
BSc Thesis Applied Mathematics

Stealing Part of a Production
Language Model

Krystof Mitka

Supervisors: J. Goseling, L. Mariot, D. Paleka

June, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science



Abstract

The rapid advancement of large language models (LLMs) has led to their widespread
deployment in various applications, often as black-box systems accessible only through
APIs. This paper investigates the vulnerabilities of such models to model-stealing
attacks, specifically focusing on extracting the full logit distributions of next-token
predictions. By leveraging the bias map feature provided by APIs, we introduce a
novel algorithm that efficiently recovers the complete logit distribution. Our contri-
butions include the formulation of a class of algorithms that rely solely on the bias
map, theoretical insights into their convergence and lower bounds, and the identifica-
tion and analysis of a new state-of-the-art attack. We demonstrate the effectiveness
of our approach through theoretical analysis and numerical experiments, highlighting
the potential risks and implications for the security of proprietary language models.

1 Introduction

The current best-performing large language models are typically closed proprietary systems
accessible only through APIs. Companies provide minimal information about their models
size, architecture, training data, or training processes (OpenAI et al., 2024, Anil et al.,
2023). However, recent research by Carlini et al., 2024 and Finlayson et al., 2024 has
shown that it is possible to extract detailed information about these closed models by
exploiting certain functionalities offered by APIs from companies like OpenAI and Google.
These studies have successfully extracted the exact model dimensionality and even the
entire last layer representation, known as the unembedding matrix. In response to these
security breaches, companies have revised or restricted parts of their APIs to invalidate
or significantly increase the difficulty and cost of such attacks, aiming to safeguard their
models integrity and confidentiality.

To extract the model dimensionality and steal the unembedding layer, the attacks rely on
collecting a large number of full logit distributions. A full logit distribution refers to the
output vector produced by a neural network before the application of the softmax function.
This vector contains the raw, unnormalized scores (logits) for each class in a classification
task. In the context of large language models, the full logit distribution represents the
scores assigned to each token in the model’s vocabulary for a given input sequence. This
paper focuses exclusively on efficiently extracting the next-token full logit distributions, as
these are the primary target for attackers aiming to reverse-engineer parts of the model.

Related Work. The attacks formulated in related works (Carlini et al., 2024, Finlayson
et al., 2024) relied on two API functionalities provided by the companies to steal a large
number of full next-token logit distributions.

1. Access to Log Probabilities. The access to the log probabilities of some of the
most likely tokens. This feature enables users to obtain detailed information about
the model’s predictions for the next token in a sequence.

2. Biasing Tokens Using a Bias Map. The ability to add a bias term to each logit
before applying the softmax function. This bias map feature allows API users to
influence the model’s output by either censoring certain tokens or promoting oth-
ers. For instance, users can increase the likelihood of specific tokens or completely
suppress the generation of undesirable tokens.

The most efficient attacks, as detailed in Carlini et al., 2024; Finlayson et al., 2024, employ
a combination of the aforementioned features. By biasing all tokens to appear among the

1



most likely tokens and subsequently collecting their log probabilities, attackers can reverse
engineer these probabilities back to logits. However, following the publication of these
attacks, both Google and OpenAI have removed the feature that allows viewing of biased
log probabilities. Consequently, this paper focuses exclusively on algorithms that leverage
the bias map feature to extract the complete logit distribution.

Contribution. This work introduces a state-of-the-art algorithm for extracting the full
logit distribution by leveraging mathematical insights into the logit distribution and uti-
lizing the logit bias map provided by the company’s API. Concretely this work:

• Formulates a class of algorithms that rely exclusively on the bias map feature pro-
vided by the model’s API. These algorithms are designed to efficiently extract the
full logit distribution by strategically adjusting the bias terms for multiple tokens
simultaneously.

• Offers novel observations and theoretical results regarding the convergence proper-
ties and lower bounds of these algorithms. This includes a detailed analysis of the
conditions under which the algorithms converge and the minimum number of queries
required to achieve a specified precision.

• Identifies and generalizes a new state-of-the-art attack that leverages the bias map
feature to extract the complete logit distribution. This attack is shown to be more
efficient than existing methods, requiring fewer queries to achieve the same level of
precision.

• Analyzes this new attack in depth, providing a comprehensive explanation for its
behavior. This includes a thorough numerical analysis, demonstrating the attack’s
effectiveness through empirical results and comparing its performance against exist-
ing methods.

2 General Algorithm Formulation

We consider a typical transformer architecture for a large language model (Vaswani et al.,
2023). Let P(X ) represent the space of all probability distributions over the vocabulary
X . Transformer models take N tokens as input from a vocabulary X of size v and output
a probability distribution for the next token q ∈ P(X ), i.e., models of the form f : XN 7→
P(X ). The probability distribution, conditioned on the previous N tokens in the sequence,
is computed by applying a softmax Rv 7→ P(X ) to the full logit distribution vector Rv of
the last token, z.

Figure 1: Diagram of the last layer of a transformer model.

2



Logits are the raw, unnormalized scores output by a neural network’s final layer before
applying the softmax function. The softmax function is defined as:

softmax(z) =
[

ez1∑v
i=1 e

zi
, . . . ,

ezv∑v
i=1 e

zi

]
We assume access to the model API provided by the owners of the model, such as OpenAI
or Google, and we explore the class of attacks based on the following two assumptions.

Access to Bias Map. We assume that it is possible to set a bias term bi for any token
Xi in the vocabulary X , where bi can range from −B to B. The number of tokens that
can have a bias term set is limited to a constant Nb ≤ v. We use vector notation b ∈ Rv,
meaning the length of the bias vector is v. In cases where Nb < v, for all tokens that
are not biased, we assume bi = 0. The bias vector b is added to the logit vector z before
applying the softmax function.

Access to Top Token. We constrain the information received from the API to only the
token with the highest probability after applying the softmax function.

Define prompt p as a unique sequence of N tokens and let g : XN → Rv be a function that
outputs the logit vector z for the next token in the sequence. The Oracle O (API) is a
black-box function that, given a prompt p and a bias vector b, returns the token with the
highest probability.

O(p, b)← ArgMax (softmax (g(p) + b)) .

Additionally, we assume that ArgMax(v) returns the index of the coordinate with the
largest value in some vector v ∈ Rv. In case two or more values are equal and the
maximum, the ArgMax function will randomly select one of the indices corresponding to
the maximum values. We refer to the indices of the vectors and tokens interchangeably.

Definition 1. We say that a token is sampled if it is the token returned by the oracle’s
ArgMax function.

Note that we can ensure the token with the highest logit value, which corresponds to the
highest probability token, is consistently sampled by setting the temperature parameter
to 0 or by configuring the top-k parameter to 1. The temperature parameter controls the
randomness of the sampling process, with a value of 0 making the model deterministic by
always selecting the highest logit value. The top-k parameter limits the sampling pool to
the top k tokens, and setting it to 1 ensures only the token with the highest logit value is
considered.

2.1 Logit normalization

To facilitate the implementation of the algorithm and ensure consistent scaling of the logit
values, we will normalize the logit vectors to the interval [0, 1]. This normalization helps
in simplifying the bias adjustments and maintaining a uniform scale for comparison across
different logits.

Given a logit vector z, we normalize it using the following procedure. Calculate the mini-
mum and maximum values of the logit vector z.

zδ = min(z), z∆ = max(z)

3



Normalize each component zi of the logit vector z to the interval [0, 1] using the formula:

ẑi =
zi − zδ
z∆ − zδ

where ẑi is the normalized logit value.

In a realistic setting, we can assume knowledge of the width of the interval on which logits
lie. Observations from API providers suggest that it suffices to take B as the width of this
interval. Furthermore, to facilitate shifting the interval and simplify notation, we assume
knowledge of the maximum logit value z∆.1 Henceforth, we assume all logit vectors z are
normalized to the interval [0, 1].

2.2 Algorithm Framework

We will consider algorithms that modify the bias of multiple tokens simultaneously (Carlini
et al., 2024). Specifically, at each step, we will adjust the biases of all Nb tokens. In
scenarios where Nb < v, it is necessary to select subsets of tokens and repeat the procedure
v
Nb

times. Prior to initiating the algorithm, we perform an initial query to the API without
applying any bias map to identify the top token and set its index to 0 i.e. top token is
z0. We now introduce a general algorithm framework that is used to iteratively narrow
down the possible values of z, using lower bound vector l ∈ RNb and upper bound vector
h ∈ RNb , and give a concrete description of its implementation. The goal of all instances
of this algorithm discussed in the following sections will be to come up with the function
f(l,h, r), which sets all Nb bias terms at each step of the algorithm. The following algorithm
framework is a vectorized and generalized version of the algorithm discussed in Carlini et
al., 2024.

Algorithm 1 Learning logit differences with multi-token calls (Vectorized)
1: l← 0,h← 1
2: C = {x : z0 − zi ≤ 1, ∀i}
3: r ← 1
4: while stop_condition(l,h, r) is false do
5: b← f(l,h, r)
6: k ← O(p,b)
7: C ← C ∩ {x : zk + bk ≥ zj + bj , ∀j ̸= k}
8: l← xmin
9: h← xmax

10: r ← r + 1
11: end while
12: return l,h

At each step of Algorithm 1, we provide a specific bias vector b = f(l,h, r) and sample
a top token from the oracle, denoted as k. By the definition of O, this results in Nb − 1
inequalities of the form zk + bk ≥ zj + bj for all j ̸= k. We can rewrite these inequalities
as −zk + zj ≤ bk − bj . Therefore, at step n, we can represent the coefficients of logits as
An ∈ RNb−1×Nb and the resulting bound as bn ∈ RNb−1. Aggregating results after n steps,

1Note that OpenAI provides access to the log probabilities of the top-5 most likely tokens, which are
not affected by the bias term after the introduction of the attacks. Consequently, we can infer the initial
top-5 token logits, allowing us to determine the maximum value.

4



we let:

A =


A1

A2
...
An

 , b =


b1
b2
...
bn


So, the polytope C defined by this system of linear inequalities can be expressed as:

C =
{
x ∈ RNb | Ax ≤ b

}
After updating the system for our polytope at each step with new information, we are
interested in finding xmin and xmax, where xmin is the solution of the polytope where each
component of the vector x is minimal and xmax is the solution where each component is
maximal. Formally, this can be defined as:

xmin =

(
min
x∈C

x1,min
x∈C

x2, . . . ,min
x∈C

xn

)
and

xmax =

(
max
x∈C

x1,max
x∈C

x2, . . . ,max
x∈C

xn

)
We can compute both xmin and xmax by considering the linear programming problem of
finding the shortest path on a weighted graph (Carlini et al., 2024).

Generally, we consider two different stop conditions for the attacker’s querying process.

1. Fixed Budget Condition: When the attacker has a budget of T requests for each
batch of Nb tokens, the querying process stops after T rounds. Formally, this stop condition
can be defined as:

stop_condition(l,h, r) =

{
True if r ≥ T,

False otherwise.

2. Precision Condition: When the attacker aims to attain a certain precision ϵ of the
result and disregards the budget, the querying process stops when the largest interval so
far is less than ϵ. Formally, this stop condition can be defined as:

stop_condition(l,h, r) =

{
True if ∥h− l∥∞ < ϵ,

False otherwise.

Later in numerical analysis, we will test the algorithms by comparing against the real value
of the logit vector we are looking for. Therefore, we will add an argument z to the stop
condition for this comparison. This inclusion ensures the stop condition takes into account
the precision of the estimated logit vector in relation to the true logit vector z.

5



3 Algorithm Theoretical Results

3.1 Lower bound

Before creating algorithms solving for the best bias term function f(l,h, r), we will check
the theoretical lower bound both from the information theory perspective and by construct
a perfect algorithm using the real logit vector z.

Initially, we consider a theoretical bound on the minimum number of queries required for
an attacker to obtain Nb tokens from an information theory perspective. The following is
a variation of a lemma from Carlini et al., 2024.

Lemma 1. Assume the entries P1, . . . PNb
of logit z ∈ Rv are i.i.d. uniform over [0, 1].

To recover all Nb logits up to ∞-norm error ε, the number of queries to O(p, ·) we need is
at least:

−Nb log2(ε)

log2(Nb)
.

For testing purposes in the following section we will consider logit vectors of length Nb = 50.
In such setting we consider

− log2(ϵ)

log2(Nb)
≈ −0.588 log2(ϵ)

queries per logit. For 6 bits of precision that yields 1.06 queries per logit.

As a different theoretical exercise, we can explore in how many steps can we converge
assuming that the bias function has access to the true values of the logits we are trying to
estimate, i.e., f(l,h, r, z), and seek a function that accelerates the algorithm’s convergence.

Consider the isolated case of determining the value of a single logit. In this scenario, we
can recover the logit by first biasing just below the logit value, zi−ϵ

2 , and then just above
it, zi+ϵ

2 . This approach yields an interval around the logit zi of [zi − ϵ, zi + ϵ]. Biasing in
this manner would provide the desired bounds l and h in 2 ∗Nb steps.

An even more efficient result can be achieved by biasing all tokens around their true values
zi. Let rmod = r mod Nb and define the bias function as

f(l,h, z, r) = 1− z+ ϵ · ermod

Where ermod
is zero everywhere except at the position rmod. At position rmod we add a

perturbation to ensure it will be the output of the ArgMax. With each step we update
the lower bound for logit at position rmod as can be derived from inequality with token 0:

zrmod
+ bi + ϵ ≥ 1 =⇒ zrmod

≥ zrmod
− ϵ = li

After obtaining lower bounds for all tokens, we bias token z0 = 1 with the perturbation,
which updates the upper bound of all tokens:

1 + ϵ ≥ zi + bi =⇒ 1 + ϵ ≥ zi + (1− zi) =⇒ hi = zi + ϵ ≥ zi ∀i

Therefore after just Nb queries, which is essentially 1 query per logit, we are able to create
an arbitrarily good bound [zi + ϵ, zi − ϵ] around zi.

6



(a) Perfect Algorithm at step Nb − 1

(b) Perfect Algorithm at step Nb

7



3.2 Convergence condition

Observation 1. Assuming we have never sampled a token i, at each step we can only
provide an upper bound for the unsampled token via the inequality zk + bk − bi ≥ zi. This
implies that our information about zi is limited to adjusting the upper bound hi, while the
lower bound li remains unchanged.

It follows that to achieve a certain∞-norm precision around every logit, we need to sample
each token at least once. The theorem also highlights issues related to the density of R.2

Specifically, consider the scenario where the bias function is set to hi+zi
2 for some token i.

In this case, the interval around the logit zi would be narrowed at each iteration, but only
from above. Consequently, the upper bound hi would approach zi asymptotically, without
any improvement in the lower bound li.

To prevent guesses that asymptotically approach the logit value, we will introduce a con-
vergence condition. Recall from Algorithm 1 that, at the first step, the lower bound vector
l is initialized to the zero vector 0, and the upper bound vector h is initialized to the vector
1. To achieve a specified precision ϵ around the true logit value zi, it suffices to narrow
the interval between the lower and upper bounds such that their width, hi − li, equals ϵ.
Consequently, at the initial and subsequent steps, we can restrict the possible values of the
bounds by creating a partition that discretizes the interval [0, 1] into points separated by
ϵ. We consider a logit to be determined once its lower and upper bounds are separated by
exactly ϵ. At this point, we cease further biasing of that particular logit.

Definition 2. For a specific logit zi, initially, the interval [0, 1] is partitioned into points
of size ϵ, forming the set called the initial partition:

P ϵ
0 = {0, ϵ, 2ϵ, . . . , kϵ}

where k =
⌊
1
ϵ

⌋
.

At step n, the partition at step n for the interval [li, hi] of the logit zi is a subset of
the initial partition P ϵ

0 , consisting of points that are in sequence. Formally, at step n, the
partition P ϵ

n satisfies:

P ϵ
n ⊆ P ϵ

0 and ∀xj , xj+1 ∈ P ϵ
n, xj < xj+1

Definition 3. At step n, the interval length sum is defined as the l1-norm of the dif-
ference between the vectors of upper bounds h and lower bounds l. Formally, the interval
length sum En at step n is given by:

En = ∥h− l∥1

where l = (l1, l2, . . . , lm) and h = (h1, h2, . . . , hm) are the vectors of lower and upper bounds
of the intervals for logits at step n, respectively.

We split the interval around each logit to prevent guesses that approach the logit from
above and we define a notion of error over all logits at each step n. Note that the interval
sum error is a decreasing function with every step. Now we can formalize a sufficient
condition for the bias function so that Algorithm 1 converges.

2Logits are typically represented using 32-bit floating-point numbers. According to the IEEE 754
standard, this provides a precision of 6 to 9 significant decimal digits, implying that logits are not exactly
representable in R and are therefore not continuous. However, for the purposes of this analysis, we proceed
under the assumption of continuity.

8



Theorem 1. If at each step of Algorithm 1 we choose a bias vector b s.t. for at least one
logit the bias is chosen bi ∈ 1 − P ϵ

n, then for any ϵ > 0 there exists R, number of rounds,
such that ∀r ≥ R the interval length sum at round n satisfies En ≤ ϵNb.

Proof. We consider two cases. First, assume that by setting bi ∈ 1 − P ϵ
n, we sample the

token 0. Then, we can update the hi for all biased tokens by setting hi = 1 − bi, which
narrows the interval by hi − (1− bi).

Otherwise, we must sample a biased token. Then we can update the lower bound li of
the sampled token by setting li = 1− bi, as at minimum we will gain information about a
better lower bound of the sampled token, which narrows the interval by (1− bi)− li.

We can intuitively understand the convergence condition as follows: biasing at least one
term in each round must divide the interval around the logit zi into two sections, where
only one section will remain viable after sampling the next token. For instance, the simple
binary search algorithm introduced in Morris et al., 2023 achieves this condition by splitting
the interval around each logit into equal halves. This is done by setting the bias to 1− hi+li

2 ,
which would be the midpoint of the partition P ϵ

n in our case.

4 Solution Instances

We have established that if we bias each logit around its true value, we quickly converge to
a narrow bound around each logit. Another way to understand this biasing strategy is that
we have adjusted all logits so that their ’probability’ of being sampled is 1/n. Since the
true values of the logits are unknown, our next best approach is to assume a probability
distribution over the interval [li, hi] and treat each logit as random variable drawn from
this distribution. In this section we explore different biasing techniques that use these
assumptions.

4.1 StartOverN With Uniform Prior

We start by assuming uniform prior over the interval [li, hi] for each logit. A simple
approach is to bias logits such that the probability of sampling token 0 (i.e. the maximum
token) is 1/n. This approach, introduced briefly in Carlini et al., 2024, has been the state-
of-the-art method prior to the work presented in this paper. We formalize this approach
and provide a derivation for a solution of the biasing term.

Theorem 2. Given independent and identically distributed (i.i.d.) random variables P1, P2, . . . , Pn−1

from a uniform distribution on an interval between li and hi, and constants b1, b2, . . . , bn−1,
the StartOverN algorithm aims to find bi such that:

P (max(P1 + b1, P2 + b2, . . . , Pn−1 + bn−1) ≤ 1) =
1

n

A solution to this problem is given by:

bi = 1− li +

(
1

n

) 1
n−1

(hi − li)

9



Proof. We need

P (max(P1 + b1, . . . , Pn−1 + bn−1) ≤ 1) =
1

n

P (P1 + b1 ≤ 1) · . . . · P (Pn−1 + bn−1 ≤ 1) =
1

n

P (P1 ≤ 1− b1) · . . . · P (Pn−1 ≤ 1− bn−1) =
1

n
n−1∏
i=1

1− bi − li
hi − li

=
1

n

This is satisfied if ∀i:

1− bi − li
hi − li

=

(
1

n

) 1
n−1

1− bi − li =

(
1

n

) 1
n−1

(hi − li)

bi = 1− li +

(
1

n

) 1
n−1

(hi − li)

Hence, bi = 1− li +
(
1
n

) 1
n−1 (hi − li) is a solution.

In the vector notation of the biasing function we would therefore write:

f(l,h, r) = 1− l+

(
1

n

) 1
n−1

(h− l)

For the readers coming from Carlini et al., 2024 we note that the solution can be rewritten
using an equivalent scaling term:

(
1

n

) 1
n−1

= exp

(
− log(n)

n− 1

)
4.2 Finding parameters for normal distribution

In the previous derivation, we assumed a uniform distribution for all logits in the full output
token vector. In this section, we hypothesize that logits follow a normal distribution.

We collected 52 logit distributions from the LLaMA-7b model for single character prompts,
specifically using characters of the alphabet A-Z (26) and a-z (26). Each logit distribution
was normalized with an assumed width of 40, and then the 52 logit distributions were
flattened into a single vector. In Figure 3, we plot the histogram of the logit distribution
with 100 bins in the interval [0, 1].

10



Figure 3: Logit Distribution Fitting

As seen in Figure 3, the logits can be reasonably well modeled using a normal distribution
approximation. For our numerical experiments, we collected µ = 0.688 and σ = 0.066,
which we use extensively in the following tests. We note that while the following algorithms
assume knowledge of the µ and σ of the logit distributions we are trying to steal, in
practice, these parameters can be inferred by either transferring them from smaller models
or estimating them from a small number of logit distributions already collected.

4.3 StartOverN With Normal Distribution Prior

Now we can formalize an algorithm using the normal distribution prior. We consider each
logit as a random variable drawn from a normal distribution using the parameters µ and
σ2, which we have derived in previous section. At each step of the algorithm we bound
the logit zi using li and hi meaning the logits are actually drawn from a truncated normal
distribution over the interval [li, hi].

Formally, we note

Pi ∼ N(µ, σ2) truncated s.t. li ≤ Pi ≤ hi where 0 ≤ li ≤ hi ≤ 1 and Φ is the CDF of N(µ, σ2).

ΦPi(x) = P (Pi ≤ x) =
Φ(x)− Φ(li)

Φ(hi)− Φ(li)
. (1)

Theorem 3. Given independent and identically distributed (i.i.d.) random variables P1, P2, . . . , Pn−1

from a truncated normal distribution with truncation points li and hi, and constants b1, b2, . . . , bn−1,
the StartOverN algorithm aims to find bi such that:

P (max(P1 + b1, P2 + b2, . . . , Pn−1 + bn−1) ≤ 1) =
1

n

A solution to this problem is given by:

bi = 1− Φ−1

((
1

n

) 1
n−1

(Φ(hi)− Φ(li)) + Φ(li)

)

11



Proof. We need

P (max(P1 + b1, . . . , Pn−1 + bn−1) ≤ 1) =
1

n

P (P1 + b1 ≤ 1) · . . . · P (Pn−1 + bn−1 ≤ 1) =
1

n

P (P1 ≤ 1− b1) · . . . · P (Pn−1 ≤ 1− bn−1) =
1

n
n−1∏
i=1

Φ(1− bi)− Φ(li)

Φ(hi)− Φ(li)
=

1

n

This is satisfied if ∀i:

Φ(1− bi)− Φ(li)

Φ(hi)− Φ(li)
=

(
1

n

) 1
n−1

Φ(1− bi)− Φ(li) =

(
1

n

) 1
n−1

(Φ(hi)− Φ(li))

Φ(1− bi) =

(
1

n

) 1
n−1

(Φ(hi)− Φ(li)) + Φ(li)

1− bi = Φ−1

((
1

n

) 1
n−1

(Φ(hi)− Φ(li)) + Φ(li)

)

bi = 1− Φ−1

((
1

n

) 1
n−1

(Φ(hi)− Φ(li)) + Φ(li)

)

Hence, bi = 1− Φ−1
((

1
n

) 1
n−1 (Φ(hi)− Φ(li)) + Φ(li)

)
is a solution.

We have derived the bias term in similar fashion to the uniform prior. Again we write the
vector notation of the biasing function as:

f(l,h, r) = 1− Φ−1

((
1

n

) 1
n−1

(Φ(h)− Φ(l)) + Φ(l)

)
.

The generalized form of the function for any distribution truncated on the interval [a, b],
where the CDF is defined as:

F[a,b](x) =
F (x)− F (a)

F (b)− F (a)
, for a ≤ x ≤ b.

This can be analogously formulated as:

f(l,h, r) = 1− F−1

((
1

n

) 1
n−1

(F (h)− F (l)) + F (l)

)

This result can be useful when considering different distributional assumptions for the logit
distribution, such as a skewed normal distribution, which can lead to further performance
boosts.

12



4.4 EverythingOverN With Normal Distribution Prior

Recall the perfect algorithm formulated in Section 3.1. One way to interpret the biasing
strategy of the algorithm is that we have adjusted all logits such that their probability of
being sampled is 1

n . In previous sections, we have demonstrated that under the assumption
of truncated distributions, it is always possible to find a bias such that the probability of
sampling the top token is 1

n . We now turn our attention to extending this strategy to bias
tokens such that each token has a probability of 1

n of being sampled. Specifically, we aim
to set the bias vector such that the probability of sampling any given token is 1

n , under
the assumption that logits are drawn from a truncated normal distribution.

In this section we formalize the approach and provide an introduction of the different
methods used to find a solution to the problem.

4.4.1 Formal definition

Suppose we have n different random variables P1, P2, . . . , Pn. We are interested in finding
shift constants b1, b2, . . . , bn such that the order statistics of the shifted random variables,
P1 + b1, P2 + b2, . . . , Pn + bn, ensure that the probability of any particular shifted random
variable being the maximum is equal for all variables. Specifically, we want to ensure that

P
(
X(n) = Pi + bi

)
=

1

n

for all i = 1, 2, . . . , n, where X(n) denotes the maximum of the n shifted random variables.

Equivalently we can formulate the problem as find all ri s.t.

P

(
max
j ̸=i

(Pj + bj) ≤ Pi + bi

)
=

1

n
∀i∏

j ̸=i

P (Pj + bj ≤ Pi + bi) =
1

n
∀i

∏
j ̸=i

P (Pj ≤ Pi + bi − bj) =
1

n
∀i

As shown in Equation 2, the probability can be computed using the integral of the product
of the PDFs.∏

j ̸=i

1

σ2 (Φ (hj)− Φ (lj)) (Φ (hi)− Φ (li))

∫ hi

li

ϕ (y) (Φ (y + bi − bj)− Φ (lj)) dy =
1

n
∀i

We note that the intervals [li, hi] can be disjoint, and any two disjoint intervals would
result in the equation being equal to zero.

4.4.2 Approach to solution

By brute-force enumeration of all possible combinations of shifts, we have demonstrated
that for up to four normally distributed random variables truncated on the interval [0, 1],
it is possible to find the shift constants such that the above equations hold. Our next

13



approach involved providing an initial guess, calculated by fixing one random variable and
then taking the difference of means of the remaining variables as the guess. We define
the loss as the ∞-norm of the difference between the computed probability of random
variables being the maximum and the desired probability 1/n. We experimented with two
types of algorithms. First, we employed a gradient-based search on the loss, which showed
promise but was prone to occasionally getting stuck in local minima. Second, we utilized
a hyper-sphere random search to find an optimal solution.

It is important to note that the optimization problem has two bottlenecks that we have
observed. First, it suffers from the curse of dimensionality, where the number of possible
combinations of shifts grows exponentially with the number of variables. Second, in cases
where we attempt to align many random variables truncated on very different intervals, an
exact solution may, in fact, be impossible. This impossibility can be illustrated in extreme
cases where we are faced with aligning random variables where some have orders of mag-
nitude narrower bounds than others, causing the truncated distributions to be effectively
very different from the initial distribution.

5 Numerical analysis

Notice that at each iteration of Algorithm 1, we update the lower bound l and upper
bound h. Upon reaching a specified stopping condition, we return both bounds as the best
estimates for all logits. This approach implies that, up to this point, we have not made
any concrete guess about the actual values of the logits. While a straightforward solution
might involve taking the midpoint, i.e., h+l

2 , as demonstrated in this section, this strategy
may be suboptimal in scenarios where the attacker is constrained by a finite query budget
T .

Definition 4. Let l,h ∈ RNb be vectors representing the lower and upper bounds, respec-
tively. A guess is a function g : RNb ×RNb → RNb that maps l and h to a vector g ∈ RNb

such that l ≤ g ≤ h element-wise.

We have already discussed errors that were defined as the l1 − norm and l∞ − norm of
the bounds, that is ∥h − l∥1 and ∥h − l∥∞ respectively. For testing purposes of how our
algorithms are performing we can analogously define an error in terms of the true value of
the logits z and our guess, similarly we consider ∥z− g∥2. In all results we also report on
the performance of the simple simultaneous-binary-search algorithm, which is defined by
the biasing function f(l,h, r) = 1− l+h

2 .

Using ∥h − l∥1 and ∥z − gm∥2, we evaluate the performance of the simultaneous-binary-
search, start-over-n-with-uniform-prior, and start-over-n-with-normal-distribution algorithms
on the 10 logit distributions we have collected from LLaMa-7b, as shown in Figure 4. We
assess the algorithms using the mid guess, defined as gm = h+l

2 , and plot the logarithm
of the error. To illustrate an interesting phenomenon, we draw error lines for 10 different
logit vectors for each algorithm, instead of reporting confidence intervals.

14



(a) ∥z− gm∥2, Nb = 50

(b) ∥h− l∥1, Nb = 50

Figure 4: Visualization of algorithms performance

As observed in Figure 4, our new algorithm, start-over-n-with-normal-distribution, outper-
forms both the state-of-the-art start-over-n-with-uniform-prior and simultaneous-binary-
search. Interestingly, the algorithm exhibits a ’jump’ around the 100th iteration mark. To
better understand this behavior, we inspect the bounds at the steps immediately before
and after the jump, as shown in Figure 5.

15



(a) Example of logits at iteration 98 with blue gm

(b) Example of logits at iteration 99 with blue gm

Figure 5: Visualization of jump behaviour

As seen in the graphs in Figure 5, only the upper bound of the last logit, zlast, was updated
before the jump. Referencing Observation 1, if a logit zi has never been sampled, we can
only update its upper bound hi. This explains the observed jump. The algorithm spends
the first 98 iterations before sampling the last token, zlast. Once the last token is sampled,
it quickly establishes a precise lower bound, li. This behavior is analogous to the perfect
algorithm described in Section 3.4, where at step Nb−1, the lower bounds li of all logits are
close to the true values zi, and at step Nb, all upper bounds hi are updated simultaneously.

This implies that for ∥h − l∥1, the error at iteration 98 is dominated by the difference
hlast − llast, and for ∥z − gm∥2, by the difference zlast − gmlast

. Hence, we observe a
dramatic change in the error graph.

One way to correct for jumps is to define a new weird error metric that uses a combination
of bounds and the actual values.

16



weird(l,h, z) =

Nb∑
i=1

min(hi − zi, zi − li)

Figure 6: weird(l,h, z), Nb = 50

As shown in Figure 6, using the newly defined error metric, the jumps have disappeared.
While this error metric addresses the problem, it has a drawback: if the attacker has a low
budget of queries T , our new attack would underperform until about the 100th iteration.

A slightly better approach would be to adjust our guess by leveraging our understanding
of the reason for the jump. One general solution is to weight how far the lower bound li
is from its initial value 0, and how far the upper bound hi is from its initial value 1. This
ensures that we are closer to the respective bound in proportion to how far we are from
the initial value. We achieve this with the following definition.

m =
h+ l

2

r =
h− l

2

gw = m+

(
1− h

l+ (1− h)

)
r−

(
l

l+ (1− h)

)
r

We start by centering our guess at the middle value of the bounds, and then weighting how
far we have moved from the initial value: 1 − h for the upper bound and l for the lower
bound, divided by the total amount we have moved from the initial values, l + (1 − h).
Using these weights, we scale the radius r of our interval.

When we examine the state of our start-over-n-with-normal-prior algorithm before sam-
pling the last token, i.e., before the jump, we observe that the weighted guess is correctly

17



aligned with its true value. This is because, for tokens that have not been sampled yet, the
weighted error equals the upper bound hi, which means gw = h for all unsampled tokens.

Figure 7: Example of logits at iteration 98 with blue gm and red gw

Finally, we run the algorithms using the weighted guess gw with ∥z− gw∥2 to inspect its
stability in Figure 8. Using the weighted guess we are now on par with start-over-n-with-
uniform-prior during the first 100 iterations.

Figure 8: ∥z− gw∥2, Nb = 50

We hypothesize that error jumps are an essential characteristic of highly performant algo-
rithms, as they indicate precise boundary estimation.

18



5.1 Performance

We evaluate the performance of various algorithms designed to extract logit distributions
from large language models. We compare the algorithms based on the number of queries
required to achieve a specified precision and report on the queries per logit metric. We
measure their performance using the l2-norm of the difference between the true logit vector
z and the weighted guess gw by ∥z− gw∥2.

Name Bias Function f(l,h) Queries per logit

Simultaneous
Binary Search 1− l+h

2 3.12

Start Over N with
Uniform Prior 1− l+

(
1
n

) 1
n−1 (h− l) 2.42

Start Over N
with Normal
Prior

1− Φ−1
((

1
n

) 1
n−1 (Φ(h)− Φ(l)) + Φ(l)

)
1.98

Table 1: Comparison of Algorithms with Precision 10−6 and gw

5.2 Frequency analysis

Interestingly, upon plotting the logit sampling frequency at the conclusion of the Star-
tOverN algorithms, we observed that both the uniform prior and normal prior algorithms
exhibit a higher sampling frequency for the first token compared to the other tokens. This
indicates that, in practice, the algorithms do not achieve the intended biasing of the top
token to have a 1/n probability of being sampled.

(a) Logit sampling frequency at the
end of Start Over N with Normal
Prior with precise Normal logit data

(b) Logit sampling frequency at the
end of Start Over N with Normal
Prior with Actual logit data

19



6 Future work

6.1 SomeOverN with Normal prior

In the StartOverN algorithm, we adjusted each token’s probability such that the token
with the highest logit value, denoted as token 0, would be sampled with a probability of
1
n . This simplification was feasible because we set the highest logit to a constant value,
thereby avoiding the need to draw it from a distribution. In this section, we extend the
problem to a more general case where the logit values are sampled from a truncated normal
distribution within the interval [li, hi].

Consider independent and identically distributed (i.i.d.) random variables P1, P2, . . . , Pn−1

from a truncated normal distribution with truncation points li and hi, and constants
r1, r2, . . . , rn−1. The objective of the Some 1/n algorithm is to find ri such that:

P (max(P1 + r1, P2 + r2, . . . , Pn−1 + rn−1) ≤ Pi + ri) =
1

n

We seek this solution by setting ri such that:

P (Pi + ri ≤ Pn) = P (Pi ≤ Pn − ri) =

∫ hi

li

Fi(y − ri)fn(y) dy =

(
1

n

) 1
n−1

This can be naively achieved by iterating over all ri ∈ [ln − hi, hn − li].

However, this approach encounters difficulties. Setting P (Pi + ri ≤ Pn) =
(
1
n

) 1
n−1 does

not ensure that the maximum value is equal to 1
n , indicating that the variables are not

independent. This dependency is not immediately apparent, even when considering papers
that compute the Kullback-Leibler divergence (DKL) of the distributions. Despite this, it
seems plausible that a solution exists, as we do not require other distributions to have the
same probability of being the maximum.

6.2 Frequency Exhaustion Algorithm with Temperature and Frequency
Penalty

A novel algorithm that does not rely on the bias map can be formulated as follows:

Set High Temperature: Use the highest possible temperature to ensure a more uniform
probability distribution. This increases the likelihood of sampling less probable tokens.

Create Special Prompts: Design prompts that contain tokens likely to be top tokens
in the distribution (e.g., "aaaaa" will likely have "a" as a high-probability token). Apply
frequency penalties to these top tokens to negatively bias them, thereby increasing the
visibility of tokens with lower probabilities.

Repeated Prompting: Prompt the model X times with the same prompt sequence to
gather a comprehensive set of token outputs.

Collect Frequencies: Record the frequencies of different tokens from the X repetitions.
This frequency list serves as an approximation of the logit distribution.

Solve for True Logits: Use the frequency list obtained from the high-temperature sam-
pling to infer the true logits of the model.

20



7 Conclusion

Model stealing, involves replicating a machine learning model’s functionality without direct
access to its internal parameters. This is particularly concerning for large language models
(LLMs) deployed as black-box systems via APIs, where attackers can exploit the model’s
outputs to infer its underlying structure. The ability to extract full logit distributions,
which represent the raw, unnormalized scores for each token, is a critical step in reverse-
engineering these models.

In this thesis, we have explored various algorithms for extracting logit distributions from
large language models, focusing on the challenges posed by the curse of dimensionality
and the need for efficient query strategies. Our numerical analysis demonstrated the
effectiveness of the start-over-n-with-normal-distribution algorithm, which outperformed
existing methods such as start-over-n-with-uniform-prior and simultaneous-binary-search.
We introduced a novel error metric, weird(l,h, z), to address the issue of error jumps,
and proposed a weighted guess strategy to improve performance under constrained query
budgets. Our findings suggest that while error jumps are indicative of precise boundary
guessing, they can be mitigated through careful algorithm design. Future work could ex-
plore more sophisticated biasing functions and alternative error metrics to further enhance
the accuracy and efficiency of logit extraction algorithms.

21



A P (X ≤ Y ) where X, Y from truncated normal distribution

Assume X and Y are independent random variables from the same normal distribution
N(µ, σ2), but truncated to different intervals:

• X is truncated to the interval [lX , hX ].

• Y is truncated to the interval [lY , hY ].

For a truncated normal distribution X with bounds [a, b], the probability density function
(PDF) is:

fX(x) =
ϕ
(x−µ

σ

)
σ
(
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

))
where ϕ(·) is the PDF and Φ(·) is the cumulative distribution function (CDF) of the
standard normal distribution.

To compute P (X ≤ Y ):

P (X ≤ Y ) =

∫ hY

lY

∫ y

lX

fX(x)fY (y) dx dy

Substituting the PDFs of X and Y :

P (X ≤ Y ) =

∫ hY

lY

∫ y

lX

ϕ
(x−µ

σ

)
σ
(
Φ
(
hX−µ

σ

)
− Φ

(
lX−µ

σ

)) · ϕ
(y−µ

σ

)
σ
(
Φ
(
hY −µ

σ

)
− Φ

(
lY −µ
σ

)) dx dy

This can be simplified by factoring out the normalization constants:

P (X ≤ Y ) =
1

σ2
(
Φ
(
hX−µ

σ

)
− Φ

(
lX−µ

σ

))(
Φ
(
hY −µ

σ

)
− Φ

(
lY −µ
σ

))
∫ hY

lY

ϕ

(
y − µ

σ

)(∫ y

lX

ϕ

(
x− µ

σ

)
dx

)
dy

Evaluate the inner integral with respect to x:∫ y

lX

ϕ

(
x− µ

σ

)
dx =

∫ y

lX

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
dx

This is the CDF of the normal distribution, evaluated from lX to y:∫ y

lX

ϕ

(
x− µ

σ

)
dx = Φ

(
y − µ

σ

)
− Φ

(
lX − µ

σ

)

Now substitute back into the outer integral:

P (X ≤ Y ) =
1

σ2
(
Φ
(
hX−µ

σ

)
− Φ

(
lX−µ

σ

))(
Φ
(
hY −µ

σ

)
− Φ

(
lY −µ
σ

))
∫ hY

lY

ϕ

(
y − µ

σ

)(
Φ

(
y − µ

σ

)
− Φ

(
lX − µ

σ

))
dy

Assuming PDF and CDF defined in terms of the correct µ and σ:

22



P (X ≤ Y ) =
1

σ2 (Φ (hX)− Φ (lX)) (Φ (hY )− Φ (lY ))

∫ hY

lY

ϕ (y) (Φ (y)− Φ (lX)) dy

For some constant r, relevant to your needs, this becomes:

P (X ≤ Y + r) =
1

σ2 (Φ (hX)− Φ (lX)) (Φ (hY )− Φ (lY ))

∫ hY

lY

ϕ (y) (Φ (y + r)− Φ (lX)) dy

(2)

Alternatively, knowing both the PDF and CDF of the truncated distributions for X and
Y, we can write the equation as follows:

P (X ≤ Y + r) =

∫ ∞

−∞
FX(y + r)fY (y) dy

P (X ≤ Y + r) =

∫ hY

lY

FX(y + r)fY (y) dy

P (Pi ≤ Pn − ri) =

∫ hi

li

Fi(y − ri)fn(y) dy = 1/n

23



References
Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa,

E., Bailey, P., Chen, Z., Chu, E., Clark, J. H., Shafey, L. E., Huang, Y., Meier-
Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., . . . Wu, Y.
(2023, September). PaLM 2 Technical Report [arXiv:2305.10403 [cs]]. https://doi.
org/10.48550/arXiv.2305.10403

Carlini, N., Paleka, D., Dvijotham, K. D., Steinke, T., Hayase, J., Cooper, A. F., Lee,
K., Jagielski, M., Nasr, M., Conmy, A., Wallace, E., Rolnick, D., & Tramèr, F.
(2024, March). Stealing Part of a Production Language Model [arXiv:2403.06634
[cs]]. Retrieved May 1, 2024, from http://arxiv.org/abs/2403.06634

Finlayson, M., Ren, X., & Swayamdipta, S. (2024, March). Logits of API-Protected LLMs
Leak Proprietary Information [arXiv:2403.09539 [cs]]. https://doi.org/10.48550/
arXiv.2403.09539

Morris, J. X., Zhao, W., Chiu, J. T., Shmatikov, V., & Rush, A. M. (2023, November).
Language Model Inversion [arXiv:2311.13647 [cs]]. https://doi.org/10.48550/arXiv.
2311.13647

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S.,
Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., . . . Zoph, B. (2024,
March). GPT-4 Technical Report [arXiv:2303.08774 [cs]]. https : / /doi . org / 10 .
48550/arXiv.2303.08774

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, I. (2023, August). Attention Is All You Need [arXiv:1706.03762 [cs]].
https://doi.org/10.48550/arXiv.1706.03762

24

https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.48550/arXiv.2305.10403
http://arxiv.org/abs/2403.06634
https://doi.org/10.48550/arXiv.2403.09539
https://doi.org/10.48550/arXiv.2403.09539
https://doi.org/10.48550/arXiv.2311.13647
https://doi.org/10.48550/arXiv.2311.13647
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.1706.03762

	Introduction
	General Algorithm Formulation
	Logit normalization
	Algorithm Framework

	Algorithm Theoretical Results
	Lower bound
	Convergence condition

	Solution Instances
	StartOverN With Uniform Prior
	Finding parameters for normal distribution
	StartOverN With Normal Distribution Prior
	EverythingOverN With Normal Distribution Prior
	Formal definition
	Approach to solution


	Numerical analysis
	Performance
	Frequency analysis

	Future work
	SomeOverN with Normal prior
	Frequency Exhaustion Algorithm with Temperature and Frequency Penalty

	Conclusion
	P(X <= Y) where X, Y from truncated normal distribution

