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ABSTRACT
Various areas within artificial intelligence are increasingly adopting envi-
ronmentally sustainable practices. Part of this movement involves reducing
the energy footprint of algorithms, particularly in applications like object
tracking. Current practices in evaluating object tracking typically aim for the
maximum possible frame rate, which consumes a considerable amount of en-
ergy. A lower frame rate that is still effective can reduce environmental costs
by lowering energy consumption from object detection algorithms, while
still achieving an effective result. This research aims to introduce varied
frame rates for camera-feed-based object detection algorithms. State-of-the-
art object detection and object tracking algorithms are discussed to find a
suitable algorithm for variable frame rate. Together with an in-the-field com-
pany a prototype for assessing variable frame rate-based object detection
is built and tested using the discussed algorithms. This prototype shows
at what lower frame rates object tracking could still be used to adequately
detect objects. Different metrics measuring the accuracy of object tracking
are compared at different frame rates. This has the potential to minimize
hardware and software needs, and electricity consumption.

Additional Key Words and Phrases: Object Detection, Object Tracking,
MOTChallenge

1 INTRODUCTION
While many studies have developed different benchmarks to as-
sess the effectiveness of object tracking, they generally consider
the maximum performance to run algorithms on (e.g., [14], [31],
[32], and [36]). For object tracking specifically, this means running
algorithms at the maximum possible frames per second (FPS). In
efforts to increase sustainability in AI, some research has already
been done to look into different factors that contribute to the en-
vironmental cost and computational consumption of AI (e.g., [21],
[24], and [29]). Factors such as hardware and software limitations
are considered alongside their performance and environmental im-
pact. Still, while some variables describing the tracking models are
considered, few studies go over lower frame rate specifically. The
studies that do, tend to focus on higher frame rate [11], specific
low-FPS implementations [30], specific industry-based implemen-
tations (e.g. frame interpolation for video-based vehicle counting
[27]) or object detection metrics rather than object tracking [23].
Something that still seems to be missing here is a general overview
of the impact of lower frame rates on object detection. That is where
this research comes in, as it attempts to show how ranges of lower
frame rates affect the accuracy of object detection.

Studying the impact of lower frame rates is relevant for assessing
object tracking in the context of lowering the usage of computational
resources. A 2019 study for example mentions that many of the
best object tracking algorithms could not run in real-time, since
their computation time per frame is higher than the FPS of the
video input they receive [21]. This frame rate mismatch can be a
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challenge in industries that use object tracking in live feeds, such as
construction site monitoring, where object tracking can be valuable
[2]. In these industries, hardware can be limited, which subsequently
makes computational power limited. It could therefore be valuable
to assess if there is a middle ground with less computation that
still generates results that are adequate enough to function in the
respective industries. One of the ways to do this is simply lowering
the frame rate of the video feed fed to the algorithms, and verify
what the quality is of the results obtained from them. This research
therefore addresses the following question:
• What is the influence of varying frame rates on the
accuracy of object tracking algorithms?

This question is further refined to:
• Which state-of-the-art object detection and object tracking
algorithms exist?
• What are adequate benchmarks to assess the accuracy of an
object tracking algorithm?
• How can the accuracy and frame rate of object tracking algo-
rithms be compared?

2 BACKGROUND

2.1 Definitions
Object detection can be defined as a "computer vision task that deals
with detecting instances of visual objects of a certain class [...] in dig-
ital images" [37]. An object detection model receives an image and
returns the location and class of any detected objects in the image.
Object tracking, also referred to as Multiple object tracking (MOT),
adds one layer on top of this by attaching a unique ID to each object,
where "the task of MOT is largely partitioned into locating multiple
objects, maintaining their identities, and yielding their individual
trajectories given an input video" [20]. This allows for tracking
unique objects across multiple images. Although these methods
can be intertwined [12], this study considers them as two separate
steps to focus more on the effects of frame rate on object tracking.
This means that object detection and object tracking are handled
by separate algorithms, where the detection algorithm passes the
information about detected objects to the tracking algorithm.

2.2 Object Detection
In the past years, various research has been conducted in the field
of object detection and object tracking. Due to this, many improve-
ments have been made in different applications of the algorithms
both used individually and together [5], [37].
A 2023 survey of 20 years of object detection lines out the main

developments in object detection [37]. Since 2014, most models
have been using deep learning to detect objects in images. There
are two main types of algorithms; two-stage detectors and one-
stage detectors [37]. Two-stage detectors process images in multiple
steps, where each step improves the knowledge the model has of
the image. Such steps could for instance be first proposing possible
locations for objects in a frame, and then in a second step verifying
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and refining these object locations. One-stage detectors instead
aim to complete the detection process in one step. While two-stage
detectors can achieve high precision easily, they tend to be slow
and complex. This leads to most in-the-field solutions using one-
stage detectors, which are generally faster but suffer when detecting
small and dense objects. Six such one-stage detectors are You Only
Look Once (YOLO) [25], Single Shot Multibox Detector (SSD) [17],
RetinaNet [15], CornerNet [13], CenterNet [35], and DETR [4]. The
speed and accuracy of all of these models are listed in Table 1. This
table shows each model’s highest reported FPS performance, and
the corresponding accuracy in mean average precision (mAP). Each
of the mentioned models was released in the respective listed order,
and each reported an improved accuracy over its predecessors.

YOLO was one of the first one-stage detectors, introduced in 2015
[25]. It is fast compared to other detectors, but suffers in localization
accuracy, especially on small objects. It has continuously received
improvements, its latest official version (YOLOv8) was released in
2023 and is still being updated. This version is faster and more ac-
curate compared to previous iterations [28]. SSD was introduced
later in 2015, and aimed to simplify object detection by proposing
default boxes for object detection. This meant it was fast, and could
be easier to integrate into other systems [17]. RetinaNet is an al-
gorithm developed after researching the reason for the accuracy
difference between one-stage and two-stage detectors [15]. Corner-
Net introduced a new approach to object detection by detecting a
bounding box as a pair of keypoints [13]. CenterNet builds on the
idea of CornerNet, but treats objects as a single point instead, at the
center of its bounding box [35]. DETR attempted to streamline the
detection process by using bipartite matching for predictions, and
using a encoder-decoder architecture [4].

Each model has its own advantages and particular uses. Relevant
for this research is a sufficient accuracy combined with high FPS.
The high FPS is relevant so that FPS is not the limiting factor for this
model to run in real-time. The reported FPS seen in Table 3 is also
generally self-reported by each of the models’ authors, and usually
run on high-end hardware. Since this research aims to provide
results that may be useful to low-end hardware solutions too, a
higher base FPS is a necessary consideration.
YOLO seems to have a high initial FPS and mAP, but was to the

knowledge of the author only reportedly tested on the VOC [7]
dataset [25]. The VOC dataset can be considered as easier to detect
objects on than the COCO [16] dataset, since the COCO dataset
generally has smaller objects [9]. Therefore YOLOv2 is also listed.
YOLOv8 is also shown, since that is the latest official release of
YOLO. It has higher FPS than other models and comparable mAP.

2.3 Object tracking
Object tracking or MOT, also referred to as Multi-Target Tracking
(MTT), tracks the identities of objects across different frames us-
ing object detection. A 2020 survey explains the main differences
between MOT algorithms [5]. Most algorithms focus only on identi-
fying objects, leaving the actual object detection to state-of-the-art
detectors such as YOLO, Faster-RCNN, and SSD. MOT algorithms
can also be divided into batch and online methods. Batch algorithms
are allowed to use future frames, meaning they have access to frames

Algorithm FPS mAP Open Source Dataset
YOLO 155 52.7% Yes VOC
YOLOv2 40 21.6% Yes COCO
YOLOv8x 280 53.9% Yes COCO

SSD 59 46.5% Yes COCO
RetinaNet 14 32.5% Yes COCO
CornerNet 4 42.2% Yes COCO
CenterNet 142 28.1% Yes COCO
DETR 28 42% Yes COCO
Table 1. Object detection algorithms comparison

Algorithm FPS MOTA Open Source
ByteTrack 13.7 77.8 Yes
BoT-SORT 6.6 80.5 Yes
Table 2. Object tracking algorithms comparison

that come after the currently considered frame. This way they can
use future frames to improve the accuracy of tracking in the current
frame. Online methods, meanwhile, can only use current and past
frames. This can mean lower accuracy for object tracking, focusing
instead on being able to broadcast the results live. Usually, online
methods are faster than batch methods since they require fewer
computation steps. Still, both types are often too slow to run in
real-time [11]. Two object tracking algorithms are ByteTrack [34]
and BoT-SORT [1]. Both can be seen in Table 2, where there speed
and accuracy are listed. Both algorithms operate using the online
method, meaning that they run in real-time, tracking objects in
frames solely based on past frames. The reported results in Table 2
also use publicly available datasets.
ByteTrack is a state-of-the-art object tracking model released in
2021 that performs well in terms of accuracy and speed.
BoT-SORT is an object tracking model that ranked highest on MOT
leaderboards when it was released in 2022. It improves upon the
scores of ByteTrack, but reportedly performs slower, as seen in Table
2.

2.4 Benchmarking
2.4.1 General benchmarks. Different benchmarks have been adapted
and established for both object detection and object tracking. The
benchmarks for detection are less relevant to this research since the
frames fed to object detection remain the same over the different
experimental configurations. This means that the accuracy of the de-
tections remains the same for each setup, making it less relevant for
this research other than a required baseline of accurate detections.
The baseline is necessary to ensure that the results indicate effects
of object tracking, and are not due to underlying issues of object
detection. This can be measured using MOTP, an object tracking
benchmark. Therefore only the benchmarks for tracking are covered
here.

According to [5], for MOT "a group of metrics have been de facto
established as standard, and they are used in almost every work".
These metrics are the CLEAR MOT metrics [3] and ID metrics [26],
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both of which are largely defined in terms of metrics introduced
by Wu and Nevatia [33]. CLEAR MOT consists of Multiple object
tracking Accuracy (MOTA) and Multiple object tracking Precision
(MOTP). The ID metrics are Identification Precision (IDP), Identifi-
cation Recall (IDR), and Identification F1 (IDF1).
To compute CLEAR MOT metrics, the following parameters are
required [5]:
• FP: the number of false positives in the whole video
• FN: the number of false negatives in the whole video
• Fragm: the total number of fragmentations
• IDSW: the total number of ID switches

The CLEAR MOT metrics are calculated as follows [5]:

𝑀𝑂𝑇𝐴 = 1 − 𝐹𝑁 + 𝐹𝑃 + 𝐼𝐷𝑆𝑊
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

𝑀𝑂𝑇𝑃 =

∑
𝑡,𝑖 𝑑𝑡,𝑖∑
𝑡 𝑐𝑡

Where 𝑐𝑡 is the number ofmatches in frame 𝑡 , and𝑑𝑡𝑖 is the bounding
box overlap between hypothesis 𝑖 with its assigned ground truth
object [5]. To compute ID metrics, the following parameters are
additionally required [5] (IDTN is technically not used, but included
for the sake of completeness):
• IDTP: true positive ID matches
• IDFP: false positive ID matches
• IDFN: false negative ID matches
• IDTN: true negative ID matches

The three ID metrics are calculated as follows [5]:

𝐼𝐷𝑃 =
𝐼𝐷𝑇𝑃

𝐼𝐷𝑇𝑃 + 𝐼𝐷𝐹𝑃

𝐼𝐷𝑅 =
𝐼𝐷𝑇𝑃

𝐼𝐷𝑇𝑃 + 𝐼𝐷𝐹𝑁

𝐼𝐷𝐹1 =
2𝐼𝐷𝑇𝑃

2𝐼𝐷𝑇𝑃 + 𝐼𝐷𝐹𝑃 + 𝐼𝐷𝐹𝑁
The MOTChallenge framework (see 2.4.2) [14] lists additional met-
rics, as well as the components of the above metrics. These metrics
are for instance Mostly Tracked targets (MT), Mostly Lost targets
(ML), and Higher Order Tracking Accuracy (HOTA). These are not
further listed since their insights are deemed to be less relevant (MT
and ML), or their results are largely covered in other metrics (MOTA
versus HOTA [19]). FPS is also listed at MOTChallenge as Hertz
(Hz), however, this metric is more inconsistent. This may be due to
differences in hardware and environments that the frameworks are
run on, and choices of exclusion or inclusion of computation time
of used detection algorithms.

2.4.2 MOTChallenge. In 2015, the first MOTChallenge, MOT15,
was launched to publicly compare the performance of different
object tracking algorithms [14]. It provides a common dataset con-
taining videos of pedestrians, which algorithms could run object
detection on. On their website (motchallenge.net) they list the rank-
ings of each algorithm based on CLEAR MOT and other metrics.
In subsequent years, MOT16, MOT17, and MOT20 would come out
to offer improved and/or more difficult datasets to test tracking on
[22] [6]. In addition, other more specific datasets and corresponding

Dataset Images FPS Objects Type
MOT15 5500 7-30 39905 Pedestrian
MOT20 8931 25 1336920 Pedestrian
KITTI 7481 10 80265 Traffic

PETS2009 7 Pedestrian
UA-DETRAC 84000 25 578000 Traffic

Table 3. Datset training set comparison

leaderboards were released specifically made for different areas of
object tracking. MOTChallenge and its listed metrics are often cited
to compare new algorithms that are published to older ones [5],
[20]. This allows comparison of different object tracking algorithms
based on their performance, which can aid in selecting algorithms
to use for application or further research. It also provides a baseline
for performance, allowing new research based on old algorithms to
compare results against this baseline.

2.5 Datasets
Since the resurgence of MOT after 2014, different general datasets
have been published that aim to provide data for benchmarking
object tracking. Some such datasets are the MOTChallenge datasets,
KITTI, PETS2009 and UA-DETRAC, as listed in Table 3.
For pedestrians, the MOTChallenge datasets are often used. These
range from the normal 2015-2020 datasets that focus on pure object
tracking to more specialized datasets, such as CVPR 2020 MOTS
which focuses on precise segmentation.
The KITTI dataset [10] is another often used dataset that contains
hours of traffic footage, recorded from inside a car.
The PETS2009 dataset [8] contains pedestrian footage in different
setups that are created to be challenging for object detection and/or
tracking. UA-DETRAC [31] is a dataset with 100 video sequences,
containing different traffic scenarios.

3 METHODOLOGY

3.1 Selection
The scope of this research limits it to the use of only certain algo-
rithms, benchmarks and datasets. Based on relevance, performance,
and level of establishment in research a selection of them is made.

3.1.1 Algorithms. This research uses YOLOv8 for object detection,
and ByteTrack [34] for object tracking. YOLOv8 was selected be-
cause it is a fast and accurate one-stage detector, and it is publi-
cally accessible. The speed makes it particularly suited for online
(real-time) environments, since which this study focuses on. The
speed is important since it means YOLO could operate on lower-end
hardware, or could keep up with higher frame rate input. It is also
important to have a fast detection algorithm in live environments
to leave time for the tracking algorithm to compute. For the object
tracking, ByteTrack was selected because, as seen in Table 2, it per-
forms fast enough to perform above the tested FPS range of this
research. It also ranks high on the MOTChallenge rankings, uses the
online (real-time) method, uses public detection (public datasets),
and is open source available. The online method is the focus of this
research, since this research aims to provide results for industries
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that use object tracking in real-time. The use of public datasets and
open source are chosen since this helps verify the validity of the
algorithm and allows this research to use it in a test setting.

3.1.2 Benchmarks. This research specifically considersMOTA,MOTP,
IDP, IDR, IDF1, and FPS. MOTA and MOTP provide a general
overview of the accuracy of object tracking. They paint a clear
picture of accuracy, where MOTP focuses more on the accuracy of
detected objects in each frame and MOTA ratios the inaccuracies of
ID assignment over the whole video. IDP, IDR, and IDF1 are used
to quantify the dropoff rate of correct ID assignments. IDP, similar
to MOTP, tracks precision in ID assignment. It is an indicator for
the amount of incorrect identifications in a video. IDR is similar to
IDP, but assesses missed IDs rather than incorrectly assigned IDs.
Finally, IDF1 combines IDR and IDP and indicates a more general
score for incorrect IDs.

3.1.3 Datasets. The datasets used in this research are MOT15 [14]
and MOT20 [6]. As listed in Table 3, they each contain pedestrian
datasets. The purpose of this research is to focus on practical ap-
plication with different frame rates. This means that the chosen
datasets are those that contain slower moving objects, to increase
possible variation in frame rate. If objects of higher speed are con-
sidered, objects would leave the frame faster, and thus lower frame
rates could be considered before a drop-off in detection and track-
ing occurs. Therefore the pedestrian datasets are considered. As
previously described, the MOTChallenge datasets are widely used
for pedestrian object tracking. Out of those datasets, the regular
datasets (MOT15 and MOT20) were chosen rather than specialized
datasets (e.g. CVPR 2020 MOTS) to provide more general results.
Specifically the MOT15 dataset was used since it contains a low
pedestrian density, andMOT20 because it contains a high pedestrian
density. A comparison between the two is valuable to show whether
higher density influences performance at different frame rates. The
datasets also contain videos with FPS above the frame rate tested
in this research, apart from the 7 FPS PETS09-S2L1 video in the
MOT15 dataset, which was therefore not included in the results of
this research.

3.2 Setup
The used methods are combined to create a framework for measur-
ing object tracking accuracy at different frame rates. The setup of
this framework is described below.

3.2.1 Datasets. The MOT15 and MOT20 dataset both contain a
set of training and testing videos. The training sets contain several
different videos segmented into individual frames. For each frame,
the ground truth is provided as a bounding box and id for each object
in each frame. The test sets contain similar videos but without the
ground truth. Since this research focuses on exact IDs and accuracy,
pre-trained algorithms were used on only the training sets so that
the ground truth could be used to calculate metrics accurately.

3.2.2 Frame rate. MOT15 contains videos between 7 and 30 FPS,
and MOT20 contains videos of only 25 FPS. The 7 FPS video was
not used in this research, so all video had a frame rate between 10
and 30 FPS. Each video is passed through object tracking algorithms

at different frame rates. The considered frame rates per video range
from the maximum frame possible frame rate to 0.1 FPS. The po-
tentially considered frame rates are 10-1 FPS in steps of 1 FPS, and
1-0.1 in steps of 0.1 FPS. This is done by taking the maximum input
frame rate of the video, and stepwise removing frames until the
correct frame rate is achieved. This is done using the algorithm seen
in Algorithm 1.

Algorithm 1 Frame rate slicing
Input: 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝐹𝑃𝑆, 𝑣𝑖𝑑𝑒𝑜
Output: 𝑓 𝑟𝑎𝑚𝑒_𝑠𝑒𝑡 , where 𝑙𝑒𝑛𝑔𝑡ℎ (𝑓 𝑟𝑎𝑚𝑒_𝑠𝑒𝑡 )

𝑣𝑖𝑑𝑒𝑜_𝑡𝑖𝑚𝑒
= 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝐹𝑃𝑆

𝑓 𝑟𝑎𝑚𝑒_𝑠𝑒𝑡 ← 𝑎𝑟𝑟𝑎𝑦 (𝑣𝑖𝑑𝑒𝑜.𝑓 𝑟𝑎𝑚𝑒𝑠)
𝑠𝑡𝑒𝑝 ←𝑚𝑎𝑥

(
𝑣𝑖𝑑𝑒𝑜.𝐹𝑃𝑆

𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝐹𝑃𝑆 , 1
)

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← 𝑓 𝑙𝑜𝑜𝑟

(
𝑙𝑒𝑛𝑔𝑡ℎ (𝑓 𝑟𝑎𝑚𝑒_𝑠𝑒𝑡 )

𝑠𝑡𝑒𝑝

)
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑎𝑟𝑟𝑎𝑦 ()
𝑖 ← 0
while 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓 𝑟𝑎𝑚𝑒_𝑠𝑒𝑡) do

𝑖𝑛𝑑𝑒𝑥 ← 𝑓 𝑙𝑜𝑜𝑟 (𝑠𝑡𝑒𝑝 ∗ 𝑖)
𝑟𝑒𝑠𝑢𝑙𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓 𝑟𝑎𝑚𝑒_𝑠𝑒𝑡 [𝑖𝑛𝑑𝑒𝑥])
𝑖 ← 𝑖 + 1

end while
return 𝑟𝑒𝑠𝑢𝑙𝑡

3.2.3 Object detection and tracking. The segmented frames are then
iteratively run through object detection and object tracking algo-
rithms. The YOLOv8 nanomodel is used for object detection, and the
detected objects are tracked using the ByteTrack algorithm. The out-
put of this algorithm is stored as bounding boxes with IDs for each
object, similar to the provided ground truth from the MOTChallenge
dataset.

3.2.4 Metric Computation. Finally, the TrackEval [18] framework
is used to compute CLEAR MOT metrics from the results of the
object tracking compared to their ground truths. Additionally, the
ID metrics are computed.

4 RESULTS

4.1 General results
Figures 1, 2, 3 and 4 show graphs of the obtained results. The figures
are divided into the 0.1 to 1.0 FPS range and the 1-10 FPS range
for both the MOT15 and MOT20 dataset. The considered metrics of
MOTA, MOTP, IDF1, IDR, and IDP are all graphed in each figure. In
the range of 0.1 to 1.0 FPS, the results do not show much variability,
and the accuracies for MOTA, IDR, and IDF1 are low. In all cases,
MOTP consistently scored between approximately 0.75 and 0.8 on
every dataset and frame rate. This is due to the calculation of MOTP
looking more into object detection than object tracking. It takes the
overlap between the bounding box of a found object and its ground
truth and divides this by the number of objects detected in this
frame. This means that the detected objects had around 80% overlap
with their true bounding box on average. This means that the object
detection is working. Similarly, IDP, the precision for IDs, scores
better than MOTA, IDF1, and IDR. IDP gets higher when there are
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Fig. 1. Results for MOT15-1, FPS 0.1-1.0
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Fig. 2. Results for MOT20-1, FPS 0.1-1.0

less false positive IDs assigned (see 2.4). Thus with a with IDP scor-
ing higher than the rest, relatively little IDs were wrongly detected
as an ID. This makes intuitive sense, since with fewer frames to
detect IDs in, the amount of incorrect positive detections would not
necessarily rise, since the absolute amount of detections in a frame
stays the same. The most interesting result is seen when observing
MOTA, IDF1 and IDR in the range of 1 to 10 FPS.

4.1.1 MOT15. In Figure 1 the results for FPS range 0.1 to 1.0 are
shown for the MOT15 dataset. We can see that the MOTA, IDR, and
IDF1 scores remain low. In the range of 1 to 10 FPS, shown in Figure
3, the scores increase and seemingly plateau after 6 FPS. The IDP
score is around 0.3 to 0.5 in the 0.1 to 1.0 FPS range. In the 1 to 10
FPS range however, it follows a similar curve to MOTA, IDR, and
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Fig. 3. Results for MOT15-10, FPS 1-10
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Fig. 4. Results for MOT20-10, FPS 1-10

IDF1.

4.1.2 MOT20. In Figure 2 the results for FPS range 0.1 to 1.0 are
shown for the MOT20 dataset. In this case, the MOTA, IDF1, and
IDR are all near zero. The IDP however seems to again be in the
range of 0.3 to 0.5. In the range of 1 to 10, shown in Figure 4, the
scores go up, but less when compared to the MOT15 dataset. IDF1
reaches nearly 0.2 at most, while IDR and IDF1 reach nearly 0.1. In
contrast to this, IDP scores higher here than in the MOT15 dataset.
Interestingly, the same plateau effect can still be observed after 6
FPS. IDF1, IDP, IDR, and MOTA all increase until reaching 6 FPS,
where they stay nearly constant.
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5 RELATED WORK
In a 2017 paper, Kiani & Fagg already mention frame rate as a lim-
iting factor to object tracking [11]. They addressed this issue by
introducing a dataset of various real world scenarios recorded at a
frame rate of 240 FPS. As a comparison, they sliced their 240 FPS
footage down to 30 FPS. To make a fair comparison, they also in-
troduced motion blur to the lower FPS footage. This was necessary
since the high-speed cameras required to record videos at 240 FPS
have less motion blur than regular cameras. While Kiani & Fagg
conclude that simple trackers perform better than complex trackers
on high FPS. They also show that out of a set of the best trackers
they evaluated, 8 out of 30 instances were not able to track in real-
time.
Sudasingha et al. tackle a different issue related to frame rate. In
their 2019 paper about frame rate related to human pose estimation
[30], they mention that a real-time video could not be processed by
a pose estimation system, due to the time it takes to process each
frame. They propose a system in which some frames are dropped to
allow for real-time processing, and where the dropped frames are
processed by a faster pose generator. The generated and estimated
frames are subsequently reassembled into a video output. Sudas-
ingha et al. measured accuracy by using a generated frames per
detected frame (GF/DF) metric to compare reduction in error when
their generative pose estimator (GPE) is used to when it is not used.
They find that the GPE is suitable for various frame rates, observing
a 30-35% reduction in error on 4-6 FPS. Notably, on lower frame rate
configurations of 0.5-1 FPS for the pose estimator, improvements to
the accuracy are observed (40-50% reduction in error).
Saito et al. in their 2023 paper look at frame rate related to video-
based vehicle counting [27]. They use the YOLOv4 object detection
algorithm trained on the COCO data-set, combined with the Deep-
SORT object tracking algorithm. This setup tracks vehicles at an
intersection, and counts them based on the behavior of each vehi-
cle’s movement. The video stream of 30 FPS was sliced into videos
of 1, 2, 3, 5, 6, 10 and 15 FPS. Additionally, they used a method based
on average images for frame interpolation to generate a 60 FPS
video out of the 30 FPS video. They show that interpolation reduces
the amount of false positives vehicle counts, while the amount of
false negatives stays the same. For the lower FPS, the number of
missing vehicles decreased as frame rate went up, although the
amount seems to flatten out after 5 FPS. This is however difficult
to confirm, since after 6 FPS the measurements jump to 10, 15 and
subsequently 30 FPS.
For object detection rather than object tracking, frame rate has also
been researched. Padilla et al. wrote in their 2021 paper about the
lack of object detection evaluation at video level [23]. They proposed
spatio-temporal tube average precision (STT-AP) as an extension of
the average precision (AP) metric. STT-AP is defined as a collection
of bounding boxes of the same object in a video, concatenated after
each other to form a spatio-temporal tube. The overlap between
the tube found by the model and the ground truth tube can than
be calculated as an intersection over union (IOU) to calculate the
results of this metric. While this is an interesting method, it seems to
simply offer an alternative to regular MOT metrics. This is because
it involves tracking objects over different frames, while taking into

account the total area (or in this case volume) of correctly identified
bounding boxes, similar to MOT metrics like MOTA or MT. It does
not offer further insight into varying frame rate in object tracking.

6 CONCLUSION AND DISCUSSION

6.1 Conclusion
This study set out to investigate how varying frame rate affects
accuracy in object tracking. It used state-of-the-art object detection
and object tracking together with established pedestrian datasets for
this investigation. These datasets were sliced in varying frame rates,
and measured using relevant established benchmarks to assess the
resulting accuracy of object tracking. The results showed that after 6
FPS little to no variance was seen in the accuracy of object tracking.
This seems to suggest that the optimal range for pedestrian tracking
using the ByteTrack framework is at 6 FPS or less. In the context
of computational limitations and sustainable AI, this is valuable
since it suggests that for this purpose any frame rate above 6 FPS
is wasting additional resources without gaining additional value in
return.

6.2 Discussion
Some alterations could be made to improve the methodology in this
work. For one, the frame rate slicing could be altered. Currently,
the highest frame rate is considered and frames are removed from
this until the desired frame rate is reached, as seen in Algorithm 1.
This simulates the desired frame rate rather than achieving it. In
cases where the maximum frame rate is 10 FPS (such as some of the
MOT15 videos), this means that for instance a frame rate of 9 FPS is
achieved by skipping 1 in every 10 frames. The distance between
the remaining frames however is still similar. Recording multiple
videos at different frame rates to get around this problem would not
be fair, since then the comparison might be off by more or fewer
objects being in a single frame. A possible solution could be to take
higher frame rate videos as source materials, as done in [11]. At
source frame rates at least 2 times higher than the maximum tested
frame rate, the time between any two consecutive frames would
always change when using the frame removal method.
Additionally, more analysis could be done to assess how much the
used FPS lowering methods differ from the real world. In [11] for
instance, the authors noted that high frame rate cameras tend to
have less motion blur. Thus they introduced custom motion blur on
the sliced high FPS footage to mimic the effect. This could however
still differ from real low FPS motion blur. Furthermore, the use of
only a pedestrian dataset limits the scope of the results obtained
from this research. Pedestrians in the MOTChallenge datasets tend
to move slower compared to for instance the moving vehicles in the
KITTI dataset. Since object tracking also has wide applications in
areas such as self driving cars and traffic situations, more research
should be done on those datasets to test if the conclusions from this
work transfer to higher speed as well as differently sized objects
such as cars.

6.3 Future work
One valuable addition to this research would be increasing the quan-
tity of the tested items. More datasets could be tested to improve the
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breadth of the results. More algorithms could be tested to conclude
a wider part of the object tracking spectrum. A wider range of FPS
could be tested, to see if the observed plateau effect after 6 FPS
persists further beyond 10 FPS.
As described, the results of this research could potentially be useful
for specific industries using object tracking. More research could be
done looking into frame rate variation on industry-specific datasets,
similar to [27].
The object tracking in this research relied on object detection done
by the YOLOv8 algorithm. While this algorithm is well-suited for
higher FPS detection due to its speed, many MOT challenges use
pre-computed object detection, by providing the exact bounding
boxes to the tracking algorithm. This research focused on more
realistic circumstances by detecting objects at run time to simulate
the circumstances in the field. Still, a comparison between different
tracking algorithms with pre-computed bounding boxes could be
valuable to have a more pure evaluation between algorithms.
A final interesting note is that for the results and operation of this
research, technically slower (and more accurate) algorithms could
also be used. Since only the input frame rate is varied, and the actual
runtime is not considered, potentially interesting results could lie
in testing lower frame rate for slower algorithms. For this research
that was not considered, since it focuses on providing results that
could have more practical implications. That is, considering real-
time environments, an algorithm that by default runs slower than
the tested input frame rate would likely not be implemented in
practice. It could not keep up with the input feed and would thus
perform poorly in real-time.
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