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Abstract

Rijkswaterstaat (RWS), the executive branch of the Dutch Ministry of Infrastructure and Water
Management, has a significant challenge in renovating and replacing navigation locks. Due to the
labour intensity of the current Engineer to Order (EtO) production strategy, RWS decided to tran-
sition towards a Configure to Order (CtO) production strategy. The CtO strategy is supported by
a product platform. The components of the product platform have restrictions on how they may
be combined and have to align with the project requirements. Therefore, the selection of valid
configurations using components from the product platform is facilitated by a product configura-
tor. A configurator simplifies the practical application of a product platform.

Product configurators are widely used in engineering-oriented companies to configure products
and have resulted in many positive effects. However, the development of a configurator often turns
out to be more challenging and labor-intensive than initially expected. Configurators for complex
products, such as locks, have many components and restrictions, and the number of different con-
figurations increases exponentially with the components in the product platform. Furthermore,
the configurators are manually developed, verified, and validated, which are error-prone and labor-
intensive especially for complex products.

Often product configurators are used to configure new products, however the lock configurator
should be suitable for replacement and renovation of an existing lock. In the latter case, the current
situation and the scope for the different components, e.g. renovate, replace or retain, influences
what may be chosen in the new configuration. Furthermore, the design of a lock is largely deter-
mined by the demands of the location in the waterway network and by environmental conditions
at that location. Location specific requirements (LSR) impose restrictions on the desired lock
configuration.

Given the adverse effects of manual development and the lack of a method to automatically
develop a configurator based on the product platform and additional requirements, RWS wants
to investigate the possibility of automatically generating the configurator. This would help avoid
human errors and make it easier to create valid configurations and how to deal with the challenges
posed by the configuration of renovation projects.

In current research, a method is proposed for the automatic generation of a product configu-
rator, from which corresponding solution space can be defined. From the product platform, LSR
and design rules, corresponding product configurator can be synthesised using Binary Decision Di-
agrams, which guarantees to produce only valid configurations. Moreover, this configurator is used
to create configurations for both replacement and renovation projects. Furthermore, the design
rules for renovation projects are automatically calculated. This way, RWS users no longer have
to manually develop and verify the configurator, but only to specify the design rules and validate
that specified design rules are correct. The proposed method is demonstrated by synthesising a
configurator for a complex lock module based on the product platform and project requirements.
The method enhances efficiency, minimizes error sensitivity, reduces labor intensity, facilitates ease
of maintenance and adaptability, all while guaranteeing the production of valid configurations.
Furthermore, the method is generic and can therefore also be applied for other companies that
want to synthesis a configurator.

iii



Contents

Preface ii

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Product platform navigation lock 7
2.1 Lock composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Product platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Location specific requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Project type requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Product configurator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Requirements specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Theoretical background 14
3.1 Solution space definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Configurator calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Supervisory control synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Configurator synthesis 17
4.1 Configurator data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Question visibility, answer visibility and calculation rules . . . . . . . . . . . . . . 19
4.3 Synthesis of the rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Configuration process for greenfield and brownfield . . . . . . . . . . . . . . . . . . 28

5 Application of the method 32
5.1 Generation of configurator data structure . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Synthesis of the rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Generation of Merkato template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Validation of configurator data structure . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Generation of project requirements specification . . . . . . . . . . . . . . . . . . . . 35
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Discussion 40
6.1 How can the configurator solution space be defined? . . . . . . . . . . . . . . . . . 40
6.2 How can a configurator be developed to guarantee the production of valid

configurations? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 How can a configurator be used for both greenfield and brownfield projects? . . . . 41

iv



6.4 What approach can be utilized to facilitate configurator management and
maintenance? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusion and future work 43
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 45

A Product platform 48

B Configurator data structure for greenfield and brownfield 50

C Python scripts 54

v



List of Figures

1.1 Lock complex with two chambers in Eefde, the Netherlands . . . . . . . . . . . . . 1
1.2 Process scheme illustrating the application of the method . . . . . . . . . . . . . . 6

2.1 Top view of a lock with two lock heads (dashed) [24][18] . . . . . . . . . . . . . . . 7
2.2 Relationships between the model elements component and (component) variant [40] 8
2.3 Example product platform for the lock head . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Merkato home screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Merkato template view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Merkato configuration view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Two BDD’s representing the same formula [23] . . . . . . . . . . . . . . . . . . . . 15

4.1 Overview of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Example DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Boolean logic of constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Flowchart configuration process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Generation of configurator data structure . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Generate configurator data structure . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Calculate table example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Visible table example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Option-visible table example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Example of a product tabel with a single condition column . . . . . . . . . . . . . 37
5.7 Example of a product tabel with multiple condition columns . . . . . . . . . . . . 37
5.8 Lock head configurator in Merkato for greenfield . . . . . . . . . . . . . . . . . . . 38
5.9 Lock head configurator in Merkato for brownfield . . . . . . . . . . . . . . . . . . . 38
5.10 Generation of project requirements specification . . . . . . . . . . . . . . . . . . . . 38
5.11 Products lock head for greenfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.12 Products lock head for brownfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.1 Product platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



List of Tables

2.1 Location specific requirements [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Location specific requirements for the lock head . . . . . . . . . . . . . . . . . . . . 33

vii



Glossary

(Product) Configurator Software-based expert system that assists users
in creating product specifications by limiting
how various components and properties can be
combined [41][13].

Binary decision diagram (BDD) A binary decision diagram (BDD) is a data
structure used to represent a Boolean function
by a finite Directed Acyclic Graph (DAG) [10].

Brownfield project Project for the partial replacement and/or
renovation of an existing lock.

Component A part of a lock for which a variant can be
chosen.

Component scope In a brownfield project, the scope for
each component must be specified, indicating
whether the component is to be replaced or
renovated.

Configuration The set of selected variants for a specific project.

Configurator rule Rule used in the configurator in the form
IF condition THEN consequence. This is
either a question-visible-, answer-visible- and
calculation- rule.

Configurator software Software that is used to execute our
configurator. For this, the Merkato software is
used.

Configure to order (CtO) Production strategy in which products are
configured according to each customer’s
specifications.

Current situation Present component variants according to the
product platform in a lock.

Design rules Excluded-, enforced combinations and
precedence rules.

Enforced combination A combination of two or more (component)
variants enforced to select if all (component)
variants, in the combination, except one is
selected.
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Engineer to order (EtO) Production strategy in which products
are designed according to each customer’s
specifications.

Excluded combination A combination of two or more (component)
variants that cannot be selected together.

Greenfield project Project for the construction of a new lock or for
the complete replacement of a existing lock.

GRIP The project management system used by RWS
in which the product platform is implemented.

Incompatible combination A combination of two or more variants that may
not be selected together.

Location specific requirements (LSR) Requirements originating from the lock’s
location that influence the lock’s design.

Mutually compatible A set of (component) variants that may be
selected together.

Product platform Defined by [21] as: ”A set of common
components, modules, or parts from which a
stream of derivative products can be efficiently
developed and launched”.

Project specific requirements (PSR) Requirements specifically for a single project,
such as the LSR, project type, current situation
and component scope

Project type (PT) The type of the project is either greenfield or
brownfield.

Rule-based product configurator Product configurator paradigm that uses
design rules of the form IF condition THEN
consequence.

Solution space All valid configurations produced by a
configurator.

Synthesis Algebraic calculation.

Valid configuration Configuration that complies with all
requirements.

Variant A technical solution for a component.

ix



Chapter 1

Introduction

The Netherlands has one of the busiest waterway networks in the world [29]. Vital assets of the
waterway infrastructure are navigation locks. A navigation lock is a structure in the waterway
to regulate the water flow and to enable safe navigation passage between different levels in the
waterways [27]. Navigation locks in Dutch waterways are complex systems consisting of many
components (and component interfaces) uniquely made to meet location specific requirements
(LSR). Figure 1.1 shows a lock complex with two chambers located in Eefde, the Netherlands.
The left chamber was constructed after the right chamber. A segment gate and a miter gate are
utilized for the upper and lower gate of the left chamber, respectively, while lift gates are used for
the right chamber.

Figure 1.1: Lock complex with two chambers in Eefde, the Netherlands

The 128 different navigation locks located in the main waterways of the Netherlands are
owned and operated by Rijkswaterstaat (RWS)[20]. RWS is the executive branch of the Dutch
Ministry of Infrastructure and Water Management and responsible for the design, construction,
management and maintenance of the main infrastructure facilities in the Netherlands [28].

RWS faces a significant challenge. In the coming two decades, over 50 navigation locks have
to be thoroughly renovated or replaced, since they have reached their end-of-life, no longer meet
modern-day safety standards, or have insufficient capacity to keep up with growing waterborne
transportation [38] [20].

The lock’s requirement specification is elaborated by RWS, which outsources the design and
construction of locks to external parties. To this day, locks are designed according to an
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Engineer-to-Order (EtO) product realisation strategy, where navigation locks are individually
tailored to meet project specific requirements (PSR) in which local stakeholders and engineers
use their personal preferences in designs. As a result, current requirements specification is not
standardised and has led to a large variety of locks in the product portfolio [18]. The reliance on
local specialized knowledge for operating and maintaining these locks, along with the need for
numerous costly and unique spare parts, has a detrimental effect on the reliability, availability,
maintainability, safety (RAMS), and Life Cycle Costing (LCC) of the locks [37]. Furthermore,
EtO production is highly labor-intensive and requires a considerable amount of expertise from
the project team resulting in long realisation times. Simultaneously, the civil engineering and
construction sector is grappling with diminishing market competitiveness, limited innovation,
slow productivity growth, and a shortage of well-trained technical personnel [39]. In view of the
scale of the task, concerns about the increasing variety and labour intensity, RWS wants to
reconsider the product realisation strategy.

Companies across other branches of industry are experiencing similar negative effects due to
the EtO product realisation strategy [19]. Often, the high degree of customization offered by this
strategy is unnecessary. By increasing the degree of standardization, companies can reduce
product variety and negative side effects. A more standardized and often used alternative
product realisation strategy is Configure-to-order (CtO). CtO utilises predefined standard
modules and components to configure a realisable product that meets customer requirements
[37]. Due to the use of standard modules and components, CtO offers a higher standardisation as
well as a lower degree of customization compared to EtO.

To address these challenges, RWS founded the MultiWaterWerk (MWW) project in 2014.
Within the MWW project, methods and tools are being developed to efficiently carry out the
replacement and renovation of locks and to improve the performance of the locks. For the
replacement and renovation of locks in the next to decades, MWW has budgeted several billion
euros. The MWW project primarily comprises two research lines: civil-mechanical and industrial
automation[39]. The civil-mechanical research line aims to develop methods for standardisation
and modularisation of the navigation lock portfolio in order to increase RAMS and decrease LCC
of future locks. As part of the MWW project, it is agreed that these goals can be achieved by
shifting from an EtO to a Configure to Order (CtO) product realisation strategy [20].
Furthermore, as part of the MWW project, RWS decided to utilize this strategy for bridges and
tunnels as well.

A product platform can provide the standardised modules and components for the CtO
production strategy. A product platform is formally defined by [21] as: ”A set of common
components, modules, or parts from which a stream of derivative products can be efficiently
developed and launched”. The MWW project started several years ago, including the
development of a product platform for locks for which the first concept has already been built.
The product platform has a hierarchical structure comprising components and their (component)
variants, for which requirements specifications are made. A requirements specification for a lock
can be configured by selecting variants for necessary components of the lock. The current
implementation of the product platform lacks restrictions on the selection of variants. As a
result, users have the freedom to select any combination of variants from the product platform.
Hence, this can lead to invalid configurations, as further explained in Chapter 2.

The selection of valid configurations from a product platform can be facilitated by a product
configurator. A product configurator is a software-based expert system that assists users in
creating product specifications by limiting how various components and properties can be
combined [41][13]. The configurator asks the necessary product-related questions, accepts only
valid answers, and thus supports the user in selecting a valid configuration from the product
platform during the product configuration process. A product configurator uses configurator
rules to determine when what product-related questions are necessary and restricts how answers
can be combined.
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Components of the product platform relate to those questions, while variants of the product
platform relate to the answers. Configurator rules can be derived from design rules, which impose
restrictions on the need of components and the use of variants, such that configurations meet
PSR as well as existing guidelines and manuals on lock design. If adhered to all design rules, a
configuration is valid. This configuration can then be utilized to generate a standardized
requirements specification. In conclusion, a configurator assist RWS engineers in the creation of
valid lock configurations from the product platform.

1.1 Problem description

Product configurators are widely used in engineering-oriented companies, including the
automotive industry, and have resulted in many positive effects. That is, reducing lead time in
specification processes, ensuring on-time delivery of specifications, lowering resource consumption
for creating specifications, enhancing the quality of specifications, and optimizing products and
services [2] [17]. Together with performance improvements, configurators also bring many changes
and difficulties along [42]. Most companies struggle with designing, developing, and maintaining
product configurators due to a shortage of IT system designers and poor communication between
IT system designers and product designers[42]. The development of a configurator often turns
out to be more challenging and labor-intensive than initially expected [14].

Since the early ’90s, product configurators have been a popular subject of study in both
academia and industry. This has resulted in many publications on theoretical aspects such as
configuration knowledge and design methods. However, only a small number of articles focus on
the practical applications of product configurators [42].

Traditionally, configurators are manually developed, verified, and validated. For complex
products, difficult configurator rules are developed manually. Additionally, it must be verified
and validated that only valid configurations can be made, which is accomplished through manual
testing of the configurator. Manual development, verification, and validation of the product
configurator are error-prone and labor-intensive [36].

In literature, configurations where the user is assisted by the configurator in making choices
are referred to as the ’Interactive Configuration Problem’. After each user interaction, a
reassessment of permissible choices is necessary [12]. The Interactive Configuration Problem is
often modeled in the literature as a Constraint Satisfaction Problem (CSP) [34] [12]. A CSP is
defined as a mathematical problem by a set of variables, each with a specific domain of values,
and a set of constraints specifying allowable combinations of values [34] as further explained in
Chapter 3. Solving a CSP provides all possible variable assignments that meet the specified
constraints. A CSP is generally NP-complete, which implies that solving it may require
exponential time as the number of variables increases, making such problems impractically
difficult with larger input sizes [7].

Configurators for complex products, such as locks, have many questions, answers and
configurator rules. Single design rules can relatively easy be formulated from handbooks and put
together, however the derivation of configurator rules from design rules can become highly
complex due to many restrictions and design rules that use overlapping answers. The number of
different configurations increase exponentially with the number of questions and corresponding
answers, resulting millions or even billions of different configurations. However, these
configurations might contain combinations of answers that may not be chosen together as they
conflict with design rules, which leads to invalid configurations. All valid configurations produced
by a configurator are referred to as the solution space.

A CSP can be represented using a Binary Decision Diagram (BDD). BDD’s are data
structures used to efficiently represent and manipulate Boolean variables and functions as further
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explained in Chapter 4. Solving the BDD for complex products, like locks, can potentially result
in memory explosion[36] [15]. Furthermore, the solution space only contains final configurations
but does directly provide configuration support for the user.

Often product configurators are used to configure new products, which is in this case the
same as replacing a lock completely. However the lock configurator should not only be suitable
for replacement (referred to as greenfield), but also for renovation of the existing lock (referred to
as brownfield). In case of brownfield projects, the entire current situation influences what can be
chosen [34], and for RWS, each component has its own component scope. Furthermore,
brownfield projects may include non-standardized components that RWS aims to phase out
economically during replacements. This raises the question of how to model constraints for
brownfield projects considering the current situation and component scope. Other research
indicates that renovation projects in the civil engineering sector is challenging [34].

The configurator to be developed for RWS must be practically applicable for designing locks.
Product knowledge is represented by the hierarchical product platform, LSR and design rules.
LSR are used to describe the situation for which the lock is used and design rules limit how LSR
and variants can be combined. Based on this knowledge a configurator must be developed. This
configurator should be produce valid configurations, easy to manage and maintain and suitable
for both greenfield and brownfield projects. However, literature lacks a generic method that can
be used for this purpose.

Given the adverse effects of manual development and lack of a method to automatically
develop a configurator given the product platform and additional requirements, RWS wants to
investigate the possibility of automatically generating the configurator to avoid human errors and
make it easy to create valid configurations and how to deal with challenges posed by the
configuration of brownfield projects.

1.2 Research objective

As a result of the problem statement, an alternative method for development of a product
configurator is examined. In this thesis, a method is proposed for the automatic generation of a
product configurator, from which corresponding solution space can be defined.

Automatic generation of the product configurator and thus configurator rules ensure
configurator rules are correctly developed, which means engineers no longer have to manually
develop and verify configurator rules. The goal of this method is to enhance efficiency, minimize
error sensitivity, reduce labor intensity, facilitate ease of maintenance and adaptability, all while
guaranteeing the production of valid configurations. If the product platform or requirements
change, then the method should be reusable to regenerate the adjusted configurator.

The method provides not only a functional configurator, but also ensures its user friendliness.
To achieve this, we aim to integrate the generated configurator into a commercial product
configurator equipped with the necessary features for user-friendliness. The commercial product
configurator used in this research is Merkato.

This research answers the following research questions:

1. How can the configurator solution space be defined?

2. How can a configurator be developed to guarantee the production of valid configurations?

3. How can a configurator be used for both greenfield and brownfield projects?

4. What approach can be utilized to facilitate configurator management and maintenance?
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1.3 Contribution

General methodology development
The main contribution of this thesis is the development of a generic method, applicable for
generating a configurator for any product. Therefore also other companies can use and benefit
from this developed method. Furthermore, this method can be used for both greenfield and
brownfield product configurators, which is referred to as the project type (PT).

The method synthesises the configurator rules, consisting of question-visible-, answer-visible-
and calculate- rules, based on a set of hierarchical questions with discrete answers and design
rules. This research is limited to the use of closed questions, such that each question has a
discrete set of answers of which to choose from. BDD are used for algebraic calculation of the
answer-visible-rules. By creating variables for answers and Boolean conditions for design rules,
configurator rules can be synthesised which guarantee only valid configurations can be made. To
guide the user through the questions, question-visible-rules are derived from the product platform
hierarchy and precedence constraints. Calculate rules are used for invisible questions to make
sure every question has an answer.

Application to RWS locks
In this project, the use of the method is demonstrated by creating a lock configurator for RWS,
as illustrated by the process scheme in Figure 1.2. The numbers in this scheme refer to the
chapters in which the steps are discussed. First a configurator data structure is generated from
the product platform, LSR and design rules. This is then used in the main method to synthesize
question-visible-, answer-visible- and calculate- rules. These rules are then used to generate a
configurator template which can be imported into the Merkato product configurator. RWS users
can use this configurator to create lock configurations. Based on the chosen answers in a
configuration and corresponding requirements specifications from the product platform, the
requirements specification for a specific project, can be generated. If the configurator needs any
changes, this can be done to the input of the configurator data structure and regenerate the
configurator. The validity and practical applicability of the developed method is demonstrated
by conducting a case study on a RWS lock. The implementation of the method is programmed in
Python.

1.4 Outline

This thesis is organized as follows: Chapter 2 provides an overview of the specific background of
RWS. Chapter 3 describes theories found in the literature, which serve as the foundation for the
method developed in Chapter 4 for generating a configurator. The application of the method is
demonstrated through the development of a configurator for a complex lock module in Chapter 5.
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Figure 1.2: Process scheme illustrating the application of the method
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Chapter 2

Product platform navigation lock

A product platform has been developed to support both the replacement and renovation of
navigation locks. This product platform will be implemented through a product configurator.
This configurator should only produce valid configurations. The validity of a configuration
depends on requirements. This chapter describes the components of a lock, the product platform,
the requirements of valid configurations and the requirements of the product configurator.

2.1 Lock composition

Previous research has decomposed a generic lock into components. A component is a part of a
lock and a variant is the technical solution for a component. For example, the component ”Lock
gate” has variants ”Miter gate”, ”Double miter gate” and ”Lift gate”. Some components are
always present in every lock, while other components are optional.

In the research by [24] and [18], a schematic top view of a lock is presented, as shown in Figure
2.1. The lock in this figure has two lock heads, as indicated by the dashed lines. The numbers in
this figure indicate the main components of the lock and a description of the components is given
below. The main components are also the main determinants for the civil-mechanical lock design.
Moreover, the components within the lock head construction have the most complex design rules.
Therefore, the examples will be based on these components referred to as lock head.

Figure 2.1: Top view of a lock with two lock heads (dashed) [24][18]

According to [18], the lock consists of the following elements:

1. Head construction: provides support to components within;

2. Gate: retains water when closed and allows ships to pass when open;

3. Gate actuator: opens and closes the gate;

4. Leveling system: levels water inside the lock chamber. This component is optional, since
water can also be leveled by partly opening the gate;
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5. Leveling actuator: opens and closes the leveling system valves. This component is optional
for the same reason as leveling system;

6. Chamber construction: isolates a part of the waterway between the gates where the water
level can be raised and lowered while containing ships that need to pass the lock;

7. Leading jetty: guides a ship into the lock;

8. Positioning area: positions a ship to enter the lock and provides support for ships;

9. Soil protection: protects the soil outside the lock from propeller turbulence and water outflow;

10. Control system: controls the correct and safe dynamic behaviour of the lock.

2.2 Product platform

In the research by [18], a lock product platform has been developed based on a lock family
analysis of the current lock portfolio. The product platform has a hierarchical structure
consisting of components and (component) variants. Each component has one or more variants,
and in turn a variant consists of one or more (possibly optional) components. As a result,
components and variants alternate with each other as schematically depicted in the model
structure in Figure 2.2.

The product platform is based on the physical system decomposition of locks. Figure 2.3
shows part of the product platform. In this figure, variants are denoted by the prefix
”VARIANT” and optional components are denoted by the prefix ”OPTIE”.

Figure 2.2: Relationships between the model elements component and (component) variant [40]

The product platform contains most common variants and their components used in the
current lock portfolio. Special variants are not included. RWS wants to phase out some variants,
like ”Heatflow ice prevention system” whenever it is replaced.

The product platform supports a CtO. The hierarchy of the product platform dictates for
which component a variant should be selected and when. Starting from the root of the product
platform hierarchy, a lock can be configured by selecting a variant for each component. Each
selected variant consists of components for which again a variant must be chosen. This already
limits the use of certain combinations of variants, e.g. variants ”Wood” or ”Steel” may not be
chosen in combination with the variant ”Lift gate”.

However, there are additional combinations of variants that may not be chosen together due
to the technical characteristics of the variants. These combinations that may not be selected
together are referred to as incompatible. For example, if for component ”Lock gate” variant
”Single miter gate” is chosen, then for component ”Gate actuator” variant ”Push pull gate
actuator” must be chosen. An incompatibility can occur between two or more variants. It is
important that the selected variants in a configuration are mutually compatible. The
compatibility can be derived from, among others, the Landelijke Brug- en Sluisstandaard (LBS).
Furthermore, a configuration must also satisfy LSR and PT in order to be valid, as further
explained in the next paragraphs.
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Figure 2.3: Example product platform for the lock head

The current product platform is implemented in GRIP, the project management system used by
RWS. GRIP does not support the necessary restrictions on compatibility, LSR and PT, resulting in
invalid configurations. Using a dedicated product configurator, RWS can make the right selections
for a projects in GRIP.

2.3 Location specific requirements

The LSR of navigation locks in Dutch waterways are largely determined by the demands of the
location in the waterway network and by environmental conditions at that location. Location
specific requirements impose restrictions on the desired lock configuration. This implies that all
selected variants must adhere to the specified LSR. A design rule for for the LSR contains one or
more LSR and one or more variants. For example, for component ”Lock gate”, variant ”Single
miter gate” may not be selected if the ”Water retention” is ”Bi-directional”. A concept of the
constraint requirements for lock design is displayed in Table 2.1. The exact LSR that RWS needs
can be determined later. The LSR can be derived from, among others, the LBS.

2.4 Project type requirements

The configurator will be used for locks that need to be replaced or renovated, referred to as
greenfield and brownfield respectively. In a greenfield project, an existing lock is completely
demolished and rebuilt. Brownfield projects consist of replacement and renovation work on an
existing lock.

An existing lock can often be described as a set of selected variants of a product platform. If
not, it means that it contains special variants that are not included in the product platform. It is
highly likely that these variants need to be replaced with a better alternative, within the framework

9



of standardization.

Table 2.1: Location specific requirements [18]
Questions Answers
Waterway class CEMT 0

CEMT I
CEMT II
CEMT III
CEMT IV
CEMT Va
CEMT Vb
CEMT VIa
CEMT Via

Lock head width ≤ 8 m
> 8 and ≤ 12 m
> 12 and ≤ 16 m
> 16 and ≤ 20 m
> 20 and ≤ 24 m
> 24 m

Water retention Mono-directional
Bi-directional

Water level difference ≤ 3 m
> 3 and ≤ 6 m
> 6 and ≤ 9 m
> 9 m

Water level variation ≤ 1 m
> 1 m

Operation and control Local
Remote

The component scope determines which variants of the lock need to be replaced or renovated.
For greenfield locks, all variants are replaced. For brownfield projects, some variants need to be
replaced or renovated. If a variant is not replaced, the current variant is retained. If the variant is
replaced, it is possible to choose a different variant. If a new configuration is made for a brownfield
lock, this new configuration must not deviate from the current situation for the variants that are
not being replaced. Brownfield projects thus have additional restrictions on what can be chosen
from the product platform, based on the current situation and component scope. For example, if
in the current situation, for the component ”Lock gate”, the variant ”Single miter gate” is selected
and the component scope for the component ”Lock gate” is either ”Renovate” or ”Retain”, then for
the new situation, the same variant ”Single miter gate” must be chosen. However, if the component
scope for that component is ”Replace”, then the variant may deviate from the current variant.

2.5 Product configurator

The developed configurator can be used by RWS users to configure valid lock configurations
based on the LSR and PT. The RWS users are guided via an interactive process and gives
answers to questions to find a valid configuration.

The development of a method for automatic generating a product configurator is done in
Python and extra functionality is achieved by integrating the configurator into professional
product configurator software.

There are several product configurator paradigms, namely rule-based, model-based, and
case-based [4]. Rule-based systems use configurator rules of the form IF condition THEN
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consequence. Model-based systems use a system model that contains decomposable entities and
interactions between their elements. Case-based systems use previous configurations and adapt
them to current requirements. In this project, the choice is made to work with a rule-based
configurator because it is flexible, transparent, and utilizes IF condition THEN consequence as
proposed in previous research [18]. Additionally, model-independent questions can be easily
added.

The commercial product configurator software used in this research is Merkato. However
another rule based and non sequential configurator could also be used to provide extra
functionality. Merkato is developed by Quootz B.V., who claims to be the market leader in
product configurator software, with their software being trusted by over 100 companies [5].
Figure 2.4 shows the default home screen of Merkato.

Figure 2.4: Merkato home screen

Questions, answers and configurator rules are referred to as fields, options/values and decision
tables in Merkato respectively. Information about how a configuration should behave is stored in
a template.

In Merkato, templates can be manually developed via a graphical user interface. Merkato
offers many functionalities for template development. Figure 2.5 shows the Merkato template
view. In this view, a page named ”Page 1” has been created, containing a section named
”Section 1”. Within ”Section 1”, two fields, each with two options, have been added. Fields can
have various input types, such as text, number, and select. However, since only discrete values
are of interest, the select input type is used. Two options are added to each of the select fields.
Furthermore, a decision table is added to the second field and is shown on the right side of the
figure.

A decision table consists of configurator rules in the form IF condition THEN consequence.
Each row represents a new IF condition THEN consequence. The right column in a decision table
contains the consequence, and one or more columns on the left contain the conditions. If a condition
is true, then the consequence is executed. The table in Figure 2.5 can be read as: IF field 1 is
equal to option 1 field 1 THEN option 1 field 2 is visible and IF field 1 is equal to option 2 field 1
THEN option 2 field 2 is visible. Merkato offers different kinds of consequences, as shown below:
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• Calculate tables: field value will be set to consequence value;

• Visible tables: shows or hides a field;

• Enabled tables: enables or disables a field;

• Product tables: used to put products on the quote list, which is a list of the products used
in that particular configuration;

• Option visible tables: used to show or hide options;

• Option enabled tables: used to enable or disable options.

Figure 2.5: Merkato template view

From a template, configurations can be made. The setup of the template determines how the
configuration should behave. Figure 2.6 shows the corresponding configuration to the template of
Figure 2.5. It can be observed that ”option 1 field 1” is chosen for ”field 1”, and as a result, only
option ”option 1 field 2” is visible for ”field 2”, as specified in the option visibility table.

Figure 2.6: Merkato configuration view
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Additionally Merkato offers a user-friendly interface, web-based functionality, easy and secure
role-based access, version control, bill of material generation, document generation, and other
functionality that RWS need already or might need in the future.

2.6 Requirements specification

As explained in the introduction, RWS only elaborates on the requirements specification for the
replacement or renovation of locks. The requirements specification is a structured set of
requirements that contractors, to whom the project is outsourced, must comply with. The
variants in the product platform are therefore not tangible but rather a sub-requirement
specification for that variant. Based on the chosen variants, it can be determined which
sub-requirement specifications are needed in the project’s requirements specification. In the case
of brownfield projects, additional requirements are needed depending on the current situation
and component scope. [33]

Standardized sub-requirements specifications can be derived from the Basisspecificatie (BS)
Schutsluis, LBS, and Richtlijn Ontwerp and Kunstwerken (ROK), and are listed in GRIP. These
sub-requirements specifications may encompass functional requirements or specifications regarding
the minimal performance of the lock, such as RAMS, as well as LCC [18] [38].
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Chapter 3

Theoretical background

The literature has been briefly scanned for related work. This chapter presents the most
important works that provide the motivation and theoretical basis for the proposed method
discussed in Chapter 4.

3.1 Solution space definition

Constrained programming is widely used in industry to model and solve decision problems [35][11].
A configurable product can be modeled by a Constrained Satisfaction Problem (CSP) of which the
solutions are valid configurations [35].

A (finite domain) CSP can be expressed by a triplet P = X,D,C, where:

• X = {X1, X2, ..., Xn} is a set of n variables;

• D = {D1, D2, ..., Dn} is a set of n corresponding finite domains. Every Xi can take a value
of corresponding domain Di;

• C = {C1, C2, ..., Cm} is a set of constraints of the form c ::= c ∨ c | ¬c | xi < xj for any
1 ≥ i ≥ nand1 ≥ j ≥ n [35][11].

The number of possible configurations without taking constraints into account can be
determined by

∏n
i=1 |Di|. A CSP can be seen as a generalisation of a Boolean Satisfiability

Problem (SAT), which is known to be an NP-complete problem [36] [16].
A special type of CSP is interactive configuration, where a user is assisted by a configurator in

making choices resulting in a valid configuration. During configuration, a user repeatedly selects an
option for a variable until all variables are assigned. Each time a user makes a choice, subsequent
choices that cannot result in a valid configuration due to constraints are removed, resulting in the
production of only valid configurations. Interactive configuration is [11][12]:

• Backtrack-free: all options that do not lead to a valid configuration should be removed;

• Complete: maximally permissive, all options that lead to a valid configuration should not be
removed;

• Real time: should respond immediately.

Questions and answers relate to the variables and domains in the CSP and the constraints to
design rules. That is, the set of answers to a question Xi forms the discrete domain Di. The
design rules can be modeled by means of Boolean functions. This way the parameters of the CSP
define the solution space. This answers the first research question, next section dives deeper into
the implementation of this strategy.
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3.2 Configurator calculation

BDD’s are a long-standing technique that is widely used to efficiently manage binary logical
operations, especially in the area of verification and synthesis [1] [8]. A BDD is a data structure
used to represent a Boolean function by a finite Directed Acyclic Graph (DAG) [10].

In a BDD, each node represents an If-Then-Else (ITE) operator, where the condition is a
decision variable. This decision variable is Boolean, meaning it can be either true or false.
Consequently, each node has two arrows pointing to its child nodes: one arrow is assigned as
true, and the other as false. Depending on the combination of decision variables, the outcome for
that combination is either true or false.

When a BDD is ’reduced’ and ’ordered’, it is known as a Reduced Ordered Binary Decision
Diagram (ROBDD). Every Boolean function can be represented by a unique ROBDD, also
known as the canonical form, which is even more efficient [3].

Figure 3.1 displays two BDD’s representations, both for the formula f(x1, . . . , x6) = (x1∧x2)∨
(x3∧x4)∨(x5∧x6). In this figure, a solid line represents the true case, and a dotted line represents
the false case. The right BDD is reduced and ordered and is therefore more compact.

Figure 3.1: Two BDD’s representing the same formula [23]

BDD’s can be used for constrained programming as a constrained handling technique, usually
outperforming other constrained handling techniques [32].

3.3 Supervisory control synthesis

A configurator with only discrete answers for questions can be modelled as a discrete event system.
Discrete event systems can be controlled by means of supervisory control theory [31]. Supervisory
controllers are often used in systems containing software that controls the operation (of a plant).
Often it receives an action from the operator and decides, based on the current state of the plant,
whether the action is allowed [9]. The supervisor controllers restrict the system’s behavior to align
with the requirements, ensuring the execution of events satisfies the given specification [22] [31].
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Traditionally, the supervisory controller is manually modeled via a model based engineering
approach, which has as downside the manual implementation and verification. Synthesis-based
engineering (SBE) is a form of model-based engineering in which a supervisory controller is
synthesized (computed algorithmically) [31] [26]. Synthesizing guarantees the requirements are
always adhered to, thus verification is not required [26]. Furthermore no manual implementation
is required [30].

An analogy can be drawn between a supervisory controller and product configurator. The
supervisory controller determines whether a specific action by the engineer is permitted based on
specified rules, thereby controlling the requirements specification of a facility (such as a lock).
Traditionally, a configurator is also designed manually, however this thesis explores whether the
configurator can also be synthesised. By synthesising the configurator, the production of valid
configurations is guaranteed, answering the second research question.
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Chapter 4

Configurator synthesis

In this chapter, a method is proposed for the automatic generation of a rule based product
configurator based on (hierarchical) questions with answers and design rules. An overview of the
method is shown in Figure 4.1.

In this method, a generic configurator data structure is defined with which the (hierarchical)
questions with answers and design rules can be described. Configurator data structure is then
used to synthesize (compute algorithmically) the data for corresponding configurator.This
method ensures the production of valid configurations, e.g. configurations that comply with the
design rules. Therefore, the design rules can be used to define the solution space of the
configurator. Furthermore, the method is suitable for the creation of a configurator for both
greenfield and brownfield project.

First, the required configurator data structure is defined. Next, the output rules are defined,
followed by an explanation of how the configurator is synthesised. In the last section, it is discussed
how the method is used for both greenfield and brownfield projects.

4.1 Configurator data structure

The (hierarchical) questions, answers, and design rules need to be systematically described so that
they can be utilized in synthesis. Therefore, a configurator data structure is designed in which
(hierarchical) questions with answers and design rules can be described. What has to be described
in this configurator data structure and how this is done, is explained in the following paragraphs.

4.1.1 (Hierarchical) Questions and answers

Figure 4.2 shows an example of hierarchical questions. It displays a DAG, with questions QUE-A
and QUE-J as distinct root questions. The root questions are the first to be answered, and the
arrows indicate the possible answers and subsequent follow-up questions. Question QUE-A has
answers ANS-A1 and ANS-A2, leading to follow-up questions QUE-B, QUE-C and QUE-D,
QUE-E respectively. Question QUE-J is considered a flat question, since that root question does
not have any follow-up questions.

The relations of questions and answers of a DAG (as illustrated in Figure 4.2) need be
translated into a configurator data structure to be able to perform the calculations needed for
synthesis. The configurator data structure, along with the implementation example from Figure
4.2, is presented in Listing 4.1. The object CF is a nested dictionary. The keys of the outer
dictionary represent the questions. The values of the outer dictionary contain the inner
dictionaries. The keys of the inner dictionaries represent the answers to the questions in the
outer dictionary. The values of the inner dictionaries are lists containing the follow-up questions
that need to be answered after the corresponding answer is chosen.
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Figure 4.1: Overview of the method

Hierarchical and non-hierarchical questions with answers are described using this configurator
data structure and thus it is suitable to describe the product platform from previous chapter. The
hierarchical order of the questions with answers imply design rules. The hierarchy is rewritten in
terms of design rules and non-hierarchical questions. How this is done will be further explained in
upcoming sections.

4.1.2 Additional design rules

Hierarchical questions already imply that some combinations can not be made and imply some
sequence in which questions must be answered. However, the hierarchy might not be sufficient to
restrict all invalid configurations or to prescribe the sequence in which the questions must be
answered.

The configurator data structure should also be able to describe combinations of answers that
may not be selected together, must be selected together and prescribe a sequence in which the
questions must be answered. To this aim, three additional design rules are introduced:

• Excludes: combination of two or more answers that may not be selected together;

• Enforces: combination of two or more answers that must be selected together;

• Precedence: question that must be answered before another question may be answered.
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Figure 4.2: Example DAG

The configurator data structure for the excludes and enforces are displayed in Listings 4.2 and
4.4 respectively. The configurator data structure for excludes is equal to that of the enforces. It
is a list of lists with inside the inner list, tuples containing question and answer pairs of the
excluded/enforced combinations. Example excludes and enforces are displayed in Listings 4.3 and
4.5. In those examples combination F.F1 and G.G1 and combination B.B2, H.H1 and J.J1 are
excluded and D.D1 and I.I1 are enforced respectively.

The data structure used for precedence is displayed in Listing 4.6. It is a dictionary containing
questions as keys and a list of questions as value. First, the key must be answered before any of the
questions in the value may be answered. An example precedence is shown in Listing 4.7. In this
example, question J must be answered before an answer may be given to question A. Furthermore,
question F must be answered before an answer may be given to question G.

4.2 Question visibility, answer visibility and calculation
rules

The output of the synthesis are the questions with answers and configurator rules that describe
how the configurator behaves. These configurator rules are written in the form IF condition
THEN consequence, and is directly implemented in a rule based configurator. Three types of
configurator rules are used, namely answer-visible rules, question-visible rules and calculate rules.

Answer-visible rules are used to determine, based on current selections in the configurator,
whether an answer may be selected or not. An answer may only be selected if the selection does
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Listing 4.1: Example configurator data structure for questions and answers

cf: Dict[str , Dict[str , List[str ]]]

cf = {

"A": {"A1": ["B", "C"], "A2": ["D", "E"]},

"B": {"B1": ["F", "G"], "B2": []},

"C": {"C1": ["H"], "C2": []},

"D": {"D1": ["I"], "D2": ["I"], "D3": []},

"E": {"E1": []},

"F": {"F1": [], "F2": []},

"G": {"G1": [], "G2": []},

"H": {"H1": [], "H2": []},

"I": {"I1": [], "I2": []},

"J": {"J1": [], "J2": []}

}

Listing 4.2: Configurator data structure for excludes

excludes: List[List[Tuple[str]]]

Listing 4.3: Example configurator data structure for excludes

excludes = [

[("F", "F1"), ("G", "G1")],

[("B", "B2"), ("H", "H1"), ("J", "J1")]

]

Listing 4.4: Configurator data structure for enforces

enforces: List[List[Tuple[str]]]

Listing 4.5: Example configurator data structure for enforces

enforces = [

[("D", "D1"), ("I", "I1")]

]

Listing 4.6: Configurator data structure for precedence

precedence: Dict[str , List[str]]

Listing 4.7: Example configurator data structure for precedence

precedence = {

"J": ["A"],

"F": ["G"]

}
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not result in a configuration with restricted answer combinations. If the answer-visible rules are
synthesised correctly, they guarantee the production of valid configurations. Since answer-visible
rules only restrict restricted answer combinations, the configurator is maximal permissive.

The sequence in which the questions are answered, does not influence the production of valid
configurations. Therefore, answer-visible rules do not restrict the user from answering questions
in the wrong sequence. However, it is desired to guide the user through the configurator. To this
aim, question-visible rules are synthesised. Question visible-rules selectively show or hide
questions to help the user walk through the configurator.

Furthermore also calculate rules are synthesised. Calculate rules calculate ”Not applicable”
for questions that become irrelevant (and thus invisible) due to the hierarchy of questions. This
has two advantages: first it makes it easy to check if all questions have been answered, and
second the ”Not applicable” answer can be used in design rules.

Three data structures are introduced to generically describe configurator rules:

• Option visible dictionary: contains for each answer the set of states when that answers is
visible;

• Option field visible dictionary: contains information for each field when it is visible;

• Option calculate NA dictionary: contains information when ”Not applicable” (referred to
as NA) should be calculated.

The questions with answers and configurator rules are later used to generate a configurator.
Hence this will be used to generate a Merkato template from.

4.3 Synthesis of the rules

This section describes how, based on the configurator data structure, the method synthesises the
configurator rules.

4.3.1 Answer-visible rules

In this section the steps for the synthesis of answers-visible rules are explained.

4.3.1.1 Create subproblems

Due to the binary nature of BDD’s, design rules are expressed in Boolean functions.
Answer-visible rules are also expressed in Boolean functions, because for a specific Boolean
condition the specific answer is visible (true) or invisible (false). Furthermore, BDD’s offer
several advantages as described in Chapter 3 and are therefore used for synthesis of the
option-visible rules based on the design rules.

Due to the fact that BDD calculation time grows exponentially, creating a single BDD for this
problem takes to long to solve. Instead of creating a single BDD, a BDD is made for each question,
referred to as the target question. To the BDD for a target question, a subset of the questions,
answers, exclude and enforce rules that influence the question’s answer-visible rules are added.
These relatively small BDD’s still give a valid answer, however the calculation time is significantly
reduced due to the fact that solving multiple simple BDD’s scale linearly in time.
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Listing 4.8: Example derived excludes from Figure 4.2

Excludes_derived_from_hierarchy = [

[(’A’, ’A2’), (’C’, ’C1’)], [(’A’, ’A2’), (’C’, ’C2’)],

[(’A’, ’A1’), (’D’, ’D1’)], [(’A’, ’A1’), (’D’, ’D2’)],

[(’A’, ’A1’), (’D’, ’D3’)], [(’A’, ’A1’), (’E’, ’E1’)],

[(’A’, ’A2’), (’B’, ’B1’)], [(’A’, ’A2’), (’B’, ’B2’)],

[(’B’, ’B2’), (’G’, ’G1’)], [(’B’, ’B2’), (’G’, ’G2’)],

[(’B’, ’B2’), (’F’, ’F1’)], [(’B’, ’B2’), (’F’, ’F2’)],

[(’C’, ’C2’), (’H’, ’H1’)], [(’C’, ’C2’), (’H’, ’H2’)],

[(’D’, ’D3’), (’I’, ’I1’)], [(’D’, ’D3’), (’I’, ’I2’)],

[(’A’, ’A1’), (’B’, ’NA’)], [(’A’, ’A1’), (’C’, ’NA’)],

[(’A’, ’A2’), (’D’, ’NA’)], [(’A’, ’A2’), (’E’, ’NA’)],

[(’B’, ’B1’), (’F’, ’NA’)], [(’B’, ’B1’), (’G’, ’NA’)],

[(’C’, ’C1’), (’H’, ’NA’)], [(’D’, ’D1’), (’I’, ’NA’)],

[(’D’, ’D2’), (’I’, ’NA’)]

]

Initially, no answer has been selected for questions. However, this empty state can not be
used in Boolean functions. Therefore the answer ”undefined” is added to all questions and set as
initial answer. Furthermore, to ensure the validity of the configuration, a configuration is finished
if every question has been answered. Therefore, none of the questions are undefined.

Hierarchical questions are parsed into flat questions and a set of design rules. As a result,
only flat questions and design rules are remaining and are easier to use in the Boolean functions.
The design rules derived are exclude- and precedence rules for each question and its direct
follow-up questions. Answer-visible rules do not restrict the user from answering questions in the
wrong sequence and therefore, for the synthesis of the answer-visible rules, only exclude rules are
considered. Furthermore, branches for not chosen questions do not have to be answered. The
questions in that branch become not applicable. For the questions that can become not
applicable, the answer ”Not applicable” is added. This answer should be automatically selected
or deselected when a question becomes non applicable or applicable respectively. This automatic
selection is done via calculate rules as further explained in Section 4.3.3. The answer ”Not
applicable” distinguishes it from ”Undefined”, such that it is known when a configuration is
finished and it can be used in design rules. For the ”Not applicable” answers, also exclude rules
can be derived from the hierarchy. To illustrate this, the exclude rules are derived from Figure
4.2 and shown in Listing 4.8. Question QUE-C is the follow-up question of answer ANS-A1,
therefore all answers for question QUE-C are excluded for all answers of question QUE-A other
then ANS-A1. Furthermore since question QUE-C is a follow-up question of answer-A1, QUE-C
may not be ”Not applicable”. In this listing, excludes using ”Not applicable” are shown after the
break line. BDD’s are used to ensure the exclusiveness of the option-visible rules. Meaning that
each answer only has unique conditions under which the answer is visible.

To a BDD for a specific question, only exclude and enforce rules are added in which the
specific question is mentioned together with the questions. An exception to this are the exclude
rules derived from hierarchy between the question and its follow-up questions, because questions
already take parent questions into account. A question is always added together with its options.

This is illustrated for question D in Listing 4.9. This subproblem only contains three questions,
namely the target question and the other questions mentioned in the subproblems excludes and
enforces. The questions contain all corresponding answers (except for undefined, because that is
added in the next step). Follow-up questions are removed since constraints of the parsed hierarchy
are added to the exclude list. Looking at the exclude and enforce rules in Listings 4.3 and 4.5, it
can be seen that target question D is only mentioned once in the enforce rule. Therefore, only this
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Listing 4.9: Example relevant subproblem for D

CF = {

’A’: {’A1’: [], ’A2’: []},

’I’: {’I1’: [], ’I2’: [], ’NA’: []},

’D’: {’D1’: [], ’D2’: [], ’D3’: [], ’NA’: []}

}

Excludes = [

[(’A’, ’A1’), (’D’, ’D1’)], [(’A’, ’A1’), (’D’, ’D2’)],

[(’A’, ’A1’), (’D’, ’D3’)], [(’A’, ’A2’), (’D’, ’NA’)]

]

Enforces = [

[(’D’, ’D1’), (’I’, ’I1’)]

]

Listing 4.10: Example automata for subproblem D

{

’D’: {’S’: [’D1’, ’D2’, ’D3’, ’NA’, ’UN’],

’E’: [’D1’, ’D2’, ’D3’, ’NA’, ’UN’]},

’I’: {’S’: [’I1’, ’I2’, ’NA’, ’UN’],

’E’: [’I1’, ’I2’, ’NA’, ’UN’],

’A’: {’S’: [’A1’, ’A2’, ’UN’],

’E’: [’A1’, ’A2’, ’UN’]}

}

enforce is added to the subproblem. The steps in following sections are done for each sub BDD.

4.3.1.2 Create automata representation of states and transitions

In a BDD, only binary variables and Boolean constraints can be added. Questions with answers
are modelled using variables representing the answers together with the constraints that a single
answer for each question is selected at all times. Each variable is symbolized by a single answer,
with a variable set to 1 indicating the selection of that answer. Those variables are referred to as
state variables and are used to describe the current state of the sub-problem.

Based on the state variables, it is determined which other answers for the target question may
be selected. The selection of an answer is referred to as an event. However, to indicate if the
event of selecting another answer is possible, another variable for each answer is required. If that
event variable is set to 1, the event of selecting the answer represented by that variable can take
place.

This automata representation is illustrated for the subproblem of target question D in Listing
4.10. It can be that each question constraints a list for the states and events indicated by ’S’ and
’E’ respectively.

4.3.1.3 Binary encoding of subproblem

In this section a slightly more advanced way of representing the state of a question is introduced,
which can reduce the amount of variables the subproblem significantly.

Since only one of the answers to a question is selected at all times, only describing the selected
answer is sufficient. The binary encoding of the answers is done according to [22], reducing the
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Listing 4.11: Example binary encoding for subproblem D

{

’A’: {

’S’: {’A1’: [0, 0], ’A2’: [0, 1], ’UN’: [1, 0]},

’E’: {’A1’: 2, ’A2’: 3, ’UN’: 4}

},

’D’: {

’S’: {’D1’: [0, 0, 0], ’D2’: [0, 0, 1], ’D3’: [0, 1, 0],

’NA’: [0, 1, 1], ’UN’: [1, 0, 0]},

’E’: {’D1’: 8, ’D2’: 9, ’D3’: 10, ’NA’: 11, ’UN’: 12}

},

’I’: {

’S’: {’I1’: [0, 0], ’I2’: [0, 1], ’NA’: [1, 0], ’UN’: [1, 1]},

’E’: {’I1’: 15, ’I2’: 16, ’NA’: 17, ’UN’: 18,}

}

}

amount of variables per question according to Equation 4.1. This reduction repeats itself for each
question in the subproblem and therefore reduces the amount of variables significantly. Especially
when a subproblem contains question(s) with many answers.

amount of vars after encoding = ⌈log2(amount of vars before− encoding)⌉ (4.1)

It might be that not all combinations of bits are assigned to a state and thus these unassigned
bit combinations are blocked. This is achieved by adding a constrained for each unassigned bit
combination, stating that bit combination may not occur.

The events are not encoded in binary, because there may be multiple events possible from a
particular state. Therefore, each event is encoded by a single Boolean variable.

The binary encoding is illustrated for the subproblem of target question D in Listing 4.11. It
can be seen that every state is binary encoded. Furthermore, each event is assigned a number that
refers to its position among the variables. The states of A are binary encoded by variables [X0,
X1]. Since the states of A require the first two variables, the events for A start counting at 2. In
total, for question D, 19 variables are utilized in the BDD. The allowed events for a specific state
are represented by 19 bit. Furthermore, it can be seen that to state [X0=1,X1=1] no answer has
been assigned. Therefore, variable X0 and variable X1 may not be set to 1 both at the same time.
Hence the constraint ’not (X0 and X1)’ is added.

4.3.1.4 Set up BDD

In setting up a BDD, the library [6] is used. This library constructs BDD’s based on provided
variables and Boolean functions and takes care of the mathematics involved such as managing the
ordering and reduction. Additionally, the library facilitates BDD evaluation, returning for example
all possible combinations of variables for which the expression evaluates in true.

4.3.1.5 Creating disable dictionary

Exclude and enforce rules only contain the states that may not or must be selected together
respectively. To prevent invalid combinations to occur together, the event resulting in a invalid
combination is restricted. The conditions for which an event should be restricted can be derived
from exclude and enforce constraints.
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Listing 4.12: Example disabled dictionary for excludes

disable_dict = {

(’F’, ’F1’): [[(’G’, ’G1’)]],

(’G’, ’G1’): [[(’F’, ’F1’)]],

(’B’, ’B2’): [[(’H’, ’H1’), (’J’, ’J1’)]],

(’H’, ’H1’): [[(’B’, ’B2’), (’J’, ’J1’)]],

(’J’, ’J1’): [[(’B’, ’B2’), (’H’, ’H1’)]]

}

Listing 4.13: Example disabled dictionary for enforces

disable_dictionary = {

(’D’, ’D1’): [[(’I’, ’I2’)], [(’I’, ’NA’)]],

(’D’, ’D2’): [[(’I’, ’I1’)]],

(’D’, ’D3’): [[(’I’, ’I1’)]],

(’D’, ’NA’): [[(’I’, ’I1’)]],

(’I’, ’I1’): [[(’D’, ’D2’)], [(’D’, ’D3’)], [(’D’, ’NA’)]],

(’I’, ’I2’): [[(’D’, ’D1’)]],

(’I’, ’NA’): [[(’D’, ’D1’)]]

}

A dictionary is created with as key the event and as value a list with states in which the event
is restricted. The restricted states are easily derived from exclude rules, since for each exclude,
each state is set as event taking the other states in that exclude as condition in which the event
should be restricted. The derivation from enforce rules is a bit more difficult, since an enforce
rule implies multiple exclude rules. Enforcing a combination is the same as excluding all other
answer pairs for the questions mentioned.

This disabled dictionary is only made for each subproblem and will therefore only contain the
exclude and enforce rules for that subproblem. For illustrating purposes the disabled dictionary
is derived for the exclude rules from Listing 4.3 in Listing 4.12. The break line separates the two
exclude rules. It can be seen that for each state in an exclude, the corresponding event is used
as key and other states as condition. Furthermore, the disabled dictionary is also derived from
Listing 4.5 in Listing 4.13, which uses an enforce rule instead of an exclude rule. A combination
is enforced if everything else is excluded. From this disabled dictionary, it can be seen that the
only combination of answers for questions QUE-D and QEE-I, that can be selected together, is the
enforced combination from Listing 4.5.

The disabled dictionary that is derived for subproblem D (Listing 4.9) is shown in Listing 4.14.
Each event that has a blocking condition is mentioned in this listing, which is in this case all
events. Note that the disabled dictionary in Listing 4.13 is part of 4.14, since question QUE-D is
mentioned in the enforce in Listing 4.5.

4.3.1.6 Get disable constraints

An event in the disabled dictionary is restricted when one or more of the corresponding conditions
is currently selected. If none of conditions is currently selected, the event is allowed (making
it maximally permissive). A Boolean function is made used to determine if an event should be
restricted or not. This Boolean function is illustrated by the logic gate diagram in Figure 4.3.
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Listing 4.14: Disabled dictionary for subproblem D

disable_dictionary = {

(’A’, ’A1’): [[(’D’, ’D1’)], [(’D’, ’D2’)], [(’D’, ’D3’)]],

(’D’, ’D1’): [[(’A’, ’A1’)], [(’I’, ’I2’)], [(’I’, ’NA’)]],

(’D’, ’D2’): [[(’A’, ’A1’)], [(’I’, ’I1’)]],

(’D’, ’D3’): [[(’A’, ’A1’)], [(’I’, ’I1’)]],

(’A’, ’A2’): [[(’D’, ’NA’)]],

(’D’, ’NA’): [[(’A’, ’A2’)], [(’I’, ’I1’)]],

(’I’, ’I1’): [[(’D’, ’D2’)], [(’D’, ’D3’)], [(’D’, ’NA’)]],

(’I’, ’I2’): [[(’D’, ’D1’)]],

(’I’, ’NA’): [[(’D’, ’D1’)]]

}

To check whether one or more of the corresponding conditions for an event is currently
selected, an ’OR’-function is used between the conditions. Each condition can consist of multiple
states which are modelled using an ’AND’-function. Furthermore, another ’AND’ function is used
for the binary encoding, because a single answer is described by one or more bit. To ensure either
the event is true/possible or the one of the blocking conditions is true, an ’XOR’ function is used.
Also restrictions are added to make sure the not-used Boolean variables can not be selected.
Unconstrained answers are always set to be true, thus always visible.

All constraints are applied at the same time. The ’XOR’ for all events, together with the
restrictions for the not used Boolean variables and unconstrained events must together be true for
a allowed configurator state. This is done using another ’AND’-function.

4.3.1.7 Get reachable system

Not all conditions for visible answers, derived from the BDD model, may occur because the event
leading to that condition is blocked. It is preferable to derive only relevant conditions so that the
outcome is more concise and faster.

To determine which states are in the reachable system, a breadth-first search is conducted,
starting from the initial state where all questions are undefined. Based on the BDD model, it is
determined which events can occur from the current state. From each state found, a check is
made again to see which events are allowed from that state. The found states are stored.

When all reachable states have been found, it is added to the BDD that only states from the
reachable states are allowed to occur together. This ensures that only the answer visible
conditions that occur in the reachable system remain.

The reduction achieved by only considering the reachable system for the problem described in
Listing 4.1 decreases the number of answer-visible rules from 1857 to 1522 (-18%). Given that the
state space grows exponentially, this is a significant reduction.

4.3.1.8 Option visible dictionary for subquestion

From the BDD, the answer-visible dictionary is computed. This is done for each event for the
target question. For each evaluation of the option-visible conditions, another ’and’ constrain is
added between the reachable system BDD and the current event itself. A method from the BDD
library is applied to obtain all assignments for variables of which the BDD evaluates in true. The
assignments for variables for a specific event are the conditions for which the event is possible.
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Listing 4.15: Example option for A and E

(’A’, defaultdict(<class ’set’>, {

’A1’: {((’A’, ’A2’),), ((’A’, ’A1’),), ((’A’, ’UN’),)},

’A2’: {((’A’, ’A2’),), ((’A’, ’A1’),), ((’A’, ’UN’),)},

’UN’: {((’A’, ’A2’),), ((’A’, ’A1’),), ((’A’, ’UN’),)}

}))

(’E’, defaultdict(<class ’set’>, {

’E1’: {((’E’, ’UN’), (’A’, ’A2’)), ((’E’, ’E1’), (’A’, ’UN’)),

((’E’, ’UN’), (’A’, ’UN’)), ((’E’, ’NA’), (’A’, ’UN’)),

((’E’, ’E1’), (’A’, ’A2’))},

’NA’: {((’E’, ’E1’), (’A’, ’UN’)), ((’E’, ’UN’), (’A’, ’UN’)),

((’E’, ’UN’), (’A’, ’A1’)), ((’E’, ’NA’), (’A’, ’UN’)),

((’E’, ’NA’), (’A’, ’A1’))},

’UN’: {((’E’, ’UN’), (’A’, ’A2’)), ((’E’, ’E1’), (’A’, ’UN’)),

((’E’, ’UN’), (’A’, ’UN’)), ((’E’, ’UN’), (’A’, ’A1’)),

((’E’, ’NA’), (’A’, ’UN’)), ((’E’, ’E1’), (’A’, ’A2’)),

((’E’, ’NA’), (’A’, ’A1’))}}))

In Listing 4.15 an example is given of how the answer-visible dictionary for target questions A
and E respectively. The option mentioned as key is visible if one of the conditions, mentioned as
value, is true.

4.3.2 Question-visible rules

Questions are shown in a specific order to guide the user through the configuration process.
Question-visible rules determine the visibility of questions and are derived from hierarchy and
additional precedence rules. The question visibility rules are calculated separately from the
answers. This reduces the amount of variables in the BDD’s, while the answer-visibility rules still
guarantee the production of valid configurations.

A question is visible if it is a follow-up question to the answer chosen for the parent question
and if the answer ’Not Applicable’ is not chosen (does not apply to root questions). Furthermore
all questions mentioned as a key in the precedence must be answered before the questions in
corresponding value are visible. The information for question-visible rules is saved in a question
visible dictionary. This dictionary contains questions as keys and the conditions in which the
questions are visible as corresponding values. An example of the question-visible dictionary for
Listing 4.1 is given in Listing 4.16.

4.3.3 Calculate rules

To some questions the answer ”Not applicable” is added. These questions might be not
applicable because it is an follow-up question. If a question can only be answered with ”Not
applicable”, it is preferred to automatically calculate ”Not applicable”, without asking the
question. Therefore, in previous section it is explained that these questions are not visible.
Otherwise, users would have to answers much more questions. Furthermore, if the user changes
the answer of the parent question to an answer that requires a follow-up question, the automatic
calculation is undone. However, since the ”Not applicable” answer is not visible if an answer
requires a follow-up question, this should happen automatically. This is illustrated in Figure 4.2.
If answer A1 is chosen, then answers to questions B and C must be selected, which may not be
”Not applicable”. Furthermore, since A2 has not been chosen, no answer for questions D and E
may be chosen and should be automatically set to ”Not applicable”.
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Listing 4.16: Example visible dictionary

defaultdict(<class ’set’>, {

’A’: {(’B’, ’NA’), (’C’, ’NA’), (’D’, ’NA’), (’E’, ’==""’),

(’E’, ’NA’), (’C’, ’==""’), (’J’, ’!=""’),

(’B’, ’==""’), (’D’, ’==""’)},

’B’: {(’F’, ’NA’), (’G’, ’==""’), (’F’, ’==""’), (’G’, ’NA’),

(’A’, ’A1’)},

’F’: {(’G’, ’==""’), (’G’, ’NA’), (’B’, ’B1’)},

’G’: {(’F’, ’!=""’), (’B’, ’B1’)},

’C’: {(’H’, ’==""’), (’A’, ’A1’), (’H’, ’NA’)},

’H’: {(’C’, ’C1’)},

’D’: {(’I’, ’==""’), (’I’, ’NA’), (’A’, ’A2’)},

’I’: {(’D’, ’D2’), (’D’, ’D1’)},

’E’: {(’A’, ’A2’)},

’J’: {(’A’, ’==""’)}

})

Listing 4.17: Example calculate dictionary

calculate_dictionary = {

’C’: {(’A’, ’A2’)},

’D’: {(’A’, ’A1’)},

’E’: {(’A’, ’A1’)},

’B’: {(’A’, ’A2’)},

’F’: {(’B’, ’B2’), (’B’, ’NA’)},

’G’: {(’B’, ’B2’), (’B’, ’NA’)},

’H’: {(’C’, ’C2’), (’C’, ’NA’)},

’I’: {(’D’, ’NA’), (’D’, ’D3’)}

}

For the automatic selection of ”Not applicable” a calculate dictionary is made as shown in
4.17. This dictionary contains questions as keys and the corresponding values are the conditions
for which the option ”Not applicable” should be automatically selected.

4.4 Configuration process for greenfield and brownfield

As explained in the introduction, RWS wants to use the configurator for greenfield and
brownfield projects. In the above steps it is explained how based on the configurator data
structure, a configurator is synthesised. However until now it is only mentioned the configurator
data structure is used for product platform, LSR and design rules. This section explained how
the configurator data structure is utilised for greenfield and brownfield.

The proposed process is displayed in Figure 4.4. For each configuration, the LSR and the PT
are required. In the PT indicates whether it is a greenfield or brownfield project. The question
”Project type” is added with answers ”Greenfield” and ”Brownfield”. If it is a greenfield project,
the future situation can be configured directly, which dependents on the LSR. If it is a brownfield
project, the current situation and the component scope must be chosen first, before selecting the
future situation, which then depends on the LSR, current situation and component scope. The
questions and answers for the current situation and component scope are always in the configurator,
but are only visible for brownfield projects.

28



The current and future situations are specified by choosing variants for the components from
the product platform. Therefore the product platform is added twice to the configurator data
structure, with the distinguishing prefix ”CUR” and ”FUT” for the current- and future situation
respectively. The hierarchy for both the current- and future situation from the product platform
is retained. For the component scope, components of the product platform are added to the
configurator data structure with the prefix ”SCOPE-CUR”, together with the answers ”Retain”,
”Renovate” and ”Replace”. For optional components, the additional answers are ”Add” and
”Remove”.

At this point, the questions and answers for the PT, LSR, current situation, component scope,
and future situation are in the configurator data structure. To ensure it behaves as intended for
greenfield and brownfield projects, the following constraints are necessary:

• Follow-up questions for PT greenfield are the ”ENV” and ”FUT” root questions and for
brownfield the ”ENV”, ”CUR”, ”FUT” root questions;

• Each question in the current situation has a corresponding scope question. This
corresponding scope question is set as follow-up question to all answers of the question in
the current situation (this way, it does not show for ”Not applicable”);

• Precedence constraints stating the scope of a component must be chosen before corresponding
future situation is chosen;

• Variants for components with a scope of ”Retain” or ”Renovate” may not change.
Therefore, exclude constraints are added. For ”Replace” no additional constraints are
added. Furthermore for optional components constraints are added such that: if ”None” is
selected, the scope cannot be ”Renovate,” ”Retain,” ”Replace,” or ”Remove,” but only
”Add” or ”None”. If ”None” is not selected, ”None” or ”Add” cannot be chosen, but
”Renovate”, ”Retain”, ”Replace”, or ”Remove” can be chosen.

An example of the configurator data structure for a greenfield and brownfield configurator for
the example product platform and design rules in this chapter is given in Appendix B. A script
is developed that automatically derived and adds these constraints. In the next chapter, the
application of this method is illustrated on a lock head.
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Figure 4.3: Boolean logic of constraints
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Figure 4.4: Flowchart configuration process
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Chapter 5

Application of the method

This chapter demonstrates the method that is proposed in this thesis by means of an example
within the context of RWS. It illustrates how an configurator data structure is set up for a lock
head configurator that supports greenfield and brownfield and how it is used to synthesize
configurator rules. Furthermore it is shown how questions, answers and configurator rules can be
implemented in the product configuration software Merkato, which is currently used to facilitate
the production of valid configurations. Finally, it is shown how these configurations can result in
requirements specifications. Examples are provided, showcasing the method’s application in
developing a configurator for the most complex component of a lock: the lock head, as shown in
Figure 2.3.

5.1 Generation of configurator data structure

A configurator data structure is made for a lock head configurator, which supports the configuration
of greenfield and brownfield lock heads. The configurator data structure can be derived from the
product platform, LSR and design rules as illustrated in Figure 1.2. The product platform is
exported from GRIP, LSR are listed in Section 2.3 and design rules are derived from handbooks
and experts. The generation of the configurator data structure is automated in a Python script.

Figure 5.1: Generation of configurator data structure

For the creation of the configuration data structure of a lock head configurator, the product
platform from Figure 2.3 and the LSR from table 5.1 are used. Furthermore, to make this
configurator data structure suitable for greenfield and brownfield, the steps from section 4.4 are
followed. Additionally, design rules are made for the following requirements:

• Variants ”Miter gates” (Puntdeuren) and ”Double miter gates” (Vierkantkerende
puntdeuren) may only be selected with variants ”Electrohydraulic
cylinder”;(Electrohydraulische cilinder) or ”Electromechanic cylinder” (Elektromechanische
cilinder).

32



Table 5.1: Location specific requirements for the lock head
Questions Answers
Lock head width ≤ 20 m

> 20 m
Water retention Mono-directional

Bi-directional
Water level difference ≤ 4 m

> 4 and ≤ 6 m
> 6 m

• Variant ”Liftgate” (Hefdeur) may only be selected with variant ”Vertical winch installation”
(Vertikaal lierwerk);

• Variant ”Rollinggate” (Roldeur) may only be selected with variant ”Horizontal winch
installation” (Horizontaal lierwerk);

• Variant ”Rinket” is used for a ”Water level difference ≤ 4 m”, unless the current variant is
”Culvert” (Omloopriolen) of which the component scope is ”Retain” or ”Renovate”;

• Variant ”Culvert” is used for a ”Water level difference > 6 m”, unless the current variant is
”Rinkets” (Rinketten) of which the component scope is ”Retain” or ”Renovate”;

• For a ”Lock head width ≤ 20 m” only variants ”Miter gates” or ”Double miter gates” may
be used;

• For a ”Lock head width > 20 m” only variants ”Lift gates” or ”Rolling gates” may be used;

• For a ”Water retention == Mono-directional”, variant ”Double miter gates” may not be
used;

• For a ”Water retention == Bi-directional”, variant ”Single miter gates” may not be used.

This information is put in the configurator data structure.

5.2 Synthesis of the rules

The configurator data structure is used to synthesise the configurator rules. The synthesised lock
head configurator contains a total number of 25 questions, 69 answers and 22136 answer-visible
rules. This is calculated under 10 seconds using Python on a commercial laptop from 2021.

Furthermore the method has also been tested on the complete lock product platform, however
to this, many design rules are missing. The synthesised lock configurator contains a total number
of 597 questions, 1940 answers and 285718 answer-visible rules. This is calculated in
approximately 1 minute using Python on a commercial laptop from 2021.

The time it takes to generate a configurator is unmatched by manual development of a
configurator, which often takes weeks or months. Moreover, this method guarantees that the
generated configurator rules are valid by using the BDD’s, unlike the conventional approach.

5.3 Generation of Merkato template

In this demonstration, the configurator data is stored into the Merkato configuration software,
which is used for the production of configurations. A configurator can be imported and exported
using templates with a specific XML format. XML (eXtensible Markup Language) is a flexible
text-based format used for structuring, storing, and transporting data[25]. This XML-file is
generated based on the questions, answers and configurator rules in Python. This process is
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Figure 5.2: Generate configurator data structure

visualised in Figure 5.2.

Flat questions and answers are used to create XML information for fields and options in
Merkato. Furthermore, questions are grouped in the XML based on the given prefixes, such that
they appear in a separate section in Merkato. Currently all sections are placed on the same page.

To the questions, the following decision tables are added: Calculate tables, Visible tables,
Option-visible tables and Product tables. The first three tables contain the same information as
the created questions-visibility-, answer-visibility- and calculate rules as calculated in previous
the step. Merkato uses a slightly different notation for the rules, therefore the rules are
converted. Implemented examples for these tables can be seen in Figures 5.3, 5.4 and 5.5.

Merkato determines, based on the chosen answers and product tables, which products are
necessary and puts those products on the quote list. For the current situation, component scope
and future situation, product tables are generated to put the right products on the quote list.
The implemented product table can be seen in Figure 5.6. For questions about the current- and
future situation, this table puts the variants that correspond to the chosen answers as item on
the quote list. For component scope questions, the item corresponding to the combination of
current situation and chosen scope is put on the quote list. The necessary products are created in
previous section. The goal of the products on the quote list is explained in upcoming sections.

Figure 5.3: Calculate table example
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Figure 5.4: Visible table example

The generated XML-template can be imported into Merkato and used to configure products.
Figures 5.8 and 5.9 illustrate the functioning of the configuration for greenfield and brownfield
respectively.

5.4 Validation of configurator data structure

The configurator data structure is used to create a configurator that can only produce valid
configurations accordingly. The configurator data structure is partly derived from the product
platform and supplemented by hand with LSR and design rules by the RWS users. When
supplementing the design rules, mistakes could be made, such as entering incorrect design rules
or forgetting design rules. This shifts the human error from wrong configurator development to
creating a wrong configurator data structure, which is less error prone. It is important to check
the configurator data structure thoroughly, such that the configurator behaves as intended. It
can be helpful to test the configurator in Merkato by making several configurations. In case a
mistake is found, it should be corrected accordingly. E.g. remove, add or change the data in the
configurator data structure. Then the configurator can be updated with the new data by
regenerating the configurator using the Python script.

5.5 Generation of project requirements specification

The products on the quote list can be linked to a system specification from GRIP to eventually
get the complete requirements specification for a lock configuration, as illustrated in Figure 5.10.
Currently, only answers and the combination of the current situation and component scope are
quoted as products. Connections between components are not included at the moment. The list
of quoted products from a configuration determines which requirements specifications are needed
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Figure 5.5: Option-visible table example

for a project. This list is illustrated for a greenfield and brownfield project respectively in Figures
5.11 and 5.12.

5.6 Results

In this chapter, it is demonstrated that the developed method is applicable to locks. The method
utilized a product platform, LSR, and design rules to create a configurator suitable for both
greenfield and brownfield configurations. This chapter focuses on the development of a lock head
configurator, which is a complex lock module. However, the extension to a complete lock
configurator is also tested. The lock head configurator is generated in less than 10 seconds, and
the configurator for the complete lock in approximately 1 minute. However, the design rules for
the complete lock have not yet been defined.

Given the number of questions, answers, and answer-visible rules in the templates, the time
savings compared to manual development is enormous. Additionally, because the configurator is
synthesised, it guarantees that the configurator can only produce valid configurations, unlike
manual development in which RWS users can make mistakes. The LSR and design rules can be
added to the Python file, and the product platform can be maintained in GRIP and exported,
simplifying the use and maintenance of the method. The configurator in Merkato is clear,
user-friendly, and intuitive to use. It ensures the production of valid configurations and generates
a list of necessary products for the created configuration, from which a requirements specification
for the project can be made.
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Figure 5.6: Example of a product tabel with a single condition column

Figure 5.7: Example of a product tabel with multiple condition columns
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Figure 5.8: Lock head configurator in Merkato for greenfield

Figure 5.9: Lock head configurator in Merkato for brownfield

Figure 5.10: Generation of project requirements specification

38



Figure 5.11: Products lock head for greenfield

Figure 5.12: Products lock head for brownfield
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Chapter 6

Discussion

The results from Chapter 5 show how a method utilizing Binary Decision Diagrams (BDD’s) can
be used to synthesize a rule-based product configurator. A configurator can be synthesized based
on a (hierarchical) product platform, location specific requirements (LSR), and design rules. This
approach ensures correctness by construction, guaranteeing that only valid configurations are
produced. The method has been successfully tested by synthesising a lock head configurator.
Furthermore, also a configurator for the complete lock has been synthesised, however this
configurator lacks the necessary LSR and design rules. This chapter will discuss the results from
the perspective of the research questions from Chapter 1. Additionally, this chapter addresses the
limitations of the developed methodology and provides recommendations for its improvement.

6.1 How can the configurator solution space be defined?

The product platform is modeled as a data structure with questions, answers and follow-up
questions. This configurator data structure is also used to specify other questions necessary in
the configurator, e.g. the project type and LSR. Design rules are necessary to constrain the
selection of variants. Three types of design rules are used and added to this configurator data
structure, namely: exclude, enforce and precedence rules. From this configurator data structure,
it is derived when an answer may be selected or not.

BDD’s are based on the configurator data structure to determine if an answer may be selected
or not. BDD’s are convenient to use, because variables and constraints are added easily and can
be evaluated efficiently. For each question, a BDD is made using only questions, answers and
design rules relevant to that question. These small BDD’s can be evaluated quickly preventing a
memory overflow [36] [15]. In the BDD, variables are made for the question states and the
possible events. These variables are constrained by Boolean functions derived from design rules
(including the design rules derived from the hierarchy of the product platform). It is evaluated
for which sets of variables the BDD’s result in true, to determine if an event may take place. This
is used to create an option-visible table which describes for each event under which conditions the
event is allowed. This ensures that during configuration, the user is informed about permissible
selections, guiding them through the process and preventing the selection of invalid answers.

Conventionally, the solution space is defined by creating answer-visible rules manually.
However, many complex answer-visible rules are necessary, making it error-prone and labour
intensive. Only for the lock head, the configurator requires 22136 rules, which are generated in
less then 10 sections by using the synthesis method. This reduces implementation labor and
costs, as well as minimizing costs from potential invalid configuration caused by human errors.
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6.2 How can a configurator be developed to guarantee the
production of valid configurations?

The requirements of the configurator are modelled in the configurator data structure, which is
used to generate configurator rules. Three types of configurator rules are made: answer-visible,
visible and calculate rules. The answer-visible rules determine if an answer may be selected based
on a condition.

The generated answer-visible rules satisfy the provided design rules by definition due to the
application of BDD’s. Hence verification of the option-visible rules in the configurator is no
longer needed. As a result, the configurator guarantees the production of valid configurations
according the provided design rules. However, validation of the provided design rules is still
needed. Validation is required, because design rules could be incomplete or wrong.

To guide the user through many questions in the configurator, it is chosen to only show the
questions that need to be answered or have already been answered. This is facilitated using
visible rules, ensuring a top-down selection through the product platform. Additionally, self-added
precedence rules can be implemented, where specific questions become visible only after another
question has been answered.

6.3 How can a configurator be used for both greenfield and
brownfield projects?

For greenfield projects, the selection of the future situation depends on the LSR and design rules.
However for brownfield projects, the current situation and component scope impose additional
restrictions on what can be chosen in the future situation. By using a product platform to
describe the current situation, component scope, future situation, and additional constraints, it is
shown that a configurator can be applicable for both greenfield and brownfield configurations.
The additional constraints are defined and automatically derived restricts the use of components
in the future situation depending on the current situation and component scope.

The specification of the current and future configuration can only be done according to the
product platform. However, RWS also has, for example, monumental locks of which the
components and variants may not all have been added to the product platform, making the
configurator unusable for them. This can be resolved by adding monumental components to the
product platform and add design rules that only allow monumental components in the future
situation if they are present in the current situation.

6.4 What approach can be utilized to facilitate configurator
management and maintenance?

Management and maintenance of the configurator are focused on the product platform, design
rules and template generation. That is, the product platform and design rules are expected to
change over time. For example, due to developments in technology. Template generation is
Merkato specific, as a consequence updates of Merkato might influence the template generation
script.

The configurator itself does not need to be managed or maintained as it can be easily
re-synthesised following the updates of the product platform, design rules and Merkato. This is a
significant advantage over the conventional method, where the configurator must be checked and
adjusted as needed, which is labour intensive and error prone.

This current research for RWS has resulted in an effective method for automatically
developing a configurator for complex products. The key points include modeling the interactive
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configuration problem as a set of independent BDD’s for each question, allowing intermediate
possible selections to be evaluated, guaranteeing valid configurations according to the user guide,
instead of calculating the complete solution space. Furthermore, the solution space can be
defined by the constraints. Additionally, due to the smaller subproblems, the calculation time
scales more linearly (rather than exponentially) with the number of questions and answers. The
method can also be used to create configurators for both greenfield and brownfield projects. For
brownfield projects, additional questions and answers are automatically derived from the product
platform, and constraints are also automatically calculated. The challenges described in the
problem statement have been successfully addressed.

6.5 Limitations

The method is applicable regardless of the content of the product platform and LSR. This allows
the method to be used for synthesizing configurators for various products, such as bridges and
tunnels. However, the current implementation is limited to the use of discrete answers. Not all
questions in a product configurator are necessarily discrete, but can often be discretized in
context of standardisation. The lock head width for example, could be any numerical value,
however is discretized via step sizes, as shown in Table 2.1. Furthermore in context of
standardisation, a company would rather use standardised dimensions (discrete) than produce
any products of any size.

In Section 1.1, it is explained that the objective is to reduce sensitivity to human error. This
is achieved by automatically generating the configurator, ensuring correctness through
construction. Nevertheless, if there are errors in the configurator data structure, such as
excluding an allowed combination, it still leads to human errors.

The scalability of the current method needs to be further investigated, as in theory one could
have many design rules that link many question, resulting in large subproblem solution spaces,
which will deteriorate computation of performance. It is currently unknown whether this is a
theoretical issue or a practical issue as well. However, if scalability is problematic, one could
resort to formulating BDD subproblems per answer. In the current application on the lock head,
which is the most complex part of a lock, no scalability issues occurred.
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Chapter 7

Conclusion and future work

7.1 Conclusion

RWS faces a significant challenge in renovating and replacing locks. The current
Engineer-to-Order (EtO) production strategy has led to a large variety of locks in the product
portfolio resulting in negative side effects. RWS wants to increase the degree of standardization
by transitioning from an EtO to a Configure-to-Order (CtO) production strategy. To support the
CtO strategy, a product platform is used and implemented as a product configurator. The
traditional manual development of a configurator is error-prone and labour intensive.

In this thesis, a method is proposed for the automatic generation of a product configurator.
This eliminates the need for manual design of the configurator. Furthermore, because the
configurator is synthesized and thus correct by construction, it no longer requires verification,
thereby reducing both error-proneness and labor intensity.

The product platform, along with the location specific requirements (LSR) and design rules,
are necessary inputs for synthesizing the configurator. Within the configurator, three types of
rules are required: answer-visible rules, visible rules, and calculate rules. Answer-visible rules are
computed using Binary Decision Diagrams (BDD’s) and ensure only valid configurations are
produced. Binary variables for states and events, along with Boolean functions derived from the
input, are added to the BDD. Visible rules serve to guide the user, while calculation rules are
technically essential. By adjusting the configurator data structure, it can be utilized for both
greenfield and brownfield projects.

A lock head configurator has been generated that RWS can use to create both greenfield and
brownfield lock configurations. This configurator is tested and demonstrated in Merkato
configurator software, which provides essential features and user-friendliness. All produced
configurations are valid and result in a list of products to which requirements can be coupled,
allowing for the creation of a requirements specification. Using the product platform and the
configurator, RWS can transition to a CtO production strategy, leading to more requirements
specifications and eventually to more standardized locks.

Many companies benefit from using a CtO production strategy, which often makes use of a
product platform. This method can be used to implement such a product platform via a
configurator. The method is generic and can therefore be applied to generate a product
configurator for various products. As long as the data structure of the configurator is
well-defined, a valid configurator will be produced. In collaboration with Quootz B.V., research
will be conducted in the future to identify which companies could benefit from this method.

43



7.2 Future work

The method can be applied to the entire lock system and has already been successfully tested.
However, work needs to be done on determining the LSR that influence the lock configuration
and figuring out design rules. Also there may be various configurations possible, given the project
type and LSR. Now, the user has the freedom to choose what seems best to them, however, in
the context of standardization, it is questionable whether this is desired or whether preferred
configurations or variants should be proposed where possible.

Additionally, the current requirement specifications are more at a conceptual level of what
needs to be built; they do not prescribe dimensions or standardized components. This is because
of the level of detail of the product platform. It might be beneficial to further elaborate on the
product platform in detail to derive even more benefits from standardization. Furthermore, as
mentioned in the discussion, the configurator does currently not support monumental
components, because they are not in the product platform. Adding them to the product platform
would resolve this

The products on the quote list refer to necessary requirement specifications. Currently, only
products are put on the quote list for single variants. However, RWS also has requirement
specifications for variant combinations. Future research can look into the calculation of product
rules for variant combinations, so that requirement specifications for variant combinations can
also be calculated in Merkato. Hence, based on the product list, the requirements specification
document can be automatically generated in Merkato.

Lastly, the constructed rules and template are correct by construction, so do not have to be
verified. However the configurator data structure should be validated by testing the generated
configurator. Future work can look into the calculation of the solution space and the visualisation
of the solution space.
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Appendix A

Product platform

A concept of the product platform is displayed in Figure A.1. This product platform has 8 levels
and does not contain all possible components and variants. However, it sketches the basic structure
of the tree.
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Figure A.1: Product platform
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Appendix B

Configurator data structure for
greenfield and brownfield

Listing B.1: Part of lockhead configurator data

cf method2 = {
”PS Pro ject type ” : {

” g r e e n f i e l d ” : [
”FUT A” ,
”ENV J”

] ,
” brownf i e ld ” : [

”CUR A” ,
”FUT A” ,
”ENV J” ,

]
} ,
”ENV J” : {

”ENV J1” : [ ]
} ,
”CUR A” : {

”CUR A1” : [ ”CUR B” , ”CUR C” , ”SCOPE CUR A” ] ,
”CUR A2” : [ ”CUR D” , ”CUR E” , ”SCOPE CUR A” ]

} ,
”CUR B” : {

”CUR B1” : [ ”CUR F” , ”CUR G” , ”SCOPE CUR B” ] ,
”CUR B2” : [ ”SCOPE CUR B” ]

} ,
”CUR C” : {

”CUR C1” : [ ”CUR H” , ”SCOPE CUR C” ] ,
”CUR C2” : [ ”SCOPE CUR C” ]

} ,
”CUR D” : {

”CUR D1” : [ ”CUR I” , ”SCOPE CUR D” ] ,
”CUR D2” : [ ”CUR I” , ”SCOPE CUR D” ] ,
”CUR D3” : [ ”SCOPE CUR D” ]

} ,
”CUR E” : {

”CUR E1” : [ ”SCOPE CUR E” ]
} ,
”CUR F” : {

”CUR F1” : [ ”SCOPE CUR F” ] ,
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”CUR F2” : [ ”SCOPE CUR F” ]
} ,
”CUR G” : {

”CUR G1” : [ ”SCOPE CUR G” ] ,
”CUR G2” : [ ”SCOPE CUR G” ]

} ,
”CUR H” : {

”CUR H1” : [ ”SCOPE CUR H” ] ,
”CUR H2” : [ ”SCOPE CUR H” ]

} ,
”CUR I” : {

”CUR I1” : [ ”SCOPE CUR I” ] ,
”CUR I2” : [ ”SCOPE CUR I” ]

} ,
”SCOPE CUR A” : {

”Retain ” : [ ] ,
”Renovate” : [ ] ,
”Replace ” : [ ]

} ,
”SCOPE CUR B” : {

”Retain ” : [ ] ,
”Renovate” : [ ] ,
”Replace ” : [ ]

} ,
”SCOPE CUR C” : {

”Retain ” : [ ] ,
”Renovate” : [ ] ,
”Replace ” : [ ]

} ,
”SCOPE CUR D” : {

”Retain ” : [ ] ,
”Renovate” : [ ] ,
”Replace ” : [ ]

} ,
”SCOPE CUR E” : {

”Retain ” : [ ] ,
”Renovate” : [ ] ,
”Replace ” : [ ]

} ,
”SCOPE CUR F” : {

”Retain ” : [ ] ,
”Renovate” : [ ] ,
”Replace ” : [ ]

} ,
”SCOPE CUR G” : {

”Retain ” : [ ] ,
”Renovate” : [ ] ,
”Replace ” : [ ]

} ,
”SCOPE CUR H” : {

”Retain ” : [ ] ,
”Renovate” : [ ] ,
”Replace ” : [ ]

} ,
”SCOPE CUR I” : {

”Retain ” : [ ] ,
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”Renovate” : [ ] ,
”Replace ” : [ ]

} ,
”FUT A” : {

”FUT A1” : [ ”FUT B” , ”FUT C” ] ,
”FUT A2” : [ ”FUT D” , ”FUT E” ]

} ,
”FUT B” : {

”FUT B1” : [ ”FUT F” , ”FUT G” ] ,
”FUT B2” : [ ]

} ,
”FUT C” : {

”FUT C1” : [ ”FUT H” ] ,
”FUT C2” : [ ]

} ,
”FUT D” : {

”FUT D1” : [ ”FUT I” ] ,
”FUT D2” : [ ”FUT I” ] ,
”FUT D3” : [ ]

} ,
”FUT E” : {

”FUT E1” : [ ]
} ,
”FUT F” : {

”FUT F1” : [ ] ,
”FUT F2” : [ ]

} ,
”FUT G” : {

”FUT G1” : [ ] ,
”FUT G2” : [ ]

} ,
”FUT H” : {

”FUT H1” : [ ] ,
”FUT H2” : [ ]

} ,
”FUT I” : {

”FUT I1” : [ ] ,
”FUT I2” : [ ]

}
}

enforces method2 = [ [ ( ”FUT D” , ”FUT D1” ) , ( ”FUT I” , ”FUT I1” ) ] ]

excludes method2 = [
[ ( ”FUT F” , ”FUT F1” ) , ( ”FUT G” , ”FUT G1” ) ] ,
[ ( ”FUT B” , ”FUT B2” ) , ( ”FUT H” , ”FUT H1” ) , ( ”ENV J” , ”ENV J1” ) ] ,
[ ( ”CUR A” , ”CUR A1” ) , ( ”SCOPE CUR A” , ”Renovate” ) , ( ”FUT A” , ”FUT A2” ) ] ,
[ ( ”CUR A” , ”CUR A2” ) , ( ”SCOPE CUR A” , ”Renovate” ) , ( ”FUT A” , ”FUT A1” ) ] ,
[ ( ”CUR B” , ”CUR B1” ) , ( ”SCOPE CUR B” , ”Renovate” ) , ( ”FUT B” , ”FUT B2” ) ] ,
[ ( ”CUR B” , ”CUR B2” ) , ( ”SCOPE CUR B” , ”Renovate” ) , ( ”FUT B” , ”FUT B1” ) ] ,
[ ( ”CUR C” , ”CUR C1” ) , ( ”SCOPE CUR C” , ”Renovate” ) , ( ”FUT C” , ”FUT C2” ) ] ,
[ ( ”CUR C” , ”CUR C2” ) , ( ”SCOPE CUR C” , ”Renovate” ) , ( ”FUT C” , ”FUT C1” ) ] ,
[ ( ”CUR D” , ”CUR D1” ) , ( ”SCOPE CUR D” , ”Renovate” ) , ( ”FUT D” , ”FUT D2” ) ] ,
[ ( ”CUR D” , ”CUR D1” ) , ( ”SCOPE CUR D” , ”Renovate” ) , ( ”FUT D” , ”FUT D3” ) ] ,
[ ( ”CUR D” , ”CUR D2” ) , ( ”SCOPE CUR D” , ”Renovate” ) , ( ”FUT D” , ”FUT D1” ) ] ,
[ ( ”CUR D” , ”CUR D2” ) , ( ”SCOPE CUR D” , ”Renovate” ) , ( ”FUT D” , ”FUT D3” ) ] ,
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[ ( ”CUR D” , ”CUR D3” ) , ( ”SCOPE CUR D” , ”Renovate” ) , ( ”FUT D” , ”FUT D1” ) ] ,
[ ( ”CUR D” , ”CUR D3” ) , ( ”SCOPE CUR D” , ”Renovate” ) , ( ”FUT D” , ”FUT D2” ) ] ,
[ ( ”CUR F” , ”CUR F1” ) , ( ”SCOPE CUR F” , ”Renovate” ) , ( ”FUT F” , ”FUT F2” ) ] ,
[ ( ”CUR F” , ”CUR F2” ) , ( ”SCOPE CUR F” , ”Renovate” ) , ( ”FUT F” , ”FUT F1” ) ] ,
[ ( ”CUR G” , ”CUR G1” ) , ( ”SCOPE CUR G” , ”Renovate” ) , ( ”FUT G” , ”FUT G2” ) ] ,
[ ( ”CUR G” , ”CUR G2” ) , ( ”SCOPE CUR G” , ”Renovate” ) , ( ”FUT G” , ”FUT G1” ) ] ,
[ ( ”CUR H” , ”CUR H1” ) , ( ”SCOPE CUR H” , ”Renovate” ) , ( ”FUT H” , ”FUT H2” ) ] ,
[ ( ”CUR H” , ”CUR H2” ) , ( ”SCOPE CUR H” , ”Renovate” ) , ( ”FUT H” , ”FUT H1” ) ] ,
[ ( ”CUR I” , ”CUR I1” ) , ( ”SCOPE CUR I” , ”Renovate” ) , ( ”FUT I” , ”FUT I2” ) ] ,
[ ( ”CUR I” , ”CUR I2” ) , ( ”SCOPE CUR I” , ”Renovate” ) , ( ”FUT I” , ”FUT I1” ) ] ,
[ ( ”CUR A” , ”CUR A1” ) , ( ”SCOPE CUR A” , ”Retain ” ) , ( ”FUT A” , ”FUT A2” ) ] ,
[ ( ”CUR A” , ”CUR A2” ) , ( ”SCOPE CUR A” , ”Retain ” ) , ( ”FUT A” , ”FUT A1” ) ] ,
[ ( ”CUR B” , ”CUR B1” ) , ( ”SCOPE CUR B” , ”Retain ” ) , ( ”FUT B” , ”FUT B2” ) ] ,
[ ( ”CUR B” , ”CUR B2” ) , ( ”SCOPE CUR B” , ”Retain ” ) , ( ”FUT B” , ”FUT B1” ) ] ,
[ ( ”CUR C” , ”CUR C1” ) , ( ”SCOPE CUR C” , ”Retain ” ) , ( ”FUT C” , ”FUT C2” ) ] ,
[ ( ”CUR C” , ”CUR C2” ) , ( ”SCOPE CUR C” , ”Retain ” ) , ( ”FUT C” , ”FUT C1” ) ] ,
[ ( ”CUR D” , ”CUR D1” ) , ( ”SCOPE CUR D” , ”Retain ” ) , ( ”FUT D” , ”FUT D2” ) ] ,
[ ( ”CUR D” , ”CUR D1” ) , ( ”SCOPE CUR D” , ”Retain ” ) , ( ”FUT D” , ”FUT D3” ) ] ,
[ ( ”CUR D” , ”CUR D2” ) , ( ”SCOPE CUR D” , ”Retain ” ) , ( ”FUT D” , ”FUT D1” ) ] ,
[ ( ”CUR D” , ”CUR D2” ) , ( ”SCOPE CUR D” , ”Retain ” ) , ( ”FUT D” , ”FUT D3” ) ] ,
[ ( ”CUR D” , ”CUR D3” ) , ( ”SCOPE CUR D” , ”Retain ” ) , ( ”FUT D” , ”FUT D1” ) ] ,
[ ( ”CUR D” , ”CUR D3” ) , ( ”SCOPE CUR D” , ”Retain ” ) , ( ”FUT D” , ”FUT D2” ) ] ,
[ ( ”CUR F” , ”CUR F1” ) , ( ”SCOPE CUR F” , ”Retain ” ) , ( ”FUT F” , ”FUT F2” ) ] ,
[ ( ”CUR F” , ”CUR F2” ) , ( ”SCOPE CUR F” , ”Retain ” ) , ( ”FUT F” , ”FUT F1” ) ] ,
[ ( ”CUR G” , ”CUR G1” ) , ( ”SCOPE CUR G” , ”Retain ” ) , ( ”FUT G” , ”FUT G2” ) ] ,
[ ( ”CUR G” , ”CUR G2” ) , ( ”SCOPE CUR G” , ”Retain ” ) , ( ”FUT G” , ”FUT G1” ) ] ,
[ ( ”CUR H” , ”CUR H1” ) , ( ”SCOPE CUR H” , ”Retain ” ) , ( ”FUT H” , ”FUT H2” ) ] ,
[ ( ”CUR H” , ”CUR H2” ) , ( ”SCOPE CUR H” , ”Retain ” ) , ( ”FUT H” , ”FUT H1” ) ] ,
[ ( ”CUR I” , ”CUR I1” ) , ( ”SCOPE CUR I” , ”Retain ” ) , ( ”FUT I” , ”FUT I2” ) ] ,
[ ( ”CUR I” , ”CUR I2” ) , ( ”SCOPE CUR I” , ”Retain ” ) , ( ”FUT I” , ”FUT I1” ) ]

]

precedence method2 = {
”ENV J” : [ ”CUR A” , ”FUT A” ] ,
”CUR F” : [ ”CUR G” ] ,
”FUT F” : [ ”FUT G” ] ,
”SCOPE CUR A” : [ ”FUT A” ] ,
”SCOPE CUR B” : [ ”FUT B” ] ,
”SCOPE CUR C” : [ ”FUT C” ] ,
”SCOPE CUR D” : [ ”FUT D” ] ,
”SCOPE CUR E” : [ ”FUT E” ] ,
”SCOPE CUR F” : [ ”FUT F” ] ,
”SCOPE CUR G” : [ ”FUT G” ] ,
”SCOPE CUR H” : [ ”FUT H” ] ,
”SCOPE CUR I” : [ ”FUT I” ]

}
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Appendix C

Python scripts

The Python scripts created for this thesis are handed in separately. In total there are five scripts,
each with its own purpose. The scripts are briefly explained below.:

• grip2cf.ipynb: this script is used to create the configurator data structure. For this, it imports
and uses functions from ”configuration trees.py”. Moreover, this script can also be used to
parse a product platform export from GRIP into a configurator data structure, with the
possibility to add design rules manually;

• configuration trees.py: this script provides functions to ”grip2cf.ipynb”;

• cf2merkato.ipynb: this script is main file of the method. This script is used to generate the
general configurator rules and then creates an Merkato configurator file in XML-format that
is to be imported into Merkato. For this, it imports and uses functions from ”configurator.py”
and ”merkato.py”;

• configurator.py: this script contains general functions used in the method to create the
configurator rules;

• merkato.py: this script contains Merkato-specific functions used to create the Merkato
configurator template.
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