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ABSTRACT

Grammars and parsing algorithms for those grammars are widely

used to create and work with programming languages. While most

languages use standard form of grammars like Context Free Gram-

mars, some can be parsed faster using algorithms for Visibly Push-

down Grammars. While there has been e�ort in creating parser

generators for VPGs, the question of conversion from CFGs to VPGs

remains. We propose to create a tool that will perform operations

that will make CFGs more suitable for conversion by existing tools,

as well as potentially �nd what speci�c properties of CFGs may be

a reason to claim that a grammar cannot be converted.
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1 INTRODUCTION

In 1956 Noam Chomsky introduced �rst classi�cation of formal

languages and gave a mathematical model of a grammar, giving

start to a subarea of computer science. The concept of grammars

was found to be of importance for programming languages with

ALGOL being de�ned by a Context-Free Grammar. Since then,

parser generator tools have been developed such as ANTLR [17]

that works with a class of Context Free Languages. In parallel with

that, a lot of research has been done to re�ne the �rst classi�ca-

tion of languages and de�ne sub classes in Chomsky hierarchy to

achieve better performance while still preserving expressiveness

necessary to de�ne some of the languages [8] . In this paper we will

zoom in on class of Visibly Pushdown Languages [1], a subclass of

Context Free Languages. Speci�cally, we will explore possibilities

to automatically transform Context Free Grammars to its Visibly

Pushdown equivalent.

Chomsky hierarchy [3] has four main classes in it:

• Type-0: Recursively enumerable languages.

• Type-1: Context-sensitive languages.

• Type-2: Context-free languages.

• Type-3: Regular languages.

Languages in this hierarchy, going from regular to recursively

enumerable, become more expressive and harder to work with:

Context-sensitive languages have exponential parsing algorithm
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complexity and parsing and recognition in recursively enumerable

realm is undecidable.

Context-Free Grammars are used to generate parsers by tools

like ANTLR [17] and BISON [14]. However CFGs have limitations

in terms of e�ciency and veri�cation: not all CFGs can be con-

verted to deterministic pushdown automata (PDA) and worst-case

running time of general CFG-based parsing algorithms isċ (Ĥ3) [9].

In 2004 Rajeev Alur and P. Madhusudan suggested a class of Visibly

Pushdown languages [1]. VPLs are a subclass of Context-Free Lan-

guages and a superclass of regular languages, which places them

between the two classes. Intuitively, this makes VPLs more expres-

sive then regular, while allowing for faster parsing than CFGs. The

most trivial example of a VPL is Dyck language of balanced brack-

ets [16], a language that consist of open and closed brackets for

instance ”(())”, ”() ()”. With brackets added to regular expressions

it is possible to express real languages like JSON, XML or HTML.

In their 2023 paper Jia et al [9] discuss parser generator for visibly

pushdown grammars that they have developed, that is faster than

CFG based parsers: complexity of their parser is ċ (Ĥ), compared

to worst case complexity of parsers for CFL of ċ (Ĥ3). To test their

parser, Jia et al converted some grammars written for ANTLR [6],

However transformation of CFGs to VPGs was not the main focus

of their paper. In the discussion they write "In general, it is an open

problem to determine whether a CFG can be translated to a VPG".

To further explore possibilities to optimize parsing of known lan-

guages in we want to explore that problem and see if it is possible

to write an algorithm that would take a Context Free Grammar and,

if possible, convert it to its Visibly Pushdown equivalent. Our work

will consist of two components:

• Tagging of Context Free Grammars.

• Transforming CFGs into an equivalent VPG.

To do that we chose to work with the same repository of grammars

for ANTLRv4 [6] to be able to compare our results with those of

Jia et al and due to availability of parsing framework. First we will

give formal de�nition to Visibly Pushdown Grammars, introduce

features of ANTLR that we will be using and introduce form of

grammars we will be working with. Note that ANTLR does not

have support for tagging of grammars, because of that resulting

grammars will not be in the same form.

1.1 Background: EBNF and ANTLR features

Exctended Backus-Naur Form is a formal de�nition of syntax used

for de�ning languages and many other formal de�nitions in com-

puter science [13]. There exist many variations of EBNF using

di�erent notations to express same things. To denote repetitions

ANTLR uses 3 di�ernt su�xes: question mark "?" for 0 or 1 rep-

etitions, Kleene star "*" for 0 or more repetitions and plus + for 1

or more repetitions. In our resulting VPG grammars we will be
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using the same notation. In ANTLR it is possible to group sym-

bols using brackets, but in our grammars we will avoid grouping

by brackets and will instead create an additional intermediate rule.

Further, ANTLR grammar may include semantic and syntactic pred-

icates [19], and context free actions. Syntactic predicates are given

as a grammar fragment that must match the following input. Se-

mantic predicates are given as arbitrary Boolean-valued code in

the host language of the parser. Actions are written in the host

language of the parser and have access to the current state. ANTLR

requires programmers to avoid left recursion [20], ANTLRv4 is

able to eliminate direct left recursion, but will fail at runtime when

parsing with grammars that have non immediate left recursion.

1.2 Background: Visibly Pushdown Grammar

As a class of grammars, VPGs [1] compared to CFGs have many

good properties. Languages of VPGs are a subset of deterministic

context-free languages, which means that it is always possible to

build a deterministic PDA from a VPG. The terminals in VPGs are

partitioned in three subsets: call, plain, and return and stack actions

associated with the symbol is determined by which of the three

subsets the symbol is in. An action of pushing is performed for call

symbols, an action of popping is performed for return symbols and

there is no action associated with plain symbol. As shown in Jia et

al paper [9]. VPGs enable building of linear-time parsers, and suck

parsers are amenable to formal veri�cation.

Below is a formal de�nition of VPGs [1]. A grammar ă is repre-

sented as a tuple (Ē ,
∑
, Č, Ĉ0), where Ē is the set of nonterminals,

∑
is the set of terminals, Č is the set of production rules, and Ĉ0 ∈ Ē

is the start symbol. The alphabet
∑

is partitioned into three sets:
∑
ĦĢėğĤ,

∑
ęėĢĢ ,

∑
ĨěĪ . Notation-wise, a terminal

∑
ęėĢĢ is tagged with

ï on the left, and a terminal in
∑
ĨěĪ is tagged with ð on the right.

Below is a formal de�nition of well-matched VPGs. Such VPGs

generate only well-matched strings in which a call symbol is always

matched with a return symbol.

Well-matched VPGs 1. A grammar ă = (Ē ,
∑
, Č, Ĉ0) is a well-

matched VPGwith respect to the partitioning
∑

=
∑
ĦĢėğĤ ∪

∑
ęėĢĢ ∪

∑
ĨěĪ

if every production rule in Č is in one of the following forms:

(1) Ĉ → Ċ , where Ċ stands for the empty string;

(2) Ĉ → ęĈ1, where ę ∈
∑
ĦĢėğĤ ;

(3) Ĉ → ïėĈ1ĘðĈ2, where ïė ∈
∑
ęėĢĢ and Ęð ∈

∑
ĨěĪ .

A superclass of well-matched VPGs is general VPGs. General

VPGs can specify substrings of well-matched strings. General VPGs

allow pending call and return symbols by introducing additional

form of rules Ĉ → ïėĈ′ and Ĉ → ĘðĈ′. The set of nonterminals V

is partitioned into Ē 0ėĤĚĒ 1: nonterminals in Ē 0 can only generate

well-matched strings, while nonterminals inĒ 1 can generate strings

with pending symbols.

General VPGs 1. A grammar ă = (Ē ,
∑
, Č, Ĉ0) is a general

VPG with respect to partitioning
∑

=
∑
ĦĢėğĤ ∪

∑
ęėĢĢ ∪

∑
ĨěĪ and

Ē = Ē 0 ∪Ē 1 if every rule in Č is in one of the following forms:

(1) Ĉ → Ċ

(2) Ĉ → ğĈ1, where ğ ∈
∑
, and if Ĉ ∈ Ē 0 then (1) ğ ∈

∑
ĦĢėğĤ and

(2) Ĉ1 ∈ Ē 0;

(3) Ĉ → ïėĈ1ĘðĈ2, where ïė ∈
∑
ęėĢĢ , Ęð ∈

∑
ĨěĪ , Ĉ1 ∈ Ē 0, and if

Ĉ ∈ Ē 0, then Ĉ2 ∈ Ē 0.

Note that terminals that are tagged as either call or return cannot

occur with an EBNF su�x. Intuitively, if that was not the case, it

would be impossible to claim that there will be the same amount of

call and return symbols.

1.3 Grammar transformations

In general problem of equivalence of two di�erent languages de-

�ned by two di�erent grammars is considered undecidable. How-

ever, quite often grammars can be equivalently converted into a

form feasible for deterministic analysis preserving the language de-

�ned by the old grammar form [5]. One of such equivalent transfor-

mations is removing of left recursion [20]. "In theory, the restriction

to non-left-recursive CFGs puts no additional constraints on the

languages that can be described, because any CFG can in principle

be transformed into an equivalent non-left-recursive CFG" [15].

However, it can prove to be a problem for parsers that process text

top-down, left-to-right. Suppose we are trying to parse an input

string with rule Ĉ → Ĉė at a given position of input. Using left-

to-right parsing our �rst goal will be to parse rule Ĉ at the same

position, which will put parser in an in�nite loop. The standard

algorithm for removing left recursion is attributed to M. C. Panll

by Hopcroft and Ullman [7]. Robert C. Moore tested the algorithm

suggested by Panll, compared it to other existing algorithms and

suggested improvements to it [15]. The algorithm that is being

compared to in their work is Left-Corner Transform, presented

by Johnson [12]. The original purpose of the LR transform is to

allow simulation of left-corner parsing by top-down parsing, but it

eliminates left-recursion from CFGs as well. "Furthermore, in the

worst case the total number of nonterminal symbols in a grammar

transformed using LR cannot exceed a �xed boundary of multiple

of square of number of symbols in the original grammar, in contrast

to Paull’s algorithm, which exponentiates the size of grammar in

the worst case" [15].

2 EXPECTATIONS AND GOALS

In their paper Jia et al [9] have used Grammars-v4 repository [6]

to retrieve Context Free Grammars, their tool only accepted gram-

mars free of actions and semantic predicates. They claim to have

been able to convert 136 grammars out of 239. They say that

at least 34 more grammars could not be converted because of

left recursion [20]. In our research we will use the same repos-

itory and we will attempt to write an algorithm that would be

able to automatically separate set of terminals
∑

into its subsets
∑
ęėĢĢ ,

∑
ĨěĪ ėĤĚ

∑
ĦĢėğĤ . We will also write an algorithm that, if pos-

sible, would transform a grammar into its well-matched VPG equiv-

alent. Our expectation is that we will be able to transform at least

170 grammars, which is the amount that Jia et al. claim to be fea-

sible if limitations known to them are eliminated. If successful,

we will attempt to push this number even further by �nding and

eliminating even more structural limitations.

3 METHODOLOGY

For each grammar the algorithm applies following operations in

the order below:

(1) Parse a grammar using ANTLRv4 parser generator [18] with

an ANTLRv4 grammar for ANTLRv4 grammars [6]. Note
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that we are not working with lexers, and therefore lexers

are ignored when parsing. Semantic and syntactic predicates

are ignored when parsing grammars, and grammars with

actions are removed from the testing set.

(2) Refactor grammars to remove groups of symbols. For in-

stance rule Ĉ → ý (þ |ÿ) is transformed into rules Ĉ → ýĊĎ

and ĊĎ → þ |ÿ . The new rules created during this transfor-

mation will be named "_new_rule_N".

(3) Remove Left Recursion: Next step was to check if a grammar

has left recursion and if it does, to remove it. Hypotheti-

cally, this step can be done after tagging as well, as it is an

equivalent transformation.

(4) Attempt to tag grammar with one of the methods. The meth-

ods will be discussed in the next section 4.1.

(5) Evaluate the grammar by checking its structure given the

tagging and conclude if this grammar is in VPG form.

3.1 Tagging

In this section we will discuss approaches that we used to tag gram-

mars and their e�ciency in detecting call and return symbols. To

compare results of applying di�erent heuristics we �rst tagged each

grammar by iterating over ll possible pairs of elements, assuming

that any two could potentially be a pair, and then check if, with

that pair tagged as call and return, all rules in the grammar are

well-matched. Intuitively, this approach has a very high complexity,

as structure of rules will have to be checked Ĥ2 times, where Ĥ is the

number of distinct terminals. When tagging Context Free Gram-

mars, terminals that occurred with an EBNF su�x at least once

will automatically be tagged as plain. For the heuristics heuristics

that will be discussed below, we assumed that rules in the grammar

have that both call and return symbols will both be on the right

side of a rule. That is, we will be treating rules as though they are

written in well-matched form. We tried following methods to tag

grammars:

• Tagging by precedence: when going through the grammar

we counted how many times each pair of symbols occurred

in the grammar as suitable candidates for call-return pair.

At the end if there were con�icts in the resulting tagging,

the pair that had less occurrences would be removed. For

instance if we found pairs (ïė;Ęð) that occurred 5 times and

a pair (ïę ;Ęð) that occurred 3 times in a grammar, symbol b

is a con�icting symbol and the resulting tagging would be
∑
ęėĢĢ = {ïė}

∑
ĨěĪ = {Ęð}. This approach allows to easily

exclude faulty tagging.

• Tagging by distance and structure: one of the heuristics we

tried was to limit the amount of symbols (both terminals and

nonterminals) that is allowed to be between a call-return pair.

The idea behind it is that potentially people writing gram-

mars may have written them in a form close to well-matched

VPG because they wanted to keep some consistent structure,

for optimization reasons or by accident. That would mean

that a rule with a call-return could not start with a nonter-

minal and would only have one call-return pair in it. If that

was the case, such tagging algorithm would have lower com-

plexity compared to tagging by precedence as we would not

have to check for con�icting pairs. However, after trying

it on a few grammars we realized that such assumption is

not realistic: rules often have multiple pairs on the right

hand side and in general grammars rarely have a common

structure shared with each other.

• To explore this idea further, we attempted to tag grammars

so that, when possible, a call-return pair would have a nested

pair and compared it to approach when we avoid nested

pairs. That is, rule Ĉ → ė Ĉ1 Ę Ĉ2 ę Ĉ3 Ě could be tagged in

two ways: (1)
∑
ęėĢĢ = {ė, Ę},

∑
ĨěĪ = {ę, Ě} or (2)

∑
ęėĢĢ =

{ė, ę},
∑
ĨěĪ = {Ę, Ě}. Even though the latter tagging allows

for easier transformation of a rule into its well-matched VPG

equivalent form, on practice tagging is usually not intuitive

as for some grammars di�erent open brackets would be

grouped as a pair. In conclusion, this heuristic did not prove

reliable to use for tagging of grammars, however, it helped

us to make a useful conclusion on how to tag rules that do

not have unique tagging.

3.2 Evaluation methodology

Our original idea on evaluation was to use the tool for grammar

conversion introduced by Jia et al [9]. The converter described in

their paper accepts a tagged CFG and converts it to a VPG in three

steps.ýĪėĝĝěĚÿĂă → ďğģĦĢě Ĝ ĥĨģ
If valid
−−−−−→ ĈğĤěėĨ Ĝ ĥĨģ → ĒČă

However, there were some limitations in setting up the tool to work

with any grammars, and we had to change our approach. Our

current solution is to perform the steps described by Jia et al up

and including checking if simple form of a grammar is valid.

A grammar is in simple form if all rules of that grammar are in

simple form. A rule is in simple form if it is in one of the forms

(1) Ĉ → Ċ or (2) Ĉ → ħ1 ...ħġ , where ħğ ∈
∑
ĦĢėğĤ ∪Ē or ħğ = ïėĈ‘Ęð

for some ïė, ĘðėĤĚĈ‘ and Ĉ‘ is a nonterminal. In other words, there

should be one and only one nonterminal between any call-return

pair. The conversion is straightforward: for each rule, replace every

string ïėĩĘð, where ĩ ∈ (
∑
∪Ē )∗ with ïėĈĩĘð and generate a new

rule Ĉĩ → ĩ . Let us look at an example of such transformation:

Ĉ → ïėĈĈ1Ęð

Ĉ1 → ę
⇒

Ĉ → ïėĈĈĈ1Ęð

ĈĈĈğ → ĈĈ1

Ĉ1 → ę

The next step is validation; It is performed with the help of de-

pendency graph of the grammar with Ē , ā), where

ā = {(Ĉ, Ĉ‘, (ĩ1, ĩ2)) |ĩ1, ĩ2 ∈ (
∑
∪Ē )∗, (Ĉ → ĩ1Ĉĩ2)}.

The edges in the graph are transitions from a non-terminal to an-

other non-terminal labeled with symbols on the right and on the

left of the destination non-terminal.

The task of the validation function is to verify that for each loop

in the dependency graph, either (1) in the loop there is an edge

(Ĉ, Ĉ‘) that is labeled with (ĩ1ïė, Ęðĩ2), where ïė is matched with

Ęð in a rule Ĉ → ïėĈ‘Ę →); or (2) every edge (Ĉ, Ĉ‘) in the loop is

labeled with (ĩ, Ċ) for some string ĩ ∈ (
∑
∪Ē )∗ and at least one

such ĩ satis�es ĩ ¼ ∗Ċ .

For the example above the dependency graph will look like this:

This graph has one loop: with edges labelled (ïė, Ęð) and (Ċ, Ĉ1).

It is easy to see that the grammar would pass validation by the �rst
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Ĉ ĈĈĈ1 Ĉ1

(ïė, Ęð)

(Ċ, Ĉ1)

(Ĉ, Ċ)

criteria. The validation algorithm is described in more detail by Jia

et al. [9].

4 DEVELOPMENT AND EVALUATION

To implement ideas that were discussed in Methodology, we devel-

oped a tool [2] using Java. In this section we will describe function-

ality and structure of this tool. The language was chosen to be able

to easier integrate with ANTLR parser generator. We used Parser-

BasedVisitor to walk the parse tree of a grammar to retrieve sets of

terminals and nonterminals, rules associated with each nonterminal

as a map. Then the map is converted to a grammar that has the

following class structure:

• Grammar : The main class of this project. It contains meth-

ods that are used to tag and transform the grammar. The

�elds of this class are: start symbol of the grammar, set of

non-terminals, set of terminals, set of call and set of return

symbols, list of pairs of terminals and a set of terminal sym-

bols that can only be plain. The latter is used for keeping

track of symbols that occur in a rule without any other ter-

minal symbols, or such symbols that occur with an EBNF

su�x in a grammar.

• EbnfSu�x : enumerator for possible su�xes; Question, Plus,

Star or None.

• NonTerminal : extends Node class, has a set of rules as a set

of lists of symbols and its EBNF su�xes.

• Node : a symbol in a grammar rule, has a of the symbol. Has

call and return sets that are initially empty, a set of terminal

and nonterminal symbols and a start symbol of the grammar.

This is the main class with methods that implement tagging

algorithms.

• DepGraph : used for validating structure of tagged gram-

mars.

• Edge : edge in a dependency graph. Has source and destina-

tion nodes and s1 s2 labels.

4.1 Grammar implementation

The Grammar class provides following methods:

• Grammar constructor: this method receives start symbol of

the grammar, initializes and �lls out set of terminals, nonter-

minals. Alternatively it is possible to pass those sets to the

constructor if they are already known.

• publicmakePairs: this method iterates over the grammar

and creates a list of all possible pairs of terminals in that

grammar. Those pairs can be used later to tag the grammar

by precedence.

The function starts with a start symbol on the stack and in

the set of non-terminals that store rules that should still be

visited and rules that have already been visited and iterates

over non-terminals by popping from the stack until it is

empty. When algorithm encounters a non-terminal that is

not yet in visited set, the node is added to both visited and

the stack toVisit. For each rule, each pair of terminals (ė, Ę)

that occurs in the rule, such that ė precedes Ę, is stored as

a potential call-return pair in a list. This list is then used by

the functions described below. For each terminal symbols is

either an only symbol in at least one rule, or occurs with an

EBNF su�x at least once in any rule, such symbol is added

to a set of onlyPlain symbols.

• private countPairs: Creates a map

ĦėğĨ → ĤīģĘěĨ ĥ Ĝ ĥęęīĨĨěĤęěĩ . This map is used to tag

grammars by precedence.

• public tagByPrecedence: With pairs counted, tags the gram-

mar by precedence as described in 3 section. This function

takes removeContraditions �ag as an argument. If this

�ag is set, contradicting pairs with smaller number of occur-

rences will be removed from the collection of pairs.

tagByPrecedence �rst calls countPairs and sorts its out-

put by value, so that a most frequently occurring pair is

�rst in the stream. Then it iterates over this stream of pairs

and for each pair (ė, Ę) adds its elements to correspond-

ing call and return sets if the following holds: ė ≠ Ę'!(ė ∈

onlyPlain)'!(Ę ∈ onlyPlain)'!(ė ∈ call)'!(ė ∈ return'!(Ę ∈

call)'!(Ę ∈ return)). Otherwise, if removeContradictions �ag

is set, the pair is removed from the collection of pairs.

• public isLeftRecursive: Checks if grammar is left recursive.

• public removeLR: Refactors grammar to remove left recur-

sion. During this new

• public convertToSimpleForm: Converts the grammar to

its simple form. This is required for evaluation step. If there

is no tagging, that is if call and return sets are empty, the

grammar will not be changed.

• public bruteforceTagging: tags the grammar by iterating

over all combinations of terminals and then checking if gram-

mar is well matched. This method has ċ (Ĥ2) complexity,

where Ĥ is a number of distinct terminals, and may be slow

for large grammars.

4.2 Implementation of validation algorithm

Although conversion of a grammar to a simple form is trivial, as

well as process of checking the loops of the graph, �nding all cycles

in the graph proves to be a complex task. In this section we will

describe algorithm used to build a dependency graph and limitations

arising when trying to detect cycles.

To build a graph, DepGraph class provides method makeGraph

that, similar tomakePairsmethod iterates over non-terminals, that

are vertices of the graph, using a stack and a set of visited nodes.

For each vertex the algorithm stores a set of edges going out of

that vertex. The next step is to collect all existing cycles in the

graph to analyze them. There exist advanced algorithm for solving

this problem, such as Johnson’s algorithm [11], with complexity

ċ ((Ĥ + ě) (ę + 1), however, this and other algorithms developed for

solving the same problem work correctly only on graphs that (1)

only have one edge from any vertex Ē to any other vertex Ē ‘ and

(2) does not contain loops, i.e. edges from Ē to Ē . Both of those

structures can be present in a grammar in a form of recursion or

by repeating same non-terminal on the right hand side of a rule.
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With that in mind, algorithm implemented for �nding cycles has

complexity of ċ (Ĥ!), which proved to be a limitation when testing

the tool on real grammars.

5 RELATED WORK

In their other recent paper Xiadong Jia and Gang Tan discuss V-

star algorithm, a tool that learns grammars of visibly pushdown

languages based on program input [10]. In addition to that, they

describe an algorithm that is capable of inferring tagging of visibly

pushdown language based on program sample.

6 RESULTS

In this section we will �rst discuss the experiment setup and �-

nally show and discuss results of tagging a large set of grammars.

When running the experiment we record following statistics: total

number of processed grammars, number of grammars with that

had left recursion prior to transformation, number of grammars

tagged grammars, i.e. with at least one call-return pair, number

of tagged grammars that had left recursion, number of grammars

that passed validation, number of tagged grammars that passed

validation. For each grammar in the test set, the methods described

in the implementation section are applied in the following order:

(1) removeLR if grammar is left recursive.

(2) makePairs.

(3) tagByPrecedence with removeContradictions �ag set.

(4) convertToSimpleForm. After applying this function a gram-

mar with tagging will be written to a �le.

(5) DepGraph.�ndCycles. Due to limitations discussed in pre-

vious chapter, this and the next methods are only invoked

for grammars with less than 70 non-terminals.

(6) DepGraph.isValid.

We ran our experiment on the latest version of grammar-v4

repository for ANTLR [6]. Table 1 6 contains the results of the

experiment.

Table 1: Ratios of Grammar Categories

Category Count Ration of total
grammars processed (%)

Total Processed Grammars 345 100.00%

Grammars with LR 92 26.67%

Tagged grammars 270 78.26%

Tagged grammars with LR 90 26.09%

Valid tagged grammars 98 24.35%

Valid grammars with no tagging 66 18.26%

Valid grammars that had LR 6 0.017%

Skipped validation 105 44.06%

7 DISCUSSION AND FUTUREWORK

In this section we will discuss the results of the experiments, revise

the limitations solving which would potentially result in higher

ratio of valid grammars, propose solutions for some of those issues

and �nally propose an additional tagging technique that was not

explored in this article.

7.1 Discussion

According to �nal results, out of 240 grammars for which we were

able to run validation algorithm, 164 or 68.3% of grammars turned

out to be convertible to its visibly pushdown equivalent. Surpris-

ingly, a relatively large number of grammars, namely 66 or 18.26%,

did not need tagging to be convertible. Given that visibly pushdown

grammars are closest to regular grammars, with exception, except

for augmentation with call and return separation, this might mean

that those grammars can be converted to a regular equivalent. Ex-

amining some of those grammars visually we were not able to �nd

contradictions to this assumption. Initially as a measuring point

of our progress we chose a the number of grammars that Jia et al

were able to convert in their work. Even though we were not able

to test for all grammars, the ratio of convertible grammars to the

total number of �les as a result of running our algorithm is higher:

Jia et al were able to convert 136 grammars out of 239 or 56.9%.

Note that in their work the total number of grammars is less too:

this might be due to the fact that they used only one grammar for

each language with multiple versions, when for this experiment

we treated grammars for di�erent versions of languages separately.

The results in table 1 6 show that most of grammars, namely

78.26% can be tagged. Since in this article we covered only one

transformation technique, namely removal or left recursion, it is

theoretically possible to achieve higher number of valid grammars

through other transformations or tagging techniques. One of the

possible techniques will be introduced later in this chapter 7.3.

7.2 Limitations and future work

One of the limitations that we faced during the experiment phase

was that the algorithm for �nding all had a high complexity. It

would potentially be possible to apply Johnson’s algorithm to the

graph if some transformations are made to the grammar. First, to

eliminate loops containing only one edge, we could introduce an

intermediate rule, and therefore an intermediate edge in the graph.

Second, for each repetition of the same non-terminal on the right

hand side of the rule we could also introduce a unique intermediate

rule. Doing this would assure that graph no two edges between any

two same nodes. This would make dependency graph suitable to

apply Jhonson’s algorithm on it. However, we need to keep in mind

that such transformations will greatly increase both number of

vertices and edges in the graph, as well as the number of di�erent,

and Johnson’s algorithm has complexity of ċ (O((n+e)(c+1)) where

Ĥ, ě and ę are number of nodes, edges and cycles in the graph

correspondingly. Therefore, such transformation my have very

little, if any, positive e�ect on time complexity of the algorithm.

When tagging grammars by precedence, in case there is a con�ict

between possible call-return pairs. In case there is same number of

con�icting pairs, one pair is chosen arbitrary. Instead of excluding

con�icts, it is possible to instead try di�erent tagging sets. This

would be valuable since there could potentially be grammars the are

convertible only with speci�c tagging, while our algorithm faultily

chooses pairs that are not useful for conversion.

7.3 Stropping

Stropping is a technique that was commonly used to make a letter

syntax have a speci�c property, e.g. being a keyword in a language.
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Essentially, stropping involves augmenting a terminal with some

characters, for example with dots in FORTRAN, with intention to

treat such symbols di�erently compared to not augmented symbols

during parsing. This technique was used in ALGOL [4]. In this

section we will show how stropping can be used to push limits of

tagging further, potentially allowing for more extensive tagging of

grammars. First we will take a look at an example.

Ĉ → ėāĘď

Ĉ1 → ėďę

ā → ě

ď → ĩ

In the grammar above our algorithm, when collecting pairs of

potential call and return symbols would �nd two candidates: (ė, Ę)

and (ė, ę). Then the algorithm would arbitrary choose one of those

combination, since none of them has more occurrences and there-

fore they have equal priority. However, it is possible to introduce

an intermediate nonterminal in place of terminal ė, such that when

tagging, those nonterminals would be treated di�erently:

Ĉ → .ėāĘď

Ĉ1 → ..ėďę

ā → ě

ď → ĩ

ĢěĮěĨ

.ė → ė

..ė → ė

Here we augmented terminals ė with one or two dots and added

two transitions to the lexer of our grammar. Since both .ė and

..ė lead to the same terminal ė, the grammar is equivalent to the

original grammar. However, .ė and ..ė are di�erent symbols and

therefore there will be no con�ict when tagging the grammar, and

both pairs (.ė, Ę) and (..ė, ę) can be tagged. It will make possible

tagging of languages that have repeating keywords shared between

multiple features.

8 CONCLUSIONS

The goal of this research was to attempt converting Context Free

Grammars to their Visibly Pushdown equivalent. To do that, an

tagging algorithm was implemented [2] and di�erent heuristics

were tested. Then, using an approach that produced more precise

tagging, we evaluated structure of tagged grammars to test if those

grammars can be converted. In order to accomplish that, we imple-

mented an algorithm that utilises dependency graph to check of

loops in that graph. The next step to further increase number of

convertible grammars was grammar transformation. According to

our results removing left recursion can indeed be useful for con-

verting a grammar to its VP equivalent. There are more tagging

approaches, as well as grammar transformations that can be imple-

mented to investigate their e�ect on performance of the algorithm.

In addition to those �ndings, we found out that relatively large

number of grammars in the repository that was used for testing

can potentially be converted to regular expressions.
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