutions, where we saw that the larger the VRP,
the more important the initial solution.

Ideally, we would design a large parallel algorithm since this resulted in a good performance in our
experiments. However, the number of CPUs available for the new parallel algorithm was restricted
to 15 by ORTEC due to the current contractual constraints with the cloud computing platform. Con-
sequently, we have developed a new parallel algorithm that uses 15 different construction methods of
which all starting solutions will proceed to the same local search and R&R. Our parallel algorithm in-
cludes algorithms that perform well on average and algorithms that only perform well for specific types
of cases. In this way, we have selected a varied set of algorithms for our parallel algorithm, ensuring
robustness across the varied set of cases of Company X.

Our new parallel algorithm using multiple construction methods has been evaluated on a full week
of Company X’s data against the algorithm of Company X and it increases the number of planned tasks
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by 0.004% and decreases the costs by 1.18% which are the most important Key Performance Indicators
(KPIs) for Company X. Note that in these costs also the extra computational costs are included. As a
result of the data analysis and the experiments, we created an algorithm that individually outperformed
the algorithm of Company X by 0.66% in terms of costs. This means that from the total improvement
of 1.18%, 0.66% is caused by the updated parameter settings. Consequently, the implementation of
parallel computing by using multiple construction methods and starting solutions proceeding to the
local search and R&R phase caused an improvement of 0.54%.

Experimental results R&R phase

Subsequently, due to the limited time, we have applied a slightly modified version of our research
design to the R&R phase of the algorithm of Company X aiming to improve it even more. We have
used the coordinate descent method to optimize the parameter settings implying that we first optimize
one parameter and afterwards continue to the next parameter while keeping the best parameter setting
of the previously optimized parameter setting(s). Similar to the experiments of the construction phase,
some observations about the parameter settings could be made such as that the smaller the removal
percentages, the better the solutions and the smaller the computational time. By combing the best-
found parameter settings of these experiments, 48 unique R&R methods were created and the best 15
were selected to be used in the next experiment which will evaluate the number of starting solutions
and R&R methods to include in the R&R phase of our new parallel algorithm. To do so, we have applied
these 15 R&R methods on all starting solutions created by the 15 different construction methods on the
dataset of the Country A cases. Note that local search is also applied to these starting solutions. In this
experiment, we found out that on many occasions the best starting solution also results in the best final
solution. Furthermore, we found out based on this experiment that it is optimal to use the best three
starting solutions in combination with five different R&R methods. To evaluate the use of multiple
R&R methods, this new parallel R&R phase of our parallel algorithm is applied to the starting solutions
of a week of data of Company X resulting from the solutions after local search from the 15 different
construction methods. The outcomes are compared against the current R&R method of the algorithm of
Company X and to the best-found individual R&R method. From this experiment, it can be concluded
that the new R&R phase of our parallel algorithm outperforms the R&R method of the algorithm of
Company X by 0.24% in terms of costs. However, the gap with the best individual R&R method is only
0.06%. This means that most improvements of the new R&R phase of our parallel algorithm phase are
down to the modified settings instead of the use of multiple different R&R methods.

Performance of new parallel algorithm

This resulted in our new parallel algorithm that uses multiple construction- and R&R methods which
is evaluated against the complete algorithm of Company X on a full week of Country A cases with five
different seed values. From the results, it could be obtained that our new parallel algorithm outper-
formed the algorithm of Company X in terms of costs by 1.57%. However, the algorithm of Company
X slightly outperforms our new parallel algorithm in terms of planned tasks by 0.003%. This relatively
worse performance in the KPI of planned tasks is caused by a single case in the dataset where the
algorithm of Company X finds a significantly better solution than our new parallel algorithm. In all
other 107 cases in this dataset containing a full week of data of Company X, our new parallel algorithm
clearly outperforms the algorithm of Company X in terms of both costs and the number of planned
tasks. Our new parallel algorithm violates the running time in 41 out of the 108 cases mostly due to the
removal of the stopping criterion related to a recursion of a roulette wheel without improvement. Since
most improvements in the R&R phase are made in the beginning, we believe that a strict cut-off after 20
minutes does not have a large effect on the solutions. Above that, the largest improvements are gained
from the use of multiple construction methods. All in all, we can conclude that parallel computing is
very beneficial for ORTEC and can improve the performance of OHD significantly.

7.2 Recommendations

The first and most important recommendation to ORTEC is to implement our new parallel algorithm
for the Country A cases of Company X, as it significantly outperforms the algorithm of Company X.
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However, an agreement must first be reached with Company X regarding the distribution of extra
savings and computational costs.

Secondly, we recommend applying our research design to serial algorithms of other customers to
transform them into parallel versions. Our research demonstrated its effectiveness for the algorithm
of Company X, and we believe it will yield similar benefits for other algorithms. However, given the
limited time availability of ORTEC employees compared to our research, we propose a modified version
of our research design to reduce the implementation time of new parallel algorithms. We suggest in the
construction phase to focus only on experimenting with the parameter settings of the first sorter both
the seed task selection and insertion method, as well as the insertion procedure combined with the
number of batches and batch size, since these categories showed the best performance. For the R&R
phase, we recommend using our modified research design used in Sections 6.6 and 6.7. Additionally,
we observed that a parallel algorithm including solely algorithms that are based on a modification of
a single parameter setting of the algorithm of Company X already yields good results. As a result, the
development of a new parallel algorithm can be further expedited by using algorithms that incorporate
only a single change. This approach skips experiments involving combinations of parameter changes,
thus reducing the overall construction time of a parallel algorithm.

Moreover, while developing our parallel algorithm, we created new algorithms that individually
outperformed the algorithm of Company X. The best construction algorithm achieved a 0.66% improve-
ment over the algorithm of Company X whereas the best R&R algorithm had a 0.18% improvement. The
parameter settings for the algorithm of Company X were based on test cases provided at the project’s
inception a few years ago. Therefore, we recommend that ORTEC update parameter settings of algo-
rithms regularly, as data can change over time. This practice would be especially beneficial if real data
becomes available post-implementation, providing comprehensive data for every main depot far be-
yond the initial test cases. Additionally, conducting a data analysis to determine the optimal parameter
settings, as demonstrated in Chapter 5, would be highly advantageous.

Furthermore, our experiments revealed significant differences between the Country B and Country
A cases, with different types of algorithms performing well for each. Notably, the algorithm of Com-
pany X performs poorly in the Country B cases. Therefore, we recommend that ORTEC develops a new
(parallel) algorithm specifically for the Country B cases of Company X.

Finally, we recommend that ORTEC adopts the strategy of adding a sorter to the seed task selection
method of the algorithm of Company X, which prioritizes the largest orders as seed tasks. This strategy
can also be applied to other data characteristics, such as the start or length of time windows. By doing
so, tasks with specific challenging data characteristics can be prioritized as seed tasks before using the
standard seed task selection method. This approach allows the seed task strategy to consider multiple
data characteristics simultaneously, rather than being fixated on a single one.

7.3 Further research

In this research, we have demonstrated that parallel computing within OHD is highly beneficial, though
our study focused on utilizing multiple construction- and R&R methods. Therefore, our primary sug-
gestion for further research is to explore the parallel use of various local search procedures to further
enhance the solutions.

Secondly, in our research, we implemented the independent multi-search variant Multiple initial
Points/Populations, Different search Strategies (MPDS). However, the parallel algorithm could ben-
efit from a cooperative multi-search approach, where processors communicate with each other. This
method has shown promising results in the literature. Therefore, we recommend investigating the use
of a cooperative parallel algorithm, particularly for the local search and R&R phases of the algorithms.

Moreover, we found that using a large number of different construction methods remains beneficial
due to the very low computational costs. However, we were limited to using only 15 CPUs because
the current contract with the cloud computing platform does not permit more. Therefore, our third
recommendation for further research to ORTEC is to investigate the potential benefits of scaling up the
number of processors to allow more CPUs to be utilized in parallel algorithms.

Additionally, in our research design, we used a one-exchange neighbourhood, modifying only a
single parameter setting at a time to observe its effect on solution quality without considering param-
eter interactions. Therefore, our research framework could be extended by examining the interactions
between parameters as well.

Furthermore, we have excluded the use of different seed values for generating various R&R methods
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in this research. The difference between using only the best-found R&R method and multiple R&R
methods was just 0.06%. Preliminary tests experimenting with seed values showed promising results.
Therefore, we recommend ORTEC further investigate the option of using R&R methods that vary only
by seed value and potentially in combination with multiple starting solutions.

Finally, we observed some correlation between scale values and data characteristics in the cases of
Company X. However, it is too early to draw definitive conclusions. Therefore, our final recommenda-
tion for further research to ORTEC is to test this correlation on a larger dataset, including cases from
other customers. This will help reduce the time needed to construct an algorithm for new customers.
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Appendix A

Large tables Chapter 6

This appendix includes all tables that were too large to present in Chapter 6.

Table A.1: An overview of the different parameter settings used in the exploration experiment where the first column denotes
the parameter and the second column the corresponding parameter settings that are tested. The new strategies for the seed task
selection method introduced in the screening experiment are listed in the top rows. The rows below denote all parameters and
sorters present in the Algorithm of Company X where the settings of the algorithm of Company X are presented in bold. The last
column introduces the name of the algorithm for the specific parameter settings which will be used in the following sections

Parameter Settings Example algorithm name

New strategies
Scale first sorter order quantity 190, 285, 380, 475 SeedTaskQuantityScale475
SeedFarAway Distance and Driving time SeedFarAwayDistance
Algorithm of Company X
Scale first sorter seed task selec-
tion method

0, 2.5, 5, 7.5, 10, 15, 20, 40, 60 kilometers and 0, 1,
5, 10, 30, 60 minutes

SeedTaskFarToNearDiffDepot10Min

Scale second sorter seed task se-
lection method (Distance to se-
lected depot)

0, 1, 2.5, 5, 7.5 kilometers and 0, 1, 2.5, 5, 10 min-
utes (decreasing and increasing)

SeedTaskFarToNearNearestAddress1KMIncreasing

Batch size x number of batches 1x40, 2x20, 3x14, 4x10, 5x8, 6x7, 7x6, 8x5, 10x4,
14x3, 20x2, 40x1

CloseToSeedBatch8x5 (task id),
CloseToSeedBatch8x5SortingBatches (distance),
CloseToSeed8x5ParallelInsertionInsertion procedure Cheapest insertion (task id), cheapest insertion

(distance) and Parallel cheapest insertion
Estimator of insertion procedure CostAndTimeWindowOrdering, Distance,

Driving time, Costs and WaitTimeAndCosts
CloseToSeedCheapestInsertionCosts

Scale first sorter of insertion
method

0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5,
7.5, 10 kilometers and 0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5,
10 minutes

CloseToSeed2KM

Scale second sorter insertion
method (TW Start)

0, 20, 60, 80, 120 minutes CloseToSeedStartTW20Min

Table A.2: An overview of the average costs for each algorithm used in the exploration experiment. The table is sorted increas-
ingly. This table includes confidential data, therefore, the data is removed from the table.

Algorithm Costs (€)

Table A.3: An overview of the average of the best 25% Rankings of the algorithms used in the exploration experiment where the
table is presented increasingly

Algorithm Average Top 25% Ranking
SeedFarAwayDistance 2.6
CloseToSeedBatch3x14 3.9
CloseToSeedBatch2x20 4.2
SeedTaskFarToNearDiffDepot2,5KM 4.3
CloseToSeed2x20ParallelInsertion 5.2

Continued on next page
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Table A.3 – continued from previous page
Algorithm Average Top 25% Ranking
CloseToSeed5x8ParallelInsertion 5.4
SeedTaskFarToNearDiffDepot40KM 6
CloseToSeed1x40ParallelInsertion 6.1
SeedTaskFarToNearDiffDepot60KM 6.6
CloseToSeed0,1KM 6.8
CloseToSeed4x10ParallelInsertion 6.8
CloseToSeedBatch1x40ResortTrue 7.1
CloseToSeed3x14ParallelInsertion 8
SeedTaskFarToNearDiffDepot30Min 8
CloseToSeedBatch3x14SortingBatches 8.1
SeedFarAwayDrivingTime 8.1
CloseToSeedBatch7x6 8.5
SeedTaskFarToNearDiffDepot60Min 8.5
CloseToSeedBatch6x7SortingBatches 8.6
CloseToSeed0,25KM 8.9
CloseToSeed6x7ParallelInsertion 9
CloseToSeedBatch5x8SortingBatches 9.1
SeedTaskFarToNearDiffDepot5Min 9.4
CloseToSeedBatch5x8 9.5
SeedTaskFarToNearDiffDepot20KM 9.5
CloseToSeedBatch4x10SortingBatches 9.8
CloseToSeed1,5KM 10.2
CloseToSeedBatch2x20SortingBatches 10.2
SeedTaskFarToNearNearestAddress1KMDecreasing 10.2
CloseToSeed1,25KM 10.3
SeedTaskFarToNearDiffDepot7,5KM 10.4
CloseToSeed7x6ParallelInsertion 10.5
SeedTaskFarToNearDiffDepot5KM 10.7
CloseToSeed14x3ParallelInsertion 11.1
CloseToSeed8x5ParallelInsertion 11.3
CloseToSeed0KM 11.7
SeedTaskFarToNearNearestAddress1MinDecreasing 11.9
SeedTaskFarToNearDiffDepot0Min 12.3
SeedTaskFarToNearNearestAddress1MinIncreasing 12.5
CloseToSeedBatch4x10 12.6
SeedTaskFarToNearNearestAddress2,5MinDecreasing 12.6
SeedTaskFarToNearDiffDepot0KM 12.9
CloseToSeedBatch7x6SortingBatches 13.2
CloseToSeedBatch8x5SortingBatches 13.3
SeedTaskFarToNearDiffDepot1Min 13.3
SeedTaskFarToNearDiffDepot15KM 13.9
SeedTaskFarToNearDiffDepot10Min 14.1
CloseToSeed1,5Min 14.2
SeedTaskFarToNearNearestAddress0MinIncreasing 14.2
CloseToSeed0Min 14.6
SeedTaskFarToNearNearestAddress5KMDecreasing 14.6
CloseToSeed0,5KM 14.7
CloseToSeed0,75KM 14.9
CloseToSeed2,5Min 15
CloseToSeedBatch6x7 15
CloseToSeedBatch10x4SortingBatches 15.2
SeedTaskFarToNearNearestAddress10MinDecreasing 15.6
CloseToSeed1Min 15.7
CloseToSeed0,5Min 15.8
CloseToSeedBatch14x3SortingBatches 15.9

Continued on next page
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Algorithm Average Top 25% Ranking
CloseToSeed10x4ParallelInsertion 16.2
CloseToSeedStartTW80Min 16.8
SeedTaskFarToNearNearestAddress1KMIncreasing 16.8
SeedTaskFarToNearNearestAddress10MinIncreasing 17.4
SeedTaskFarToNearNearestAddress0KMIncreasing 17.7
SeedTaskFarToNearNearestAddress2,5KMDecreasing 18
SeedTaskFarToNearNearestAddress0MinDecreasing 18.1
CloseToSeed3KM 18.2
CloseToSeedCheapestInsertionDistance 18.3
SeedTaskFarToNearNearestAddress2,5KMIncreasing 18.3
CloseToSeedCheapestInsertionWaitTimeAndCost 18.4
SeedTaskFarToNearNearestAddress2,5MinIncreasing 18.9
SeedTaskFarToNearNearestAddress7,5KMDecreasing 19.1
SeedTaskFarToNearNearestAddress5MinDecreasing 19.4
CloseToSeed2KM 19.6
CloseToSeed2Min 20
CloseToSeedBatch10x4 20.9
CloseToSeed1,75KM 22.3
CloseToSeedStartTW0Min 23.2
SeedTaskQuantityScale190 23.8
CloseToSeedStartTW120Min 24.1
CloseToSeedBatch8x5 24.3
CloseToSeedStartTW20Min 24.4
CloseToSeed40x1ParallelInsertion 24.5
CloseToSeed20x2ParallelInsertion 24.6
SeedTaskFarToNearTWDurationIncreasingScale0 25.2
Algorithm of Company X 25.6
SeedTaskQuantityScale475 25.7
SeedTaskFarToNearNearestAddress5KMIncreasing 26.6
SeedTaskFarToNearNearestAddress7,5KMincreasing 26.7
SeedTaskQuantityScale380 26.7
CloseToSeedBatch20x2SortingBatches 27.2
CloseToSeed2,5KM 27.8
CloseToSeedCheapestInsertionCosts 28.4
CloseToSeedBatch14x3 29
CloseToSeed4KM 29.2
SeedTaskFarToNearNearestAddress5MinIncreasing 29.8
CloseToSeed7,5Min 30.5
SeedTaskQuantityScale285 31.4
CloseToSeed5Min 37.3
CloseToSeedCheapestInsertionDrivingTime 37.7
CloseToSeedBatch20x2 43.9
PlanSeedTaskFarToNearQuantityDecreasingScale0 44
CloseToSeedBatch40x1SortingBatches 45.4
CloseToSeed5KM 48.9
CloseToSeed7,5KM 54.3
CloseToSeed10KM 59.2
CloseToSeedQuantityDecreasingScale0 63.1
CloseToSeed10Min 65.6
CloseToSeedBatch40x1 66.2
PlanTasksCloseToSeedTaskIDSorting 73.1
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Table A.4: Increasing list of the best 3rd Rank of the algorithms used in the exploration experiment

Algorithm Best 3rd Rank
SeedFarAwayDistance 1
CloseToSeed2x20ParallelInsertion 1
CloseToSeed5x8ParallelInsertion 1
CloseToSeedBatch3x14 2
CloseToSeedBatch2x20 2
CloseToSeedBatch3x14SortingBatches 2
SeedTaskFarToNearDiffDepot2,5KM 3
SeedTaskFarToNearDiffDepot40KM 3
CloseToSeedBatch6x7SortingBatches 3
CloseToSeed1x40ParallelInsertion 4
SeedTaskFarToNearDiffDepot60KM 4
CloseToSeed4x10ParallelInsertion 4
SeedTaskFarToNearDiffDepot30Min 4
SeedFarAwayDrivingTime 4
SeedTaskFarToNearDiffDepot60Min 4
CloseToSeed0,25KM 4
CloseToSeed6x7ParallelInsertion 4
CloseToSeed0KM 4
SeedTaskFarToNearNearestAddress0MinIncreasing 4
SeedTaskFarToNearNearestAddress5KMDecreasing 4
CloseToSeed0,1KM 5
CloseToSeedBatch1x40ResortTrue 5
CloseToSeedBatch5x8SortingBatches 5
SeedTaskFarToNearDiffDepot5Min 5
CloseToSeed1,5KM 5
CloseToSeedBatch2x20SortingBatches 5
CloseToSeed8x5ParallelInsertion 5
SeedTaskFarToNearNearestAddress1MinIncreasing 5
SeedTaskFarToNearNearestAddress2,5MinDecreasing 5
CloseToSeedCheapestInsertionDistance 5
CloseToSeed3x14ParallelInsertion 6
CloseToSeedBatch4x10SortingBatches 6
SeedTaskFarToNearNearestAddress1KMDecreasing 6
CloseToSeed1,25KM 6
SeedTaskFarToNearDiffDepot7,5KM 6
SeedTaskFarToNearDiffDepot5KM 6
CloseToSeedBatch8x5SortingBatches 6
SeedTaskFarToNearDiffDepot1Min 6
CloseToSeedBatch14x3SortingBatches 6
CloseToSeedBatch7x6 7
SeedTaskFarToNearDiffDepot20KM 7
CloseToSeed7x6ParallelInsertion 7
SeedTaskFarToNearDiffDepot0Min 7
SeedTaskFarToNearDiffDepot15KM 7
CloseToSeed10x4ParallelInsertion 7
CloseToSeedCheapestInsertionWaitTimeAndCost 7
CloseToSeedBatch5x8 8
CloseToSeed14x3ParallelInsertion 8
CloseToSeedBatch4x10 8
SeedTaskFarToNearDiffDepot10Min 8
SeedTaskFarToNearNearestAddress10MinIncreasing 8
SeedTaskFarToNearNearestAddress2,5KMIncreasing 8
SeedTaskFarToNearTWDurationIncreasingScale0 8

Continued on next page

75



Table A.4 – continued from previous page
Algorithm Best 3rd Rank
CloseToSeed2,5KM 8
SeedTaskFarToNearNearestAddress1MinDecreasing 9
SeedTaskFarToNearDiffDepot0KM 9
CloseToSeed0Min 9
SeedTaskFarToNearNearestAddress10MinDecreasing 9
CloseToSeed1Min 9
CloseToSeed0,5Min 9
CloseToSeedStartTW80Min 9
SeedTaskFarToNearNearestAddress0KMIncreasing 9
CloseToSeed2KM 9
CloseToSeedCheapestInsertionCosts 9
CloseToSeedBatch7x6SortingBatches 10
CloseToSeed1,5Min 10
CloseToSeed0,75KM 10
CloseToSeed2,5Min 10
CloseToSeedBatch6x7 10
SeedTaskFarToNearNearestAddress1KMIncreasing 11
CloseToSeed0,5KM 12
CloseToSeed3KM 12
SeedTaskQuantityScale190 12
CloseToSeed20x2ParallelInsertion 12
CloseToSeedBatch20x2SortingBatches 12
CloseToSeedBatch10x4SortingBatches 13
SeedTaskFarToNearNearestAddress2,5KMDecreasing 13
SeedTaskFarToNearNearestAddress7,5KMDecreasing 13
CloseToSeedBatch10x4 13
CloseToSeed1,75KM 14
CloseToSeedStartTW0Min 14
CloseToSeedBatch8x5 14
CloseToSeed2Min 15
CloseToSeedStartTW20Min 15
CloseToSeedBatch40x1SortingBatches 15
SeedTaskFarToNearNearestAddress0MinDecreasing 16
SeedTaskFarToNearNearestAddress5MinDecreasing 16
Algorithm of Company X 16
SeedTaskFarToNearNearestAddress2,5MinIncreasing 17
CloseToSeed4KM 17
CloseToSeed5Min 17
CloseToSeedStartTW120Min 18
SeedTaskQuantityScale475 18
CloseToSeedBatch14x3 18
SeedTaskFarToNearNearestAddress5KMIncreasing 19
CloseToSeed7,5Min 19
CloseToSeed40x1ParallelInsertion 21
SeedTaskFarToNearNearestAddress7,5KMincreasing 21
SeedTaskQuantityScale380 23
SeedTaskFarToNearNearestAddress5MinIncreasing 24
CloseToSeedBatch40x1 26
PlanSeedTaskFarToNearQuantityDecreasingScale0 28
SeedTaskQuantityScale285 29
CloseToSeedCheapestInsertionDrivingTime 31
CloseToSeedBatch20x2 36
CloseToSeed7,5KM 36
CloseToSeed5KM 37
CloseToSeed10KM 50

Continued on next page
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Table A.4 – continued from previous page
Algorithm Best 3rd Rank
CloseToSeed10Min 51
CloseToSeedQuantityDecreasingScale0 52
PlanTasksCloseToSeedTaskIDSorting 60

Table A.5: An overview of the average costs for each algorithm with a different seed task selection method used in the exploration
experiment. The table is sorted increasingly. This table includes confidential data, therefore, the data is removed from the table.

Algorithm Costs (€)

Table A.8: An overview of the average costs for each algorithm with a different insertion method used in the exploration experi-
ment. The table is sorted increasingly. This table includes confidential data, therefore, the data is removed from the table.

Algorithm Costs (€)

Table A.9: Increasing list of the best 3rd Rank of the algorithms with a different insertion method used in the exploration experi-
ment

Algorithm Best 3rd rank
CloseToSeed5x8ParallelInsertion 1
CloseToSeed2x20ParallelInsertion 1
CloseToSeedBatch3x14SortingBatches 2
CloseToSeedBatch3x14 2
CloseToSeedBatch2x20 2
CloseToSeedBatch6x7SortingBatches 3
CloseToSeed6x7ParallelInsertion 4
CloseToSeed4x10ParallelInsertion 4
CloseToSeed1x40ParallelInsertion 4
CloseToSeed0KM 4
CloseToSeed0,25KM 4
CloseToSeedCheapestInsertionDistance 5
CloseToSeedBatch5x8SortingBatches 5
CloseToSeedBatch2x20SortingBatches 5
CloseToSeedBatch1x40ResortTrue 5
CloseToSeed8x5ParallelInsertion 5
CloseToSeed1,5KM 5
CloseToSeed0,1KM 5
CloseToSeedBatch8x5SortingBatches 6
CloseToSeedBatch4x10SortingBatches 6
CloseToSeedBatch14x3SortingBatches 6
CloseToSeed3x14ParallelInsertion 6
CloseToSeed1,25KM 6
CloseToSeedCheapestInsertionWaitTimeAndCost 7
CloseToSeedBatch7x6 7
CloseToSeed7x6ParallelInsertion 7
CloseToSeed10x4ParallelInsertion 7
CloseToSeedBatch5x8 8
CloseToSeedBatch4x10 8
CloseToSeed2,5KM 8
CloseToSeed14x3ParallelInsertion 8
CloseToSeedStartTW80Min 9
CloseToSeedCheapestInsertionCosts 9
CloseToSeed2KM 9

Continued on next page
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Table A.9 – Continued from previous page
Algorithm Best 3rd rank
CloseToSeed1Min 9
CloseToSeed0Min 9
CloseToSeed0,5Min 9
CloseToSeedBatch7x6SortingBatches 10
CloseToSeedBatch6x7 10
CloseToSeed2,5Min 10
CloseToSeed1,5Min 10
CloseToSeed0,75KM 10
CloseToSeedBatch20x2SortingBatches 12
CloseToSeed3KM 12
CloseToSeed20x2ParallelInsertion 12
CloseToSeed0,5KM 12
CloseToSeedBatch10x4SortingBatches 13
CloseToSeedBatch10x4 13
CloseToSeedStartTW0Min 14
CloseToSeedBatch8x5 14
CloseToSeed1,75KM 14
CloseToSeedStartTW20Min 15
CloseToSeedBatch40x1SortingBatches 15
CloseToSeed2Min 15
Algorithm of Company X 16
CloseToSeed5Min 17
CloseToSeed4KM 17
CloseToSeedStartTW120Min 18
CloseToSeedBatch14x3 18
CloseToSeed7,5Min 19
CloseToSeed40x1ParallelInsertion 21
CloseToSeedBatch40x1 26
CloseToSeedCheapestInsertionDrivingTime 31
CloseToSeedBatch20x2 36
CloseToSeed7,5KM 36
CloseToSeed5KM 37
CloseToSeed10KM 50
CloseToSeed10Min 51
CloseToSeedQuantityDecreasingScale0 52
PlanTasksCloseToSeedTaskIDSorting 60

Table A.10: An overview of the average of the best 25% Rankings of the algorithm with a different insertion method used in the
exploration experiment where the table is presented increasingly

Algorithm Best 25% rank
CloseToSeedBatch3x14 3.9
CloseToSeedBatch2x20 4.2
CloseToSeed2x20ParallelInsertion 5.2
CloseToSeed5x8ParallelInsertion 5.4
CloseToSeed1x40ParallelInsertion 6.1
CloseToSeed0,1KM 6.8
CloseToSeed4x10ParallelInsertion 6.8
CloseToSeedBatch1x40ResortTrue 7.1
CloseToSeed3x14ParallelInsertion 8
CloseToSeedBatch3x14SortingBatches 8.1
CloseToSeedBatch7x6 8.5
CloseToSeedBatch6x7SortingBatches 8.6
CloseToSeed0,25KM 8.9

Continued on next page
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Table A.10 – Continued from previous page
Algorithm Best 25% rank
CloseToSeed6x7ParallelInsertion 9
CloseToSeedBatch5x8SortingBatches 9.1
CloseToSeedBatch5x8 9.5
CloseToSeedBatch4x10SortingBatches 9.8
CloseToSeed1,5KM 10.2
CloseToSeedBatch2x20SortingBatches 10.2
CloseToSeed1,25KM 10.3
CloseToSeed7x6ParallelInsertion 10.5
CloseToSeed14x3ParallelInsertion 11.1
CloseToSeed8x5ParallelInsertion 11.3
CloseToSeed0KM 11.7
CloseToSeedBatch4x10 12.6
CloseToSeedBatch7x6SortingBatches 13.2
CloseToSeedBatch8x5SortingBatches 13.3
CloseToSeed1,5Min 14.2
CloseToSeed0Min 14.6
CloseToSeed0,5KM 14.7
CloseToSeed0,75KM 14.9
CloseToSeed2,5Min 15
CloseToSeedBatch6x7 15
CloseToSeedBatch10x4SortingBatches 15.2
CloseToSeed1Min 15.7
CloseToSeed0,5Min 15.8
CloseToSeedBatch14x3SortingBatches 15.9
CloseToSeed10x4ParallelInsertion 16.2
CloseToSeedStartTW80Min 16.8
CloseToSeed3KM 18.2
CloseToSeedCheapestInsertionDistance 18.3
CloseToSeedCheapestInsertionWaitTimeAndCost 18.4
CloseToSeed2KM 19.6
CloseToSeed2Min 20
CloseToSeedBatch10x4 20.9
CloseToSeed1,75KM 22.3
CloseToSeedStartTW0Min 23.2
CloseToSeedStartTW120Min 24.1
CloseToSeedBatch8x5 24.3
CloseToSeedStartTW20Min 24.4
CloseToSeed40x1ParallelInsertion 24.5
CloseToSeed20x2ParallelInsertion 24.6
Algorithm of Company X 25.6
CloseToSeedBatch20x2SortingBatches 27.2
CloseToSeed2,5KM 27.8
CloseToSeedCheapestInsertionCosts 28.4
CloseToSeedBatch14x3 29
CloseToSeed4KM 29.2
CloseToSeed7,5Min 30.5
CloseToSeed5Min 37.3
CloseToSeedCheapestInsertionDrivingTime 37.7
CloseToSeedBatch20x2 43.9
CloseToSeedBatch40x1SortingBatches 45.4
CloseToSeed5KM 48.9
CloseToSeed7,5KM 54.3
CloseToSeed10KM 59.2
CloseToSeedQuantityDecreasingScale0 63.1
CloseToSeed10Min 65.6

Continued on next page
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Table A.10 – Continued from previous page
Algorithm Best 25% rank
CloseToSeedBatch40x1 66.2
PlanTasksCloseToSeedTaskIDSorting 73.1

Table A.22: Top 15 algorithms for the 3 categories: Average costs, best 3rd rank and the average of the best 25% rankings

Average costs Best 3rd rank Average of best 25% rankings
SeedDiffDepot40KM 2x20Parallel 250m CostTW SeedDiffDepot30Min 6x7SortingBatches 100m CostTW SeedDiffDepot30Min475 1x40Parallel 100m CostTW

SeedDiffDepot40KM475 2x20Parallel 250m CostTW SeedDiffDepot40KM475 2x20 250m CostTW SeedDiffDepot40KM475 4x10Parallel 250m CostTW
SeedDiffDepot40KM475 2x20 250m CostTW SeedDiffDepot40KM475 6x7SortingBatches 250m CostTW SeedDiffDepot40KM 4x10Parallel 250m CostTW

SeedDiffDepot40KM475 4x10Parallel 250m CostTW SeedDiffDepot40KM 6x7SortingBatches 250m CostTW SeedDiffDepot30Min 1x40Parallel 100m CostTW
SeedDiffDepot40KM 3x14SortingBatches 250m CostTW SeedDiffDepot40KM475 4x10Parallel 250m CostTW SeedDiffDepot40KM475 2x20 250m CostTW

SeedDiffDepot40KM475 3x14 100m CostTW SeedDiffDepot40KM475 3x14Parallel 250m CostTW SeedFarAway475 2x20Parallel 250m CostTW
SeedDiffDepot40KM 4x10Parallel 250m CostTW SeedDiffDepot30Min 1x40Parallel 100m CostTW SeedFarAway 2x20Parallel 250m CostTW

SeedDiffDepot40KM475 1x40Parallel 250m CostTW SeedDiffDepot30Min475 1x40Parallel 100m CostTW SeedDiffDepot30min475 6x7SortingBatches 100m CostTW
SeedDiffDepot40KM 6x7SortingBatches 250m CostTW SeedFarAway475 2x20Parallel 250m CostTW SeedDiffDepot40KM475 6x7SortingBatches 250m CostTW

SeedDiffDepot30Min475 2x20Parallel 250m CostTW SeedDiffDepot2,5KM475 4x10Parallel 250m CostTW SeedDiffDepot40KM 6x7SortingBatches 250m CostTW
SeedDiffDepot40KM475 3x14SortingBatches 250m CostTW SeedFarAway 2x20Parallel 250m CostTW SeedFarAway475 3x14SortingBatches 250m CostTW

SeedDiffDepot40KM 2x20 250m CostTW SeedFarAway 5x8Parallel 250m CostTW SeedDiffDepot2,5KM475 3x14Parallel 250m CostTW
SeedDiffDepot40KM475 3x14Parallel 250m CostTW SeedDiffDepot40KM 4x10Parallel 250m CostTW SeedDiffDepot40KM475 1x40Parallel 250m CostTW

SeedDiffDepot40KM 3x14Parallel 250m CostTW SeedDiffDepot30min475 6x7SortingBatches 100m CostTW SeedFarAway 3x14SortingBatches 250m CostTW
SeedDiffDepot40KM 5x8Parallel 100m CostTW SeedDiffDepot30Min 2x20Parallel 100m CostTW SeedDiffDepot2,5KM475 2x20 100m CostTW
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Table A.6: An overview of the average of the best 25% Rankings of the algorithm with a different seed task selection method used
in the exploration experiment where the table is presented increasingly

Algorithm Average Top 25% Ranking
SeedFarAwayDistance 2.6
SeedTaskFarToNearDiffDepot2,5KM 4.3
SeedTaskFarToNearDiffDepot40KM 6.0
SeedTaskFarToNearDiffDepot60KM 6.6
SeedTaskFarToNearDiffDepot30Min 8.0
SeedFarAwayDrivingTime 8.1
SeedTaskFarToNearDiffDepot60Min 8.5
SeedTaskFarToNearDiffDepot5Min 9.4
SeedTaskFarToNearDiffDepot20KM 9.5
SeedTaskFarToNearNearestAddress1KMDecreasing 10.2
SeedTaskFarToNearDiffDepot7,5KM 10.4
SeedTaskFarToNearDiffDepot5KM 10.7
SeedTaskFarToNearNearestAddress1MinDecreasing 11.9
SeedTaskFarToNearDiffDepot0Min 12.3
SeedTaskFarToNearNearestAddress1MinIncreasing 12.5
SeedTaskFarToNearNearestAddress2,5MinDecreasing 12.6
SeedTaskFarToNearDiffDepot0KM 12.9
SeedTaskFarToNearDiffDepot1Min 13.3
SeedTaskFarToNearDiffDepot15KM 13.9
SeedTaskFarToNearDiffDepot10Min 14.1
SeedTaskFarToNearNearestAddress0MinIncreasing 14.2
SeedTaskFarToNearNearestAddress5KMDecreasing 14.6
SeedTaskFarToNearNearestAddress10MinDecreasing 15.6
SeedTaskFarToNearNearestAddress1KMIncreasing 16.8
SeedTaskFarToNearNearestAddress10MinIncreasing 17.4
SeedTaskFarToNearNearestAddress0KMIncreasing 17.7
SeedTaskFarToNearNearestAddress2,5KMDecreasing 18.0
SeedTaskFarToNearNearestAddress0MinDecreasing 18.1
SeedTaskFarToNearNearestAddress2,5KMIncreasing 18.3
SeedTaskFarToNearNearestAddress2,5MinIncreasing 18.9
SeedTaskFarToNearNearestAddress7,5KMDecreasing 19.1
SeedTaskFarToNearNearestAddress5MinDecreasing 19.4
SeedTaskQuantityScale190 23.8
SeedTaskFarToNearTWDurationIncreasingScale0 25.2
Algorithm of Company X 25.6
SeedTaskQuantityScale475 25.7
SeedTaskFarToNearNearestAddress5KMIncreasing 26.6
SeedTaskFarToNearNearestAddress7,5KMincreasing 26.7
SeedTaskQuantityScale380 26.7
SeedTaskFarToNearNearestAddress5MinIncreasing 29.8
SeedTaskQuantityScale285 31.4
PlanSeedTaskFarToNearQuantityDecreasingScale0 44.0
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Table A.7: Increasing list of the best 3rd Rank of the algorithms with a different seed task selection method used in the exploration
experiment

Algorithm Best 3rd rank
SeedFarAwayDistance 1
SeedTaskFarToNearDiffDepot2,5KM 3
SeedTaskFarToNearDiffDepot40KM 3
SeedFarAwayDrivingTime 4
SeedTaskFarToNearDiffDepot30Min 4
SeedTaskFarToNearDiffDepot60KM 4
SeedTaskFarToNearDiffDepot60Min 4
SeedTaskFarToNearNearestAddress0MinIncreasing 4
SeedTaskFarToNearNearestAddress5KMDecreasing 4
SeedTaskFarToNearDiffDepot5Min 5
SeedTaskFarToNearNearestAddress1MinIncreasing 5
SeedTaskFarToNearNearestAddress2,5MinDecreasing 5
SeedTaskFarToNearDiffDepot1Min 6
SeedTaskFarToNearDiffDepot5KM 6
SeedTaskFarToNearDiffDepot7,5KM 6
SeedTaskFarToNearNearestAddress1KMDecreasing 6
SeedTaskFarToNearDiffDepot0Min 7
SeedTaskFarToNearDiffDepot15KM 7
SeedTaskFarToNearDiffDepot20KM 7
SeedTaskFarToNearDiffDepot10Min 8
SeedTaskFarToNearNearestAddress10MinIncreasing 8
SeedTaskFarToNearNearestAddress2,5KMIncreasing 8
SeedTaskFarToNearTWDurationIncreasingScale0 8
SeedTaskFarToNearDiffDepot0KM 9
SeedTaskFarToNearNearestAddress0KMIncreasing 9
SeedTaskFarToNearNearestAddress10MinDecreasing 9
SeedTaskFarToNearNearestAddress1MinDecreasing 9
SeedTaskFarToNearNearestAddress1KMIncreasing 11
SeedTaskQuantityScale190 12
SeedTaskFarToNearNearestAddress2,5KMDecreasing 13
SeedTaskFarToNearNearestAddress7,5KMDecreasing 13
Algorithm of Company X 16
SeedTaskFarToNearNearestAddress0MinDecreasing 16
SeedTaskFarToNearNearestAddress5MinDecreasing 16
SeedTaskFarToNearNearestAddress2,5MinIncreasing 17
SeedTaskQuantityScale475 18
SeedTaskFarToNearNearestAddress5KMIncreasing 19
SeedTaskFarToNearNearestAddress7,5KMincreasing 21
SeedTaskQuantityScale380 23
SeedTaskFarToNearNearestAddress5MinIncreasing 24
PlanSeedTaskFarToNearQuantityDecreasingScale0 28
SeedTaskQuantityScale285 29
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Table A.11: Increasing list of the best 3rd Rank of the algorithms with different batch sizes, number of batches and insertion
procedures in the exploration experiment

Algorithm Best 3rd rank
CloseToSeed2x20ParallelInsertion 1
CloseToSeed5x8ParallelInsertion 1

CloseToSeedBatch3x14 2
CloseToSeedBatch2x20 2

CloseToSeedBatch3x14SortingBatches 2
CloseToSeedBatch6x7SortingBatches 3

CloseToSeed1x40ParallelInsertion 4
CloseToSeed4x10ParallelInsertion 4
CloseToSeed6x7ParallelInsertion 4
CloseToSeedBatch1x40ResortTrue 5

CloseToSeedBatch5x8SortingBatches 5
CloseToSeedBatch2x20SortingBatches 5

CloseToSeed8x5ParallelInsertion 5
CloseToSeed3x14ParallelInsertion 6

CloseToSeedBatch4x10SortingBatches 6
CloseToSeedBatch8x5SortingBatches 6
CloseToSeedBatch14x3SortingBatches 6

CloseToSeedBatch7x6 7
CloseToSeed7x6ParallelInsertion 7

CloseToSeed10x4ParallelInsertion 7
CloseToSeedBatch5x8 8

CloseToSeed14x3ParallelInsertion 8
CloseToSeedBatch4x10 8

CloseToSeedBatch7x6SortingBatches 10
CloseToSeedBatch6x7 10

CloseToSeed20x2ParallelInsertion 12
CloseToSeedBatch20x2SortingBatches 12
CloseToSeedBatch10x4SortingBatches 13

CloseToSeedBatch10x4 13
CloseToSeedBatch8x5 14

CloseToSeedBatch40x1SortingBatches 15
Algorithm of Company X 16

CloseToSeedBatch14x3 18
CloseToSeed40x1ParallelInsertion 21

CloseToSeedBatch40x1 26
CloseToSeedBatch20x2 36
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Table A.12: An overview of the average of the best 25% Rankings of the algorithm with different batch sizes, number of batches
and insertion procedures in the exploration experiment where the table is presented increasingly

Algorithm Best 25% rank
CloseToSeedBatch3x14 3.9
CloseToSeedBatch2x20 4.2

CloseToSeed2x20ParallelInsertion 5.2
CloseToSeed5x8ParallelInsertion 5.4

CloseToSeed1x40ParallelInsertion 6.1
CloseToSeed4x10ParallelInsertion 6.8
CloseToSeedBatch1x40ResortTrue 7.1
CloseToSeed3x14ParallelInsertion 8.0

CloseToSeedBatch3x14SortingBatches 8.1
CloseToSeedBatch7x6 8.5

CloseToSeedBatch6x7SortingBatches 8.6
CloseToSeed6x7ParallelInsertion 9.0

CloseToSeedBatch5x8SortingBatches 9.1
CloseToSeedBatch5x8 9.5

CloseToSeedBatch4x10SortingBatches 9.8
CloseToSeedBatch2x20SortingBatches 10.2

CloseToSeed7x6ParallelInsertion 10.5
CloseToSeed14x3ParallelInsertion 11.1
CloseToSeed8x5ParallelInsertion 11.3

CloseToSeedBatch4x10 12.6
CloseToSeedBatch7x6SortingBatches 13.2
CloseToSeedBatch8x5SortingBatches 13.3

CloseToSeedBatch6x7 15.0
CloseToSeedBatch10x4SortingBatches 15.2
CloseToSeedBatch14x3SortingBatches 15.9

CloseToSeed10x4ParallelInsertion 16.2
CloseToSeedBatch10x4 20.9
CloseToSeedBatch8x5 24.3

CloseToSeed40x1ParallelInsertion 24.5
CloseToSeed20x2ParallelInsertion 24.6

Algorithm of Company X 25.6
CloseToSeedBatch20x2SortingBatches 27.2

CloseToSeedBatch14x3 29.0
CloseToSeedBatch20x2 43.9

CloseToSeedBatch40x1SortingBatches 45.4
CloseToSeedBatch40x1 66.2

Table A.13: An overview of the average costs for each algorithm with different batch sizes, number of batches and insertion
procedures in the exploration experiment. The table is sorted increasingly. This table includes confidential data, therefore, the
data is removed from the table.

Algorithm Costs (€)
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Table A.14: An overview of the calculation times per phase for the algorithms using different batch sizes, number of batches
and insertion procedures. The calculation times per phase are presented in seconds and in the ”Diff (%)” column the percentile
difference compared to the calculation time of the algorithm of Company X is given.

Algorithm Avg Construction Time (s) Diff (%) Total Calc Time (s) Diff (%)
CloseToSeedBatch40x1 145.98 9.30 593.01 75.46

CloseToSeedBatch40x1SortingBatches 183.30 37.24 477.75 41.36
CloseToSeedBatch20x2 161.22 20.70 437.57 29.47

CloseToSeedBatch1x40ResortTrue 185.71 39.04 405.27 19.91
CloseToSeedBatch2x20SortingBatches 161.63 21.01 402.11 18.98

CloseToSeedBatch14x3 150.40 12.60 397.95 17.75
CloseToSeedBatch8x5SortingBatches 153.04 14.58 386.55 14.37
CloseToSeedBatch14x3SortingBatches 147.71 10.58 379.58 12.31
CloseToSeedBatch6x7SortingBatches 151.83 13.67 374.71 10.87
CloseToSeedBatch5x8SortingBatches 148.94 11.51 371.02 9.78
CloseToSeedBatch20x2SortingBatches 154.91 15.98 370.73 9.69
CloseToSeedBatch3x14SortingBatches 157.15 17.66 370.10 9.50
CloseToSeedBatch7x6SortingBatches 150.42 12.62 369.98 9.47
CloseToSeedBatch10x4SortingBatches 146.79 9.90 364.00 7.70

CloseToSeedBatch2x20 144.58 8.24 363.64 7.59
CloseToSeed40x1ParallelInsertion 135.32 1.31 362.63 7.30

CloseToSeedBatch10x4 143.97 7.79 361.94 7.09
CloseToSeedBatch3x14 136.48 2.18 359.81 6.46

CloseToSeedBatch4x10SortingBatches 145.80 9.16 359.64 6.41
CloseToSeedBatch8x5 141.05 5.60 357.94 5.91

CloseToSeed1x40ParallelInsertion 164.34 23.04 357.37 5.74
CloseToSeedBatch6x7 136.39 2.12 350.48 3.70
CloseToSeedBatch7x6 134.36 0.59 350.32 3.65
CloseToSeedBatch5x8 132.90 -0.50 345.95 2.36

CloseToSeedBatch4x10 133.90 0.25 342.04 1.20
Algorithm of Company X 133.57 0.00 337.97 0.00

CloseToSeed2x20ParallelInsertion 141.79 6.15 333.55 -1.31
CloseToSeed10x4ParallelInsertion 117.01 -12.40 326.78 -3.31
CloseToSeed3x14ParallelInsertion 124.83 -6.54 322.12 -4.69
CloseToSeed4x10ParallelInsertion 126.70 -5.14 320.18 -5.26
CloseToSeed5x8ParallelInsertion 122.27 -8.46 318.48 -5.77

CloseToSeed20x2ParallelInsertion 115.85 -13.27 318.08 -5.89
CloseToSeed7x6ParallelInsertion 115.51 -13.52 309.62 -8.39
CloseToSeed8x5ParallelInsertion 112.85 -15.51 302.39 -10.53
CloseToSeed6x7ParallelInsertion 115.30 -13.68 301.44 -10.81

CloseToSeed14x3ParallelInsertion 111.76 -16.33 301.19 -10.88

Table A.15: An overview of the average costs for each algorithm with different scales of the first sorter of the insertion method of
Company X in the exploration experiment. The table is sorted increasingly. This table includes confidential data, therefore, the
data is removed from the table.

Algorithm Costs (€)
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Table A.16: Increasing list of the best 3rd Rank of the algorithms with different scales of the first sorter of the insertion method in
the exploration experiment

Algorithm Rank
CloseToSeed0,1KM 4
CloseToSeed1,5KM 4
CloseToSeed0,25KM 5
CloseToSeed1,25KM 5
CloseToSeed0KM 6
CloseToSeed1Min 8
CloseToSeed0,5KM 9
CloseToSeed0,5Min 9
CloseToSeed0,75KM 9
CloseToSeed0Min 9
CloseToSeed1,5Min 10
CloseToSeed2,5Min 10
CloseToSeed2KM 10
CloseToSeed2Min 12
CloseToSeed1,75KM 12
CloseToSeed3KM 14
CloseToSeed2,5KM 15
CloseToSeed4KM 16
CloseToSeed5Min 17
CloseToSeed7,5Min 17
CloseToSeed5KM 19
CloseToSeed7,5KM 36
CloseToSeed10KM 37
CloseToSeed10Min 50
Algorithm of Company X 51

Table A.17: An overview of the average of the best 25% Rankings of the algorithms with a different scale of the first sorter of the
insertion method in the exploration experiment where the table is presented increasingly

Algorithm Average Rank
CloseToSeed0,1KM 6.8
CloseToSeed0,25KM 8.9
CloseToSeed1,5KM 10.2
CloseToSeed1,25KM 10.3
CloseToSeed0KM 11.7
CloseToSeed1,5Min 14.2
CloseToSeed0Min 14.6
CloseToSeed0,5KM 14.7
CloseToSeed0,75KM 14.9
CloseToSeed2,5Min 15
CloseToSeed1Min 15.7
CloseToSeed0,5Min 15.8
CloseToSeed3KM 18.2
CloseToSeed2KM 19.6
CloseToSeed2Min 20.0
CloseToSeed1,75KM 22.3
Algorithm of Company X 25.6
CloseToSeed2,5KM 27.8
CloseToSeed4KM 29.2
CloseToSeed7,5Min 30.5
CloseToSeed5Min 37.3
CloseToSeed5KM 48.9
CloseToSeed7,5KM 54.3
CloseToSeed10KM 59.2
CloseToSeed10Min 65.6
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Table A.18: An overview of the average costs in proportion to the algorithm of Company X for each algorithm with a different es-
timator of the insertion procedure and different scales of the second sorter of the insertion method in the exploration experiment.
The table is sorted increasingly.

Algorithm Costs (%)
CloseToSeedStartTW80Min -0.01
CloseToSeedStartTW120Min 0
CloseToSeedStartTW0Min 0
CloseToSeedStartTW20Min 0
Algorithm of Company X 0
CloseToSeedCheapestInsertionDistance 0.14
CloseToSeedCheapestInsertionWaitTimeAndCost 0.26
CloseToSeedCheapestInsertionCosts 0.29
CloseToSeedCheapestInsertionDrivingTime 0.36

Table A.19: Increasing list of the best 3rd Rank of the algorithms with a different estimator of the insertion procedure and different
scale of the second sorter of the insertion method in the exploration experiment

Algorithm MinRank3FinalSolution
CloseToSeedCheapestInsertionDistance 5
CloseToSeedCheapestInsertionWaitTimeAndCost 7
CloseToSeedStartTW80Min 9
CloseToSeedCheapestInsertionCosts 9
CloseToSeedStartTW0Min 14
CloseToSeedStartTW20Min 15
Algorithm of Company X 16
CloseToSeedStartTW120Min 18
CloseToSeedCheapestInsertionDrivingTime 31

Table A.20: An overview of the average of the best 25% Rankings of the algorithms with a different estimator of the insertion
procedure and different scale of the second sorter of the insertion method in the exploration experiment where the table is
presented increasingly

Algorithm AverageTop25%
CloseToSeedStartTW80Min 16.8
CloseToSeedCheapestInsertionDistance 18.3
CloseToSeedCheapestInsertionWaitTimeAndCost 18.4
CloseToSeedStartTW0Min 23.2
CloseToSeedStartTW120Min 24.1
CloseToSeedStartTW20Min 24.4
Algorithm of Company X 25.6
CloseToSeedCheapestInsertionCosts 28.4
CloseToSeedCheapestInsertionDrivingTime 37.7
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Table A.21: Overview of the rankings for the benchmark algorithms per case in the dataset

Case (Country SeedTask&InsertionTaskID InsertionLargestOrderQuantity SeedTaskLargestOrderQuantity SeedTaskShortestTWLength
1 (A) 113 110 107 108
2 (A) 113 110 111 109
3 (A) 113 112 109 110
4 (A) 111 112 101 108
5 (A) 112 113 97 63
6 (A) 113 105 112 110
7 (B) 76 70 84 37
8 (B) 9 82 39 71
9 (B) 80 111 41 30
10 (B) 98 13 100 4
11 (B) 105 88 100 31
12 (B) 111 84 39 10
13 (A) 110 112 76 102
14 (A) 109 110 106 103
15 (A) 109 111 112 103
16 (A) 113 112 107 103
17 (A) 109 112 111 108
18 (A) 113 112 109 108
19 (A) 113 111 106 107
20 (A) 110 111 108 109
21 (A) 113 112 84 110
22 (A) 112 113 111 104
23 (A) 112 113 106 107
24 (A) 113 112 108 107
25 (A) 112 109 105 103
26 (A) 113 111 106 105
27 (A) 113 109 101 96
28 (B) 6 8 74 1
29 (B) 60 52 21 8
30 (B) 88 53 28 38
31 (B) 105 113 36 30
32 (B) 104 78 68 110
33 (B) 110 103 18 93
34 (A) 113 112 107 82
35 (A) 112 113 110 109
36 (A) 113 111 105 109
37 (A) 113 111 110 107
38 (A) 113 112 103 101
39 (A) 113 112 107 101
40 (A) 113 109 105 89
41 (A) 111 113 95 92
42 (A) 113 112 104 103

Table A.23: Settings per removal percentage for the Route And Adjacent Task Removal method

Removal percentage Number of routes Adjacent tasks Sequence length
1 1 1 2
2 2 2 2
3 3 2 2
4 3 4 2
5 5 5 2
7 5 2 4

10 5 6 3
12 4 6 5
15 6 5 5
17 7 6 4
20 9 5 4
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Table A.24: The 15 best RR methods found in the exploitation experiment

RR method
NoRelated 1% DrivingTime 125x2
NoRelated 1% WaitTimeCosts 125x2
NoRelated 1% WaitTimeCosts 63x4
NoRelated 1-3% WaitTimeCosts 125x2
NoRelated 1-3% WaitTimeCosts 63x4
PCI NoRandom 1% DrivingTime 125x2
PCI NoRandom 1% WaitTimeCosts 125x2
PCI Random-Adjacent 1% DrivingTime 125x2
PCI Random-Adjacent 1% DrivingTime 63x4
PCI Random-Adjacent 1% WaitTimeCosts 125x2
PCI Random-Adjacent 1% WaitTimeCosts 63x4
PCI Random-Adjacent 1-3% WaitTimeCosts 125x2
PCI Random-Adjacent 1-3% WaitTimeCosts 63x4
Related-Route 1% DrivingTime 125x2
Related-Route 1-3% DrivingTime 125x2

Table A.25: This table shows per case in the dataset what ranking the starting solution of the best final solution had. In this case,
the starting solution is the solution before the R&R phase and thus after the local search phase. Since we are using 15 different
algorithms to produce the starting solution for the R&R methods, the maximum ranking is 15.

Case Best final solution ranking starting solution
1 9
2 1
3 1
4 4
5 4
6 1
7 1
8 1
9 14

10 2
11 1
12 5
13 1
14 1
15 1
16 1
17 1
18 1
19 3
20 1
21 2
22 1
23 6
24 1
25 1
26 5
27 3
28 3
29 2
30 2

Average 2.67
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