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Fig. 1. MaritimeManet simulaiton

Thales is developing a new peer-to-peer distributed communications system
for maritime purposes named MaritimeManet. MaritimeManet is a novel
Mobile Ad-Hoc Network (MANET) designed with Multi-Beam Antennas in
mind to circumvent the classical limitations of MANETs at these distances.
For this new network, however, the need arises for a testing platform that al-
lows iteration upon the distributed applications that will run on the network
and the algorithms comprising MaritimeManet itself.
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1 INTRODUCTION
As we move to an ever more technological world, the value of
connecting everything to the internet is becoming increasingly
important. Conventionally, devices are connected to the internet
through physical cabling or short-range wireless connections. This
approach only works in some cases. There are other approaches to
connecting systems. Wireless mesh networks are widely explored to
connect platforms without centralized infrastructure. Their power
lies in providing network access in places where using physical
wires is challenging due to terrain. However, this flexibility often
comes at the cost of link quality and bandwidth [7]. These problems
are compoundedwhen looking at the case of mobile ad hoc networks
(MANETs), where the individual platforms are not fixed, and issues
such as neighbourhood discovery and changing links come into
play [1]. MANET routing algorithms such as BATMAN [4] have
largely addressed these issues. However, unlike land-based mesh
solutions, the naval space creates new challenges that are not met
by current solutions. The distances in the maritime environment
can be incredibly vast, limiting the availability of platforms and the
bandwidth of the connections between them [3].
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To combat these issues, a new system called MaritimeManet has
been proposed. This is amobile ad-hoc network specifically designed
for a maritime operating environment. MaritimeManet describes a
specific protocol stack layer that combines to form a mesh network.
In addition to this, the unique property that sets MaritimeManet
apart from other MANETs is its use of multi-beam antennas (MBAs)
[3]. MBAs are a set of directional antennas that combine to form a
360-degree area of coverage, similar to omnidirectional antennas.
This way, the system can take advantage of this increased range
and improved signal quality of directional antennas while still main-
taining full coverage. However, this approach carries a significant
limitation that MaritimeManet is designed to solve: what happens
when a platform rotates away from the directional antenna currently
holding the connection? For this, MaritimeManet can intelligently
switch its connection from one antenna to whatever antenna would
have the strongest signal strength to replace it seamlessly. This
process is called a “handover.” Along with this and the rest of the
protocol stack, MaritimeManet can combine high capacity with high
flexibility in the challenging maritime environment.

MaritimeManet is currently still in its early days of development.
Therefore, it needs to undergo rigorous testing. This was initially
done in collaboration with the Dutch Coast Guard by physically
mounting the system on ships and testing them out at sea. Unfortu-
nately, this approach is time-consuming and expensive. Deploying
the system out to sea is a multi-day task, making it obstructive to
testing smaller-scale applications. These ships also need crew to
control the ship itself and the tests being run. Lastly, it is hard to
have any real control and oversight over what is happening; you
cannot control the environmental conditions, making repeatable
experiments impossible. For this, a new testing environment was
needed to solve these issues and to test both the system itself and
how applications running on it will behave.

1.1 ResearchQuestions
This led to the following research questions, which this paper will
aim to answer:
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• RQ1: What should the initial virtualisation architecture be,
and how can this architecture be iterated upon to support the
future direction of MaritimeManet?

• RQ2: What are the most appropriate hypervisor/container
platform and virtual networking tools to implement the ar-
chitecture accordingly?
– SRQ2: By what criteria can we evaluate the functionality
and performance of the tools for implementation?

• RQ3: How can the virtual environments dynamically be set
up according to the desired configuration set by the Digital
Simulator for MaritimeManet?

2 BACKGROUND
A series of systems were developed to address these issues to cre-
ate a lab environment for performing tests. The first system is the
Distributed Simulator for MaritimeManet (DSM). Its architecture
is described in Fig 3. It is an implementation of MaritimeManet
that can simulate how the system will perform and its decisions
under changing topologies. However, the DSM had some inherent
drawbacks; it had a simplified model of moving platforms, making
it impossible to test complex changes in network topology. It was
purely an implementation of the decision-making ofMaritimeManet,
excluding the possibility of testing applications and routing proto-
cols that would be running on the network. The second system was
the BATMAN Topology Configurator, designed to test the higher
layer OSI layer functionality of MaritimeManet, such as routing and
applications. It comprises embedded computers connected via cables
that can virtually configure themselves to different topologies using
a virtual ethernet switch [6], Fig 2. This approach still had draw-
backs: it needed to be manually configured for different topologies,
it could only differentiate between connected and not connected, as
it could not simulate weak/low bandwidth connections. It was also
physically large, comprising multiple pieces of hardware, with one
new computer required for each additional platform to simulate the
corresponding new configuration required.

The drawbacks of both systems and the need to test applications
under more complex topologies led to the integration of both these
systems. This integration used the output decisions of the DSM
to dynamically configure the BTC by changing other properties,
such as the bandwidth according to the signal strength. This system
also introduced a more advanced movement simulator, allowing
for larger, more complex topologies. This new system was still left
with one of the main issues from the BTC, which was the physical
hardware requirement. An embedded computer was still required
to simulate each platform. It was integrated as described in Fig 4,
by taking the core components of both systems and linking them
together with the use of python scripts and commands sent through
SSH.

2.1 Other existing approaches
Existing systems for simulating complex networks exist. Tools like
NS3, QualNet, JSim, etc., all have some support for emulating full
nodes and are very extendible [5]. the limiting factor of these net-
work simulation tools is that they are designed to test new networks
with existing protocols. They often lack support for complex arrays

Fig. 2. Architecture of the BATMAN Topology Configurator

Fig. 3. Architecture of the Distributed Simulator for MaritimeManet

Fig. 4. Architecture of the integrated system of both the DSM and the BTC

of Multi-Beam antennas or have a high complexity for implementing
mobile nodes. But lastly, MaritimeManet, being a new network with
its own protocols for neighbourhood discovery, frequency selection,
and routing, is not supported by the current set of tools out there.
Leaving a space open where this Digital Twin can add value.

2.2 Configuration document
Many of the decisions made are guided by a document outlining
the configuration of a complete MaritimeManet node. This docu-
ment defines certain network configurations and IP allocations and
describes what features a node can and cannot support. As the sim-
ulator aims to be a true Digital Twin Prototype, the design decisions
will reflect these restrictions as much as possible for the simulator
to maintain versatility and correctness.

3 METHODOLOGY
The first part of Research Question One is Identifying which princi-
ples a DTP for MaritimeManet should adhere to. This comes from
two directions. Firstly, there are the initial requirements for this
system: It should be usable by both technical and non-technical
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persons and able to scale dynamically to adapt to different test cases.
It should also be a digital twin closely resembling the final system
so that MaritimeManet can be tested in an environment mimicking
its final deployment environment. The last principle comes from
good development practices: the system should withstand future re-
quirements or be adaptable enough to adhere to those requirements
with minimal change.

The system should be designed with three types of end users
in mind: the developers of MaritimeManet, the developers of dis-
tributed applications intended to run on MaritimeManet, and lastly,
people looking to give technical demonstrations of the system as
a whole. For both types of developers, the system needs a way to
quickly deploy the code to be tested and provide a testing interface
that allows quick and long tests to be specified and reported upon.
For demonstrations, the system needs to be visual enough to be un-
derstood and interpreted by people without a technical background
or unfamiliar with the MaritimeManet project. The current system
does this through its use of waypoints to define the movement
of platforms within the simulation, which was designed based on
feedback from a potential end user and how their domain of naval
navigation interacts with systems. However, this should also be
expanded upon to demonstrate the capabilities of the applications
running on it.
Designing the system with the future in mind is crucial to en-

sure that the digital twin stays relevant and usable in the changing
landscape and requirements of the final system. This is approached
from two angles: identifying the direction MaritimeManet is cur-
rently headed in and how the digital twin can be designed with the
near to mid-future requirements in mind. These are from how the
digital twin can become a test bed for distributed applications and
MaritimeManet itself to accommodating alternate MaritimeManet
implementations. The second angle is that of using extensible pat-
terns and interfaces and documenting how these interfaces work
and how they were designed to be used. Giving space for future de-
velopers to expand upon the current system instead of redesigning
large portions of it to fit future development directions.
Research Question Three aims to answer how the system can

be set up dynamically at different scales. This is one of the initial
requirements. It has to scale to extensive simulations involvingmany
virtual platforms with complex distributed applications running
simultaneously. However, what is important is that the digital twin
should be able to scale to this size rapidly. This allows for quick
iteration and changing of simulation size should the need arise. The
design options will also be evaluated to determine how they will
affect the Digital Twin’s ability to achieve this goal.
To answer the second Research Question, we will use the deci-

sions made in the architecture to inform what types of tools we will
need to realise it.

4 OPTIONS

4.1 Methods of Isolation
There were three options for isolating the processes and routing
from each other: using network namespaces, containers, and virtual
machines. We will only consider the last two. Network namespaces

Fig. 5. Architecture of virtualisation using containers

do not allow for the dynamic scaling that is required for this virtu-
alised simulator.

4.1.1 Containerisation. One approach is to use containers to sep-
arate the processes from each other. Fig 5 shows a proposed ar-
chitecture using containers. The docker host can dynamically cre-
ate/destroy containers based on the current test’s needs, meeting
the scalability requirement. This approach has the advantage of
using containers’ fast and performant scaling. It’s also relatively
simple in terms of configuration. Containerised approaches tend
to integrate well with existing test frameworks, allowing quick in-
tegration into workflows. This does, however, come at the cost of
versatility. This can be seen in Fig 5 where the BATMAN processes
fall outside the docker containers and are all kernel processes. This
limits the versatility of testing other routing algorithms since they
do not all necessarily integrate similarly. It also makes it difficult to
scale the networking component without taking the whole network
process of the host offline. Furthermore, moving to a more complete
emulation of a MaritimeManet node will not be possible, making
iterating on versions of MaritimeManet significantly more diffi-
cult and time-consuming. The system for control of using VLANs,
bridges, an OpenVSwitch, and the DSM are all directly borrowed
from the integration project.

4.1.2 Virtual Machines. Another approach is that of virtual ma-
chines coordinated by a hypervisor. Virtual machines allow for
complete emulation of other computers, allowing multiple guests to
run within a single host. Each computer is completely isolated from
the others, having a separate virtual CPU, memory, storage, devices,
and kernel. This level of isolation is quite useful for prototyping
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Fig. 6. Architecture of virtualisation using Virtual Machines

the MaritimeManet nodes. It allows complete images to be run and
tested, requiring minimal to no changes before being deployed to
production, minimizing the amount of real-world tests that need to
be run. In addition to this, virtual machines can use optimization
techniques like templating to replicate many nodes quickly for test-
ing different-sized topologies. These improvements in versatility do,
however, come at the cost of some complexity. Fig 6 showcases a po-
tential architecture realized through the use of virtual machines. All
computational tasks had to be done inside a virtual machine. While
not strictly necessary, everything works similarly, making the setup
easier to replicate onto new hosts. The creation of guest machines
inside of the host also comes at the cost of a bit of performance,
while this is is very low with modern virtualisation [8], it does mean
that containers will be slightly more performant. The networking
itself is also a bit more complex when using virtual machines. As
can be seen in Fig 6, the network interfaces from the BATMAN
processes to the Linux bridge include a middle step made up of two
interfaces, one on the Guest, which presents itself as an ethernet
interface and one on the Host which presents itself as a virtual TAP
network interfaces. This, again, leads to more complexity when
configuring the network.

4.2 Networking
A couple of conditions must be met for functional networking to be
virtualised. Data sent from a sector has to be completely isolated
from data from other sectors, even when coming from the same
node until it reaches the OpenVSwitch. The method by which data
is isolated must be dynamically addressable by a control process.
There must also be room to scale the approach to work for different
network topologies with a variable number of nodes present. This
firstly requires a virtual link to carry the traffic from one port to the

Fig. 7. Possible options for connecting interfaces using bridges

next, which will be done through Linux bridges, and also a plan for
how the data carried will be isolated.

4.2.1 Different bridge configurations. We consider three different ar-
chitectures for connecting the many interfaces of the BATMAN pro-
cess to the OpenVSwitch responsible for establishing/maintaining
the virtual connections. These options differ by how the traffic is
isolated when travelling from the BATMAN process to the Open-
VSwitch, characterised by how many bridges are used for their
implementation. One bridge for each node sector, one bridge per
node, or one shared bridge for all nodes.
Option A in Fig 7 shows each connection, giving a sector its

own Linux bridge for traffic. This greatly simplifies any work that
has to be done with setting up more complex ways of separating
traffic, but it does have a few drawbacks. Firstly, one virtual network
port is required per sector. This is unrealistic according to the final
configuration of MaritimeManet, which defines the nodes as only
requiring one physical ethernet port in total, not per sector.
Option B solves this by defining a Linux bridge per Maritime-

Manet node, with the traffic of the different sectors being isolated
using VLANs. While this makes the architecture compatible with
the configuration of a MaritimeManet node, it still has two tradeoffs.
To create these bridges, the host’s networking service has to be
restarted, interrupting all connections to the simulation. Secondly,
OpenVSwitch must be able to handle dynamically changing hard-
ware interfaces. This can be supported through hot-plugging but can
still have unexpected behaviours with interface naming, especially
at larger scales.
Lastly, there is the option C. This approach only uses a single

Linux bridge. It also uses many VLANs to separate network traffic.
This approach involves embedding VLANs within an outer VLAN.
The inner VLAN then describes the sector information as defined
by a static configuration, while the outer VLAN indicates which
node the traffic originates from. This practice has the name of QinQ,
as VLANs are defined by the 8021q standard. It does require a more
complex configuration within the OpenVSwitch to separate the
VLANs and assign the correct VLANs to the correct MaritimeManet
nodes. But in doing so, it does not require a full restart of the host’s
network service whenever the simulation scale changes.

4.3 Interfaces
There are two ways to implement QinQ networking for this use case.
This is based on how the hypervisor handles virtualised network
devices, of which a diagram can be seen in Fig. 8
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Fig. 8. Diagram of virtual machine network interface

4.3.1 QinQ on Virtual Machines. The first option is to define the
QinQ network on the eth0 interface within the VM itself. This is
the simplest option for quick configuration, as it is simpler than
modifying the tap interface. However, it is less accurate to the final
configuration of MaritimeManet, as it requires modifications to the
virtual machine image either before the virtual machine is started
or while it is running through a shell connection.

4.3.2 QinQ on TAP interfaces. The second option is defining the
outer VLAN on the tap interface. Since this is transparent to the
virtual machine itself, it allows the entire configuration of a Mar-
itimeManet node to be used without modification. However, the
unfortunate limitation is that configuring QinQ on a tap interface
has proven more difficult than configuring it within the virtual
machine.

4.4 Control plane
For the virtual simulator to function and allow the user the flexibility
of manually inspecting their tests, data needs to flow between the
control plane of the simulator, to the simulated entities themselves,
and back. For a containerised approach, this is very simple, with the
ability to inspect the files created by a test program, and spawning
shells within each container. For the approach of virtual machines,
this ability can be implemented in different ways, each with trade-
offs.

4.4.1 Serial. A serial port allows a shell to connect directly to a
guest VM without requiring a network connection. This requires
no configuration from the VM’s side and very little effort from
the hypervisor’s side. However, a serial shell does have some big
limitations. It does not allow easy file transfer, so copying logs is hard
to impossible. It works by streaming only the raw text information
from the serial port. So, there is no native way of checking the
execution status or exit code from an executed command, only the
textual output.

4.4.2 SSH. Another approach is to use a secure shell (SSH). This
approach does not have the issues of using a serial port but at the
cost of having requirements on what will need to be installed on the
MaritimeManet node itself. It requires an active network connection
configured in advance to give the control plane an IP address to
connect to, as well as having to be on a bridge with every other
device that has to be connected to via the control plane.

4.4.3 Guest Agents. Lastly, there are guest agents. These are small
programs that need to be installed on the MaritimeManet nodes
themselves, which can allow a hypervisor to interact with them.
They support file transfer, command execution, and other methods
to control the virtual machine itself. However, the API to communi-
cate with them is quite a bit more cumbersome, and a guest agent
will not allow a remote shell into the virtual machine, which pre-
vents access to a powerful debugging method.

5 DEFINITIVE ARCHITECTURE
The definitive architecture can be seen in Fig 6. A hypervisor is used
as the host, and virtual machines run the individual MaritimeManet
nodes. This was chosen as it best allowed for the future direction of
MaritimeManet. By being a closer representation of what the final
product will look like, there is a greater versatility of tests which
can be run—the greater level of isolation facilitates the ability to test
different routing algorithms. This system also allows for an eventual
shift of the control plane from the Distributed Simulator of Mar-
itimeManet to the nodes themselves, allowing the neighbourhood
discovery and channel selection production code to be run as if it
were communicating out at sea.

Fig 6 also used the network type C as illustrated in Fig 7. Using a
single bridge allows for the seamless scaling of the network compo-
nent. The tradeoff of using multiple bridges can be justified by the
complexity it adds in terms of the number of simulated Ethernet
interfaces and the departure away from the final configuration as
described in the configuration document. This, combined with con-
figuring the VLANs on the tap interface (Fig. 8), allows for complete
adherence to the configuration requirements of the final production
system. It also prevents the need for having to modify the configu-
ration files on the individual MaritimeManet nodes while setting
up the tests, removing a step in the start-up process.

5.1 Choice of Hypervisor
The choice of hypervisor was based on a couple of criteria. It should
have many network features to accommodate this use case. It should
be well supported by a community with enough documentation to
be integrated. And it should ideally be free and open source to make
it accessible. For these reasons, Proxmox VE was chosen since it
scores high on the desired categories [2].

6 RESULTS AND DISCUSSION
So far, a proof of concept has been developed, proving Proxmox to be
a viable platform for building the Digital Twin. This proof of concept
is based on the design in Fig 4, where the components are described
thereby normal computers or embedded devices being virtualised
one-to-one. This demonstrates the ability of the simulation to scale
from one to four nodes with little effort from the user, as well as the
control plane still functioning when virtualised. This, of course, is
heavily limited in terms of the ability to scale beyond, but there is no
longer a close theoretical/practical limit imposed by, for example, the
cost of embedded computers or the amount of cables and physical
space required to set up the simulation.

The ability to dynamically scale the number of virtual nodes has
already been tested outside of integration with the DSM and BTC.
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The system could scale to 40 nodes within two minutes and back
from that in the same time period. This demonstrates that the chosen
architecture answers the third research question by example.

6.1 Further works
The Digital Twin architecture can facilitate the following future
improvements to the MaritimeManet testing environment: the in-
tegration of containers as application test environments and the
movement of much of the core MaritimeManet logic and protocols
from the simulator to the individual nodes themselves. Using sep-
arate containers for testing applications would be integrated by
routing the traffic from each container to a separate MaritimeManet
node, which acts as a gateway. As for moving the core protocol
logic, with some adaptations, the DSM can simulate only the control
radios, with the control logic (handovers, neighbourhood discovery,
frequency decisions) being able to be moved to the final production
location of the node itself.

A promising next step for the architecture itself is to replace the
OpenVSwitch and the bridge network system with an event-based
packet simulator. This way, the simulator can achieve even more
granular control over exactly how the propagation of the packets is
modelled, as well as artificially and in a controlled manner insert
faults into the system to test resiliency.

7 CONCLUSION
The goal of this paper was to propose an architecture for a Digi-
tal Twin Prototype for MaritimeManet, what is required for this

architecture to be scalable, and what technologies will be needed to
implement it. We propose an architecture based on virtual machines
that can handle the use case at scale while anticipating the future
requirements that this system may face. This will reduce the costs
and time needed for testing distributed applications in maritime
environments and allow for more complex and longer-running tests
on their functionality.
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