
Feedback aided distributed routing based throughput optimization
BEN VAN VIEGEN, University of Twente, The Netherlands

This research proposes a light weight distributed routing system using ar-
rival rate feedback to optimize the throughput of a wireless sensor network
(WSN). The nodes have close to no knowledge about the system, the only
information they have is their own hop count to the gateway and the hop
count of their neighbors. Using this information nodes are able to route data
traffic to the gateway of the network, however the throughput of the system
is rather low. Using periodic feedback about the arrival rate of packets at
the gateway nodes try to improve the network efficiency by avoiding slow
or congested nodes. The system shows a maximum throughput increase
of 45%, showing that the small amount of information that the feedback
provides allows nodes to significantly improve network throughput. The
system is not able to compete with systems that utilize knowledge about
network topology with respect to throughput optimization. However, in
systems where knowledge about the network topology is not feasible, this
system could provide a significant performance increase with a very limited
amount of feedback information.

Additional Key Words and Phrases: Distributed control, distributed routing,
source routing, manet, arrival rate feedback

1 INTRODUCTION
In the case of wireless sensor networks, on which this research will
be focused, it can be assumed that there is a single point where all
the data flows towards (the gateway of the network). These net-
works do come with the challenge that it is not always feasible for
all nodes to know the entire network topology, making efficient
routing difficult. Although knowing the entire network topology
might not be feasible, some very simple information about the net-
work topology is assumed to be attainable. This information being

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

the amount of hops needed to get to the gateway and the amount
of hops that each direct neighbor needs to get to the gateway. The
nodes will also receive periodic feedback from the gateway with
information about the arrival rate of packets. With only this limited
amount of data the question is whether the nodes will be able to
make ’good’ routing decisions resulting in efficient routing leading
to a higher throughput of the network.

2 PROBLEM STATEMENT
When scaling wireless multi-hop networks it may become difficult
for each node or any entity to have a global overview of the net-
work. Posing a challenge for nodes to make "good" routing decisions
resulting in efficient routing. If the global network topology is not
known then what should nodes use as information to base their
decisions on. Simply sending messages to nodes with a lower hop
count would result in the messages arriving at the gateway, but this
might also lead to some nodes getting congested whereas some con-
nections are left idle most of the time. This is of course problematic
when trying to send large amounts of data through the network
that requires close to the theoretical maximum throughput of the
network. The congestion would lead to very large delays and pack-
ets being dropped due to their Time to Live running out or queues
overflowing. Apart from the initialisation where nodes get to know
the hop count of themselves and the hop count of their neighbors,
no other control information will ever be exchanged between nodes,
leaving nodes without any information regarding congestion or
anything at all about the other nodes in the network. This makes
it hard for a node to ’correctly’ chose which neighbor(s) to use
for forwarding messages to prevent unnecessary congestion of the
network. To give nodes a bit more information to work with, the
gateway of the system periodically sends out how much packets it
has received from each node. If packets do not arrive at the gateway
this could point to the network being congested and nodes should

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Ben van Viegen

try to decrease this congestion in the next period until settling on
an ’optimal’ solution for the current data traffic.
It is under these circumstance, where nodes do not know more than
the hop count of themselves and their direct neighbors and only
receive periodic feedback about the arrival rate of their packets from
the gateway, that the questions arises, whether nodes could be able
to make individual routing decisions resulting in efficient routing. If
this would be the case this might possibly provide better scalability
for wireless sensor networks.

2.1 ResearchQuestion
Towhat extend can feedback from the gateway about the arrival rate
of packets (grouped by the first hop a packet took) help individual
nodes make routing decisions to maximize the throughput of the
network?

2.2 sub-research questions
• How would such a feedback aided approach influence the
latency of the network?

• What is the effect of limiting the percentage of change that
nodes can apply to their sending ratios1 per iteration?

3 RELATED WORKS
There is already quite some research done regarding distributed
routing protocols. For instance aimed at improving queue stabil-
ity to meet more strict quality of service constrained. One of the
researches suggests a random access scheduling approach with prob-
abilities dependent on the local backlog [6]. Similar to this research
the referred research assumed nodes to be almost entirely blind,
meaning that nodes do not know much about the rest of the net-
work. In contrast to this research the referred research proposes
an optimization approach that adjusts the medium access control
strategy to improve the throughput of the network. This however,
leaves performance on the table when it comes to prioritizing more
efficient paths. A combination of the research of T. Yang et al. [6]
and this research could provide a stronger solution, optimizing both
the medium access control and the routing could result in the cu-
mulative improvement of both systems.
T. Yang et al. [9] propose a distributed power control algorithm
that uses the inherent properties of wireless networks to estimate a
centralized maximum weight scheduling algorithm. The approach
uses a combination of routing, link scheduling and resource alloca-
tion to meet Quality of Service (QoS) requirements while keeping
energy consumption minimal. They aim to provide a solution that
allows for less decrease in performance when scaling a heteroge-
neous network. Both this research and the research performed by T.
Yang et al. do not utilize knowledge about the network topology. In
contrast to this research their research does not utilize the gateway
for providing feedback.
T. Padmapriy et al. [7] propose a system that uses hierarchical Chan-
nel Strength Index feedback, to inform nodes about link quality.
They show an improvement in performance and a decrease in over-
head. Their approach is similar to this research, showing that such a
1The percentage of the incoming message load that a node sends to each of its neighbors

feedback system allows for performance improvements in a network.
Different kinds of feedback are not explored in the paper. This re-
search provides further exploration in the domain of feedback aided
network optimization, covering feedback regarding packet arrival
rates instead of channel quality. A combination of both approaches
could provide improved performance in comparison to both indi-
vidual systems and could be an extension of both researches.
S.J. Douglas et al. [1] and L. Shuang et al. [5] propose a system that
uses the Expected Transmission Count (ETX) metric to find optimal
paths to the sink. Both show an improvement in network perfor-
mance (with regards to throughput), in comparison to a directed
diffusion approach. Both researches do meet different service re-
quirements than this research, where sinks send their data requests
through the network and nodes that can provide the requested data
will respond. Whereas, in this research all nodes simply send all
their data to the single gateway of the network. The challenge of ef-
ficiently routing data to the sink is similar in both cases. Suggesting
that the performance increase that S.J. Douglas et al. and L. Shuang
et al. show, could also improve the feedback system covered in this
research, by expanding or replacing the feedback about arrival rate,
with ETX feedback.

4 HYPOTHESIS
When nodes would receive feedback from the gateway of the net-
work about the amount of arrived packets and via which first hop
they went, this would give nodes some crucial information about
via which nodes packets would get lost, because of slow links or
congestion. When a single node in the network would receive such
feedback and make a change based on the information it would be
expected that it would result in the network achieving the same
or higher throughput, since the node would reroute the amount
of lost packets to a better performing node that possibly still has
some extra capacity for sending extra packets. When allowing all
nodes in the system to make adjustments to their routing protocol
simultaneously at the end of each iteration, this could introduce
oscillatory behaviour. Many different nodes could chose to reroute
a lot of their packets to the same node which would result in that
node being overloaded and congested, so in the next iteration they
would then switch back only for the cycle to repeat. A solution
to this problem would likely be to limit how much each node can
change per iteration or to only let some nodes change per iteration.
If this would resolve the oscillatory behaviour then over time the
throughput of the network would likely increase because of the
changes since over time slow links would be utilized less and less
and packets would be rerouted more via faster paths.

5 PROPOSED SYSTEM

5.1 prerequisites
The proposed system is based on some prerequisites. Firstly, the
simulated network allows nodes to have different linkswith different
capacities. If all nodes would have the same sending speed then
there would be nothing to optimize since a particular path would
not be any better than any other path (with the same hop count).
Also this difference in connection speeds represents the differences

2



Feedback aided distributed routing based throughput optimization TScIT 41, July 5, 2024, Enschede, The Netherlands

in connection speeds caused by environmental factor in the real
world. Secondly, the wireless communication protocol is assumed
to work as follows: when a node send a packet it will use the full
channel capacity for the entire duration of sending that packet. This
means that there is no capacity left for a node that is sending or
receiving a packet to send or receive anything else. This results in a
node being blocked from sending or receiving anything if another
node decide to send a packet to it. So if a node has two neighbors,
one with a 10kb/s connection and one with a 150kb/s connection
then the incoming speed of that node would not be 150+10=160, but
instead 0.5*10+0.5*150=80, since the sending time is shared fairly
between the two neighbors. Thirdly, there should be a certain level
of fairness for the system to function (not implemented by default in
The One). If this is not implemented it could be the case that a slow
node takes all the sending time and does not leave any sending time
for the fast nodes. This could result in a slow connection having a
higher effective throughput than a fast link, which would make it
hard to distinguish between a good (a lot of utilization of fast links
and little utilization of slow links) and a bad (a lot of utilization of
slow links and little utilization of fast links) configuration, since a
bad configuration could result in a higher throughput due to the
lack of fairness. Lastly, the system assumes that nodes do know their
own hop count and the hop count of their neighbors. This is done
to mitigate the need for network discovery and make sure that it
is at least clear where the nodes should send the packets to get to
the gateway, allowing this research to focus on only the data flow
optimization. This information is also assumed to be quite easily
attainable in a distributed network.

5.2 Functioning of the system
Since all data is routed to the gateway, the gateway would be able
to record how many messages it has received from each node and
communicate this back to those nodes. Instead of only counting the
amount of message that arrive from a particular node, the gateway
also records the first hop that a message took from that node. In a
situation where node A would have neighbors B and C, feedback
from the gateway would be the following: in the past period x
message where received via node B and y messages where received
via node C. This gives nodes an idea of how many message arrive
via each possible neighbor (with lower hop count). Since the node
knows itself how many message it has tried to send via that node it
would be able to calculate the success rate of that node. If the success
rate of a neighbor is 100% then it would mean that no messages are
dropped when sending via that neighbor and it might even have
capacity left to handle more messages. When the success rate of a
neighbor is less then 100% it means that either that neighbor itself
is overloaded or somewhere along the path from that neighbor to
the gateway a node is overloaded. Regardless of which is the case,
it would be a good choice to try and alleviate the node in question
forwarding less message via that node.

5.3 Reasoning For The Proposed System
In a system where fairness with regards to sending time is provided,
nodes with fast connections will be able to provide a higher effective
throughput than slower nodes. If a large amount of message is sent

through the network without keeping the link speeds in mind, this
would lead to slow links being overloaded, resulting in packets being
lost whereas fast links are not used to their full capacity. Since the
slow nodes would drop packets, other nodes that send via these
slow nodes will decide to reroute a part of the packets via other
nodes that do have a 100% success rate and can presumably still
handle even more. This would result in slow links being alleviated
and used less for forwarding messages, instead faster nodes would
be used which would be able to handle the increased load. This
system would not only alleviate the slow links in the system but it
would also prevent congestion in general. Even fast nodes can get
congested if they have a larger amount of packets coming in then
going out. As soon as this happens nodes will notice that sending
via a particular neighbor has gotten a lower success rate so they will
reroute a part of the packets. If it would happen that the congestion
is somewhere down the line, all the nodes upstream will try to
reroute. But, lets say the first node upstream of the congested node
is still able to take all the load and reroute it to another neighbor
then the following will happen. At first a couple of packets will
be dropped because the node is congested and all nodes upstream
will reroute a part of their packets. In the next iteration the first
upstream node of the congested node is able to handle the same
load as before by rerouting via another node. If the nodes upstream
have issues cause by the previous reroute attempt, they will try to
route it back the original way since this path now has a success of
100% again.

6 METHOD
The system used to perform the research is a combination of The
One and a custom python wrapper. The python wrapper is respon-
sible for generating the network topology and converting that to a
configuration file that the simulator can use to simulate the network.
Once the simulator has run the simulation, it will create result files
which are read by the python wrapper and processed to create a
new configuration after which the cycle repeats. Both the python
wrapper and the extensions made to The One together with The
One itself, are published on the GitLab server of the university of
Twente [8]

6.1 The One
To simulate network communication an open source project, made
by Ari Keränen, [4] was used. The project is called The One (Oppor-
tunistic Network Environment) and was originally created for delay
tolerant networks (dtn’s), but due to the simplicity of the simulator
it allows for easy adjustments allowing it to be used for more than
only the intended use case.
The One does not simulate the physical layer, so interference

is not simulated. The One does support checking whether nodes
are already busy with sending or receiving. So even though, there
is no signal interference it is possible to only allow nodes to send
or receive to/from one node at the time. This also means that if a
slow node is sending it is keeping the receiving node busy, so it
can’t receive from other nodes. This means that slow nodes might
keep a node busy preventing fast nodes from using more send time,
therefore bringing down the efficiency of the network. There are

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Ben van Viegen

also no fairness guarantees implemented by default, when running
a simulation without this it can be observed that slow nodes take
up most of the sending time, making the difference in throughput
between fast and slow links almost unnoticeable.

6.2 The One Extensions
In order to make the One useful for this research a few extensions
had to be added. Firstly support for individual node settings was
added. This allowed the system to simulate a network where each
node had its own independent values for parameters such as speed,
and send timeouts. This system was also used to give the individ-
ual nodes information about which nodes their direct neighbors
were and how much of their message load they should send to each
neighbor. This was needed for the custom router.
The One did not yet contain a router that could send out the mes-
sages to their neighbors based on ratios, so this had to be imple-
mented. For this, the individual configuration system was used to
give each node a list of neighbors and a list of ratios, indicating how
much the node should send to each neighbor. When the router has
to forward a message it picks a neighbor by change based on the
given ratios.
Lastly The One was extended further by adding a custom report to
give the feedback system information about how many messages
each node actually forwarded via which node. This report is neces-
sary since the actual messages send out may not perfectly match
up with the ratios, since the forwarding is chance based.
Since The One does not guarantee any fairness and in fact seems
to favour certain nodes over others, a timeout system was added to
make sure that "favoured" nodes could not keep a receiving node
occupied. The timeout allows nodes to send for a certain time period
and then blocks the node from sending anything for the same period
to allow other nodes to send. A timeout of 50ms was chosen to make
sure that nodes timeout often enough, so the chance based nature of
selecting the next node that can send would provide a fair enough
distribution.

6.3 Python Wrapper
The python wrapper consists of two parts. The first part handles
the generation of the network topology and the second part han-
dles processing the feedback from a simulation for each node and
writing a new configuration based on that. Topology generation is
done as follows: a specified number of node objects are created with
random coordinates. Then for each node its neighbors are deter-
mined based on the specified range and after this the hop count of
each node is determined. After this a configuration file is generated
which contains all the information for the individual nodes and an
events configuration file is generated for setting up the connections
between the nodes. Nodes themselves also have a certain speed.
To make sure there is a significant difference between connections,
nodes do not get a random speed but instead they get one of two
specified speeds. Either 150kb/s or 10kb/s. When a node is assigned
a certain speed it can only transmit at that speed, it can receive at
other speeds without issue. This is to simulate some nodes having
better connections then other, due to for instance better placement
(high above the ground) or other environment factors. The low

Fig. 1. diagram of system behaviour

speed was chosen to allow for exactly 1 packet transmissions within
a sending period (50 ms) and the high speed is chosen such that the
theoretical throughput of the network is more than the applied load
(if only the fast link could and would be used).
When a simulation has finished there are 2 reports that the python
wrapper uses to adjust the current configuration. The first one is the
DeliverMessagesReport. This report contains a list of all the message
that have been send through the network including the path that
each message took from its source node. In a real network this file
would be generated by the gateway receiving all the message and
logging them to this file. The file is then processed to create a map
for each node indicating how many packets the sink has received
from that node and the amount of messages that where received
via each neighbor of that node. In a real network this map would be
the feedback that a node would receive. When the "feedback" map
is generated the distributed feedback processing is simulated. Each
individual node will use the custom nodeSendingReport to determine
howmanymessages it has send via each neighbor in the last run and
then compares these values to the feedback from the controller to
determine what the success rate of each neighbor is. These success
rates are then used to tweak the configuration for the next iteration.
This tuning process, where it reduces the packet ratio that it send
to nodes that are loosing packets and reroutes them to one or more
nodes that do not lose any messages, can be seen in figure 1.
Nodes have a parameter that determines how much each node can
change it output ratios per iteration. This was done to minimize
anticipated oscillations that would occur within the network due to
the distributed nature of the control system. In a case where more
than one neighbors are overloaded, the node will make changes to
the output ratios in such a way that each overloaded node gets a fair
share of the maximum change amount. In the case where neighbor
A would lose 20% and neighbor B would lose 10% and the maximum
allowed amount of change is 10%, then 6,67% of messages going
to node A would be rerouted to not overloaded nodes and 3,33%
of messages going to node B would be rerouted to not overloaded
nodes. This would effectively reduce the load to node A by 6,67%
and the load to node B by 3,33%. This should result in less load on
node A and B resulting in less congestion and thus less packet loss
and therefore a higher success rate (if the not overloaded nodes still
had extra capacity to handle the extra messages).

4



Feedback aided distributed routing based throughput optimization TScIT 41, July 5, 2024, Enschede, The Netherlands

Fig. 2. Network topology with speeds

6.4 Simulations
During the simulation each node produces packets of 500 bits at
a 1 second interval. The network consists of 100 nodes and one
gateway, meaning that the total load on the network is 100 * 500 bits
* 1 packet/s = 50kb/s. This means that if the network would only
utilize the slow links then the throughput of the network would be
10kb/s which is only 20% of the applied load. If only the fast links
would be used this would result in a throughput of 150kb/s which is
300% of the applied load. In practice however it is very unlikely that
all nodes have a path to the gateway that consists of only fast links,
meaning that even if the network would find a perfect optimum
some slow links would still be utilized.
The topology of the network with the links can be seen in figure 2.
Here the green links represent (fast) links with a speed of 150kb/s
and the red links represent (slow) links with a speed of 10kb/s.

7 RESULTS
For the results 5 different change rates were chosen to see what the
effect of the change rates would be. These 5 cases were run for 100
iterations each and several metrics of each iteration were recorded,
in particular the arrival rate of packets which can be used to deduct
the throughput and the average latency. Also for each iteration a
visual representation of the network was saved with a color based
indication of the link utilization

7.1 Throughput
As can be seen in figure 3, the system seems to be able to achieve a
significant performance gain, going from a throughput 28,4kb/s to
surpassing and hovering around 40kb/s after around 45 iterations
when leaving the allowed amount of change per iteration uncapped.
The max throughput that the network manages to achieve is 41kb/s
of the applied network load, which is a 45% increase compared to
the throughput at the start. This shows that using feedback from a
central gateway to adjust forward ratios, does allow a network to
reach a more efficient state than it started at. The achieved through-
put is, however, still not even close to the theoretical maximum
throughput of the network.

Fig. 3. Throughput of the network over time

Fig. 4. Average latency of the network over time

7.2 Latency
The latency graph that can be seen in figure 4 shows a similar result;
there is a significant improvement over time, but the system does
manage to reach results near the theoretical minimum. With the
average hop count of the system being 2 the theoretical minimum
latency would be 2*(0.5/150)=6.67 ms (average hop count * (packet
size / link speed) + average hop count * time in queue). The average
time that messages spend in the queue is also recorded and is also
shown in figure 4. There is only about a 10% decrease in time spend
in queue, which shows that there is not much less congestion. This
means that most of the decrease in latency must be coming from
the decrease in transmission delay due to the network favoring
fast connections over slow connections. The fact that the average
amount of time that messages spend in the queue did not decrease
much does not necessarily point to the system failing to decrease
congestion. It could be caused by the fact that there is not much
congestion to begin with. At the start there is an average time in
queue of 10 ms, which would mean that there are on average only
3 packets before it in the queue if the node has a fast connection
and only an average of 0.2 packets before it in the queue if the

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Ben van Viegen

Fig. 5. Throughput over time with limited amount of change per iteration

Fig. 6. Average latency over time with limited amount of change per itera-
tion

node has a slow connection. There did occur some congestion at the
neighbors of the sink, since those nodes are the once responsible for
the most amount data transfer. This did not clear up as the network
progresses since the network becoming more efficient causes these
neighbors of the sink to get an even higher load. In the rest of the
network there is close to no congestion. With a max buffer size of
20 packets and only the (17) neighbors of the sink being congested
it makes sense that there are around 3 packets before each packet
in the queue on average.

7.3 Network Convergence
Against the expectations, leaving the allowed amount of change
uncapped did not cause the network to oscillate and not converge.
It actually results in the network converging much faster, which
leads it to achieve a way higher increase in efficiency at the end of
the 100 iterations. As can be seen in figure 5 and figure 6 capping
the amount of percentage change that nodes are allowed to make to
their forwarding ratios, only negatively impacts the speed at which
the network converges.

Fig. 7. Link utilization in the final iteration

7.4 Link Utilization
Figure 7 shows the link utilization that the network has settled on
at iteration 100 with an uncapped change amount per iteration. The
figure only includes the links that are actively used by the network,
so links that are not used at all are not displayed. The color coding
is used to indicate how much connections are used: red means they
are used very little (in most cases only for the generated messages
of a single node but not for any forwarding of messages of other
nodes) and green means that the link is used a lot. When comparing
the link speeds (that can be seen in figure 2) and the link utilization
(figure 7), there is a similarity apparent especially with regards to
the links close to (directly connection to, or one hop away from)
the sink. It can also be observed that nodes that have a slow link
to the sink receive very little incoming packets (no incoming links
or red incoming links), whereas nodes with a fast link appear to be
receiving a lot more data from their neighbors to forward to the
sink. This shows that the system is able to select nodes with fast
links for sending, even without any node knowing anything about
connection speeds.
At the start links far from the sink will likely only have neighbors
with a less then 100% success rate and thus are not allowed to ad-
just their send ratios. Only after the nodes close to the sink have
optimized enough to handle more data transfer, there become paths
that are still able to handle more data allowing nodes further away
from the sink to optimize as well by choosing these paths. This re-
sults in the system exhibiting expanding behaviour where first the
nodes close to the sink optimize and over time nodes further away
from the sink also get the opportunity to optimize. This behaviour
is only present if the network is slightly overloaded with data. If
the data load would be low, there could already be successful path
from the edge of the network to sink at the start meaning that even
nodes close to the edge can already optimize and use this "success-
ful" path. In this case it might be beneficial to assign limits to the
amount of change that nodes further away from the sink can make
to their routing ratios. This would help the nodes close to the sink
to optimize first without having rapidly changing incoming data
rates. The nodes close to the sink should get this priority since they
are responsible for relaying the most amount of data and should
therefore optimize as fast as possible.
The other way around, if the network would be overloaded with

6



Feedback aided distributed routing based throughput optimization TScIT 41, July 5, 2024, Enschede, The Netherlands

too much data then nodes close to the edge of the network would
never be able to optimize, since the nodes close to the sink simply
cannot handle all the data, even when optimized, resulting in no
"successful" path from the sink to the edge of the network. Leaving
nodes at the edge of the network with only neighbors with a less
then 100% success rate and thus not being able to optimize.

7.5 Impact of Individual Nodes
The impact that an individual node has on the throughput of the
network strongly depends on how much data from other nodes a
particular node has to relay. When the network has not optimized
yet this impact is strongly related to the hop count, since nodes
close to the sink receive data from other nodes further away from
the sink. As the network converges slow nodes get less data send
to them and fast nodes get more data. This results in fast nodes
that are close to sink being responsible for even more data relay-
ing, therefore making their routing decision very important for the
throughput of the network. Adversely, slow nodes close to the sink
receive less data, meaning that their routing decisions do not impact
the throughput of the network much. Due to this distribution of
impact, it is expected to be desirable to first have the nodes close to
the sink optimize and expand outwards from there (as discussed in
the previous section).

8 DISCUSSION

8.1 Performance comparison
The fact that the system does not achieve a throughput even close to
the theoretical maximum, together with the large amount of packets
the system needs to reach close to its achievable max throughput
(at around iteration 45), makes it very unlikely that this system
could outperform other already existing systems. Douglas et al.
[1] proposes a system where the expected transmission count is
used to improve performance and showed significantly better per-
formance in comparison to a minimal hop approach which was
used in this research. The system proposed by Douglas et al. [1]
showed a more than 2 times increase in throughput, instead of the
45% increase achieved with the feedback system, with much less
data traffic needed to achieve these results. This however, does not
necessarily mean that the feedback mechanism is flawed, it could
be that the ETX metric is a better metric to optimize on than arrival
rate. Adjusting the proposed system to use the more promising ETX
metric instead of arrival rate feedback, could yield improved results.

8.2 Transmission Delay
In the current system only arrival success rate is taken into account
and not the transmission time. This does result in some performance
gain but it does not allow the system to chose a fast link over a slow
link if neither are dropping packets, even though this might boost
network throughput since this would leave more time for other node
to send. A possible way to incorporate this would be to also take the
cumulative transmission delay of packets into account and trying
to minimize that. This would result in faster connections being

favoured over slow connections even if the slower connections are
not dropping message due to being overloaded.

8.3 Longer Paths Might Be Better
The current system only has the option to send to nodes with a
lower hop count than the node has itself. This means that with each
hop the message should get closer to the sink, resulting in a message
always taking one of the paths with the lowest amount of hops. It
could be that there exist a path that takes more hops, but would
still be faster than any path with the minimum amount of hops, for
instance if the path with more hops has a lot more fast link than
the other paths. When exploring the impact of allowing other paths
than the ones with the minimal amount of hops, it would also be
interesting to see the impact of using the ETX metric to determine
path quality as this showed promising results in other papers [1]
[5]. Allowing nodes to also forward messages to neighbors with
the same or a higher hop count would allow the system to find
more optimal paths that are not necessarily the paths with the least
amount of hops. This, however, would likely take longer to converge
and have a lower throughput at the start since packets are more
likely to be bounced around or get lost in the network, especially
during the first iterations, but it would likely ultimately converge to
a state where the throughput of the network would be higher than
that of the current system.

8.4 Decreased Congestion
As stated in the results section the system did notmanage to decrease
the time that message spend in the queue by much. This was likely
caused by the fact that messages did not spend much time in the
queue to begin with, so there was not much to optimize. This means
that it is still quite unclear whether this approach would be good
at mitigating congestion. This could be tested by increasing queue
sizes allowing for more congestion to build up. This would have to
be done in another simulation environment, since The One becomes
to slow when increasing queue sizes.

9 CONCLUSION
As can be concluded from the results, providing nodes with feed-
back about how many message have arrived from that node and via
which hop they went, does allow the individual nodes to adjust their
forwarding ratios to improve the overall throughput of the network
significantly. However, the system does not seem to be capable of
finding a configuration that performs close to the theoretical maxi-
mum throughput using the limited amount of information obtained
from the feedback of the gateway. This means that the proposed
system provides only rather limited optimization capabilities, with
regards to network throughput.
With regards to the latency of the network the conclusion is not
more optimistic, the system is again able to provide some improve-
ment, but not reach even close to the theoretical minimum.
Regarding the amount of allowed change per iteration, it can be
concluded that a higher amount of allowed change results in the
network converging quicker, without the expected oscillatory be-
haviour. All in all, providing a small amount of information regard-
ing the arrival rate of packets at the gateway, allows individual

7



TScIT 41, July 5, 2024, Enschede, The Netherlands Ben van Viegen

nodes to adjust their forwarding ratios and all together achieve a
significant increase in throughput of 45%. Even though the system
does not manage to achieve close to the theoretical throughput of
the network, the simplistic nature of the behaviour of individual
nodes, allows the system to be implemented on nodes with very
limited processing power. This could mean that the system could be
used in networks where other options may not be possible, provid-
ing a significant increase in throughput. Furthermore, extra research
regarding the combination of this research and other optimization
strategies[1][5][6], might lead to better results.

10 ACKNOWLEDGEMENTS

10.1 AI acknowledgement
During the development of the python wrapper copilot [2] was used
to facilitate faster development. It has only been used to complete
single lines, working as a more advanced auto complete than the
one build in to the python language extension of Visual Studio Code
[3]. Copilot was never used to generate more than one line of code
at a time.

10.2 Supervisor
The research was supervised by Alessandro Chiumento, who pro-
vided helpful constructive feedback and great guidance.

REFERENCES
[1] De Couto, Douglas S. J. (Douglas Seraphim James), and 1975. 2004. High-throughput

routing for multi-hop wireless networks. Thesis. Massachusetts Institute of Technol-
ogy. https://dspace.mit.edu/handle/1721.1/16695 Accepted: 2005-05-17T14:57:49Z
ISSN: 5737-7502.

[2] Github Inc. 2024. Github Copilot. https://github.com/features/copilot.
[3] Microsoft Inc. 2015. Visual Studio Code. https://code.visualstudio.com/.
[4] A. Keränen. 2015. the-one. https://github.com/akeranen/the-one.
[5] Shuang Li, Alvin Lim, Santosh Kulkarni, and Cong Liu. 2007. EDGE: A Routing

Algorithm for Maximizing Throughput and Minimizing Delay in Wireless Sensor
Networks. InMILCOM 2007 - IEEE Military Communications Conference. 1–7. https:
//doi.org/10.1109/MILCOM.2007.4454781

[6] P. Marbach. 2007. Distributed Scheduling and Active Queue Management in
Wireless Networks. In IEEE INFOCOM 2007 - 26th IEEE International Conference on
Computer Communications. 2321–2325. https://doi.org/10.1109/INFCOM.2007.273

[7] Thirumalai Padmapriya and Vaitilingam Saminadan. 2015. Improving throughput
for downlink multi user MIMO-LTE advanced networks using SINR approximation
and hierarchical CSI feedback. International Journal of Mobile Network Design
and Innovation 6, 1 (2015), 14–23. https://doi.org/10.1504/IJMNDI.2015.069213
arXiv:https://www.inderscienceonline.com/doi/pdf/10.1504/IJMNDI.2015.069213

[8] B.S.M. Viegen. 2024. Feedback aided distributed routing based throughput opti-
mization. https://gitlab.utwente.nl/s2737779/feedback-aided-flow-control.

[9] Ting Yang, Jiabao Sun, and Amin Mohajer. 2024. Queue stability and dynamic
throughput maximization in multi-agent heterogeneous wireless networks. Wire-
less Networks (April 2024).

8

https://dspace.mit.edu/handle/1721.1/16695
https://github.com/features/copilot
https://code.visualstudio.com/
https://github.com/akeranen/the-one
https://doi.org/10.1109/MILCOM.2007.4454781
https://doi.org/10.1109/MILCOM.2007.4454781
https://doi.org/10.1109/INFCOM.2007.273
https://doi.org/10.1504/IJMNDI.2015.069213
https://arxiv.org/abs/https://www.inderscienceonline.com/doi/pdf/10.1504/IJMNDI.2015.069213
https://gitlab.utwente.nl/s2737779/feedback-aided-flow-control

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Research Question
	2.2 sub-research questions

	3 Related works
	4 hypothesis
	5 proposed system
	5.1 prerequisites
	5.2 Functioning of the system
	5.3 Reasoning For The Proposed System

	6 Method
	6.1 The One
	6.2 The One Extensions
	6.3 Python Wrapper
	6.4 Simulations

	7 Results
	7.1 Throughput
	7.2 Latency
	7.3 Network Convergence
	7.4 Link Utilization
	7.5 Impact of Individual Nodes

	8 Discussion
	8.1 Performance comparison
	8.2 Transmission Delay
	8.3 Longer Paths Might Be Better
	8.4 Decreased Congestion

	9 Conclusion
	10 acknowledgements
	10.1 AI acknowledgement
	10.2 Supervisor

	References

