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Abstract

We propose a novel approach to Singular Value Decomposi-
tion (SVD) for low-rank compression, addressing limitations
in previous methods such as Fisher Weighted SVD (FWSVD)
and True Fisher Weighted SVD (TFWSVD), which apply
uniform compression ratios across layers without consider-
ing intra- and inter-layer information characteristics. Unlike
FWSVD and TFWSVD, our approach dynamically deter-
mines layer-wise compression ratios based on these char-
acteristics, enhancing task performance efficiency. Specifi-
cally, we explore three novel methods in which ranks are
dynamically determined for low-rank compression based on
the inter- or intra-layer Fisher Information (FI): (1) dynam-
ically determining the rank for low-rank compression based
on inter-layer Fisher Information (FI), (2) maintaining a fixed
percentage of intra-layer FI and (3) optimizing to maximize
total (or layer-wise) FI given a fixed overall compression ra-
tio. These methods are evaluated on a transformer-based lan-
guage model and benchmarked against the state-of-the-art.
One of the proposed methods, relying on specifying a fixed
percentage of FI to keep per layer, has been shown to out-
perform the current state of the art on average in excess of
5%, and very significantly for inference and similarity tasks.
The work furthermore provides valuable insights for future
work to further explore the dynamic compression of layers in
transformer networks using FI, in particular by displaying the
effectiveness of dynamic compression using intra-layer FI.

Introduction
During the past few years, Transformers have proven to
be of great use for Natural Language Processing tasks, as
well as for computer vision tasks (Dosovitskiy et al. 2020).
Transformer networks are often vast, and more often than
not contain tens of millions to billions of parameters (De-
hghani et al. 2023). The mere size of these models makes
it rather difficult to deploy said models on widely available
hardware, causing access to transformer networks to be re-
stricted to only those institutions that can afford to invest
great amounts into extremely performant hardware. For this
reason, the compression of transformer-based networks is of
great interest.

The reduction of the number of parameters in transformer-
based language- and vision-based models has been shown to
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be able to be achieved by various methods, among which
making use of Singular Value Decomposition (SVD) of
weight matrices in order to decrease the number of param-
eters in vision transformers (Hajimolahoseini et al. 2022).
Conventional low-rank compression using Singular Value
Decomposition (SVD) however assumes that matrix rows
with lower singular values carry less importance with re-
spect to the target task. Work by Hsu et al. (2022) shows that
this is not necessarily the case, and has advanced low-rank
compression using SVD by proposing Fisher Weighted Sin-
gular Value Decomposition (FWSVD), a Fisher-Information
weighted objective function for SVD in language-based
models. While effective, FWSVD makes use of a simpli-
fication, making weight matrix rows share information to
obtain a closed-form solution. This simplification limita-
tion present in FWSVD was mitigated by Hua et al. (2022),
who with True Fisher Weighted Singular Value Decompo-
sition (TFWSVD), numerically optimised the weighted ob-
jective function introduced by Hsu et al. (2022). However,
these methods apply a fixed compression ratio to each layer
within the language transformer network and hence ignore
any inter- or intra-layer information characteristics specific
to the layers when determining the low-rank compression
ratios for these layers. We argue that dynamically deter-
mining layer-wise low-rank compression ratios based on
these inter- and intra-layer information characteristics can
be used in order to increase the task-performance efficiency
of (T)FWSVD, where the task-performance efficiency is
defined as the number of parameters required to obtain a
specific performance on the target task. To the best of our
knowledge, this paper is the first to propose utilizing inter-
and intra-layer Fisher information characteristics in order to
dynamically determine low-rank compression ratios, even
more so for its specific application to transformer networks.

This work builds upon the foundational studies (Hsu et al.
2022; Hua et al. 2022), by proposing three distinct meth-
ods that take into account the mentioned inter- and intra-
layer information characteristics in order to improve the
task-performance efficiency of Fisher Weighted SVD. Tak-
ing into account the inter- and intra-layer information char-
acteristics is done by exploring dynamically determining
the rank for low-rank compression based on the inter-layer
Fisher Information (FI), dynamically determining the rank
for low-rank compression based on keeping a fixed percent-



age of the intra-layer FI, and dynamically determining the
rank for low-rank compression - optimizing to maximize to-
tal (or layer-wise) FI given a fixed compression ratio. In par-
ticular, the main contributions of this work are as follows.

(1) Improve upon (Hsu et al. 2022) and (Hua et al. 2022) in
order to improve task-performance efficiency of Fisher
Weighted SVD by proposing novel compression meth-
ods which take into account intra- and inter-layer infor-
mation characteristics to determine layer-wise low-rank
compression ratios where previous work compressed all
layers equally.

(2) Benchmarking these novel methods by applying them to
various natural language processing tasks using BERT.

(3) Extract directions for future work from the experiments
in this work in order to improve language transformer
compression even further.

Background
Using Singular Value Decomposition to compress
weight matrices
Singular value decomposition (SVD) is a way to decompose
a matrix W ∈ RM×N into components U ∈ RM×r, V ∈
RN×r and diagonal matrix Σ, such that

W = UΣV T , (1)

where the values σi ∈ Σ | σi = Σi,i are referred to as
singular values.

Notably, the singular values in Σ are arranged in descend-
ing order of magnitude, meaning that at rank 1 (Σ0,0), the
largest singular value is present.

Compression by means of using Singular Value Decom-
position as a way to create a low-rank approximation of a
weight matrix W ∈ RM×N is done by decomposing this
weight matrix W into components U ∈ RM×r, V ∈ RN×r,
but this time with the diagonal matrix Σ̃ ∈ Rr×r | r <=

min{m,n} where Σ̃ contains the same values as Σ, except
Σ̃ being truncated to only include the r singular values of
greatest magnitude.

W ≈ U Σ̃V T (2)

For r = min{m,n} (full rank) W = U Σ̃V T .
The general idea of using Singular Value Decompo-

sition to compress neural network architectures, is well-
established. Using SVD to compress linear and convolu-
tional layers in network architectures has been proposed to
work for Convolutional Neural Networks (CNN) as early as
2014 in work by Denton et al. (2014), which tested its per-
formance on an image classification task using the ImageNet
2012 dataset (Deng et al. 2009). The method has not only
proven to be promising when considering image classifica-
tion but has also proven its usefulness for the compression of
neural architectures in other tasks, such as in acoustic scene
classification (using CNN) (Wang, Li, and Wang 2019) and
speech recognition (using Recurrent Neural Network (RNN)
architecture) (Prabhavalkar et al. 2016).

Schotthöfer et al. (2022) categorize the decomposition
of weight matrices into two distinct categories: Fixed low-
rank and dynamic low-rank approaches, where fixed low-
rank approaches define a specific rank upfront by for exam-
ple decomposing a network followed by fine-tuning (Den-
ton et al. 2014; Sainath et al. 2013; Lebedev et al. 2015) or
enforcing a fixed low-rank during training for weight matri-
ces (Jaderberg, Vedaldi, and Zisserman 2014; Khodak et al.
2021). Rank-adaptive approaches automatically determine
and adapt the matrix rank after training, for example, based
on metrics such as a PCA-energy-based metric (Kim, Khan,
and Kyung 2019) and a metric using a validation dataset to
maximize accuracy - using Variational Bayes Matrix Fac-
torization (VBMF) (Nakajima et al. 2013) to sample ranks.
The proposed novel methods in this work fall into this rank-
adaptive category.

Observed Fisher Information
The Fisher information is defined as a way to measure the
information that variable X contains with respect to an un-
known parameter θ, which in itself parameterises the distri-
bution modelling variable X .

The observed Fisher Information used in our compression
method is the sample-based version of the Fisher Informa-
tion I where

Iθ = E[(
δ

δθ
logf(X; θ))2 | θ] (3)

For variable X distributed as f(X; θ).
Now, what one would like to do is approximate the Fisher

information solely based on the observed variable X , which
can be defined as:

Iθ ≈ Ĩθ =

|D|∑
i=1

logf(di; θ) =

1

|D|

|D|∑
i=1

(
δ

δθ
L(di; θ))2 | d ∈ D ⊂ X (4)

Where L is the loss function used for the model.
In order to see the intuition behind using the Fisher In-

formation to either use it as a measure of importance for a
weight matrix W , or as to weigh SVD based on it, consider
loss function L(di; θ) in which a sufficiently small change
∆θ is added to model parameter θ

L(di; θ +∆θ) (5)

We can use the first-order Taylor series expansion of the
loss function around θ to obtain

L(di; θ +∆θ) ≈ L(di; θ) +
δL(di; θ)

δθ
∆θ (6)

This shows that when the gradient of the loss function L
with respect to the parameter θ is large, even a small pertur-
bation in θ will lead to a significant change in the loss func-
tion. This observation highlights the intuition behind the def-
inition of the observed Fisher Information Ĩθ as presented in
equation 4. Specifically, Ĩθ effectively captures the average



sensitivity of the loss function L to changes in the parameter
θ across the sample dataset D.

The idea of utilizing the Fisher information in order to
improve neural network compression, not necessarily us-
ing SVD, is likewise well-established. Tu et al. (2016) pro-
posed a scheme to reduce model size by utilizing Fisher in-
formation in order to discard lower-importance parameters
and allocate more quantization bits to those parameters with
higher Fisher information in deep neural networks. Theis
et al. (2018) show that using a combination of Fisher prun-
ing and knowledge distillation (Hinton, Vinyals, and Dean
2015), distilling knowledge from an ensemble of models
into a single distilled model, a 10x speedup could be ob-
tained for human gaze prediction. The Fisher pruning herein
consisted of removing those feature maps in case of convo-
lutional architectures (as typically, implementations of con-
volution operations might have difficulty exploiting sparse
filters in order to speed up the operation) that do not signif-
icantly contribute to the performance of the model. In this
approach by Theis et al. parameters (or feature maps in the
case of CNN architectures) are pruned one by one in ascend-
ing order of Fisher information. The mentioned works show
the effectiveness of utilizing FI as a measure to determine
the influence a given parameter or structure has on task per-
formance, which is an assumption this work relies on.

Weighing SVD approximation with observed
Fisher Information in language models
Conventional low-rank approximation has an objective func-
tion that is defined as minimizing the Frobenius norm be-
tween original matrix W and the (low-rank) approximation
AB

min
A,B

||W −AB||2 (7)

where for SVD, A = U Σ̃ and B = V T .
Where conventional low-rank approximation tries to ap-

proximate AB as close to W as possible, Hsu et al. (2022)
have identified that matrix rows with lower singular val-
ues do not necessarily carry less importance with respect to
the target task, a notion previously supported by Lyu et al.
(2023). This is shown by splitting the singular values up in
ordered groups of 10%, where the first group contains the
highest 10% of the singular values, whereas the last group
contains the smallest 10% of singular values, as can be seen
in Figure 1. Hsu et al. (2022) have identified that one can
obtain the importance of each element Wij by weighing the
conventional low-rank approximation objective with the ob-
served Fisher information Ĩθ named Fisher Weighted SVD
(FWSVD) such that the weighted objective function be

min
A,B

∑
i,j

Ĩθ(Wij − (AB)ij)
2. (8)

The authors of (Hsu et al. 2022) note that this weighted
SVD objective function does in general not have a closed
form solution, and therefore simplify by making a single row
in W share one importance such that ĨθWi

=
∑

j ĨθWij ,
causing the objective function to be

min
A,B

||ĨθW − ĨθAB||2. (9)

Figure 1: Lower rank groups do not necessarily have less
effect on task performance. Adaptation from Hsu et al. (Hsu
et al. 2022)

This can then be solved using standard SVD on ĨθW , where
svd(ĨθW ) = (U∗,Σ∗, V ∗), making the solution for A and

B from Equation 9 be A = Ĩθ
−1

U∗Σ̃∗ and B = V ∗T .
The objective function of equation 8 can however di-

rectly be optimised using an optimization algorithm. This
numerical optimization has previously been done by Hua
et al. (2022) and was named True Fisher Weighted SVD
(TFWSVD), as an improvement on the work by Hsu et al.
(2022), showing that this numerical performance is able to
outperform the state-of-the-art achieved by Hsu et al. (2022).
In the approach by Hua et al. Equation 8 is directly opti-
mized using a combination of Adam (Kingma and Ba 2015)
and Stochastic Gradient Descent (SGD) (Kiefer and Wol-
fowitz 1952). In this scheme, the simplified objective func-
tion as posed in Equation 9 is used as a threshold in order to
determine when to switch the optimizer from Adam to SGD:
when a loss that is equal to the value of Equation 9, after ap-
plying SVD (analytical solution) on ĨθW , the optimizer is
switched to SGD.

Note that both FWSVD and TFWSVD do not take into
account any inter- or intra-layer information characteristics
when determining the ranks for low-rank compression, both
equally compressing every layer. This work, in contrast,
does take into account said inter- and intra-layer Fisher in-
formation characteristics, dynamically determining the com-
pression ratio for each layer based on said characteristics.

Method
Determining weight matrix compression based on
observed Fisher Information
The first approach proposed in this work is using the
summed Fisher information matrix ĨθW for an entire weight
matrix W , in order to dynamically determine the rank r
given compression ratio c. This method utilizes the inter-
layer information characteristics of the layers within the net-
work by using the share of information a layer has as a proxy
for its importance with regard to task performance.



The approach follows a number of steps. First, the
summed Fisher information matrix ĨθW for an entire weight
matrix is calculated

ĨθW =
∑
ij

ĨθWij
. (10)

After this, the total Fisher information Ftotal over all
weight matrices, is calculated

Ĩtotal =
∑
W∈Q

ĨθW (11)

where Q is the set of all weight matrices.
Next, the Fisher Information is normalized to create a

weight factor pW for each W ∈ Q

pW =
ĨθW
Ĩtotal

(12)

such that
∑

W∈Q pW = 1.
Now, a problem arises, which is determining which com-

pression ratio cW to use for each weight matrix W ∈
Q. Clearly, the Fisher information-based weight factor pW
should determine the compression ratio, while the sum of all
compression ratios should sum to c,

∑
W∈Q cW = c.

At the same time, the sum of all compression ratios equal-
ing to c, does not mean that the overall compression ratio
is in fact equal to c, as each weight matrix W ∈ Q may
have a different size, and hence when a smaller sized weight
matrix J would get compressed more, and a larger sized
weight K |

∑
dim(K) >

∑
dim(J) matrix would get

compressed less, while 1
2

∑
cK + cJ = c, the total num-

ber of parameters might not be the same.
For this reason, one can identify two distinct optimization

objectives to determine the compression ratios.
(1) Optimizing for a fair compression ratio for all layers,

that is, those with a higher Fisher information should obtain
a lower compression ratio, disregarding the absolute size of
the weight matrix of the layer. The average of these com-
pression ratios should equal to c. This can be achieved by
defining a loss function

Lfair(α) =

(
c− 1

|Q|
∑
W∈Q

α(1− pW )

)2

. (13)

Where α is some parameter to be optimized, and notably,
the same for all W ∈ Q. Additionally, note that a higher pw
leads to less compression, which is important as one would
like to compress those weight matrices with a higher Fisher
information less.

The fair optimization function as shown in Equation 13,
has an analytical solution, which makes it much easier to
determine α. Note that by

∑
W∈Q pW = 1, we have

α =
c

(1− 1
|Q| )

(14)

(see derivation in Appendix ).
Note that despite a not being dependent on pW | W ∈ Q,

the compression ratio for a weight matrix W is defined as

α(1 − pW ), and hence does take into account the share of
information of each layer.

(2) Optimizing for an overall compression ratio of c,
hence also taking into account the sizes mw, nw of the
weight matrices W in a layer. For this, one can define the
loss function

Loverall(α) =

(
Stotal

c
−
∑
W∈Q

(mW × nW )

α(1− pW )

)2

. (15)

Where α is some parameter to be optimized and S is the
total number of parameters in the to-be-compressed layers.
Note that a higher pw leads to less compression, as α(1 −
pW ) becomes smaller.

Note that the overall optimization function shown in
Equation 15, also has an analytical solution

α =
c

Stotal

∑
W∈Q

(mW × nW )

(1− pW )
. (16)

(see derivation in the Appendix).
Note that for Loverall(α) and Lfair(α), 0 ≤ pW ≤ 1 |

W ∈ Q and
∑

W∈Q pW = 1.
The compression ratio cW is related to the (reduced) rank

rW as follows

cW =
mW × nW

(mW × rW ) + (nW × rW )
=

mW × nW

rW (mW + nW )
.

(17)
Where solving for rW gives

rW =
mW × nW

cW (mW + nW )
. (18)

This means that a matrix W ∈ Q, is split up into matrices
of size mW × rW , rW × rW and rW × nW respectively.

Weight matrix compression retaining a percentage
of FI
Another approach, which utilizes the intra-layer information
characteristics of a given layer, is to keep a fixed percentage
of the Fisher Information per layer and dynamically have the
compression ratio be inferred from this.

For this, a mapping must be made between the Fisher In-
formation associated with the original weight matrix ĨθW
and the SVD of the original weight matrix. This is done by
first summing the Fisher Information values in ĨθW across
each row to obtain a vector where each element represents
the sum of the Fisher Information values for the correspond-
ing row

ĨWreducedi
=

n∑
j=0

ĨWi,j . (19)

Then we diagonalize ĨWreduced
and project it onto the

space defined by V

ĨWprojected
= V T diag(ĨWreduced

)V. (20)

After which the singular values in Σ are weighed with
ĨWprojected



Σweighed = Σ⊙ ĨWprojected
. (21)

Σweighed is then re-ranked to have the weighted singular
values be ordered decreasingly.

In order to then retain the specific percentage of informa-
tion per layer, the algorithm iterates over each re-ranked row,
starting from the first row (that is the row with the highest
FI associated with it), and keeps including rows until the de-
sired FI threshold has been reached or exceeded. After this,
a list of sorted indices l is made, containing the indices of
weighed singular values in Σweighted, in descending order.
The top k indices from the list of sorted indices l are then
used in order to determine the top-k components in Σ, deter-
mining Σ̃.

The intuition behind this approach is that for each com-
pressed layer, a percentage of information is kept, where the
hypothesis is that this ensures for each layer, information re-
quired to perform the task is retained. At the same time, this
approach has an apparent downside which is one not being
directly in control as to how much a model is compressed.
Although for a specific trained model, one would be able
to map the percentage of information kept to a correspond-
ing compression ratio by trial and error, however, this exact
mapping would be different for every trained model.

At the same time, a rough general mapping between the
percentage of information kept and the compression ratio
obtained from said percentage kept might be found. Such
mapping, combined with the performance of this approach
might lead one to still prefer this approach over others.

Weight matrix compression by dynamically
determining the rank for low-rank compression -
optimizing to maximize total FI given a fixed
compression ratio
Having a fixed compression ratio and optimizing to max-
imize the total Fisher Information is a method utilizing the
inter-layer information characteristics - optimizing compres-
sion ratios for all layers such that the overall information
kept is maximized. This can be done by defining a loss func-
tion as follows

L(C, λ) = −
∑
W∈Q

ĨW
cW

+ λ

∑
W∈Q

mW · nW

cW
− Stotal

c

2

=

−
∑
W∈Q

ĨW
cW

+ λ

∑
W∈Q

mW · nW

cWStotal
− 1

c

2

.

(22)
Where overall compression c ≥ 1 and λ is a Lagrange

multiplier to enforce the constraint that the total number of
parameters should be equal to Stotal

c . cw here is the compres-
sion ratio that differs for each linear layer, cW ∈ C, where
cW ≥ 1. We normalize the Lagrange multiplied part of the
equation by dividing by Stotal.

Note however that the optimization function from Equa-
tion 22, which tries to find the most optimal cW ∈ C, is
similar to the simple mathematical function 1

x . This means
that the function is discontinuous at x = 0, and hence no

derivative exists at x = 0. Similarly, no derivative exists for
any cW = 0 | cW ∈ C.

Despite the constraint that cW ≥ 1, during optimization,
some cW ∈ C could be set equal to 0 during some interme-
diate update. For this reason, the loss function is defined as
the following piecewise loss function{

L(C, λ) = −
∑

W∈Q
ĨW
cW

+ λ
(∑

W∈Q
mW ·nW

cWStotal
− 1

c

)2
∀cW ∈ C, cW ̸= 0

L(C, λ) = ∞ ∃cW ∈ C such that cW = 0.

(23)
The idea behind this approach is that the total information,

which consists of all information in those layers that are sub-
ject to compression, is maximized and hence the hypothesis
is that the task performance is also maximized.

Plotting the problem space The space of this problem for
a given compression ratio is one of dimensions | Q |, given
there exists a compression ratio cW for each W ∈ Q.

To get an idea of this problem space, a Monte Carlo sam-
pling has been made of the space, given a set of 12 lay-
ers W̃ ∈ Q̃ simulating W ∈ Q of sizes mW , nW | 1 ≤
[mW , nW ] ≤ 100, where these mW , nW have been sampled
from a uniform distribution. Additionally, for each simulated
layer W̃ ∈ Q̃, an accompanying ˜̃I | 0.1 ≤ ˜̃I ≤ 10.0 sim-
ulating Ĩ , the simulated observed information, was sampled
from a uniform distribution.

Then, c̃W for each layer W̃ ∈ Q̃ are uniformly sampled,
where 1 ≤ cW ≤ 10.

A sample set C̃ | c̃W ∈ C̃ is found to be acceptable in
case it allows for the desired overall compression ratio c ±
5%.

As one might expect, uniform sampling of C̃ might make
it take rather long to reach those c̃W ∈ C̃ such that the sam-
pled total compression c̃ = c± 5% holds, where

c̃ =
∑
W∈Q

m̃W×ñW

c̃W

S̃total

| c̃W ∈ C̃, W̃ ∈ Q̃. (24)

For this reason, after every sample taken, a mechanism to
adjust the sampling of C̃ is used.

When compression ratio c̃ ̸= c, all items cW ∈ C̃ are
scaled by a factor z = c

c̃ . This means that in case c̃ > c
(too much compression), this scaling factor z < 1, whereas
in case c̃ < c (too little compression), this scaling factor
z > 1.

This sampling strategy leads to a collection of samples ,
where PCA (Wold, Esbensen, and Geladi 1987) is used to re-
duce the dimensionality of these vectors to 2 such that these
can be used to plot a 3-D space in which the x and y axes are
the two principal components, and the z-axis is the amount
of total information kept. These plots can be observed in Fig-
ure 2.

Figure 2 clearly shows that it might prove difficult to op-
timize for maximum total information given a compression
ratio when using a standard numerical optimizer, such as
Adam or RMSProp, as the space contains a very large num-
ber of local optima. Therefore not only the numerical opti-
mization methods are used in order to find an optimal solu-
tion to this problem which maximizes the total information



Figure 2: Plot of Monte Carlo uniformly sampled problem
space: PCA of compression ratios vs total information

given a specific compression ratio, but, a sampling method
such as described in order to plot the problem space is also
to be considered. In this, the same Monte-Carlo method uti-
lizing a mechanism to uniformly adjust the sampled c̃ ̸= c is
used to move c̃ into the direction of c, where the initial sam-
ples cW ∈ C̃ are drawn from a uniform distribution where
1 ≤ cW ≤ 10.

Experiments
Language tasks and datasets
The benchmark tasks used in this work are the tasks present
in the General Language Understanding Evaluation (GLUE)
(Wang et al. 2019), which is commonplace to use in order to
assess model compression performance (Khetan and Karnin
2020).

The GLUE benchmark consists of several tasks that can
be categorized into three distinct classes

(1) single-sentence classification tasks
(2) similarity & paraphrase tasks
(3) inference tasks.

Single-sentence tasks Two specific tasks fall under the
single-sentence tasks umbrella: The Corpus of Linguistic
Acceptability (CoLA) (Warstadt, Singh, and Bowman 2019)
single-sentence task, and the Stanford Sentiment Treebank
(Socher et al. 2013) single-sentence task (Socher et al.
2013).

CoLA - The corpus for the CoLA task consists of accept-
ability judgements from books and journal articles on lin-
guistic theory in the English language. The Matthews corre-
lation coefficient (MCC)(Matthews 1975), where the MCC
is a balanced measure taking into account true positives, true
negatives, false positives and false negatives. The MCC is
calculated as

MCC =

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(25)
The value of the MCC can vary between -1 and 1, where

1 indicates a perfect prediction, 0 indicating a prediction no
better than random and -1 indicating maximum disagree-
ment between prediction and labels.

For the CoLA task, the measure is calculated using a com-
bination of both the in- and out-of-domain sections of the
test set.

SST-2 - The mentioned Stanford Sentiment Treebank
(Socher et al. 2013) is comprised of sentences from movie
reviews, which are sentiment-labeled by human annotators.
For the task, sentence-level labels are considered, and a two-
way class split (positive, negative) is used.

Similarity and paraphrase tasks The next group of tasks
that make up the GLUE benchmark are the similarity and
paraphrase tasks, which include the Microsoft Research
Paraphrase Corpus (Dolan and Brockett 2005) (MRPC) task,
the Quora Question Pairs dataset (Quora 2012) (QQP) task
and the Semantic Textual Similarity Benchmark (Cer et al.
2017) (STS-B) task.

MRPC - The MRPC corpus consists of sentence pairs
which were automatically extracted from news sources on-
line, where semantic equivalences between pairs have been
labelled by human annotators (positive or negative; semanti-
cally equivalent or not). As the classes are imbalanced (68%
positive), both F1 score and accuracy are calculated, where
both (Hsu et al. 2022) and (Hua et al. 2022) report the F1
score in their results.

QQP - The QQP dataset is comprised of pairs of questions
from the question-answer-based community forum Quora.
The task here is, similarly to MRPC, to determine whether
a pair of questions is semantically equivalent or not. Again,
given the classes in this dataset are imbalanced (63% nega-
tive), both F1 score and accuracy are calculated, where both
(Hsu et al. 2022) and (Hua et al. 2022) report the F1 score in
their results.

STS-B - STS-B consists of a collection of sentence pairs
from natural language inference data, news headlines and
video- and image captions, where each pair is humanly la-
belled with a similarity score between 1 and 5, which are to
be predicted for this task. For this task, the Pearson correla-
tion coefficient (PCC) is used as a performance metric.

Inference tasks The last class of tasks are the infer-
ence tasks, consisting of the Multi-Genre Natural Language
Inference Corpus (Williams, Nangia, and Bowman 2018)
(MNLI) task, the Stanford Question Answering Dataset (Ra-
jpurkar et al. 2016) (QNLI) task, the Recognizing Textual
Entailment (Wang et al. 2019) (RTE) task and the Wino-
grad Schema Challenge (Levesque, Davis, and Morgenstern
2012) (WNLI) task.

MNLI - The MNLI task consists of a collection of sen-
tence pairs with their corresponding textual entailment an-
notations. Each pair consists of a premise- and hypothesis
sentence, where the task at hand is to predict whether the
premise entails or contradicts the hypothesis (or neither).
Premise sentences are sourced from ten different sources,
among which are speech transcriptions and fiction. Addi-
tionally, the SNLI corpus (Bowman et al. 2015) is used for
additional pre-training data.

QNLI - The QNLI corpus used for this task is a question-
answering dataset consisting of pairs of questions with a
corresponding paragraph, in which the corresponding para-
graph contains the answer to the given question. Wang et



al. (Wang et al. 2019) have modified the dataset such that
a pair is created between each question and each sentence
in the corresponding paragraph, where notably pairs with a
high lexical overlap are removed. The task then is to predict
whether a given sentence answers the corresponding ques-
tion. As Wang et al. (2019) mention, despite this removing
the task of the model selecting the answer that contains the
correct question, it does also remove the assumption that
a given paragraph would always contain an answer to the
question as well as, due to the fact that lexically similar pairs
were removed, the assumption that lexical overlap between
the question and sentence would correlate to the sentence
containing the answer.

RTE - The RTE task datasets are a combination of differ-
ent textual entailment challenges, where datasets are based
on Wikipedia articles and news items. The dataset combi-
nation is then split into two distinct classes: entailment and
non-entailment. For any datasets that make up the combined
dataset which have more than two classes, neutal and con-
tradiction classes are simply put into the non-entailment
class. The task then is to correctly predict entailment or non-
entailment.

WNLI - The WNLI is based on the Winograd Schema
Challenge (Levesque, Davis, and Morgenstern 2012), which
is a reading comprehension task where in sentences with
pronouns, the referent of said pronoun must be selected.
Examples are manually created in order to prevent simple
statistical methods from being effective. Wang et al. (Wang
et al. 2019) have converted the problem into a sentence clas-
sification one, where sentence pairs have been created which
replace the pronoun that could be referred to by multiple
referents, by each of the possible referents. It is then pre-
dicted whether the sentence in which the pronoun has been
replaced by the possible referent is entailed by the original
sentence. Wang et al. (2019) have furthermore created an
additional test set which consists of new examples sourced
from fiction books.

Baseline model
The baseline language model used for the experiments
in this work is a standard 12-layer BERT model (Devlin
et al. 2019). BERT is a well-known language representa-
tion model and is designed to encode deep bidirectional rep-
resentations from unlabeled text. It is an excellent choice
to test novel compression methods given both its high per-
formance in numerous natural language tasks (Devlin et al.
2019; Choi et al. 2021), as well as due to the fact that it can
be easily fine-tuned for a range of natural language process-
ing tasks, such as language inference and question answer-
ing, by adding a single additional output layer (Devlin et al.
2019).

At the same time, using BERT in order to determine the
performance of compression schemes on natural language
models appears to be commonplace (Khetan and Karnin
2020; Wang et al. 2022; Sanh, Wolf, and Rush 2020; Cao
et al. 2020), and is also the choice of language model for the
work on Fisher Weighted SVD by Hsu et al. (2022), which
this works both makes direct comparisons with as well as
improves upon.

BERT notably has an encoder-only transformer architec-
ture. This means that the architecture does not contain a de-
coder as shown in Figure 4.

Layers to compress
For the experiments, all linear layers are to be compressed
using low-rank compression using the share-of-information,
keeping a specific share of information or optimizing for
overall information kept respectively. Despite the compres-
sion of embedding layers has however in previous work
shown to be both feasible and effective (Chen et al. 2018),
where said word embedding layer occupies 21.3% of the
standard BERT model, this work does not compress the
word embedding layer in order to maintain comparability
with other work, akin to the work by Hsu et al. (2022).

Most layers that are to be compressed are an encoder-level
layer. That is, these layers exist in one of the 12 encoder
blocks of the BERT architecture. These layers are the query,
key, value and output linear layers of the attention mecha-
nism, as well as the intermediate and output linear layers of
the encoder block.

For clarity, Figure 3 highlights these to be compressed
encoder-level layers, which furthermore shows the architec-
tural location of these to-be compressed layers within the
BERT architecture.

Next, any linear layers that are not present in the en-
coder component of the BERT architecture are furthermore
compressed, which is dependent on the downstream task on
which BERT is fine-tuned.

Common experiment setup 1

Each of the proposed novel compression methods is run sep-
arately on the SST-2, MRPC, QQP, STS-B, MNLI and QNLI
GLUE benchmark tasks, which have been described in the
language tasks and datasets section of the experiments sec-
tion. Additionally, a BERT-base (Devlin et al. 2019) bench-
mark is run without any compression, in order to obtain a
benchmark for the exact unaltered base model used. For each
task, the BERT-base model (Devlin et al. 2019) is first fine-
tuned for three (3) training epochs, using a batch size of 32,
a learning rate of 2e-5 and a max sequence length of 128
tokens.

Given that the approaches mentioned in the methodology
section are ways to dynamically determine the compression
ratio for a given layer W ∈ Q, the decomposition itself is set
to be either using FWSVD (Hsu et al. 2022)-, or TFWSVD
(Hua et al. 2022). For each set of these experiments, a set
using either FWSVD or TFWSVD as a decomposition ba-
sis, the baseline is reported. That is, it is reported how well
given the current configuration, these approaches work. For
the TFWSVD experiment set, the Adam (Kingma and Ba
2015) optimizer is used using a learning rate of 0.001, taking
200 optimization steps. A clear overview of the experiments
done per compression level can be seen in Figure 3, where
firstly one of two Fisher-weighted SVD approaches is used,

1The implementation of all experiments mentioned in this pa-
per are available at https://github.com/SebastiaanDev/transformer-
compression-bert



Figure 3: Experimental setup: Encoder-level BERT compression and compression approaches

after which a top-k is determined dynamically by means of
the approaches described in the methodology.

All GLUE tasks are used to determine how well the pro-
posed approaches work under the FWSVD and TFWSVD
low-rank compression schemes, except for the RTE and
WNLI tasks. These tasks are not used for benchmarking as
previous work by Hsu et al. (2022) as well as by Hua et al.
(2022) do not use these tasks in their benchmarking.

In order to compare the approaches among each other,
compression ratios are tweaked such that a specific number
of parameters can be reached. For the approaches that have a
fixed total compression ratio c, a specific compression is ob-
tained by fixing this parameter. These fixed-compression ap-
proaches being the inter-layer Fisher information (with loss
function Loverall(α)) and weight matrix compression, maxi-
mizing the observed Fisher information approaches, as elab-
orated on in the methodology section. Notably, for the lat-
ter approach maximizing the observed Fisher information,
the compression constraint might not be fully reliable due
to the fact that in this approach, the compression is regu-
lated by a Lagrange multiplier in the loss, and hence is ’soft-
constrained’.

The total compression to compare with is chosen to be
1.65, as this is the same total compression ratio used in the
work by Hsu et al. (2022). Note that 21.3% of the param-
eters in the model (∼ 23M parameters) are in fact part of
the embedding layer of the model, and are not compressed,
hence a total compression of 1.65 translates to a compres-
sion applied to the encoder- and downstream linear layers

that is larger than this.
Furthermore, note that reported performances on the base-

line approach by Hsu et al. (2022) and Hua et al. (2022)
might not be exactly the same as reported in their respec-
tive works. This could be due to slight differences between
this work and the work by Hsu et al. (2022) and Hua et al.
(2022) with regard to the base BERT model, such as the pre-
training weights and slight architecture differences of which
this work is unaware. Additionally, the layers compressed
might be slightly different between the approaches, such as
potentially the compression of linear layers specific to the
downstream task, given the nature of the experiment design
descriptions of these works do not specify this in great detail.
This possible difference does however not affect the valid-
ity of this work, as (1) the FWSVD compression method as
presented by Hsu et al. (2022) and TFWSVD by Hua et al.
(2022) are utilized for the baseline experiment, and form
the foundation for experiments on the novel approaches pre-
sented in this work and (2) the same network architecture is
used for all experiments for a given task. Given the model is
constant for all experiments, the relative differences between
approaches on the different GLUE tasks are valid.

The benchmark total compression of 1.65 is reported on
with a maximum deviation of ±0.3%, for which individ-
ual methods have been tweaked, which shall be elaborated
on below. Note that tweaking might differ slightly per task
within the experiment set of each approach, as the size of the
task-specific part of the BERT model (the task head) differs
slightly between tasks.



The compression approaches that are especially difficult
to fix the total number of parameters after compression for
are most notably, the method retaining a percentage of the FI
for each layer, and to a lesser extent the inter-layer compres-
sion ratio approach with loss function Lfair(α), as elabo-
rated on in the methodology section.

Compression based on FI between layers
Compression based on the Fisher Information between lay-
ers has two distinct sub-methods. The first one being the
fair approach, which optimizes for Fisher-Information based
layer compression ratios that keep the average compression
ratio 1

|Q|
∑

W∈Q α(1 − pW ) as close as possible to the de-
sired compression ratio c, independent of the weight ma-
trix size of said layer. The loss objective for this optimiza-
tion problem can be seen in equation 13. As previously dis-
cussed, a downside of this approach is that the total number
of parameters after compression might not after compression
be equal to Stotal

c , despite the average of the layer compres-
sion ratios being equal to c. For example in the case when
layers with a smaller weight matrix have been assigned a
larger compression ratio, and layers with a larger weight
matrix have been assigned a smaller compression ratio. As
mentioned, given that it appears harder for this approach to
directly fix a compression ratio for the total number of pa-
rameters, despite tweaking this approach for each task to
have a benchmark value for the total compression ratio of
1.65, the compression ratio for this approach might deviate
slightly from the target compression ratio within a margin of
±0.3%.

The overall approach on the other hand, optimizes
for Fisher-Information-based layer compression ratios that
keep the total number of parameters after compression∑

W∈Q
(mW×nW )
α(1−pW ) as close as possible to the desired num-

ber of parameters after compression Stotal

c . The loss function
for this optimization problem can be seen in equation 15.
As discussed, the downside to this approach might be that
given the compression ratio for a layer is also dependent on
its size, the effectiveness of the method is compromised by
the fact that compression ratios are not only dependent on
the Fisher Information.

Unlike the fair approach, the overall approach does not
have the issue of it being difficult to fix a total number of
parameters after compression. This effectively means that
for this approach, compression ratios for all experiments can
be reached more precisely, more easily.

Compression by optimizing for retaining FI percentage
For the retaining of a specific percentage of the Fisher Infor-
mation for each layer, as elaborated on in the methodology
section, the selected information retaining percentage must
be such that the required total compression ratio of 1.65 is
reached. As the observed Fisher information depends on the
fine-tuning run that precedes the task evaluation, it requires
special tweaking of the percentage of information retained,
even more so than as described for the fair inter-layer infor-
mation difference-based approach. As before, for each task,
the approach is tweaked to obtain a total compression ratio

of 1.65, with a margin of ±0.3%.
For this approach, it must be noted that when using the

TFWSVD low-rank compression by Hua et al. (2022), a
slight difference in implementation exists compared to us-
ing FWSVD low-rank compression by Hsu et al. (2022)
(FWSVD). With TFWSVD, optimization of A and B (as
defined in Equation 7) occurs after the projection of infor-
mation onto V and subsequent weighting of the singular
values using the diagonal elements of the projected Fisher
information. The approach using FWSVD on the other hand
utilizes the simplification that a single row in W shares one
importance such that ĨθWi

=
∑

j ĨθWij , causing the ob-
jective function to be as in Equation 9. As mentioned in
the related work section, Hsu et al. (2022) then solve Equa-
tion 9 analytically by using standard SVD on ĨθW , where
svd(ĨθW ) = (U∗,Σ∗, V ∗). This then makes the solution

for A and B from Equation 9 be A = Ĩθ
−1

U∗Σ∗ and
B = V ∗T .

At the same time, the approach retaining a given percent-
age of the information projects Ĩθ onto V , which is now
V ∗, such that ĨWprojected

= V ∗T

diag(ĨWreduced
)V ∗, where

ĨWreduced
is defined as in Equation 19. Singular values are

then weighed using the diagonal elements of the projected
Fisher information: Σ∗

weighed = Σ∗ ⊙ ĨWprojected
. After

which a list of sorted indices l is made, containing the in-
dices of weighed singular values in descending order. k is
then determined by iterating over the weighted singular val-
ues until the threshold p% of the sum of all weighted singu-
lar values has been reached. The top k indices from the list of
sorted indices l are then used in order to determine the top-k
components in Σ∗, determining Σ̃∗. Note that still, due to
the FWSVD low-rank compression method (which uses the
simplification that each row shares one Fisher Information
value), A = Ĩθ

−1
× U∗ × Σ̃∗.

Compression by maximizing total FI
For the compression by maximizing the total FI, as previ-
ously elaborated in the methodology section, two distinct
approaches are taken in order to solve this problem, namely
utilizing numerical optimization as well as using Monte
Carlo sampling.

For the numerical optimization method, the piece-wise
loss as shown in Equation 23, and finding an optimal C |
cW ∈ C,W ∈ Q. For the optimization, the Adam (Kingma
and Ba 2015) optimizer is used. The learning rate is set to
0.01 and 1000 optimization steps are taken. Note that given
the constraint on requiring the total number of parameters
after compression to be equal to 1

c , is a soft constraint en-
forced by the Lagrange multiplier and the total number of
parameters after optimization might not necessarily be equal
to 1

c after optimization. Hence for this approach to optimize
for maximum information being kept given a certain over-
all compression ratio, in order to report on the task perfor-
mances given the 1.65x experiment compression, specific
tweaking of the compression ratio is again required in or-
der to be able to report on the task performances under a



total compression of 1.65± 0.3%.
In order to try to mitigate the potential problem of the

optimizer getting stuck at a local minimum, which is a rea-
sonable assumption given the problem space as plotted in
Figure 2, as well as to have more stringent control on the
total compression of the model, Monte Carlo sampling is
utilized. 100,000 samples for C | cW ∈ C are taken, where
for each layer W ∈ Q, cW is sampled from a uniform dis-
tribution where 1 ≤ cW ≤ 10. Any sampled set C | cw ∈ C
is considered valid if the total compression c̃ using the sam-
pled compression map C does not differ from the target total
compression c by more than 5%, i.e., c̃ = c± 5%. Here c̃ is
defined as

c̃ =
∑
W∈Q

mW×nW

cW

Stotal
| ˜cW ∈ C,W ∈ Q. (26)

As touched upon in the methodology section, it might be
difficult to obtain a sampled compression map C which ad-
heres to this criterion. For this reason, similar to the sam-
pling used to plot an example of the problem space, when
compression ratio c̃ ̸= c, all items cW ∈ C are scaled by a
factor z = c

c̃ meaning that in case c̃ > c (too much compres-
sion), this scaling factor z < 1, whereas in case c̃ < c (too
little compression), this scaling factor z > 1. The experi-
ment is run multiple times in order to find a solution such
that the total compression is equal to c± 0.3%.

Results and discussion
In this section, results are shown for which compression has
been fixed to be 1.65x, causing the resulting compressed
model to have a size of 65.5M parameters, with a deviation
≤ ±0.3%. The section is split up into two parts, one going
over the results obtained from experiments carried out with
novel approaches op top of FWSVD (Hsu et al. 2022), and
the second going over the results obtained from experiments
carried out with novel approaches on top of TFWSVD (Hua
et al. 2022).

Novel methods on top of FWSVD
Firstly, results are discussed with experiments of novel ap-
proaches on top of FWSVD (Hsu et al. 2022). FWSVD
makes use of a simplified Fisher Weighting of the singular
value decomposition, the objective function being defined as
minA,B ||ĨθW − ĨθAB||2, which is solved using standard
SVD on ĨθW , as elaborated on in the background section.
These results are shown in a separate section of Table 1.
For the FI-based, dynamic SVD compression approaches
built on top of the FWSVD baseline work, one can observe
that clearly, for all tasks, at least one Fisher information-
informed method utilizing intra- or inter-layer information
characteristics outperforms the baseline - which appears to
be promising.

For the ColA task, the approaches maximizing for total
information using both numerical optimization and Monte
Carlo simulation as well as the percentage of total infor-
mation kept all outperform the baseline approach based on
Matthew’s correlation metric. In this, the approach maxi-
mizing total information kept using Monte Carlo simulation

outperforms all other methods with about an order of mag-
nitude difference. This appears rather impressive, given this
single-sentence task appears rather challenging to solve af-
ter compression without fine-tuning. A possible explanation
for the Monte Carlo total information maximization method
outperforming the others could be that it can more easily
find a global optimum for total information kept when com-
pared to the numerical optimization method, which is a the-
ory posed in the methodology section as well.

Next, for the MNLI inference task, all dynamic rank
selection approaches outperform the FWSVD baseline in
terms of accuracy. Here it must be noted that for all dynamic
rank selection approaches with the exception of the ap-
proach retaining a fixed percentage of the FI per layer, these
do not deviate more from the baseline FWSVD than the
maximum margin of error in the number of parameters that
the models contain after compression in these experiments:
2 × 0.3% = 0.6%. On the other hand, the approach retain-
ing a fixed percentage of the FI per layer clearly outperforms
all other approaches, performing about twice as well on the
task. A possible hypothesis as to why this approach outper-
forms all others by such a significant amount might be that
inter-layer information might be distributed rather evenly
i.e. different layers might contain similar amounts of infor-
mation in total, while the intra-layer information is not i.e.
information within a layer might be contained within only
a few rows of its weight matrix, hence the approach that
focuses on intra-layer information retention could perform
better in such cases.

Considering the MRPC task, it can be observed that this
similarity task appears rather challenging, where the F-1
score for the total information maximization approaches as
well as the intra-layer information retention approach is
zero. A possible explanation for the information maximiza-
tion approaches performing sub-par could be due to certain
layers being rather information-dense, while others contain
relatively little information in absolute terms, but are still
important to the task at hand. At the same time, sub-par
performance by the intra-layer FI retention approach could
be explained by the specific task having rows within weight
matrices be important to the task, while these did not con-
tain enough information to be retained. At the same time,
the fair- and overall dynamic compression methods that de-
fine compression ratio based on the inter-layer FI both out-
perform the FWSVD baseline by a difference that is larger
than the maximum margin of error in the number of pa-
rameters that the models contain after compression in these
experiments. The difference in performance between these
approaches and the approaches maximizing total informa-
tion in the compressed network could be due to some nor-
malization effect by utilizing the shares of total information
when calculating the compression ratios, although this re-
mains speculation.

Evaluating the QNLI task, an analysis similar to the
MNLI task can be made. Again, for this inference task, the
approach retaining a percentage of FI per layer greatly out-
performs all other approaches, and a similar reasoning could
be applied as was done for the MNLI task. Interestingly, the
approaches maximizing total information now also show re-



Table 1: Results of FI-based dynamic compression approaches on top of FWSVD, TFWSVD, and BERTbase baselines

Approach #Param ColA
(MCC)

MNLI
(Acc)

MRPC
(F1)

QNLI
(Acc)

QQP
(F1)

SST2
(Acc)

STSB
(PCC) G-Avg

BERTbase (Devlin et al. 2019) 108.3M 59.81 83.79 87.74 90.68 87.45 92.55 88.68 84.4

FWSVD (Hsu et al. 2022) based

FWSVD (Hsu et al. 2022) 65.55M 0 31.73 33.61 53.19 0 83.26 20.64 31.8
Total info kept MC (Ours) 65.55M 13.00 31.82 0 59.25 0 82.00 28.77 30.7
Total info kept (Ours) 65.55M 3.78 31.99 0 54.37 0 82.34 15.88 26.9
% Info kept (Ours) 65.55M 2.07 62.08 0 70.58 66.47 84.17 38.01 46.2
Dynamic (fair) (Ours) 65.55M 0 31.85 36.02 53.54 0 83.72 24.79 32.8
Dynamic (total) (Ours) 65.55M 0 31.88 35.68 53.56 0 83.83 24.86 32.8

TFWSVD (Hua et al. 2022) based

TFWSVD (Hua et al. 2022) 65.55M 33.78 44.14 0.71 60.33 74.77 85.32 34.82 47.7
Total info kept (Ours) 65.55M 33.69 43.78 0 58.48 65.54 83.72 34.17 45.6
Total info kept (Ours) MC 65.55M 25.15 39.45 0 60.74 73.03 84.17 62.10 49.2
% Info kept (Ours) 65.55M 26.31 53.60 12.38 67.69 74.77 84.86 50.00 52.8
Dynamic (fair) (Ours) 65.55M 33.27 44.20 0.71 60.61 74.00 85.67 33.93 47.5
Dynamic (total) (Ours) 65.55M 33.27 44.23 0 60.59 74.01 85.55 34.01 47.4

sults that improve upon the FWSVD baseline, both exceed-
ing the maximum margin of error in the number of param-
eters of the compressed models. The Monte Carlo sampled
version of the total information maximalization outperforms
the numerical optimization method, where again it is the-
orized that it is able more easily find a global optimum for
total information kept when compared to the numerical opti-
mization approach when considering the difficult landscape
to find a global optimum in shown in Figure 2.

Next, for the QQP task, the F1 score of the approach
that keeps a certain percentage of information for each
layer clearly outperforms all other methods on this seman-
tic equivalence task, achieving an F1 score of 66.47%. The
difference with the MRPC task, another similarity task, is
rather stark. This shows the perspective that the lower per-
formance of the intra-layer FI retaining approach might not
necessarily be worse on similarity tasks fundamentally, but
that the low performance on the MRPC task might be at-
tributed to other factors, such as possibly not having enough
epochs to estimate the Fisher Information on.

Continuing to the SST2 task, where single sentences are
to be sentiment-classified, here one can observe task per-
formances across approaches that are rather similar to each
other, compared to the other tasks. At the same time, the ap-
proach where a percentage of information is retained again
outperforms the baseline by a margin that is greater than the
mentioned margin of error in the number of parameters in
the experiment.

When considering the STS-B similarity task, both the to-
tal information maximization approach using Monte Carlo
sampling as well as the approach retaining a specific per-
centage of intra-layer information, clearly outperform the
baseline approach, showing again that the retaining intra-
layer information approach can perform well on similarity
tasks (where this task is posed as a classification problem,

akin to the other similarity tasks, a similarity for a pair be-
ing a discrete value between 1 and 5). At the same time,
the maximization of total information approach appears to
also have an ability to perform well on such similarity tasks,
where it must again be noted that the Monte Carlo sampling
approach outperforms the method utilizing numerical opti-
mization, possibly due to the difficulty to find good optima
in the problem space, as mentioned before.

Overall, considering also the average Glue score (G-
Avg) for all approaches experimented with when using the
FWSVD baseline, it appears that the dynamic determination
of compression ratios based on the share of the total infor-
mation between layers, the maximalization of total informa-
tion in the network as well as retaining a certain percentage
of the FI within a given layer, are all methods that are able
to outperform the FWSVD baseline approach proposed by
Hsu et al. (2022). This shows that both utilizing the inter-
and intra-layer information characteristics are able to out-
perform previous work. Retaining a certain percentage of FI
within layers appears to perform the best overall, showing a
clear ability to perform well on all task types, where it ap-
pears to be particularly strong on the inference and similar-
ity tasks (with the exception of MRPC). Dynamic determi-
nation of compression ratios based on the share of the total
information between layers, furthermore has shown to work
rather well on the similarity tasks.

Novel methods on top of TFWSVD
Next, the results that make use of an improved version of
FWSVD (Hsu et al. 2022), TFWSVD, as was introduced by
Hua et al. (2022). Here, instead of making use of the sim-
plification that makes a single row in W share a single im-
portance, Equation 8 is directly optimized. These results are
again shown in a separate section of Table 1. When con-
sidering the results as shown in Table 1 that make use of



TFWSVD (Hua et al. 2022), the current state of the art, one
can observe a number of differences with results obtained
when using FWSVD (Hsu et al. 2022) as a foundation for
the novel approaches.

Firstly, results from experiments based on TFWSVD
achieve, on average, higher performance on their respective
task metrics, which in itself is expected as TFWSVD was
posed as an improvement on FWSVD. It is however con-
sidered relevant to determine the differences between using
FWSVD or TFWSVD as a base, as novel approaches might
be more effective when utilizing each as a base.

For the ColA single sentence task, one can observe that in
contrast to the experiments that use FWSVD as a base, here
the baseline approach appears to perform best. However,
given the maximum margin of error in the number of pa-
rameters that the models contain after compression in these
experiments, this cannot be concluded given the approach
maximizing total information using numerical optimization
as well as the dynamic compression approaches based on
inter-layer Fisher information obtained similar task metrics.
Possibly, the effect of the approaches that worked best for
the ColA task when using FWSVD, is mitigated by directly
optimizing Equation 8, which does not consider information
characteristics in a row-wise manner - something which the
intra-layer information retaining approach does. Addition-
ally, the Monte Carlo sample for the experiment maximizing
total information might have simply been sub-par by chance,
especially considering the performance of the same experi-
ment utilizing numerical optimization.

When considering the MNLI inference task, one can
observe that, similarly to when using FWSVD, the only
task meaningfully outperforming the TFWSVD baseline ap-
proach is the approach retaining a certain percentage of
intra-layer information. As mentioned previously, a possi-
ble explanation for this is that possibly, inter-layer infor-
mation might be distributed rather evenly, while the intra-
layer information is not, hence the approach that focuses
on intra-layer information retention could perform better.
Additionally, one must notice the fact that on the MNLI
task, the percentage of intra-layer FI retaining approach on
top of FWSVD outperforms even the same approach utiliz-
ing TFWSVD, which could initially be regarded as an un-
expected result. At the same time, knowing that the per-
centage of inter-layer FI retention approach projects infor-
mation onto V in a row-wise fashion, and knowing that
FWSVD similarly considers FI in a row-wise fashion, this
result might not be as surprising as initially thought.

Next, considering the MRPC similarity task when utiliz-
ing TFWSVD, it is interesting to note that where the baseline
approach as well as the dynamic compression approaches
determining compression ratios based on inter-layer infor-
mation characteristics associated with layers (both fair and
overall), performed best on the MRPC task when using
FWSVD, all approaches other than retaining a percentage
of intra-layer information appear to have near-zero perfor-
mance. While this approach which is now the exception, it
had for the FWSVD-based experiment a near-zero perfor-
mance itself. A possible explanation for this could be that
the solution found by the TFWSVD optimizer is sub-par in

itself and that the row-wise information projection onto V
has been successful in mitigating this, although this remains
up for debate.

Considering the QNLI inference task, it is interesting to
observe that when using FWSVD both the information max-
imization approaches as well as the intra-layer information
retention approach all outperformed the baseline by more
than the maximum margin of error in the number of param-
eters that the models contain after compression when using,
now, when utilizing TFWSVD, only the intra-layer infor-
mation retention approach meaningfully improves upon the
TFWSVD baseline. This might again be due to the possi-
bility that performance gains using the proposed total infor-
mation maximization method due to row-wise information
in FWSVD causing information to possibly be more spread
over a parameter matrix, being mitigated by the direct opti-
mization of Equation 8. While the intra-layer information
share retention approach remains the best-performing ap-
proach, as with the MNLI inference task, this approach per-
formed even better when utilizing FWSVD as a base for the
method, possibly due to this approach projecting informa-
tion onto V in a row-wise fashion, given FWSVD considers
FI in a row-wise fashion as was previously mentioned.

Considering the QQP task, in great contrast to the exper-
iments utilizing FWSVD, the TFWSVD baseline is not out-
performed by any dynamic compression approach. There-
fore, it might be simply possible that for a given number of
parameters, a more optimal solution than the solution posed
by TFWSVD cannot be achieved, which could be supported
by the fact that the approach retaining a percentage of the
intra-layer FI performed exactly as well as TFWSVD, while
this approach often outperforms the baseline - also on simi-
larity tasks such as QQP.

Next, the SST single sentence task shows the dynamic
compression method utilizing the inter-layer shares of the
total information performing best. However, this perfor-
mance cannot be determined to be definitively better than
the baseline experiment, as the improvement does not ex-
ceed the maximum margin of error in the number of param-
eters that the models contain after compression. Similarly
to the ColA single sentence task, possibly, the effect of the
intra-layer FI share retention approach when using FWSVD,
is mitigated by directly optimizing Equation 8, which does
not consider information in a row-manner - something which
the intra-layer information retaining approach does.

Lastly, considering the STSB similarity task, both the
approach maximizing total information using Monte Carlo
sampling of compression ratios, as well as the intra-layer
FI retention approach, outperform the TFWSVD baseline,
such as was the case for the FWSVD-based experiments.
Again, the Monte Carlo approach for total information max-
imization outperformed the numerical optimization, given
the difficult-to-optimize problem landscape seen in Figure 2.

Overall, considering the average Glue score (G-Avg) for
all approaches experimented with when using the TFWSVD
baseline, it appears that both maximizing the total informa-
tion kept under a given compression constraint, compres-
sion ratios being Monte Carlo sampled, as well as retaining
a certain percentage of the FI within a given layer, are both



methods that can outperform the TFWSVD SOTA baseline
approach proposed by Hua et al. (2022). For the approach
retaining a certain percentage of the FI for each layer, utilis-
ing the inta-layer information characteristics, outperforming
the baseline is a result that was also found when utilizing
FWSVD by Hsu et al. (2022). The magnitude of outper-
forming the baseline is however higher when utilizing the
the FWSVD baseline approach, which as mentioned before
is theorized to be due to the approach retaining a percentage
of inter-layer FI projecting information onto V in a row-wise
fashion, and the FWSVD approach considering FI in a row-
wise fashion as well, in contrast to TFWSVD.

Overall across both experiment sets
The clearly best-performing method is keeping a specified
percentage of information on an intra-layer basis. This is the
only approach that determines the compression ratio not on
the total information for a layer but determines the compres-
sion ratio for a layer based on the individual row-wise infor-
mation in said layer, iteratively keeping rows until the infor-
mation threshold is reached. This approach has been shown
to outperform the baseline in all but one task when using
FWSVD, and for the SOTA TFWSVD improving on all of
the inference tasks, two out of three of the similarity tasks
(the last one being equal to SOTA), and only having one of
two single sentence tasks be more than maximum margin of
error in the number of parameters that the models contain
after compression away from the SOTA approach.

While still outperforming the SOTA on most tasks, the
performance improvement from the approach retaining a
percentage of intra-layer information is less drastic when
using TFWSVD when compared to FWSVD. This could be
due to the fact that in contrast to TFWSVD, FWSVD consid-
ers FI in a row-wise fashion, just as the approach retaining
a percentage of intra-layer FI projects information onto V
in a row-wise fashion. Additionally, this could explain the
performance below the SOTA level for the ColA task when
using the TFWSVD baseline as well as the intra-layer infor-
mation retention approach on top of FWSVD at times im-
proving on the SOTA. Even more so than when using the
the intra-layer information retention approach on top of the
SOTA approach (TFWSVD).

Future work
This work has shown that both taking into consideration the
inter- and intra-layer information characteristics when us-
ing SVD to compress a language transformer network, are
greatly beneficial to task performance, outperforming the
state of the art on almost all GLUE tasks. This work there-
fore acts as a precursor for additional research into utiliz-
ing inter- and intra-layer information characteristics in order
to optimise layer compression in transformers - for exam-
ple, using metrics that are different from the Fisher infor-
mation. At the same time, this work can be improved upon
by extending results to new modalities, such as vision trans-
formers, combining inter- and intra-layer approaches as well
as finding a way around the row-wise constraint currently
present for the approach which considers the intra-layer in-

formation characteristics by means of row-wise information
retention.

Conclusion
This work has introduced a novel approach to Fisher-
weighted Singular Value Decomposition (SVD) for low-
rank compression, addressing limitations in previous meth-
ods by dynamically determining layer-wise compression ra-
tios based on intra- and inter-layer Fisher Information (FI).
Unlike previous methods, our approach enhances task per-
formance efficiency through three dynamic rank determina-
tion methods. One of the proposed methods, relying on spec-
ifying a fixed percentage of Fisher information to keep per
layer, has been shown to outperform the current state of the
art in excess of 5% on average, and outperform the current
state of the art very significantly on inference and similar-
ity tasks. The work furthermore provides valuable insights
for future work to further explore the dynamic compression
of layers in transformer networks using Fisher Information
characteristics, in particular by displaying the effectiveness
of dynamic compression using intra-layer Fisher informa-
tion.
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Additional background
The transformer
Transformers, as proposed first by Vaswani et al. (2017), are
a type of network architecture which is completely based on
attention mechanisms and are much faster to train than con-
ventional network architectures. The transformer network
architecture (Vaswani et al. 2017) is shown in Figure 4.

Figure 4: Transformer model architecture, as shown in
(Vaswani et al. 2017).

The transformer architecture consists of positional encod-
ings of size dmodel being added to input or output embed-
dings which are also of size dmodel, which is done to add
information about the position of a word in the sequence.



The distinct blocks repeated N times, shown in Figure 4
are the encoder- and decoder stacks. The encoder stack con-
sists of N layers, where each of these identical layers con-
sists of a multi-head self-attention process as well as a sim-
ple feed-forward network. Additionally, a residual connec-
tion (also often referred to as a skip-connection), as ini-
tially proposed by He et al. (2015), is added to mitigate the
vanishing gradient problem (Bengio, Simard, and Frasconi
1994; He et al. 2015; Pascanu, Mikolov, and Bengio 2013).
This has the added effect that using this skip-connection
keeps layer-local information intact given the self-attention
process can perform computations that do not necessarily
preserve any information from the input data. Lastly, both
the multi-head attention process as well as the simple feed-
forward network are followed by layer normalization (Ba,
Kiros, and Hinton 2016).

Similar to the encoder, the decoder stack also consists
of N identical layers, whereas for the decoder, the multi-
head self-attention process is masked such that it is enforced
that only previous tokens are considered when predicting the
next token. Additionally, output embeddings are offset by
one position for the same purpose.

An additional multi-head attention process is added to the
decoder, which takes the output of the encoder stack as in-
put. Akin to the encoder, a simple feed-forward network is
present, and around each multi-head attention block as well
as the feed-forward network, a skip connection is present
followed by normalization.

Attention
The attention mechanisms utilized in the transformer archi-
tecture is defined as a function which maps a query, keys and
values to an output that is a sum of the values weighted by
the dot product between the query and the key correspond-
ing to the value:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (27)

In this context, Q (query) is derived from the decoder hid-
den state and represents a linear transformation applied to
the word embedding of a specific word in a sentence. Sim-
ilarly, K (key) results from a different linear transforma-
tion applied to the embedding of another word in the same
sentence. The dot product QKT measures the similarity be-
tween these two words within the given context.

A value (V ) here is the result of a separate linear trans-
formation applied to the scored dot product of the query (Q)
and a key (K). This linear transformation is optimized to
find the next word in a sequence.

An enumeration summarizing this can be seen below.
• Query (Q): Derived from the decoder hidden state; a lin-

ear transformation applied to the word embedding of a
specific word in a sentence.

• Key (K): Derived from a different linear transformation
applied to the embedding of another word in the same
sentence as the query.

• Value (V): Result of a separate linear transformation ap-
plied to the scored dot product of the query and key.

• The value transformation is optimized to predict the next
word in a sequence.

• The dot product of the query and key represents the sim-
ilarity between the two words in a given context.

An example figure of this concept can be seen in Figure 5.

Transformer compressability
For this work, it is important to note the compressibility of
each of these components of the transformer, where we uti-
lize the fact that linear layers are excellent for weight matrix
compression using Singular Value Decomposition.

Given that the keys, values and queries are merely linear
transformations applied to word embeddings, these are lin-
ear layers and hence lend themselves well to compression.
Additionally, the intermediary- and output feed-forward lay-
ers in the transformer architecture as shown in Figure 4, are
linear as well, and hence also lend themselves to compres-
sion.

Proofs and derivations
Derivation of the analytical solution to Equation 13
The derivation of the analytical solution to Equation 13 is as
follows.(
c− 1

|Q|
∑
W∈Q

α(1− pW )

)2

=

(
c− α

1

|Q|
(|Q| − 1)

)2

=

(
c− α(1− 1

|Q|
)

)2

(28)
As
∑

W∈Q pW = 1. Setting Equation 28 equal to 0 gives

c− α(1− 1

|Q|
) = 0 (29)

c = α(1− 1

|Q|
) (30)

α =
c

(1− 1
|Q| )

(31)

Derivation of the analytical solution to Equation 15
The derivation of the analytical solution to Equation 15 is as
follows.(
Stotal

c
−
∑
W∈Q

(mW × nW )
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)2
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(32)
Setting Equation 32 equal to 0 gives
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= 0 (33)
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Figure 5: Self-attention concept.
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