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ABSTRACT 

Early crop yield estimation (i.e., before the harvest season) is essential for effective commodity market 

management, ensuring food security and understanding various crop production trends at preliminary 

stages. Although several crops can be cultivated in a given area, most research focuses on single-crop yield 

estimation using Earth Observation (EO) data and Artificial Intelligence (AI) models. However, developing 

these crop-specific models is time-consuming and computationally expensive. A classified image of crop 

types helps to improve the accuracy of multi-crop yield estimation models because it guides the model to 

focus on the relevant images’ regions. However, such a layer is not always available because its creation is 

expensive and time-consuming. Furthermore, the creation of such a crop-type layer requires a substantial 

amount of labelled ground truth data that is often not available. To estimate multi-crop yields while 

addressing the unavailability of a classified crop type layer, we developed multi-task learning models for crop 

type identification and yield estimation. We hypothesized that multi-task learning models can learn both 

tasks concurrently. Additionally, these models solely require satellite imagery inputs. In this thesis, we 

estimated the yield of two crops: corn and soybean and the case study covered the top four states in the 

USA in corn and soybean production namely Indiana, Iowa, Illinois, and Minnesota. Consequently, we 

developed two base CNN models for multi-crop yield estimation. The first one only used sentinel-2 images 

with eight bands and the second one used a classified crop layer (known as CDL) as an additional band to 

demonstrate the role of the CDL in achieving higher accuracies. Regarding the multi-tasks approach, we 

developed two models: one based on U-net and the other utilizing the Swin transformer-based architecture. 

The two multi-task learning models showed promising results in multi-crop yield estimation. For instance, 

both models achieved yield estimation accuracies comparable to the CNN model that relies on CDL as 

input. Additionally, those models proved their applicability for multi-crop yield estimation while solving the 

lack of a CDL-like layer in many other countries. However, there is still room for further improvements to 

increase the models’ accuracies. These improvements relate to date, data acquisition and model architecture 

aspects. For instance, for date-related enhancements, incorporating temporal data in different years and 

different times in the mid-season of the crops could be beneficial. Regarding data acquisition, integrating 

different bands of sentinel-2, different sensors’ data, and additional parameters such as weather data, could 

improve the models’ generalizability. For model-related improvements, different loss functions and 

optimization techniques could improve performance. Finally, the primary contribution of this research lies 

in the development of multi-task learning models for crop type identification and yield estimation. These 

models proved to be actionable models that can be used directly to estimate multi-crop yields without the 

need for CDL while still achieving good results. This approach addressed the limitations in developing crop-

specific models by reducing the number of parameters to be learned and the computation time and resources 

required.  



ii 

ACKNOWLEDGEMENTS 

 

I would like to express my profound gratitude to my first supervisor, Dr. Mahdi Farnaghi. Dr. Mahdi, you 

have been more than just a supervisor; you have been a mentor whose guidance and support have been 

invaluable throughout my MSc journey. I truly appreciate your patience and the generous time you have 

given me. Your open-minded approach and encouragement to think creatively have inspired me to employ 

state-of-the-art methods, expanding the boundaries of my research. Your confidence in my abilities and 

your insightful advice have been fundamental to my academic and personal growth. 

 

I would also like to extend my sincere thanks to my second supervisor, Prof. Dr. Raul Zurita Milla. Prof. 

Raul, your critical thoughts, and advice have significantly shaped the quality of my work. Your understanding 

and appreciation of my efforts have motivated me to strive for excellence. The insightful ideas you provided 

about the results and your guidance in improving the presentation of my findings have been incredibly 

valuable. Your constructive feedback has refined my research and made this thesis a robust piece of work. 

 

My gratitude also goes to the chair and the external examiner of my assessment board, Dr. F.O. Ostermann 

and Dr. R. Vargas Maretto. I am thankful for your time and effort to be part of my thesis assessment.  

 

I am deeply thankful to Dr. Islam Fadel and Dr. Hakan Tanyas for agreeing to use their server to run my 

models. This thesis would not have been possible without your generous support. Importantly, I extend my 

heartfelt thanks to Arun Venugopal, whose MSc work from 2023 formed the foundation of my research. 

Thank you, Arun, for consistently being available to answer my questions and for your unwavering support 

and assistance whenever needed. Additionally, I would like to express my gratitude to the CRIB team, 

particularly Dr. Serkan Girgin and Jay Gohil, for providing the platform to run my models and for your help 

when I faced problems with the installations of some libraries. Your technical support has been instrumental 

in the successful completion of my research. Moreover, the occasional use of ChatGPT for grammar check 

and suggesting some word synonyms and speeding up some code writing, was very helpful. 

 

My heartfelt thanks also go to the ITC Excellence Scholarship for their financial support, which made my 

studies possible. I extend my gratitude to the ITC teachers and personnel for their dedication, guidance, and 

the high-quality education they provided. 

 

To my friends who stood by me during the challenging period when I stayed in my room for almost two 

months due to a foot injury, Thanks a million, I will never forget your help. I am especially grateful to 

Abulraheem Cissey, Ahmed Hemoudi, Mostafa Gomaa, Islam Fadel, Abdullah Banger, Moamen Abayizid, 

Ramy Rabie and Farag Sayed for their consistent support since I arrived in the Netherlands. Your kindness 

and companionship, academic and life advice have made this journey much more bearable and joyful. 

 

Lastly, I would like to acknowledge the support of my family and friends who have been a great source of 

encouragement throughout my MSc journey.  

 

Thank you all for your invaluable contributions and support. 



iii 

TABLE OF CONTENTS 

 

 
1. Introduction ........................................................................................................................................................... 7 

1.1. Background ...................................................................................................................................................................7 
1.2. Literature Review .........................................................................................................................................................8 
1.3. Research Gap ............................................................................................................................................................ 11 
1.4. Research Objectives and Questions ...................................................................................................................... 11 

2. Backbone Models .............................................................................................................................................. 12 
2.1. U-net Architecture.................................................................................................................................................... 12 
2.2. Swin Architecture (transformer-based) ................................................................................................................ 13 

3. DATA and Methods ......................................................................................................................................... 15 
3.1. Case Study .................................................................................................................................................................. 15 
3.2. Data Acquisition and Preparation Pipelines ........................................................................................................ 17 
3.3. Models’ Training and Evaluation Configurations............................................................................................... 21 
3.4. Models’ Architectures .............................................................................................................................................. 23 
3.5. Models’ Testing and Comparisons ........................................................................................................................ 26 
3.6. Code and Reproducibility ....................................................................................................................................... 26 

4. Results .................................................................................................................................................................. 28 
4.1. CNN-based models results ..................................................................................................................................... 28 
4.2. Swin model’s results ................................................................................................................................................. 37 
4.3. Comparisons.............................................................................................................................................................. 41 

4. Discussion ........................................................................................................................................................... 44 
4.1. Sub-objective 1 .......................................................................................................................................................... 44 
4.2. Sub-objective 2 .......................................................................................................................................................... 44 
4.3. Sub-objective 3 .......................................................................................................................................................... 44 
4.4. Common discussion points .................................................................................................................................... 45 

5. Conclusions......................................................................................................................................................... 46 
5.1. Research Objectives achieved and Research questions ..................................................................................... 46 
5.2. Future Recommendations ....................................................................................................................................... 47 
5.3. Overall conclusion .................................................................................................................................................... 48 

6. List of References .............................................................................................................................................. 49 

 

 



iv 

LIST OF FIGURES 

Figure 1: U-Net Architecture (Ronneberger et al., 2015)) .................................................................................... 12 
Figure 2 : The ViT architecture (Dosovitskiy et al., 2020)) .................................................................................. 13 
Figure 3: Swin Architecture (Liu et al., 2021) ......................................................................................................... 14 
Figure 4: The research methodology ........................................................................................................................ 15 
Figure 5: The state soybean production ranking in the USA in 2022 (US Soybean Production by State, 

2023) Accessed on 16 June 2024 .............................................................................................................................. 16 
Figure 6: The state corn production ranking in the USA in 2022 (US Corn Production By State, 2023) 

Accessed on 16 June 2024 ......................................................................................................................................... 16 
Figure 7: The selected four states in the USA for the research case study ........................................................ 17 
Figure 8: Data preprocessing and preparation pipeline ........................................................................................ 19 
Figure 9: Data downloading and post-processing pipeline................................................................................... 19 
Figure 10: Crop Calendar in the USA (United States - Crop Calendar, 2024) Accessed on 16 June 2024 ........ 20 
Figure 11: the final output of the data acquisition and preparation pipeline ..................................................... 20 
Figure 12: The architecture of the two CNNs models (with CDL and without CDL) ................................... 24 
Figure 13: The architecture of the multi-task learning U-Net model ................................................................. 25 
Figure 14: The architecture of the multi-task learning Swin model .................................................................... 26 
Figure 15: Training and validation learning curves of CNN model without CDL for corn (left) and 

soybean (right) ............................................................................................................................................................. 29 
Figure 16: Distribution of corn and soybean yields of True values (left) and Predicted values (right) on 

Minnesota 2022 test dataset using the CNN model without CDL ..................................................................... 29 
Figure 17: The 1:1 line of true and predicted yields of corn (left) and soybeans (right) on Minnesota 2022 

test dataset using the CNN model without CDL ................................................................................................... 30 
Figure 18: Training and validation learning curves of CNN model with CDLs for corn (left) and soybean 

(right) ............................................................................................................................................................................. 31 
Figure 19: Distribution of corn and soybean yields of True values (left) and Predicted values (right) on 

Minnesota 2022 test dataset using the CNN model with CDL ........................................................................... 31 
Figure 20: The 1:1 line of true and predicted yields of corn (left) and soybeans (right) on Minnesota 2022 

test dataset using the CNN model with CDL......................................................................................................... 32 
Figure 21: Training and validation learning curves of the multi-task learning U-net model (regression and 

segmentation) ............................................................................................................................................................... 34 
Figure 22: Distribution of corn and soybean yields of True values (left) and Predicted values (right), 

Minnesota-22 using the U-net multi-task learning model..................................................................................... 35 
Figure 23: The 1:1 line of true and predicted yields of corn (left) and soybeans (right), Minnesota-22 the 

U-net multi-task learning model ............................................................................................................................... 35 
Figure 24: Distribution of corn and soybean yields of True values (left) and Predicted values (right), 

Minnesota-23 using the U-net multi-task learning model..................................................................................... 36 
Figure 25: The 1:1 line of true and predicted yields of corn (left) and soybeans (right), Minnesota-23 using 

the U-net multi-task learning model ......................................................................................................................... 36 
Figure 26: Training and validation learning curves of the multi-task learning Swin model (regression and 

segmentation) ............................................................................................................................................................... 38 
Figure 27: Distribution of corn and soybean yields of True values (left) and Predicted values (right), 

Minnesota-22 using the multi-task learning Swin model ...................................................................................... 39 
Figure 28: The 1:1 line of true and predicted yields of corn (left) and soybeans (right), Minnesota-22 using 

the multi-task learning Swin model .......................................................................................................................... 39 



v 

Figure 29: Distribution of corn and soybean yields of True values (left) and Predicted values (right), 

Minnesota-23 using the multi-task learning Swin model ..................................................................................... 40 
Figure 30: The 1:1 line of true and predicted yields of corn (left) and soybeans (right), Minnesota-23 using 

the multi-task learning Swin model.......................................................................................................................... 40 
Figure 31: The comparison of CNN with and without CDL on Minnesota 2022 .......................................... 42 
Figure 32: The comparison of the regression evaluation metric of all 4 models using RMSE (left) and 

𝑅²(right) ........................................................................................................................................................................ 42 
Figure 33: The comparison of U-net and Swin when testing on Minnesota 2022 and Minnesota 2023 ..... 43 

 



vi 

LIST OF TABLES 

Table 1: crop yield estimation works highlighting the number of crops used and the level of estimation. . 10 
Table 2: The selected bands of the downloaded sentinel-2 images (Acquired and modified from (Kaplan & 

Avdan, 2017)) ............................................................................................................................................................... 19 
Table 3: the number of image patches used in training, validation, and test ..................................................... 21 
Table 4: The average crop yield of training, validation, and test datasets in BU .............................................. 21 
Table 5: DL models’ common configurations used across the research ............................................................ 22 
Table 6: Explanation of all the DL models’ parameters used in the research ................................................... 22 
Table 7: Evaluation metrics of the CNN model without CDL on Minnesota 2022 test dataset ................... 28 
Table 8: Evaluation metrics of the CNN model with CDL on Minnesota 2022 test dataset ......................... 30 
Table 9: Evaluation metrics of the multi-task learning U-net model in Minnesota 2022 and Minnesota 

2023 ............................................................................................................................................................................... 33 
Table 10: Evaluation metrics of the multi-task learning Swin model in Minnesota 2022 and Minnesota 

2023 ............................................................................................................................................................................... 37 
Table 11: Evaluation metrics of the two CNN models, U-net, and Swin in Minnesota 2022 ....................... 41 
Table 12: Evaluation metrics of the multi-task learning U-net and Swin models in Minnesota 2022 and 

Minnesota 2023............................................................................................................................................................ 42 
Table 13: Research sub-objectives achieved and questions answered ................................................................ 46 
Table 14: Future recommendations ......................................................................................................................... 47 

 

 

 



 

7 

1. INTRODUCTION 

1.1. Background 

 

Crop yield estimation is an important field in precision agriculture. It plays a vital role in estimating future 

harvests, managing crops to enhance overall productivity, and aligning crop production with market demand 

(Liakos et al., 2018). It is crucial to estimate the crop yield during the crop season not only for food security 

purposes but also for commodity market management and to gain insights into the fluctuations in the yield 

patterns (Desloires et al., 2023). Additionally, enhancing yields through field-level agricultural management 

is important for tackling worldwide food security concerns (Sagan et al., 2021). This is why, it is paramount 

to early estimate crop yield and define the variables affecting its fluctuations locally and globally.  

 

Various approaches were sought to estimate crop yield. Historically, estimating crop yield involved extensive 

field surveys. This process was labour-intensive and required significant time investment (Bi et al., 2023). 

Then, several methods were explored for estimating crop yield, including statistical models and process-

based models. Process-based models encounter challenges because of insufficient parameterization, 

validation, and calibration data. On the other hand, machine learning models, which fall under statistical 

models, gained considerable attention due to the progress in big data technologies and high-performance 

computing (Srivastava et al., 2022). Recently, the availability of EO data in spatial and temporal form, the 

development of DL models and the advances in computational power have made it easier and less time-

consuming. When compared to yield prediction methods based solely on meteorological factors, utilizing 

remote sensing imagery offers a more comprehensive understanding of the plants' growth status (Bi et al., 

2023).  

 

EO data play a crucial role in predicting crop production due to their frequent spatial and temporal image 

availability (Marshall et al., 2022). Klompenburg et al. (2020) did a systematic literature review about the use 

of ML models in crop yield prediction and the features used as well. The authors found that the most applied 

algorithms in descending order were Neural Networks (NNs), Linear Regression (LR), Random Forest (RF), 

Support Vector Machine (SVM), and Gradient Boosting. Among the NNs, Deep Neural Networks (DNNs) 

architectures like Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) were 

widely applied. Moreover, the authors found that the most frequently used features were rainfall, 

temperature, and soil type. CNNs were mostly incorporated in estimating crop yield with good accuracy in 

terms of Root Mean Square Error (RMSE). However, lacking enough data for training leads to overfitting 

and less applicability in practice (Oikonomidis et al., 2023).  

 

In this research, we utilized EO data and deep learning (DL) models to estimate yields for two crops. Corn 

and soybean were selected as our focus crops. The research encompassed four states in the USA, chosen 

based on their ranking as the top producers of both corn and soybean in the country, namely Indiana, Iowa, 

Illinois, and Minnesota. 
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1.2. Literature Review 

1.2.1. EO data, DL, and several factors for single Crop yield estimation 

Various ML and DL models have been utilized with EO/UAV data and several environmental and weather 

factors for single-crop yield estimation. Jhajharia & Mathur. (2023) used several ML models to predict crop 

yield in Rajasthan, India, using remote sensing and weather data. They used Decision Tree (DT), RF, 

Support Vector Regression (SVR), and Least Absolute Shrinkage and Selection Operator (LASSO) and 

proved that RF had the highest accuracy with (𝑅²: 0.77, RMSE: 0.39 t/ha, MAE: 0.28 t/ha). Zhang et al. 

(2023) used vegetation indices derived from Landsat 8 and Sentinel-2 images with the Bayesian optimized 

CatBoost model for robust crop yield estimation, proving superiority over LASSO, SVR, and RF. Lin et al. 

(2023) utilized sentinel-2 images, CDL, and meteorological data for crop yield estimation at the county level 

based on a ViT-based model. Htun et al. (2023) utilized sentinel-2 images to create four different indices 

(NDWI, RGVI, SAVI and NDVI) for Rice yield prediction using a Multiple Regression model. Joshi et al. 

(2023) integrated Sentinel-1 and Landsat 8 temporal vegetation indices with different ML models (LASSO, 

SVM and RF) for predicting winter wheat yield. Sun et al. (2019) included various factors to develop and 

train a DL model for estimating county-level soybean yield during the season and at the end of the season. 

These factors were MODIS Land Surface Temperature (LST), MODIS Surface Reflectance (SR), weather 

data, and crop growth variables. Wang et al. (2023) used multi-spatial MODIS satellite images with 3D 

CNNs to estimate the county-level soybean yield. Johnson et al. (2016) utilized vegetation indices such as 

NDVI and EVI from MODIS with several linear regression and neural network-based models to estimate 

the yield of crops such as spring wheat, canola, and barley. Zhang et al. (2021) predicted maize yield in 

smallholder farms in China using three ML approaches: LSTM, LASSO, and Light Gradient Boosting 

Machine (LightGBM). Bi et al. (2023) used handheld cameras to acquire time-series images with high 

resolution and developed a transformer-based model using ViT for soybean yield estimation. 

1.2.2. Multi-crop yield estimation 

Different crop fields could coexist in the same region and be adjacent in the acquired EO data. However, 
most of the work in crop yield estimation using DL and EO data focuses on single crops. Developing crop-
specific models is computationally inefficient, takes significant time and does not take into consideration 
the interactivity among different crop types (Khaki et al., 2021). Multi-task learning in crop yield estimation 
was used to estimate single crop yield while classifying its level or estimating the Grain Protein Content 
(GPC) (Chang et al., 2024; Z. Sun et al., 2022a). Chang et al. (2024) developed a multi-task learning DL 
model using UAV images to estimate the rice crop yield. The authors developed a two-head model, one 
head to estimate the crop yield and the other to classify the level of the yield (high, low). Sun et al. (2022) 
integrated Lidar data and multi-spectral data in multi-task learning to simultaneously estimate the wheat yield 
and the GPC. The authors combined losses by adding losses of both tasks with the same weights.  

To the best of our knowledge, only one study has focused on estimating both corn and soybean yields 

simultaneously. Khaki et al. (2021) developed a multi-task learning DL model (YieldNet) with two regression 

heads, one for corn yield estimation and one for soybean yield estimation. The author designed the backbone 

of the model (CNN-based) to function as a shared feature extractor for both tasks. Furthermore, the method 

was evaluated against the same model architecture, first using only the corn head, and then using solely the 

soybean head. The dual-head model showed higher accuracy for both corn and soybean yield estimation 

compared to the single-head models. YieldNet was also compared with several single-head models to predict 

corn and soybean yields separately, and it showed superior accuracy. This improvement is because of the 

transfer of feature learning between corn and soybean facilitated by the common feature extractor. However, 

the model still requires CDL as input, which is a limitation since CDL is not available in all countries. This 

is because collecting CDL through field surveys is time-consuming. Additionally, employing AI models to 



 

9 

generate CDL automatically requires a substantial amount of labelled ground truth data, which is unavailable 

in many countries (Mohammadi, 2024). 

Including CDL as input to the model guides the model to look at the specific crops in the images and ignore 

the other crops and the background (Venugopal, 2023). Venugopal (2023) experimented with testing a CNN 

model without adding CDL and with adding CDL for estimating soybean per input image and produced 

saliency maps for both cases. The CNN model with CDL proved higher accuracy in estimating the crop 

yield and its saliency maps focused on the soybean fields. On the other hand, the model without CDL 

looked at different fields and had relatively bad accuracy. Therefore, CDL could also enhance multi-crop 

yield estimation. Moreover, improving multi-crop yield estimation could be achieved through multi-task 

learning models to identify the crop type and estimate the crop yield concurrently. 

1.2.3. Multi-task learning 

Multi-task learning is a way to train models for parallel tasks using common features to enhance all tasks 
(Caruana, 1997). It uses a common model for different tasks while utilising shared feature representations. 
In multi-task learning, there are three main pillars: model architecture design, optimization methods, and 
task-specific learning (Crawshaw, 2020). As explained by Crawshaw. (2020), there are five types of 
architecture design in computer vision for multi-task learning: Shared Trunk, Cross-Talk, Task Routing, 
Prediction Distillation, and Single Tasking. The Shared Trunk design is a common and traditional 
architecture in multi-task learning. It has a global model used for feature extraction that has a single output 
to be used for multiple tasks. The Cross-Talk design consists of individual networks, one for each task. The 
information is transferred between the networks through the parallel layers in each task network. Then, the 
layers' output is linearly combined and fed into the next layers. The Task Routing design offers a less rigid 
architecture in terms of parameter sharing. Instead of sharing parameters at the layer level, it allows feature-
level parameter sharing. The Prediction Distillation design begins with generating initial outcomes for all 
tasks and then using them to enhance the final predictions. The Single Tasking architecture, unlike the other 
designs, is developed to perform the inference for one task at a time.  

Regarding the optimization methods, Crawshaw (2020) summarized six main categories for multi-task 
models’ optimization techniques: Loss weighting, Regularization, Task scheduling, Gradient modulation, 
knowledge distillation, and multi-objective optimization. Loss weighting techniques mostly use the weighted 
average of separate task losses to calculate the overall loss used for the model’s backpropagation. Those 
techniques usually differ in the way of defining the weights. The regularization techniques are usually applied 
to soft-sharing models that have separate task models and do not share parameters. Task scheduling is used 
to prioritize which task, or some tasks are being used for the training in each training step. Gradient 
modulation methods are important in the cases of conflicting gradients of different tasks. knowledge 
distillation is often used to impart the expertise of multiple single-task networks conventionally named 
“teacher” into a single multi-task model named “student.” Multi-objective optimization is employed to 
address the weakness of averaging the different tasks’ losses into one value because this leads to losing vital 
information. Therefore, it does not aim to achieve a global minimum, instead, it seeks Pareto optimal 
solutions. Finally, there are three research paths identified in the third pillar of multi-task learning 
(Crawshaw, 2020). Firstly, to cluster the tasks into groups that could learn from each other simultaneously. 
Secondly, to implement techniques to assess when knowledge transfer among tasks enhances learning. The 
third path focuses on creating an embedding space for the tasks themselves.  

Multi-task learning has been used in different fields especially in autonomous driving since it needs real-time 
actions based on multiple decisions. Ebert et al. (2022) developed a multi-task model for autonomous 
driving to simultaneously perform semantic segmentation, object detection and human pose estimation 
using a common backbone and three heads. The combined loss function is a weighted average of the three 
tasks’ losses. This model reduced the learned parameters number and increased the model performance. 
Furthermore, it reduced the inference time making it convenient for occupancy monitoring. Liu & Wang, 
(2019) developed AdvNet, which is a multi-task model with a common backbone and two heads, one for 
lane segmentation and the other for obstacle detection. Cipolla et al. (2017) developed a multi-task learning 



 

10 

model with a common backbone and three different heads, one is for semantic segmentation and the other 
two are for regression (instance segmentation and depth estimation).  

Table 1 summarizes the studies mentioned in the literature review that focus on crop yield estimation with 
EO data and ML models. It highlights the models used for each study, the number of crops being estimated 
concurrently, the level to which the crop yield is estimated (county or field level), and the factors used 
besides the EO data. It is shown that only one study concurrently estimated corn and soybean. Moreover, 
for studies that used the United States Department of Agriculture (USDA) crop yield data, most of them 
estimated the crop yield at the county level since the data is available at the county level as BU/acre. 
However, only one study downsampled the data to the pixel level and estimated single-crop (soybean) total 
yield to the level of the input images.  

  
Table 1: crop yield estimation studies using EO data and ML models 

Literature Models used Crops (single or 

multiple) 

Yield estimation 

level (county or 

farm) 

Factors 

Johnson et al. 

(2016) 

Linear, regression, 

NNs 

single crops 

(spring wheat, 

canola, and barley) 

Census 

Agricultural 

Regions (CARs), 

Canada 

NDVI and EVI 

Sun et al. (2019) CNN, LSTM Single 

crop(soybean) 

county-level, USA  MODIS SR, 

LST, weather 

data. 

Zhang et al. (2021) (LASSO), 

LightGBM, and 

LSTM  

Maize Field-level Vegetation 

indices and 

weather data 

Khaki et al. (2021) CNNs Multi-crops (Corn 

and soybean) 

County-level MODIS data 

and CDL 

 Sun et al. (2022) RNN, LSTM, 

CNN, attention 

modules 

Single crop 

(wheat) 

Field-level Lidar and multi-

spectral data 

 Jhajharia & 

Mathur. (2023) 

LASSO 

regression, SVR, 

DT, RF 

Single crop 

(wheat) 

District-level  NDVI, EVI, 

LAI, weather 

data 

Htun et al. (2023) Multiple 

regression 

Single crop (Rice) Ground reference 

points (GRPs) 

NDWI, RGVI, 

SAVI and 

NDVI from 

sentinel-2 

images 

 Joshi et al. (2023) (LASSO, SVM 

and RF 

Single crop 

(Winter wheat) 

County-level, USA Vegetation 

indices, climatic 

and soil 

variables 

Bi et al. (2023) 

 

ViT Soybean Field level using 

handheld sensor 

Seed 

information 

Zhang et al. (2023) CatBoost (BO-

CatBoost) 

Single crop 

(Winter wheat) 

Field-level Landsat-8 and 

sentinel-2 
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regression model, 

LASSO, SVM, 

and RD 

vegetation 

indices 

 Lin et al. (2023) ViT Single crops of 

(corn, soybean, 

cotton, winter 

wheat) 

County-level, USA sentinel-2 

images, CDL, 

and 

meteorological 

data 

Wang et al. (2023) 3D CNNs Single crop 

(soybean) 

County-level, USA multi-spatial 

MODIS 

Chang et al. (2024) CNN, LSTM Single crop (Rice) Field-level  UAV images 

 Venugopal (2023) CNN Single crop 

(soybean) 

Input Image-level Sentinel-2 

images, CDL 

 

1.3. Research Gap 

Based on the literature and to the best of the author’s knowledge, there are no developed multi-task learning 
models for multi-crop type identification and yield estimation. Therefore, this research focuses on two 
important problems. Firstly, most existing studies focus on single-crop yield estimation. However, in 
practice, different crop fields are often adjacent in the acquired EO data, and developing separate models 
for each crop type is inefficient and time-consuming, failing to leverage the advantages of transfer learning 
in developed DL models. Secondly, while various meteorological and environmental factors influence crop 
yield estimation, CDL is crucial for directing models to relevant image regions. Nonetheless, CDL is not 
always available across different countries and needs a substantial number of ground truth labels to 
automatically create CDL using DL models. 

1.4. Research Objectives and Questions 

The primary objective of this MSc thesis is to estimate multi-crop yields accurately using multi-task learning 
DL models for simultaneous segmentation and regression. The chief hypothesis here is that by developing 
multi-task learning models that can identify crop types and estimate yields simultaneously, we will be able 
to improve multi-crop yield estimations while eliminating the necessity for using CDL as model inputs. 

To achieve this main objective, we defined three sub-objectives (SO) with a total of four research questions 

(RQ) as follows: 

SO1: Assess the CDL effect on multi-crop yield estimation performance 

RQ1.1: How effective in terms of accuracy is adding the CDL as a factor for estimating multi-crop 

yield? 

SO2: Develop multi-task learning models for crop type identification and crop yield estimation.  

RQ2.1: Is it feasible to use models that could be applied for segmentation such as U-net and Swin as a 

backbone for both segmentation and regression? 

 

RQ2.2.: Can multi-task learning models achieve multi-crop yield accuracies comparable to CNNs with 

CDL as input? 

SO3: Assess the performance of multi-task learning models on an unseen region and an unseen year. 

RQ3.1: How accurately can multi-task learning models generalize spatially and temporally? 
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2. BACKBONE MODELS 

In this MSc thesis, we use two models as the main backbone for developing our multi-crop yield estimations. 
The first is the U-net and the second is the Swin transformer. The subsequent two sections explain the 
architecture of both models. 

2.1. U-net Architecture 

U-net is a DL model designed for semantic segmentation. Its architecture, as illustrated in Figure 1, features 
two main paths. On the left side is the contracting path, and on the right is the expansive one. The 
contracting path employs the common structure of CNNs, with each step containing two 3*3 filters applied 
sequentially without padding. The activation function of “ReLU” follows each filter. Each step is followed 
by a max-pooling layer of “2*2” and a “stride=2”, which is used for downsampling. Each step of 
downsampling doubles the channel number. In the expansive path, each step upsamples the feature maps 
and applies a 2*2 up-convolution that reduces the channels’ number by half. Then, the resulting feature 
maps are concatenated with the feature maps that are cropped from the contracting path. Subsequently, two 
convolutions of “3*3” are applied, each followed by “ReLU”. The final layer employs a 1*1 convolution to 
convert each 64-component feature vector to the required number of classes (Ronneberger et al., 2015). 

 

 

Figure 1: U-Net Architecture (Ronneberger et al., 2015)) 
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2.2. Swin Architecture (transformer-based) 

The first introduction of transformers was in 2017. It incorporated the attention mechanism in Natural 

Language Processing (NLP) applications (Vaswani et al., 2017). Subsequently, in 2018, The Bidirectional 

Encoder Representations from Transformers (BERT) model was introduced to the field of NLP (Devlin et 

al., 2018). It employed a pre-training mechanism on an unlabelled text within a transformer-based 

framework. When transformer frameworks achieved notable success in NLP, researchers began to adapt 

them for computer vision applications. This adaptation commenced with ViT and has since witnessed 

various modifications and variations. 

As explained in (Dosovitskiy et al., 2020) and illustrated in Figure 2, ViT follows the architecture of the 

transformers applied in NLP with some modifications. The image is divided into patches in which each 

patch is considered a token. Those patches are then flattened from 2D matrices into 1D vectors. Those 1D 

vectors are reduced into lower-dimensional vectors using weight matrix multiplication and bias addition. 

Since all these vectors are fed into the transformer block simultaneously, they are positionally embedded so 

that the original image location of each patch is known to the transformer. The unique component of the 

transformer encoder is the multi-task learning attention, which calculates the relationships between each 

patch and the rest of the patches in the image. Finally, the output is used as input into a task-specific head 

(multi-layer perceptron), which was a classification head in the ViT paper (Dosovitskiy et al., 2020).  

On the other hand, Swin is a transformer-based model that offers hierarchical representations through a 

shifted window approach, and it comes with linear complexity (Liu et al., 2021). Figure 3 shows the 

architecture of Swin, which is acquired from the original paper. It begins with partitioning the input image 

into patches that do not overlap. As in ViT, every patch is considered as a token. A linear embedding is 

performed on each patch to transform them into 1D vectors that are understandable to the Swin 

transformer block to perform self-attention. However, Swin divides the image into windows and calculates 

the relationships between each patch and the rest only within each window. Therefore, it is called window-

based “multi-head self-attention (W-MSA)” instead of only MSA in ViT. To account for the connection 

between the windows, it also uses “shifted-window multi-head self-attention (SW-MSA).” To gain global 

Figure 2 : The ViT architecture (Dosovitskiy et al., 2020)) 
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information from the image, a hierarchical representation is performed using the patch merging layers that 

merge the adjacent patches on different stages, as depicted in Figure 3, where each block comprises patch 

merging and Swin transformer block. This architecture proves to be a general-purpose model in computer 

vision (Liu et al., 2021). 

Figure 3: Swin Architecture (Liu et al., 2021) 
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3. DATA AND METHODS 

This chapter outlines the case study and research methods used to achieve the stated research objectives. 

As illustrated in Figure 4, the process begins with defining the case study, followed by the data acquisition 

and preparation pipelines. Subsequently, we developed two categories of models: three based on CNNs and 

one on a transformer model (Swin). For the CNNs models, two base CNNs were developed with identical 

architectures but varying input channels (one incorporating CDL and one excluding them), in addition to a 

U-net model. To achieve sub-objective (1), the two base CNN models were compared to evaluate the impact 

of including CDL as an input on multi-crop yield estimation performance. Additionally, to achieve sub-

objective (2), the developed multi-task learning models were compared with the CNN models to assess their 

performance in multi-crop yield estimation. Furthermore, to achieve sub-objective (3), we tested the multi-

task learning models on an unseen region and unseen year dataset to evaluate their spatial and temporal 

performance. 

 

3.1. Case Study 

Given the availability of crop yield data and CDL in the USA, four states are selected for our case study. 

The USDA provides yearly crop yield data per county. Additionally, the USDA produces annual CDL for 

all crop types, generated using satellite imagery and ground truth data to classify crop types (USDA. 2024). 

The selection criteria prioritized states with the highest corn and soybean production in the country. 

Consequently, the top four states in corn and soybean production are chosen, as shown in Figure 5 and 

Figure 6. These states are Illinois, Iowa, Minnesota, and Indiana, as depicted in Figure 7. 

 

Figure 4: The research methodology 
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Figure 6: The state corn production ranking in the USA in 2022 (US Corn Production By State, 2023) 
Accessed on 16 June 2024 

Figure 5: The state soybean production ranking in the USA in 2022 (US Soybean Production by State, 
2023) Accessed on 16 June 2024 
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3.2. Data Acquisition and Preparation Pipelines 

This section explains the data acquisition and preparation pipelines. This includes the EO data (Sentinel-2), 

CDL, and crop yield data. USDA provides the crop yield data in BU/Acre per county. Although the works 

listed in Table 1, which are using USDA data utilized the crop yield data as it is and estimated the crop yield 

to the county level in BU/Acre, we followed a different approach. To increase the resolution at which we 

estimate the crop yield, we downsampled the crop yield per county into the pixel level and calculated the 

total yield per input image. This approach was first applied by (Venugopal, 2023). Moreover, most of the 

research in crop yield estimation with EO data transforms the data into histogram-like tensors of pixel 

intensities. This approach lacks the qualities received from the spatial dimensions of the input images (Ilyas 

et al., 2023). Unlike histogram tensors, we used the raw image bands as input to the developed models to 

make use of the spatial aspect in our estimation.  

 

Figure 8 presents the data preparation pipeline. It was generically developed so that all the data from 2019 

to 2023 could be downloaded at any time for further research, However, in this study, only data in 2022 

were downloaded for training and testing, whereas data about only one state (Minnesota) in 2023 was 

downloaded for testing. The pipeline in Figure 8 begins with input data, including shapefiles for states and 

counties and a CSV file containing corn and soybean yield per county. A random points shapefile is 

generated within the four states of interest. These points are then intersected with the county shapefile 

boundaries to determine the county name for each point. Only points with available crop yield data are 

retained, ensuring all points have corresponding crop yield values per county, as some counties lack crop 

yield data). The random points shapefile is then divided by state, and each split file is replicated for different 

years (2019 to 2023). This approach ensures data can be prepared for future downloads for any given year 

from 2019 to 2023). Since the crop yield is originally measured in BU/Acre and the unit of Sentinel-2 

imagery is in meters, the crop yield is converted to BU/meter using Equation 1. The crop yield CSV file is 

then divided by state, and each state's data is further split by year (2019 to 2023). Each of these CSV files 

was subsequently joined with its corresponding points shapefile. As a result, a shapefile of points is obtained 

for each state and year, which can be used to download both Sentinel-2 images and CDL. 

 

Crop yield (BU/m2) = (1/4046.86) * crop yield (BU/Acre) (1) 

Figure 7: The selected four states in the USA for the research case study 
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Figure 9 illustrates the data downloading pipeline. It is initiated by drawing a boundary box around each 

random point, sized according to the intended image dimensions. These boundaries measure 224 * 224 

pixels, with each pixel representing 10 meters, resulting in an image size of approximately 5 km². These 

boundaries are then used to download both Sentinel-2 images with eight bands (as shown in Table 2) and 

CDL for corn and soybean. For sentinel-2 bands, the reflectance values are averaged in the mid-season 

months of corn and soybean (July and August) according to the crop calendar in the USA as shown in 

Figure 10. In the CDL, corn is represented by a pixel value of 1, and soybean by a pixel value of 5. The CDL 

is further processed to reassign corn pixel values as 1, soybean pixel values as 2, and all other pixels 

(background) as 0. This is because the cross-entropy loss function in semantic segmentation expects pixel 

values to range from 0 to (number of classes - 1). Sentinel-2 images are also processed by normalizing all 

pixel values between 0 and 1 by dividing them by 10,000. Sentinel-2 images and CDL are saved with unique 

names, ensuring corresponding images share the same name. Equation 2 is utilized to calculate crop yield 

per image patch, and thus, each row in the final CSV files corresponds to a patch name and includes fields 

for the total crop yield of corn and soybean. 

 

 Y = N * CY * (r*r) (2) 

Where: 

• Y is Crop yield per image patch. 

• N is the number of pixels of a specific crop. 

• CY is crop yield (BU/m2). 

• r is the image resolution (10m). 

  

For downloading sentinel-2 images and CDL, Google Earth Engine (GEE) is utilized. Although some bands 

have a resolution of 20 meters and the default resolution of CDL is 30 meters, all the data downloaded from 

GEE is resampled to 10 meters.  

Once the data are fully downloaded and processed, they are divided into training, validation, and test sets 

for use in the DL models. Table 2 displays the number of patches for each dataset. Three states (Iowa, 

Illinois, and Indiana) are used for training and validation in 2022, with 70% of the patches allocated for 

training and 30% for validation. The state of Minnesota in (2022 and 2023) is used for testing. Table 4 shows 

the average crop yield of corn and soybean per each dataset. Based on the training and validation dataset, 

crop yield values are normalized between 0 and 1. The minimum and maximum training yield values of corn 

and soybean are used to normalize the test dataset, as shown in Equations 3 and 4. This ensures that no 

information from the training process is leaked into the test dataset. Figure 11 presents the final output of 

the data acquisition and preparation pipeline, where each Sentinel-2 image patch is matched with a 

corresponding CDL patch and total crop yield values for corn and soybean. 

 

Normalized Corn yield = (corn yield – minimum corn yield)/ (maximum corn yield -minimum 

corn yield) (3) 

Normalized Soybean yield = (Soybean yield – minimum Soybean yield)/ (maximum Soybean 

yield -minimum Soybean yield) (4) 
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Table 2: The selected bands of the downloaded sentinel-2 images (Acquired and modified from (Kaplan & Avdan, 
2017)) 

Band 

number 

Sentinel-2 Bands Central Wavelength 

(Micrometre) 

Resolution  

(m) 

1 Band 2 - Blue 0.490 10 

2 Band 3 - Green 0.560 10 

3 Band 4 - Red 0.665 10 

4 Band 5 – Vegetation red edge 0.705 20 

5 Band 6 – Vegetation red edge 0.740 20 

6 Band 7 – Vegetation red edge 0.783 20 

7 Band 8 – NIR 0.842 10 

8 Band 8A – Vegetation red edge 0.865 20 

Figure 8: Data preprocessing and preparation pipeline 

Figure 9: Data downloading and post-processing pipeline 
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Figure 10: Crop Calendar in the USA (United States - Crop Calendar, 2024) Accessed on 16 June 2024 

Figure 11: the final output of the data acquisition and preparation pipeline 
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Table 3: The number of image patches used in training, validation, and test 

Training set (image 

patches) 

Validation set (image 

patches) 

Test set (image patches) 

5446 2338 2872 2258 

Indiana, Iowa, Illinois in 2022 Minnesota in 2022 Minnesota in 2023 

 

 
Table 4: The average crop yield of training, validation, and test datasets in BU 

 Average corn yield per image patch 

(BU) 

Average soybean yield per image patch 

(BU) 

Training dataset 78730 21458 

Validation dataset 79027 21788 

Minnesota 2022 test 

dataset 

54064 12249 

Minnesota 2023 test 

dataset 

59666 12760 

 

3.3. Models’ Training and Evaluation Configurations 

Common loss functions and evaluation metrics were employed in all the developed models, which are 

explained in the following sections. As depicted in Table 5 below, Cross-entropy loss was used for 

segmentation tasks, whereas Mean Squared Error (MSE) loss was utilized for regression tasks. Furthermore, 

Intersection Over Union (IOU) was used to evaluate segmentation tasks, while RMSE and the coefficient 

of determination (𝑅²) metrics were used to evaluate the regression tasks. Due to limited time, all models 

were only run for 50 epochs with Adam optimizer, and the learning rate scheduler was chosen as 

“ReduceLROnPlateau.”. The Early Stopping was configured with (Patience = 10). All DL models and the 

loss functions were implemented using PyTorch. Table 6 explains the concepts of all the models’ 

configurations mentioned in Table 5. 

The developed models are multi-headed; thus, each head has a loss function. However, a single loss function 

is required for backpropagation. A loss combination method was used to achieve this. In this research, we 

used the total sum of losses for backpropagation. Equation 5 illustrates the combined loss function of the 

multi-head regression CNN models for estimating corn and soybean yields, while Equation 6 was used to 

calculate the combined losses with the multi-head regression and segmentation models (U-net and Swin). 

Combined loss (two-head regression model) = loss1 + loss2 (5) 

Where: 

• loss1: the loss of the first head calculated using MSE.  

• loss2: the loss of the second head calculated using MSE.  

 

Combined loss (multi-head segmentation and regression model) = loss1 + loss2 + loss3 (6) 

Where: 

• loss1: the loss of the first head calculated using MSE.  

• loss2: the loss of the second head calculated using MSE.  

• Loss3: the loss of the segmentation head calculated using Cross Entropy 

 

 

 



 

22 

Table 5: DL models’ common configurations used across the research 

 Regression Tasks Segmentation Tasks 

Loss Function MSE Cross-Entropy 

Evaluation Metrics MSE, 𝑅² IOU 

Optimizer Adam 

 

Epochs 50 

 

Learning Rate (LR) 0.0001 

LR Scheduler PeduceLROnPlateau 

Early Stopping (Patience = 10) 

 
Table 6: Explanation of all the DL models’ parameters used in the research 

MSE (Mean Squared Error) Is utilized as a loss function for regression 

problems. It is calculated as the average of the 

squared residuals, where residuals are the difference 

between true and predicted values (Jadon et al., 

2022). 

𝑅²  Is a metric used to assess regression models, 

indicating how well the predicted values match the 

target values. It quantifies the extent to which the 

independent variables account for the variation in 

the dependent variable (Tatachar, 2021).  

 

RMSE Is an evaluation metric of regression problems that 

defines how close the outcomes from the model are 

to the label values (Tatachar, 2021). 

 

Intersection over Union (IOU), or Jaccard 

Similarity Index (JSI) 

Is a metric used for evaluating segmentation 

problems, calculated by determining the ratio of the 

overlapping area between the predicted segmented 

map and the ground truth label map. (Rizwan I 

Haque & Neubert, 2020). 

 

Cross-entropy (CE) is a statistical measure utilized to assess the disparity 

between two probability distributions associated 

with a specific random variable. This metric is 

particularly advantageous in numerous machine 

learning applications, such as semantic 

segmentation and classification tasks. Within the 

field of semantic segmentation, cross-entropy loss 

quantifies the extent to which a model's predictions 

correspond with the actual target labels (Azad et al., 

2023).  

 

Adam is an algorithm based on gradients to optimize 

stochastic objective functions. It is robust for large 
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data problems and memory-efficient (Kingma & 

Ba, 2014). 

 

ReduceLRonPlateau is a dynamic learning rate technique that reduces 

the learning rate when the validation loss stops 

improving for a specific number of epochs 

(ReduceLROnPlateau — PyTorch 2.3 Documentation, 

2024). 

 

 

3.4. Models’ Architectures 

To address the identified research gaps and to achieve the stated research objectives, we developed three 

models. The first model was based on CNN. It was developed to assess the impact of adding CDL as extra 

input with sentinel-2 images on multi-crop yield estimation. Therefore, the CNN model is used once with 

only sentinel-2 images and another time with including CDL. The other two models are developed to 

evaluate the applicability and performance of multi-task learning models in accurately estimating multi-crop 

yields. These two models identify the crop type and estimate its yield concurrently. Therefore, two tasks are 

implemented simultaneously (segmentation and regression). The two multi-task learning models are based 

on backbone architectures that work for segmentation. The first utilized the U-net architecture and the 

second employed the Swin architecture.  

3.4.1. CNN architecture 

This model is based on CNNs. It comprises several layers, including convolutional layers, max-pooling 

layers, fully connected layers, batch normalization, dropout, and two output heads. The main objective of 

this model is to concurrently estimate the crop yield of both corn and soybean. The architecture, as depicted 

in Figure 12, is applied in two scenarios. The first scenario uses only the eight bands of Sentinel-2 as input. 

The second scenario incorporates the eight bands of Sentinel-2 along with CDL as the ninth band. Since all 

Sentinel-2 bands are normalized from 0 to 1 in the second scenario, the CDL pixel values are also remapped 

so that 0 represents the background, 0.5 represents corn, and 1 represents soybean. Figure 12 illustrates the 

model's architecture. It includes 4 2D convolutional layers with (kernel size = 3), each followed by a max-

pooling layer with (kernel size = 2). After flattening the output from the final max-pooling layer, four fully 



 

24 

connected layers are applied. Subsequently, two separate heads are created: one for corn yield estimation 

and the other for soybean yield estimation. 

 

 

3.4.2. UNET architecture 

This model, as detailed in Figure 13, is a modified version of the U-Net architecture. It follows the Shared 

Trunk approach of multi-task learning models where the U-net is the employed backbone for feature 

extraction. The model is developed for segmentation and yield estimation, featuring an encoder-decoder 

structure. The encoder path comprises three convolutional blocks with ReLU activations, followed by max-

pooling layers that reduce the spatial dimensions and increase the feature channels. The bottleneck layer 

further processes the features with two convolutional layers. The decoder path mirrors the encoder. It 

implements upsampling through transposed convolutions and concatenation with corresponding encoder 

features. The third step in the decoder path is branched into two heads, the segmentation head to restore 

the original spatial dimensions (segmentation maps) while the second head is for regression. The first part 

of the regression head includes the Adaptive Average Pooling (AAP) process. The pooled output is then 

flattened. Subsequently, two separate heads are created: one for corn yield estimation and the other for 

soybean yield estimation. 

 

  

Figure 12: The architecture of the two CNNs models (with CDL and without CDL) 
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3.4.3. SWIN-based model 

This model explained in Figure 14, is utilizing the Swin model architecture as a feature extraction backbone 

following the Shared Trunk approach of multi-task learning models. It is developed for crop type 

identification and yield estimation, featuring an encoder-decoder structure. As explained before, in Figure 

3, each of the four stages in the encoder (Swin) increases the channels’ number while reducing the spatial 

dimensions. Two separate heads are designed. The segmentation head consists of four transposed 

convolutional layers that upsample the feature maps that are then concatenated with lower-stage feature 

maps to refine the segmentation output (original image size). The regression head includes adaptive average 

pooling on the output feature maps from Swin, which are then concatenated. A series of fully connected 

layers process the concatenated features and separately predict the outputs for corn and soybean using 

distinct regression heads for each crop type.  

 

Figure 13: The architecture of the multi-task learning U-Net model 
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3.5. Models’ Testing and Comparisons 

The testing phase is used to assess the developed models on unseen data. As shown above in Table 3, section 

3.2, two datasets were prepared for testing purposes Minnesota 2022 and Minnesota 2023. Both Minnesota 

2022 and Minnesota 2023 are in different regions from the regions the models were trained on. Moreover, 

Minnesota 2023 is in a different region and different year knowing that all the models were trained on data 

in 2022 in three states (Iowa, Indiana, and Illinois). For testing, the two CNN models were tested on the 

Minnesota 2022 test dataset whereas the U-net and Swin models were tested on both The Minnesota 2022 

and Minnesota 2023 test datasets.    

When testing, the predicted crop yield values were first denormalized to the BU unit for all the models. 

Then, the evaluation metrics for regression (RMSE and 𝑅²) were calculated. However, the predicted values 

were negative for some patches that contained almost zero yield. Therefore, they were transformed to 0 

before the denormalization process.  

 

To answer the research questions stated in section 1.4., we needed to do comparisons on the output from 

the developed models.  

Three comparisons are implemented: 

1- For question 1, CNN model with CDL and CNN model without CDL to assess the impact of 

adding CDL as input on multi-crop yield estimation. 

2- For questions 2 and 3, the CNN model with CDL and the two multi-task learning models (U-Net 

and Swin) to assess the performance of multi-task learning models in estimating multi-crop yield. 

3- For question 4, Testing (U-Net and Swin) multi-task learning models on an unseen region and 

unseen year to assess their performance spatially and temporarily on estimating the yield of multi-

crops. 

 

3.6. Code and Reproducibility 

This section provides an overview of the implementation part of all models. It highlights the libraries and 

computational resources utilized. Moreover, it explains the code structure on the thesis GitHub repository. 

  

PyTorch, which is a library for developing and training ML and DL models, was used for all the developed 

models. All the CNN-based models were straightforward to implement using PyTorch built-in functions. 

Figure 14: The architecture of the multi-task learning Swin model 
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However, for the Swin model, the official implementation was based on the MMsegmentation library. 

MMsegmentation is a framework for unified implementations of semantic segmentation algorithms. It is a 

part of the OpenMMLab project for computer vision algorithms (MMSegmentation 1.2.2 Documentation, 

2024). However, MMsegmentation is only designed for semantic segmentation and does not include any 

regression implementations. Moreover, it was by default designed to use the PIL library that does not read 

“.tif” images. However, in our work, we developed the images’ reading functions based on the “Rasterio” 

library to make use of all the bands in the EO data.  

A substantial time was spent on modifying the main framework of MMsegmentation to accommodate multi-

task learning models for segmentation and regression. We modified the library to read satellite images, the 

corresponding CDL and the crop yield data. However, the modification of the training, validation and test 

built-in functions for regression and segmentation required significant time. Therefore, we developed 

separate codes for the remaining DL processes of training, validation, and testing. Additionally, specialized 

data loading functions were developed to read the sentinel-2 images and the corresponding CDL and corn 

and soybean yield values.  

 

The main advantage of using MMsegmentation is its availability of many segmentation models. Thus, with 

the ready codes of various segmentation models, future work could easily experiment with different 

backbones for multi-task learning models using our developed framework for training, validation, and 

testing. However, in this research, we utilized only the Swin architecture from MMsegmentation.  

  

For the computational resources, I first used my machine with an NVIDIA T600 Laptop GPU and 32 GB 

of RAM on a small sample of the data to develop the models. Running one model took from five to six 

hours. This slowed progress due to the development of multiple models and different comparisons. But 

later I had access to the Shaken server which features a 24 GB NVIDIA RTX A5000 GPU and 1.5 TB of 

RAM. Utilizing up to 11 GB of GPU reduced the training time of each model to around two to three hours. 

This helped me to speed up the process of developing the models’ architectures on the full data. Although 

I had also access to a 64 GB GPU server, it was not always free to use as it had multiple users at the same 

time. However, I used it for many experiments. In the end, all the final models were run on the Shaken 

server.  

All codes are available on the GitHub Repository. The files are organized in Jupyter Notebooks and “.py” 

files. They are categorized into folders such as (“DataPreparationModelBuilder,” 

“DataDownloadingAndProcessing,” “PrepareForDLModels,” and “DL_Models”). For all the models, the 

training and validation log files and the output checkpoints at every epoch were saved. 

https://github.com/Mo-Gamil/MSc_work_Multi_crop_yield_Estimation.git
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4. RESULTS 

This chapter outlines the results of all the developed models (CNN without CDL, CNN with CDL, U-net, 

and Swin). For each model, the following graphs are included: 

1- Training and validation losses (for both regression and segmentation tasks) 

2- Evaluation metrics on validation data (for both regression and segmentation tasks) 

3- Evaluation metrics on test data 

4.1. CNN-based models results 

4.1.1. Results of the CNN model without CDL 

This section explains the results of the CNN model without including CDL as input. Figure 15 illustrates 

the MSE losses for training and validation, along with the 𝑅² values, for corn and soybean, with corn 

depicted on the left side and soybean on the right. The training learning curves consistently decreased as the 

number of epochs increased, whereas the validation learning curves exhibited fluctuations up to epoch 20 

and then flattened. The early stopping was triggered at epoch 37. However, the optimal model for the test 

dataset was identified at epoch 20 where the model flattened.  

When evaluated on the Minnesota 2022 dataset, as shown in Figure 16 and Figure 17, the predicted values' 

distribution diverged from that of the target values. Specifically, the predicted crop yield values for corn and 

soybeans showed significant deviation from the 1:1 line, with soybean results being less accurate than those 

for corn. The data range of predicted and target yield values slightly differs for both corn and soybean. 

Detailed results on the Minnesota 2022 test dataset, including RMSE and 𝑅² values, are provided in Table 

7. Additionally, Table 7 includes the average crop yield per patch for corn and soybean as 54064 BU and 

12249 BU, respectively. This is used to indicate how much different the RMSE is from the average yield 

value per crop type. 

 

Table 7: Evaluation metrics of the CNN model without CDL on the Minnesota 2022 test dataset 

 Minnesota 2022 

 Corn Soybean 

RMSE 24456.7 BU 7724 BU 

𝑅² 0.778 0.550 

Average crop yield/patch 54064 BU 12249 BU 
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Figure 15: Training and validation learning curves of CNN model without CDL for corn (left) and soybean (right) 

Figure 16: Distribution of corn and soybean yields of True values (left) and Predicted values 
(right) on Minnesota 2022 test dataset using the CNN model without CDL 
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4.1.2. Results of the CNN model with CDL 

This section explains the results of the CNN model with CDL fed to the model as an input. Figure 18 

illustrates the MSE losses for training and validation, along with the 𝑅² values, for corn and soybean, with 

corn depicted on the left side and soybean on the right. The training and validation learning curves 

consistently decreased as the number of epochs increased. Although the model converged at epoch 32 for 

corn training and validation curves, there were still some fluctuations for soybean curves. Consequently, the 

optimal model for the test dataset was identified at the last epoch of 50 since the model was still learning 

and needed more epochs. When evaluated on the Minnesota 2022 dataset, as shown in Figure 19 and Figure 

20, the predicted values' distribution was close to that of the target values. Specifically, the predicted crop 

yield values for both corn and soybean showed a good alignment with the 1:1 line, with corn results being 

slightly more accurate than those for soybean. The data range of predicted and target yield values is very 

close. Detailed results, including RMSE and 𝑅² values, are provided in Table 8. Table 8 also included the 

average crop yield per patch for corn and soybean as 54064 BU and 12249 BU, respectively. This is used to 

indicate how much different the RMSE is from the average yield value per crop type. 

 

 
Table 8: Evaluation metrics of the CNN model with CDL on the Minnesota 2022 test dataset 

 Minnesota 2022 

 Corn Soybean 

RMSE 10468 BU 3256 BU 

𝑅² 0.959 0.923 

Average crop yield/patch 54064 BUy 12249 BU 

 
 
 
 
 
 
 
 

Figure 17: The 1:1 line of true and predicted yields of corn (left) and soybeans (right) on 
Minnesota 2022 test dataset using the CNN model without CDL 
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Figure 18: Training and validation learning curves of CNN model with CDLs for corn (left) and soybean (right) 

Figure 19: Distribution of corn and soybean yields of True values (left) and Predicted values (right) on Minnesota 
2022 test dataset using the CNN model with CDL 
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Figure 20: The 1:1 line of true and predicted yields of corn (left) and soybeans (right) on 
Minnesota 2022 test dataset using the CNN model with CDL 
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4.1.3. U-net  

This section explains the results of the U-net multi-task learning model on both the Minnesota 2022 and 

Minnesota 2023 test datasets to assess the spatial and temporal generalizability of the model. Figure 21 

presents the learning curves of the multi-task learning U-net model, emphasizing the regression loss 

measured by MSE and the 𝑅² regression metric and the segmentation loss measured by cross-entropy and 

the IOU segmentation metric. As the epochs progressed, the regression and segmentation losses exhibited 

a steady decline, while the 𝑅² and IOU metrics consistently increased. The model's performance almost 

flattened around epoch 50. Consequently, the model from epoch 50 was tested using data from Minnesota 

2022 and Minnesota 2023.  

Figure 22 and Figure 23 display the distribution and the 1:1 line of the target and the predicted data 

respectively based on the Minnesota 2022 test dataset. The figures show that the distribution of the predicted 

corn yield is more identical to the target values than the soybean. Furthermore, both are close to the 1:1 line 

with corn aligned more.  

Figure 24 and Figure 25 present the distribution and the 1:1 line of the target and the predicted data 

respectively based on the Minnesota 2022 test dataset. The figures show that the distribution of the predicted 

corn yield and soybean yield differed, meaning the accuracy in the future data (Minnesota 2023) dropped 

compared to the current year data (Minnesota 2022). However, both are still close to the 1:1 line with corn 

aligned more.  

From Figures 22, 23, 24, 25 and Table 9, the model’s accuracies for segmentation (IOU) and regression on 

the Minnesota 2022 test dataset were better than those of Minnesota 2023. Furthermore, both cases had 

similar data ranges between predicted and target crop yield values of corn and soybean. Table 9 lists the 

exact values of (RMSE, 𝑅², IOU), of the testing process. 

 
Table 9: Evaluation metrics of the multi-task learning U-net model in Minnesota 2022 and Minnesota 2023 

 Minnesota 2022 Minnesota 2023 

 Corn Soybean Corn Soybean 

RMSE 14595 BU 5889 BU 19304 BU 5924 BU 

𝑅² 0.921 0.738 0.836 0.652 

Average crop 

yield/patch 

54064 BU 12249 BU 59666 BU 12760 BU 

IOU 0.7734 0.7194 
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Figure 21: Training and validation learning curves of the multi-task learning U-net model (regression and 
segmentation) 
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Figure 22: Distribution of corn and soybean yields of True values (left) and Predicted values (right), Minnesota-22 
using the U-net multi-task learning model 

Figure 23: The 1:1 line of true and predicted yields of corn (left) and soybeans (right), Minnesota-22 using 
the U-net multi-task learning model 
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Figure 24: Distribution of corn and soybean yields of True values (left) and Predicted values (right), Minnesota-23 
using the U-net multi-task learning model 

Figure 25: The 1:1 line of true and predicted yields of corn (left) and soybeans (right), Minnesota-23 using the U-net 
multi-task learning model 
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4.2. Swin model’s results 

This section explains the results of the Swin multi-task learning model on both the Minnesota 2022 and 

Minnesota 2023 test datasets to assess the spatial and temporal generalizability of the model. Figure 26 

presents the learning curves of the multi-task learning Swin model, emphasizing the regression loss 

measured by MSE and the 𝑅² regression metric, and the segmentation loss measured by cross-entropy and 

the IOU segmentation metric. As the epochs progressed, the regression and segmentation losses exhibited 

a steady decline, while the 𝑅² and IOU metrics showed a consistent increase. The model's performance 

plateaued around epoch 40. Consequently, the model from epoch 40 was tested using data from Minnesota 

2022 and Minnesota 2023.  

Figure 27 and Figure 28 display the distribution and the 1:1 line of the target and the predicted data 

respectively based on the Minnesota 2022 test dataset. The figures show that the distribution of the predicted 

corn yield is more like the target values than the soybean. Moreover, both are close to the 1:1 line with corn 

aligned more.  

Figure 29 and Figure 30 present the distribution and the 1:1 line of the target and the predicted data 

respectively based on the Minnesota 2022 test dataset. The figures show that the distribution of the predicted 

corn yield and soybean yield differed, meaning the accuracy in the future data (Minnesota 2023) dropped 

compared to the current year data (Minnesota 2022). However, both are still close to the 1:1 line with corn 

aligned more. 

From Figures 27, 28, 29, and 30, and Table 10, the model’s accuracies for segmentation (IOU) and regression 

on the Minnesota 2022 test dataset were better than those of Minnesota 2023. Furthermore, both cases had 

similar data ranges between predicted and target crop yield values of corn and soybean. Table 10 lists the 

exact values of (RMSE, 𝑅², IOU), of the testing process.  
 

Table 10: Evaluation metrics of the multi-task learning Swin model in Minnesota 2022 and Minnesota 

2023 

 Minnesota 2022 Minnesota 2023 

 Corn Soybean Corn Soybean 

RMSE 15493 BU 5047 BU 21842 BU 5375 BU 

𝑅² 0.911 0.808 0.79 0.714 

Average crop 

yield/patch 

54064 BU 12249 BU 59666 BU 12760 BU 

IOU 0.8001 0.7611 
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Figure 26: Training and validation learning curves of the multi-task learning Swin model (regression and 
segmentation) 
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Figure 27: Distribution of corn and soybean yields of True values (left) and Predicted values (right), Minnesota-22 
using the multi-task learning Swin model 

Figure 28: The 1:1 line of true and predicted yields of corn (left) and soybeans (right), Minnesota-22 using the multi-
task learning Swin model 
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Figure 29: Distribution of corn and soybean yields of True values (left) and Predicted values (right), Minnesota-23 
using the multi-task learning Swin model 

Figure 30: The 1:1 line of true and predicted yields of corn (left) and soybeans (right), Minnesota-23 using the multi-
task learning Swin model 
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4.3. Comparisons 

This section contains three distinct comparisons. Firstly, we compared the accuracy of the CNN model 

without CDL and the CNN model with CDL. Secondly, the regression evaluation metrics of all four 

developed models were compared. Thirdly, the testing results of the Swin and U-net models on Minnesota 

datasets from 2022 and 2023 were compared. 

 

Table 11 contains the testing metrics of the four models based on Minnesota 2022 whereas Table 12 shows 

the testing metrics of only the multi-task learning models (U-net and Swin) on both the Minnesota 2022 and 

Minnesota 2023 test datasets. Figure 31 depicts the comparison between the CNN models with and without 

CDL based on the Minnesota 2022 test dataset in terms of RMSE and 𝑅². Figure 32 highlights the 

differences among the four models (CNN without CDL, CNN with CDL, U-net and Swin) on the 

Minnesota 2022 test dataset in terms of RMSE and 𝑅². Figure 33 demonstrates the difference between U-

net and Swin on the Minnesota 2022 and Minnesota 2023 test datasets.  

 

Looking at Table 11 and Figure 31, the RMSE significantly decreased for both corn and soybean, while the 

𝑅² values significantly increased when using CDL as input to the CNN model. When the CDL was added, 

the RMSE reduced drastically from 24456.7 BU to 10468 BU and the 𝑅² significantly increased from 0.778 

to 0.959 for corn. Furthermore, the RMSE reduced from 7724 BU to 3256 BU and the 𝑅² increased from 

0.550 to 0.923 for the soybean. 

 

As shown in Table 11 and Figure 32, the two multi-task learning models (U-net and Swin) achieved results 

that were remarkably close to those of the CNN with CDL and substantially higher than the CNN model 

without CDL. Additionally, the Swin model achieved slightly less accurate estimations for corn but slightly 

more accurate estimations for soybeans compared to the U-net model. Furthermore, the segmentation 

accuracy of the Swin model was higher than that of the U-net in terms of IOU.  

 

As depicted in Table 12 and Figure 33, both regression and segmentation accuracies decreased when testing 

on the Minnesota 2023 test dataset. However, in both cases, the Swin model demonstrated higher 

segmentation accuracy and estimated soybean yield slightly more accurately than the U-net, while corn yield 

was estimated slightly less accurately than the U-net. 
 
Table 11: Evaluation metrics of the two CNN models, U-net, and Swin in Minnesota 2022 

 CNN (without CDL) CNN (with CDL) U-net Swin 

 Corn Soybean Corn Soybean Corn Soybean Corn Soybean 

RMSE 24456.7 

BU 

7724 BU 10468 

BU 

3256 BU 14595 

BU 

5889 BU 15493 

BU 

5047 BU 

𝑅² 0.778 0.550 0.959 0.923 0.921 0.738 0.911 0.808 

IOU  0.7734 0.8001 

Notes The average crop yield per patch of corn is 54064 BU and for soy is 12249 BU 
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Table 12: Evaluation metrics of the multi-task learning U-net and Swin models in Minnesota 2022 and Minnesota 
2023 

  

Minnesota_22 
(MN22) 

Minnesota_22 
(MN22) 

Minnesota_23 
(MN23) 

Minnesota_23 
(MN23) 

Metric Crop U-net Swin U-net Swin 

RMSE Corn 14595 15493 19304 21842 

RMSE Soybean 5889 5047 5924 5374 

𝑅² Corn 0.921 0.911 0.836 0.79 

𝑅² Soybean 0.738 0.808 0.652 0.713 

IOU  0.7734 0.8001 0.7194 0.7611 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

  

 

 

Figure 31: The comparison of CNN with and without CDL on Minnesota 2022 

Figure 32: The comparison of the regression evaluation metric of all 4 models using RMSE (left) and 𝑅²(right) 
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Figure 33: The comparison of U-net and Swin when testing on Minnesota 2022 and 
Minnesota 2023 
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4. DISCUSSION 

This chapter discusses the outcomes of the developed models and highlights the key findings that help to 

answer the research objectives. The following sub-sections address four primary points. Firstly, we examined 

the impact of incorporating CDL as input in crop yield estimation models. Secondly, we explored the 

application of multi-task learning models for multi-crop yield estimation. Thirdly, we analysed the spatial 

and temporal generalizability of multi-task learning models for multi-crop yield estimation. Finally, we 

highlighted the common findings of the models. 

4.1. Sub-objective 1 

This section discusses the results affecting sub-objective 1 of assessing the impact of CDL on multi-crop 

yield estimation. A review of the results from sections 4.1.1 and 4.1.2, alongside the comparisons presented 

in Table 11 and Figure 31 in section 4.3, clearly indicates that incorporating CDL as input data substantially 

improves the multiple crops’ estimation accuracy. This observation is consistent with Venugopal’s (2023) 

conclusion on single-crop yield estimation (soybean) using CNNs, where saliency maps illustrated that CDL 

helps the models focus on relevant regions of the images. Specifically, CDL alone, when added to sentinel-

2 images, significantly improved the RMSE for corn and soybean by 13,988 BU and 4,468 BU, respectively, 

and increased the 𝑅² values for corn and soybean by 0.181 and 0.373, respectively. 

4.2. Sub-objective 2 

This section discusses the relevant results to sub-objective 2 of assessing the applicability of multi-task 

learning models on multi-crop yield estimation. As detailed in sections 3.4.2 and 3.4.3, two multi-task 

learning models were successfully developed and implemented for simultaneous crop type identification and 

yield estimation. The first model utilized U-net as its backbone, while the second employed Swin. The results 

presented in Table 11 and Figure 32 indicate that both models achieved regression results comparable to 

the CNN model with CDL and significantly outperformed the CNN model without CDL. Regarding 

segmentation accuracy, Swin demonstrated superior performance with an IOU of 0.8001, compared to U-

net's IOU of 0.7734. Furthermore, Swin exhibited higher accuracy in estimating soybean yields compared 

to U-net, while achieving slightly lower accuracy in estimating corn yields.  

4.3. Sub-objective 3 

This section discusses the results related to sub-objective 3 of assessing spatial and temporal generalizability 

of multi-task learning models on multi-crop yield estimation. By comparing the results of the multi-task 

models with the CNN model incorporating CDL on the Minnesota 2022 dataset, these models showed 

strong spatial generalizability. Additionally, they maintained relatively good temporal performance when 

tested on the Minnesota 2023 dataset. However, there was a slight decline in both regression and 

segmentation accuracies for Minnesota 2023. As shown in Table 12 and Figure 33, the RMSE for corn and 

soybean increased by 4,709 BU and 35 BU, respectively, for U-net, and by 6,349 BU and 1,327 BU, 

respectively, for Swin. Furthermore, the 𝑅² values for corn and soybean decreased by 0.085 and 0.086 for 

U-net, and by 0.121 and 0.095 for Swin. This indicates that U-net demonstrated better temporal 

generalizability in regression tasks compared to Swin with the given data size. Conversely, Swin achieved 

higher segmentation accuracies for both datasets (Minnesota 2022 and 2023). The drop with Minnesota 

2023 in IOU for U-net was 0.054, whereas for Swin it was 0.039. This suggests that Swin demonstrated 

better temporal generalizability in segmentation tasks than U-net with the data size used. 
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4.4. Common discussion points 

This section discusses common findings on all the developed models. The results of all the developed 

models indicate that farms with extremely low crop yield or near-zero yield values can confuse the models, 

resulting in either negative values or excessively high values. This phenomenon is illustrated in Figures 17, 

20, 23, 25, 28, and 30, which show the 1:1 line between predicted and target yield values of corn and soybean. 

These observations suggest a need for further research to address low-production farms or to develop 

specific models for cases with below-average crop yields. Additionally, transformer-based models, unlike 

CNNs, require extensive training data due to their lack of inherent inductive biases (i.e., assuming 

preliminary knowledge about the image data such as weight sharing and translation invariance) (Khan et al., 

2022). Therefore, it is anticipated that Swin would achieve higher accuracy with a larger dataset. 

Furthermore, due to time constraints, the models were trained for only 50 epochs. Increasing the number 

of epochs could potentially improve accuracy. All the models’ results were obtained by training on data from 

a single year (2022) and using the average reflectance values of Sentinel-2 images from July and August. 

Expanding the dataset to include multiple years and different periods within the growing season is expected 

to enhance the temporal generalizability of the models. Finally, it is observed that the accuracy of the 

estimated corn yield in all models is higher than in soybean, this could be because the average crop yield per 

input image for corn is higher than that of soybean in all the datasets as shown in Table 4. Furthermore, the 

mid-season of corn spans from June to August, while for soybean, it spans from July to August as depicted 

in Figure 10. However, the reflectance values in this study were averaged in July and August. This could 

contribute to the low accuracy of soybeans compared to corn.  

Furthermore, Although the crop yield data provided by the USDA are at the county level, we downsampled 

this data to the pixel level and then aggregated them to the image level. This method may present a limitation 

by estimating crop yield at a finer level than the original data. However, one could argue that if the USDA 

data are provided as bushels per acre (BU/Acre) per county, then this value can be applied to any acre within 

that county to calculate the total crop yield for a specific area. This approach allowed us to obtain the total 

crop yield per input image. Furthermore, it significantly increased the training data, thus enabling the training 

of multiple DL models. Importantly, the DL models trained on the downsampled data still produced 

satisfactory results. 
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5. CONCLUSIONS 

This chapter is divided into three sections. The first section reviews the research objectives and questions, 

highlighting that all sub-objectives were achieved, and the research questions were answered. The second 

section offers future recommendations to enhance our developed models. The third section provides an 

overall conclusion derived from our research. 

5.1. Research Objectives achieved and Research questions  

The main objective was achieved through multi-task learning models, which identified crop types and 

estimated their yields. Table 13 illustrates the sub-objectives and the answers to each of their questions. 
 
Table 13: Research sub-objectives achieved and questions answered 

 Sub-objectives Research questions and answers 

1 Assess the CDL effect on 

multi-crop yield estimation 

using a base CNN model. 

RQ 1.1 How effective in terms of accuracy is 

adding the CDL as a factor for estimating 

multi-crop yield? 

 

Answer 1.1 Incorporating CDL into the CNN model 

reduced RMSE by 10,429 BU for corn and 

3,632 BU for soybean. Additionally, the 𝑅² 

value for corn increased by 0.15, and for 

soybean, it increased by 0.329. 

 

2 Develop two multi-task 

learning models for crop type 

identification and crop yield 

estimation. The first is 

UNET-based. The second is 

SWIN-based.  

 

RQ 2.1 Is it feasible to use segmentation models 

such as U-net and Swin as a backbone for 

both segmentation and regression? 

 

Answer 2.1 Yes, two multi-task learning models based on 

the segmentation models of U-net and Swin 

were successfully developed for crop type 

identification and yield estimation.  

 

RQ 2.2 Can multi-task learning models achieve 

multi-crop yield accuracies comparable to 

CNNs with CDL as input? 

 

Answer 2.2 Yes, the two developed multi-task learning 

models achieved reliable results compared to 

the CNN with CDL as input as detailed in Table 

(11) and Figure 32. 

 

3 Assess the performance of 

multi-task learning models 

RQ 3.1 How accurately can multi-task learning 

models generalize spatially and temporally? 
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on unseen regions and 

unseen years. 

Answer 3.1 Both developed multi-task learning models 

demonstrated strong spatial and temporal 

performance, with spatial results outperforming 

temporal ones. This discrepancy may be 

attributed to the models being trained on data 

from a single year. 

 

 

 

5.2. Future Recommendations 

To identify the limitations of this research and highlight possible future work, we categorized the future 

recommendations into three sections: Data-related, Acquisition-date-related, and models-related aspects. 

Table 14 shows each category and lists the points of future work per each. It also gives a brief explanation 

of each point.  

 
Table 14: Future recommendations 

Category Point of work Explanation 

Data-Related Selected bands we used 8 bands of sentinel-2. However, experimenting with different 

bands that have more influence on vegetation could potentially 

enhance accuracy. 

 

Different 

sensors 

different sensors with different spectral bands, spatial resolution, and 

temporal resolution could be chosen. 

 

Additional data adding extra data that are important in crop yield estimations such as 

weather and soil type data could enhance the model's generalizability. 

 

Larger data size models such as transformers are data hungry. Therefore, increasing 

the data size could potentially enhance the accuracy of the models. 

 

Crop yield 

average in 

different 

regions 

Further exploration of the distribution of crop yield values and crop 

type classes and their effect on the generalizability of the model is 

important to use the developed models for far regions and different 

countries. 

Acquisition 

date-related 

 

Mid-season data It is recommended to experiment with different acquisition dates in 

mid-season rather than averaging the whole mid-season reflectance 

values. 

Temporal data It is recommended to train on data from different years. 

Models-

related 

 

Activation 

functions 

It is recommended to experiment with different activation functions 

for segmentation and regression. 

 

Combining 

activation 

functions 

It is recommended to experiment with different combined loss 

functions in multi-task learning models instead of only adding all the 

losses.  
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Hyperparameter 

tuning 

It is recommended to perform hyperparameter tuning to enhance the 

models’ results. 

 

 

5.3. Overall conclusion  

Crop yield estimation is crucial for commodity management and ensuring food security. While most research 

in this field has focused on estimating single-crop yields, this does not accurately reflect the reality of multiple 

crops being grown in the same area This MSc thesis began by verifying previous findings that indicated that 

using CDL as input enhances the accuracy of crop yield estimation, but we extended this verification to 

multiple crops. However, creating the CDL is time-consuming, and it is not available in all countries. 

Consequently, we experimented with multi-task models capable of concurrently identifying crop types and 

estimating yields. This approach leveraged transfer learning among tasks to improve the accuracy of both 

segmentation and regression tasks. Two models for segmentation (U-net and Swin) were employed as 

backbones for feature extraction. Each model was equipped with two heads: one for segmentation to 

identify crop types, and one for regression to estimate crop yields. Both models demonstrated accuracies 

comparable to the CNN with CDL, suggesting that multi-task learning models for crop type identification 

and yield estimation can serve as effective tools for multi-crop yield estimation, eliminating the need for 

CDL. Although these models showed good spatial and temporal performance when tested on Minnesota 

data from 2022 and 2023, there remains room for improvement. These potential enhancements were 

categorized into three areas, as detailed in section 5.2, Table 14. In conclusion, the main contribution of this 

research is the development of multi-task learning models. These models proved their applicability as 

actionable models that can be directly used for multi-crop yield estimation while achieving good results. 

Furthermore, they addressed the challenge posed by the unavailability of the CDL as input. Importantly, 

this is done using one model which reduces time, computational power, and learned models’ parameters 

compared to developing single models for each crop.  
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