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Abstract - The increased use of power electron-

ics devices and more decentralized power gen-

eration has attributed to more issues regard-

ing power quality. To study the sources of

these issues a cheap power quality monitor was

designed that can measure some power qual-

ity parameters with an interval of 2 seconds.

This paper shows how to expand its function-

ality to do line voltage analysis on a higher fre-

quency, while adding the least amount of com-

ponents possible. The usability of the analog to

digital converter (ADC) of the microcontroller

(ESP32) present on the power quality monitor

is assessed. It is determined that a sampling fre-

quency of 500 kHz is needed for troubleshooting

a voltage grid [1] This is sufficient to measure

many harmonics of the 50 Hz grid and some

impulsive phenomena. However, it might not

be enough for showing phenomena caused by

fast switching of switched-mode power supplies

etc. Using the internal ADC a maximum sam-

pling frequency of 768 kHz is achieved using I2S,

which meets the requirements. The signal con-

ditioning to make the line voltage measurable is

however not sufficient for the ADC as voltage

levels are too low. Because of this a 10 kHz test

signal is considered as well as two static voltages.

The FFT magnitude plot and performance of

static voltage readings are compared for differ-

ent sampling frequencies. It is found that noise

performance increases with higher sampling fre-

quencies. An alternative signal conditioning sys-

tem that meets the requirements is proposed.

1 Introduction

In the modern world, Power Quality (PQ) moni-
toring is becoming more and more important. This
is partly due to the increased usage of Power Elec-
tronics (PE) devices and non-linear loads, but also
because we are moving towards grids with decen-
tralised power generation [2, 3]. The move to-
wards decentralised generation (and/or microgrids)
in combination with the high usage of PE devices
makes it harder to assess power quality from a lim-
ited number of measurement nodes as is often the
case today.
More detailed information within the grid is needed
to find PQ problems and their sources to ensure
that the PQ parameters are within standards for

every user.
To move towards this goal, a cheap PQ monitor
that that can capture the basic PQ parameters with
an interval of 2 seconds has been created in [2]. This
paper focuses on expanding this device to allow for
voltage analysis with a sampling rate above 500 kHz
while keeping costs low. It would be beneficial to
add the least amount of components as possible.
High frequency analysis could reveal the sources of
PQ issues that cannot be indicated with long mea-
surement intervals. An example could be fig. 1 be-
low. As can be seen there is a dip in the voltage
that can only be seen with a higher sampling rate.

Figure 1: An example of a disturbed grid
voltage [4].

2 Problem and research ques-
tion

To make high frequency PQ monitoring on a large
scale possible, the costs of the measurement devices
and (data) infrastructure should be kept low. How-
ever, the low cost should not lead to unusable data.
The functionality of the PQ monitor created in [2]
will be expanded to allow for high frequency line
voltage analysis.
This could tell us more about PQ/EMI related
failures. Examples of high frequency phenomena
are lightning strikes and power electronics related
phenomena, e.g. switching frequencies. Therefore
this paper will try to answer the research question:
What frequencies are important for PQ/EMI anal-
ysis and can they be measured with the limited hard-
ware available?
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3 Related work

To answer the research question stated above, it
would be beneficial to start with a definition of PQ,
see what frequencies are of interest and what the
capabilities of the existing PQ/EMI monitor are.

3.1 Power Quality (PQ) basics

PQ parameters are a subset of Electromagnetic
Compatibility (EMC) and can tell us about the ex-
tend to which a power grid is stable [2]. Problems
with PQ can lead to the failure of an entire system,
like the emergency backup power of a hospital not
working due to large inrush current of power elec-
tronics converters [3]. This could in extreme cases
also happen to the national power grids, making it
very important to have insights in the PQ on a grid
and mitigate issues wherever possible. In the news
you can already hear a lot about grid operators not
allowing new connections in the Netherlands out of
concern for PQ issues [5, 6]. Grids have predeter-
mined operating conditions and maxima for several
electrical parameters, which can be used for this
mitigation [2]. The extend to which these parame-
ters adhere to the standards determine the quality
of an electrical network. Poor PQ can be very bad
for electrical devices [2].
Over the past years, there has been an increase in
the amount of PQ monitoring around the world [1].
Monitoring gives network operators or utilities
more information about the performance of their
network, allowing them to take action against PQ
problems [1]. Measuring PQ is getting more and
more important due to several factors. Examples
are the move towards more distributed electricity
generation (e.g. solar panels and wind turbines),
more non-linear loads (e.g. power converters) and
electric vehicles [2, 3, 1]. These devices lead to a
less stable environment regarding PQ compared to
more traditional resistive loads (e.g. incandescent
lamps or heaters).

3.1.1 PQ parameters

Now that it is know what the basic meaning of PQ
and its importance are, some parameters that make
up power quality should be discussed. Although
a lot of network operators are installing PQ mon-
itoring devices, there is a lack of knowledge and
agreement on the location, amount and parameters
to measure [1]. According to CIGRE/CIRED, the
following parameters can be measured (depending
on the monitoring objective) [1]:

• (Steady state) RMS voltage;

• (RMS) current and harmonic currents;

• Voltage unbalance, harmonics, THD or flicker;

• Voltage sags, swells and rapid changes;

• High/low RMS voltage per 1-10 min window;

• Transients;

• Frequency, P, Q, power factor, phase shift.

Analyzing the voltage at a high frequency would
give more insights regarding transients, frequency
contents (harmonics, etc.) and rapid changes. As
most PQ parameters are based on the line volt-
age, it is chosen not to look at the current for this
project.

3.2 Frequencies of interest

For this research, it is important to know what
bandwidth is important to capture most PQ pa-
rameters. It would be interesting however to see
just how high the bandwidth can get with the lim-
ited hardware that is provided. In the future, this
information could then be used to see if it is fea-
sible to even capture EMI phenomena (which can
also be a part of PQ).
The main frequency we would like to measure in
the Dutch power grid is the 50 Hz signal, its har-
monics and change over time. Suppose we would
like to measure up to the 20th harmonic, we would
need a bandwidth of just 1 KHz. The quality and
disturbances of the 50 Hz signal is the most im-
portant measurement in PQ analyses and because
of the low bandwidth relatively easy to measure.
It will become trickier when EMI (e.g. switched
mode power supplies) and impulsive phenomena are
taken into account. In the book [7] it can be found
that impulsive PQ phenomena like lightning strikes
last only a few microseconds. Let’s suppose a light-
ning strike lasts 3 microseconds, then a bandwidth
of 333.33 kHz would be needed to capture the event.
This in turn means a minimum sampling rate of
666.67 kHz, or 0.667 MHz, to meet the Nyquist cri-
terion.
Another example is the increased use of switched
mode power supplies. From the same book, page
104-105, it can be seen that DC/DC converters of-
ten use a high switching frequency in the kilohertz
range. The example on page 105 has a switch-
ing frequency of 500 kHz, or a Nyquist frequency
of 1 MHz just to see the fundamental frequency
of the Power Supply Unit (PSU) [7]. According
to CIGRE/CIRED JWG C4.112 a sampling rate
of 500 Khz will suffice for most (troubleshooting)
applications (table I, monitoring objective ”Trou-
bleshooting”) [1]. From this information it can
be concluded that if we would like to show infor-
mation regarding lightning, EMI and other higher
frequency PQ parameters the sampling rate would
need to be at least 500 kHz, preferably in the MHz
range.
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3.3 Measuring PQ

How to measure PQ depends on the goal and lo-
cation of the measurement. Measurements can
be done e.g. to do compliance verification, per-
formance analysis, troubleshooting, etc. This can
be done at Extra High Voltage (EHV), High Volt-
age (HV), Medium Voltage (MV) and Low Voltage
(LV) networks, where in general the cost is highest
for the EHV networks and the lowest for the Low
Voltage networks [1].
Today, PQ is often measured at 2 main points. One
at the grid operator level, for example at a distribu-
tion transformer, and another measurement is done
at the point of common coupling (POCC) like the
energy meter in one’s home [2]. To study EMI in
more detail, it would be beneficial to have more
measurement locations at the electrical appliance
level. This information can then be used to inves-
tigate the origin of the PQ problems and possibly
mitigate them [2].

3.4 Cheap PQ monitoring [2]

To troubleshoot PQ at many nodes in a network, a
cheap measurement device is needed. As discussed
before it is cheapest to measure in a LV network
like the 230 V network in Dutch houses.

To do this, specialized high-end equipment (e.g.
MPQ1000 or Fluke 1770) with a lot of flexibility
can be used. This allows the user to extract
measured data and interpret it however they want.
This includes raw line voltage, raw line current
and calculated PQ parameters. However, the price
of these units is often high [2]. Cheaper monitors
are available from brands like TP-Link, but their
flexibility is limited and the accuracy is often
unknown [2]. In this project an inexpensive PQ
monitor based on an ESP32 module is studied.
In combination with an energy meter IC, resistive
divider and shunt this monitor can achieve an
energy measurement accuracy of less than 1%,
comparable to a class B energy meter (EN-50470).
This is done using the ATM90E26 from Microchip
using the SPI bus of the ESP32. The ATM90E26
has onboard DSP to determine the PQ parameters,
such that they do not have to be calculated using
the ESP32. Parameters are fetched every two sec-
onds [2]. Signals are also fed directly to the 12 bit
successive-approximation-register (SAR) ADCs of
the ESP32 via signal conditioning to allow for even
more flexibility [2, 8]. These signals will be used
for this project, specifically the line voltage. To
visualize this system the block diagram can be seen
in Fig. 3. As an extra, the module is fitted with an
expansion header to allow for comparison of PQ
parameters with environmental conditions and/or
add more PQ measurement options in the future.

PQ parameters currently measured by the device
can be found in table 1 [2]. Data is saved every 15
seconds to a micro-SD card and can be retrieved by
removing the SD card or using the special Android
app and Bluetooth. At the time of writing of [2],
the total BOM was approximately €100. In bulk,
this would probably be a lot lower. This device
would therefore, with a few improvements (mainly
in communication) be a viable option to measure
a lot of nodes in a LV network. It can basically
be seen as a higher frequency, advanced household
energy meter like the one in a lot of Dutch fuse
boxes (’meterkasten’).

Figure 2: Block diagram of the PQ monitor [2].

Figure 3: Photo of the PQ monitor.
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Table 1: PQ parameters measured by the PQ
monitor [2].

Elemental measurement Power measurement Energy measurements Events
RMS voltage Mean Active Power Forward Active Energy Sag
RMS current Mean Reactive Power Reverse Active Energy Swell
Frequency Mean Apparent Power Absolute Active Energy
Phase Angle Forward Reactive Energy
Power Factor Reverse Reactive Energy

Absolute Reactive Energy

The software is implemented using FreeRTOS, a
real-time operating system which allows to create
tasks and assign a priority to them. This means
tasks are scheduled in order of importance [2]. This
can reduce the amount of erroneous measurements
and allow for easier expansion in the future.

4 Methodology

The research can be split into four main parts.
These parts combined should answer second part
of the research question. They can be summarized
as follows:

1. Check ADC capabilities (get and verify data).

2. Check data for usability (data analysis).

3. Perform data analysis on the microcontroller.

4. Store data locally or on server.

The first part would consist of writing code for the
ESP32 in the same framework as used in previous
research. Important aspects are the maximum sam-
pling rate at which we can still save data to RAM.
The second part would be an analysis on frequency
content, accuracy and precision. It would also be
good to compare accuracy/precision with respect
to sampling rate.
As a third step the analysis should be performed
on the PQ monitor itself if that’s possible. The
last step would be to save the raw or analyzed data
to the SD card present in the PQ monitoring de-
vice. If possible, it would be interesting to send
data to a server. This would obviate the need to
have physical access to the device.

4.1 Check ADC capabilities

To keep the costs of the PQ monitor low, research
is done on the usability of the built-in ADC of the
micro-controller (ESP32). If the built-in ADC is
usable, probably no extra hardware is needed as sig-
nal conditioning measures are already in place [2].
Whether the signal conditioning is enough for the
ESP32 has to be checked. Voltage readings are only
linear between 100/150 mV and 2450 mV depend-
ing on the ADC attenuation setting [8]. With an
oscilloscope, it can be checked whether the signal
stays within these limits.
When this is verified, the maximum sampling rate

can be determined. It has already been established
that a sampling rate of 500 kHz would be a good
minimum if we would like the frequency data for
troubleshooting of PQ “errors”. Different software
implementations will be considered for the sam-
pling process: direct sampling, sampling using Di-
rect Memory Access (DMA) and I2S with DMA.
When using DMA, the ADC has its own memory
buffers to which it directly writes the samples. The
main processor is not involved in this process. Us-
ing DMA in theory could lead to higher sampling
rates as the processor only has to empty the mem-
ory buffers in time instead of constantly polling the
ADC.
Data will be logged in its raw form, a 12 bit value,
to the serial console.

4.2 Data analysis

To analyze the data from the serial console it will
be imported into MATLAB. The accuracy and pre-
cision of voltage readings will be checked as well
as the Fast Fourier Transform (FFT) of a “clean”
10 kHz sine wave as generated by an HP 33120A
signal generator. From this it can be determined
if the quality of the measured signals is sufficient.
The quality of signals with a different sampling rate
will be compared. Using this information it can be
decided what sampling rate would be best to use. It
preferably needs to be above 500 kHz as discussed
before, but if the quality is low compared to lower
sampling rates concessions might have to be made.
Besides the FFT, interesting parameters could in-
clude minimum, maximum and mean voltage in a
way narrower time span than is currently measured
by the device. Data can be divided into timeslots
of milli-/microseconds compared to 2 second slots
as measured by [2].

4.3 Data storage

In the end, data should be stored on the SD card.
This can be done by looking at existing code for
the PQ monitoring device and reusing part of the
code. Data could be saved as a csv file with a sam-
ple on each line and the time of the first sample
in microseconds as the file name. The time would
be with respect to the starting time of the device.
However, if the actual time has been found using
NTP, the timestamp would be in epoch time (the
number of seconds since 1970). All samples are
saved as a 12-bit value between 0 and 4095. This
data could be imported in any software that sup-
ports a csv data stream.
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5 Implementation, results and
discussion

5.1 Get and verify data from an
ADC

5.1.1 Direct sampling

From the three methods discussed above, sampling
without DMA is ruled out. The official ESP32 doc-
umentation states that the theoretical maximum
sampling rate would be 83.33 kHz [8]. On fo-
rums different results have been found ranging from
1 kHz to several kHz. One of the most promising re-
sults was using the adc1 get raw function in a loop
to achieve 27.1739 kHz [9].

5.1.2 DMA using only adc driver

To achieve a higher sampling rate the adc driver
with DMA was implemented. In the end this was
done by looking at the examples provided by the
esp-idf and changing adc dma example to match
the project requirements [10]. This meant chang-
ing the ADC input, removing unnecessary vari-
able definitions regarding different versions of the
ESP32 and changing the sampling rate to be above
500 kHz. Samples will be logged to the serial con-
sole after sampling. They are represented as a 12
bit value from 0 to 4095. The channel attenuation
is set to 2.5 dB. The signal can be converted to a
voltage using the formula [8]

Vmeas = Dout
Vmax

4095
, (1)

where Dout is the measured value and Vmax

is 1.25 V. The resulting code can be found in
Appendix A.
After changing the code, a 10 kHz sine wave from a
NI MyDAQ is applied to the ADC input (10 kHz,
1 Vpp, 0.74 V DC-offset). The sampling rate is
set to 1 MHz and data is logged to the console.
Data is imported in MATLAB and converted to a
voltage.
A plot can be found in Fig. 4, where the signal
from the ADC is plotted against measurements
using a Siglent SDS 1202X-E oscilloscope. Looking
at the amount of samples per cycle revealed a
perceived sampling rate of 166 kHz (16 samples
per cycle). This is way lower than the expected
1 MHz. The sampling rate was decreased to
200 kHz, 83.33 kHz1, 45 kHz and some values in
between. The maximum perceived sampling rate
is 166 kHz when setting the sampling rate in the
code to 83.33 kHz. Any value above this yields a
similar result.

1At this point it was found that the expected range of the
sampling rate (.sample freq hz) is 611 Hz - 83.33 kHz [8].

The maximum value of 83.33 kHz is in line with
ESP32 documentation [8]. However, the sampling
rate is way higher due to an error in esp-idf version
4.4 [11].

Figure 4: Plot of the measured signal using DMA
with .sample freq hz = 1 MHz.

This is not fast enough for the intended use. Some
further research revealed that the found result is
the maximum speed using this method [8]. Fur-
ther analysis on the samples generated using this
method is therefore not done.
There should be another way to get closer to the
theoretical maximum sampling rate of 2 MHz as de-
scribed in the datasheet table 3-3 [12]. This turned
out to be DMA using I2S.

5.1.3 DMA using I2S

After some research, the Inter-IC Sound Bus (I2S)
seemed to be the most feasible way to get to high
sampling rates. I2S was originally designed by
Philips back in 1986 to allow digital audio devices
to connect to each other. It is a bidirectional se-
rial bus interface and mostly used for ADC/DAC
applications [13]. Originally, I2S was probably de-
signed with audio sampling rates in mind. In 1996
however, Philips published a new version of the I2S
specification where a timing example is given for a
data rate of 2.5 MHz [14]. This seems in line with
the requirements of the project.
To get started with I2S I looked at the i2s adc dac
peripherals example included in esp-idf 4.4.1. This
code was simplified to just the sampling part and
some code was created to represent the ADC values
as integers from 0 to 4095. These represent a volt-
age from 0 to 3.3 volts. In the code most important
parameters to set are:

• The physical ADC port;
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• I2S mode;

• Sample rate and sample bits;

• Communication and channel format;

• Number of channels;

• Clock source;

• ADC port/channel.

For this project, the physical port is set to ADC1
channel 4, which corresponds to pin 8 of the ESP32
as shown in Fig. 5. This is the conditioned line
voltage on the PQ monitor [15]. Note that all tests
regarding measurement speed and stability are per-
formed on an external ESP32 development module
for flexibility and safety. Here, safety is both with
regards to damaging the PQ monitor and physical
safety (ground corresponds to the line voltage).
Besides this, sample bits is set to 16. Sample bits
is set to 16 to get the 12 bit samples from the
ADC while maintaining compatibility with the I2S
driver. The communication format is set to the
standard format as can be seen in Fig. 6. The com-
plete code including other settings can be found in
the code in Appendix B.

Figure 5: IO layout of the
ESP32-WROOM-32E [16].

5.1.4 Handling I2S data

To start decoding the datastream, the sampling
rate is simply set to 16 kHz and read into mem-
ory as type char*. The size of a char is 8 bits.
Therefore, there are two chars per sample.
Samples can be decoded by looking at the commu-
nication format, which can be seen in Fig. 6. The
first byte starts with the Most Significant Bit and
the second data byte starts with the Least Signifi-
cant Bit.

To represent the data as an unsigned integer, the
second byte that starts with the LSB is converted

Figure 6: Data timing diagram [17].

to a 16 bit unsigned integer and shifted 8 bits left.
Then a bitwise inclusive or is performed between
this shifted data and the first byte. The resulting
16 bit value is padded, i.e. the first 8 bits are set to
0. The buffer is then printed to the serial monitor.
C++ code for this can be found in line 95 - 108 of
Appendix B. The data can now be saved by logging
the serial monitor to a txt file.

5.1.5 Maximum frequency and results

Now that there is a way to get data using I2S from
the ADC to the PC, the maximum sampling rate
can be determined. The maximum sampling rate
is the frequency before which measurements return
implausible results or hardware crashes occur. The
same 10 kHz signal from the MyDAQ is applied like
before.
The sampling rate is increased in multiples of
48 kHz until results started to be unusable (in
this case all zeroes). Increasing the sampling rate
in multiples of 48 kHz seemed to work the best.
This yielded the highest possible sampling rate of
768 kHz. The fact that this multiple works best
might be due to the original application of I2S,
which was in the domain of digital audio process-
ing, where 48 kHz is a typical sampling rate [13].
Using I2S a sampling rate of 768 kHz could be
reached2. This means the minimum sampling rate
of 500 kHz as determined by CIGRE is reached [1].
Data is collected by using different sampling rates
of 192, 384 and 768 kHz and applying a sine wave.
The signal generator (HP 33120A) is set to 10 kHz
with VPP = 1.000 V and an offset of 700.0 mV . To
get a better picture of the situation, a measurement
with Fs = 768 kHz is shown in Fig. 7. It is super-
imposed on a measurement of the same signal using
a Rohde und Schwarz RTB2002 oscilloscope. It can
be seen that the signal is actually a 10 kHz sine with
double the VPP and an offset of 1400.0 mV , due to
the output termination set to 50 Ω [18].

2Sampling rate is actually set to 384 kHz in code. There
is a problem with the Hardware Abstraction Layer in esp-idf
version 4.4 causing this issue [11].
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Figure 7: Plot of the measured signal using I2S
with a sampling rate of 768 kHz.

As can be seen the plots mostly overlap except for
a small voltage error. This can be explained by
the accuracy of the ADC. In Fig. 8, the results
of an experiment regarding linearity and offset is
shown [19]. In this experiment, the ADC voltage is
always a bit below the actual voltage (in the linear
region). This corresponds to my findings.

Figure 8: Input voltage versus output readings by
the ADC [19]

5.1.6 Signal conditioning PQ monitor

To read the mains voltage using the ADC of the
microcontroller, it is important to condition the
signal. The signal should not damage the IC and
should be readable. As we’ve already established
in Sec. 4.1 the minimum voltage would be 150 mV
w.r.t. ground. The maximum voltage would prefer-
ably be below 2450 mV to stay within the linear re-
gion of the ADC. Fig. 8 shows this in more detail.
As the ground of the PQ monitor is floating on
mains, a DSO138 clone is used to measure the con-
ditioned line voltage. This is a small oscilloscope-
like device with limited bandwidth, accuracy and

precision. However, it can easily be used to display
50Hz signals. The great advantage is that it can
be powered using a 9 V battery. This means it can
operate completely isolated from mains.
Connecting the DSO138 and measuring on pin 8
of the ESP32 shows a voltage of 0 volts with re-
spect to ground. This is verified by measuring with
the ADC. From this it can be concluded that the
signal conditioning is not sufficient. To properly
troubleshoot a (micro)grid it would be beneficial to
analyze the entire mains waveform. As nothing can
be measured currently a new circuit has to be de-
signed or the current one has to be modified.
In the current implementation the mains voltage is
divided by 1000 and fed into IN+ of an LTC2055
op-amp. Fig. 10 shows how node N$21 is the neu-
tral voltage divided by 1000. In Fig. 9 it can be seen
that this voltage is being fed into the IC601.1. This
op-amp is not connected to any negative supply
and thus the output can only be half of the wave-
form. This is verified with a measurement shown
in Fig. 11.

Figure 9: Signal conditioning measures as
currently implemented [15].

Figure 10: It can be seen that node 21 is 1/1000th
of the line voltage [15]. (N22 is connected to phase

as in [20])

Figure 11: A measurement of the output of
IC601.1.
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Figure 12: Schematic of possible solution for signal conditioning.

5.1.7 Signal conditioning: possible solution

A new signal conditioning circuit has been designed
in LTSpice using the following requirements:

• Both the positive and negative part of the
mains waveform should be measurable;

• The voltage should be withing the linear region
of the ADC (150 mV to 2450 mV);

• The amplitude of the waveform should be high
enough to measure the signal with enough de-
tail;

• The amplitude of the waveform should be low
enough to show voltage surges;

• The resulting signal cannot get below ground
to prevent damage to the ADC.

Concretely this would mean that a static voltage
has to be added to the attenuated mains voltage
(N$21 in Fig. 10). This would make the signal
completely positive. Some way of controlling the
amplification of this signal has to be implemented
as well as something to keep the voltage above 0 V
in all situations. A possible solution would involve
three op-amps and a negative voltage source. The
currently used LTC2055 can also be used for this
application. It supports ±5 V supply voltage and
has a slew rate of 0.5 V/µs [21]. As the mains
voltage is divided by 1000, this would equate to a
maximum slew rate of 500 V/µs for the mains volt-
age, which is sufficient.
The first op-amp stage (see Fig. 12) would act as
an inverting voltage adder. This adds some mul-
tiple of the voltage of N$21 to some fraction (e.g.
half) of the positive logic supply. This voltage then
has to be inverted with a second op-amp stage be-
fore being fed to the ADC. All op-amps besides U4

Table 2: Important components of Fig. 12.

Identifier Function or explanation
N$21 Mains voltage divided by 1000
Vac1 Mains voltage
Vout Conditioned mains voltage
Vpos Positive logic supply (3.3v)
Vneg Negative logic supply (-3.3v)

R12, R13 Resistor to set multiplication factor of N$21
R13, R14, R15, R16 Resistors to set offset voltage

(Fig. 12) have been connected to ground instead of
Vneg, which should prevent Vout from being nega-
tive. A schematic of this can be seen in Fig. 12 with
the important parameters in table 2.
The output voltage of the system can be calculated
as follows:

Vout =
R13

R14

R16

R15 +R16
Vpos +N$21

R13

R12
(2)

For simplicity R17 and R18 are set to 10 kΩ.
Depending on the component values, this system
can be tuned to meet the requirements for different
mains voltages. In Fig. 12 values are set to meet the
requirements for a 230 V RMS system. Half of the
logic supply voltage is added to twice the voltage
of N$21. The output can be calculated as follows:

Vout = (1/2)Vpos + 2N$21 (3)

The plotted output signal can be seen in Fig. 13.
As can be seen, the signal is within the linear region
of the ADC, has reasonable amplitude and there is
still some range left for transients.
In the end the actual mains voltage can be calcu-
lated from the sampled values using the following
formula:

Vac1 = (Vout −
R13

R14

R16

R15 +R16
Vpos)

1000

(R13/R12)
(4)
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Figure 13: Input (black) and output (blue)
voltage of the proposed system.

5.2 Data analysis using PC

Despite the setback regarding signal conditioning,
some useful data analysis can still be prepared.
Even though the mains voltage cannot be mea-
sured a generated signal can be used on an exter-
nal ESP32-WROOM-32E. This way it can still be
confirmed if the code for the ADC is correct and
measurements have no unexpected artifacts.
During this analysis the signal generated by the HP
33120A are used, just like in Sec. 5.1.5. The studied
signal is again a 10 kHz sine wave with VPP = 2 V
and an offset of 1400 mV. It will be applied to and
measured by pin 8 of the ESP32 to mimic the con-
ditions of the PQ monitor as good as possible [15].
Data will again be logged to the serial monitor and
will be saved as a csv file. The format of this file is
very simple: one raw 12 bit value (0-4095) per line.
This value can be converted to a voltage using the
following formula:

Vmeas =
3.3 VADC

4095
(5)

Here, VADC indicates the raw value from the ADC.
To assess the usability of the signals, static
voltages, the FFT magnitude spectrum and the
10 kHz time-signal will be studied. Three different
sampling rates, 192 kHz, 384 kHz and 768 kHz,
are compared. This is all done in MATLAB.

Time signal
To compare the different sampling rates, signals
are plotted in Fig. 14. A measurement using a
Rohde und Schwarz RTB2002 oscilloscope is also
shown as a reference it is acquired by exporting
the current display data of the scope to a csv. One
column has the time information, the other column
the voltage.

It can be seen that all signals have some offset
when compared to the reference. In the higher and
lower end there seems to be a bigger difference
between measurement and actual value. Around
the median (1400 mV) the measurements seem
most accurate. This is applicable for all sampling
rates. Besides these facts and that sampling rates
are as expected not much can be concluded from
the time signals alone.

Figure 14: Measured signal plotted against signal
from R&S RTB2002.

FFT magnitude spectra
To study noise performance the FFT magnitude
spectra are compared. Fig. 15 shows all FFTs
to their maximum bandwidth3. They have all
been calculated using MATLAB from the time sig-
nals, except for the FFT by the oscilloscope (R&S
RTB2002). This FFT has been made by exporting
the current display information to a csv file again.
In this case, one column has the frequency axis, the
other column the magnitude.
From Fig. 15 it can be seen that all sampling rates
show the 10 kHz peak very well. All FFTs look
clean across most of their bandwidth, except for two
peaks at around two third the bandwidth. They oc-
cur for every sampling rate.
The reason of these peaks is unclear to me. One
way of explaining the peaks could be the frequency
of the difference of static voltage measurements.
Measuring a static voltage does not always return
the same value due to the low precision of the ADC.
This will be studied in more detail.
Lastly the magnitude plots will also be plotted us-
ing the MATLAB signal analyzer tool and zoomed
in to better see the difference between the FFTs
(Fig. 16). From the two Fig. 15 and 16 it can be
concluded that higher sampling rates lead to lower
noise levels.

3The FFT of the RTB2002 is limited to the maximum
bandwidth of the ADC signals.
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Figure 15: FFT magnitude spectrum of the ADC
signals, using three sampling rates.

Figure 16: FFT magnitude spectrum: 0 to 96 kHz.

Static voltage measurements
To check performance (accuracy and precision) two
voltages are considered. One voltage in the center
of the linear region (at 1.25 V) and one measure-
ment close to the non-linear region (2.5 V). Fig. 17
shows an example of the different values that are
measured for an input of 1.250 V. The voltages are
verified using an Agilent 34410A multimeter and
will be called the ’reference’. It can be seen that
the voltage readings of the ADC are not very precise
(’stable’) and that they are also not accurate. The
limited precision is what I thought to be the rea-
son of the two high frequency peaks in the FFTs.
However, after performing an FFT on the static
voltage no peaks were found. This means my the-
ory is probably untrue. It is however good to keep
in mind that the ADC has to be calibrated (due to
offset) and multisampled if precise voltage analysis
is your goal.
To elaborate on the precision and accuracy two

plots are shown below (Fig. 18 and 19). They show
the PDF of a voltage reading of 1.250 V and 2.507 V
based on 32768 samples. Each voltage bin repre-
sents one of the 4096 possible measurement values.
To compare the probability properties at the three
different sampling rates, several metrics are shown
in table 3 and 4. From these metrics it can be seen
that the sampling rate does not deteriorate the per-
formance regarding precision or accuracy. Standard
deviation, which represents precision, is very simi-
lar for all sampling rates. The lower the standard
deviation, the more precise the measurement. In
fact, measurements at the lowest frequency show
somewhat worse performance compared to higher
frequencies. The same can be said about accuracy
compared to frequency.
When comparing the two voltages it can be seen
that the precision is just slightly higher for the
1.25 V measurement. The opposite is true regard-
ing accuracy, where the expectation would be the
right measure. For the 1.25 V measurement the dif-
ference with the reference value is 0.117 V, while it
is 0.103 V in the 2.507 V case.
All in all, the ADC seems usable for high frequency
operation and analysis. As long as the two peaks,
shown in Fig. 15, are taken into account. For volt-
age measurements the accuracy and precision have
to be taken into account. Some calibration method,
e.g. with a reference voltage, would be preferable.

Figure 17: 1.25 volts measured by the ESP32 @
768 kHz.

Table 3: Measurement of 2.5 volts at different
sampling rates (N = 32768).

Sample speed Expectation [V] Stan. dev. σ
192kHz 2.4036 0.0053
384kHz 2.4048 0.0051
768kHz 2.4045 0.0050
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Table 4: Measurement of 1.25 volts at different
sampling rates (N = 32768).

Sample speed Expectation [V] Stan. dev. σ
192kHz 1.1329 0.0045
384kHz 1.1331 0.0043
768kHz 1.1330 0.0044

Figure 18: PDF of 1.25 volts measured by the
ESP32 @ 768 kHz.

Figure 19: PDF of 2.5 volts measured by the
ESP32 @ 768 kHz.

6 Future work

The final goal would be to do all DSP on the micro-
controller and store processed data on the SD-card.
Some work has been done regarding this. The work
is non-conclusive but still included to help with fu-
ture work.

6.1 Analysis on microcontroller

To perform the FFT on the microcontroller some
research has been done. At first it was tried to im-
plement ArduinoFFT [22]. This was not successful.
An option to consider would be esp-dsp [23]. It is a
library especially designed for use with the ESP32

and has FFT functions built in. Some notes on
performance can be found in Appendix C.

6.2 Data storage

An attempt was made to implement data storage
as described in the method. The SD card compo-
nent of the original project by Roelof Grootjans and
Niek Moonen was expanded [2].
Storage did not work in combination with the I2S
sampling operation. Possible problems could be
problems with the I2S clock configuration of my
esp-idf version. APLL was also turned of to rule
out the I2S clock source was the problem.
For future research I would advise to install the
newest version of esp-idf (and update esp-idf if it
is already installed on your PC). This could solve
compatibility problems between components.
Possibly data could even be uploaded to a server
to obviate the need to get the SD-card from the
device.

7 Conclusion

Based on the findings of this paper the discussed
PQ monitor seems usable for measuring high fre-
quency data with some adjustments. No complete
system was found to accomplish these measure-
ments. However, all components leading to a work-
ing system have at least been partially researched.
It was first established that the minimum sampling
rate had to be 500 kHz to be able to troubleshoot a
power grid [1]. The cheap PQ monitor could reach
this speed using I2S sampling. Research revealed
that, as long as you stay within the linear region
of the ADC, these samples are usable for further
investigation. The signal conditioning of the line
voltage has to be changed as discussed to get it
into this linear range (150-2450mV).
A good representation of this voltage data would
be the FFT. This shows the frequency disturbances
over the whole measurable bandwidth. Having a lot
of FFT data can show the change over time and al-
lows to find out more about sources of PQ/EMI
problems. RMS, minimum and maximum voltage
would also be good to know in a very small times-
pan. This can tell way more about saggs, swells
and impulses than measurements using the original
PQ monitor. Sadly, these measurements were not
performed on an actual grid.
All in all research seems promising. With more time
and the implementation of different signal condi-
tioning the PQ monitor can be expanded to do the
measurements. At least raw measurement data can
be saved to an SD card and analyzed using MAT-
LAB. With the use of ESP-DSP the data could even
be processed on the PQ monitor.
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8 Appendix

A Code adc dma

This code is based on the adc dma example from esp-idf version 4.4 [10].

1 #include <string.h>

2 #include <stdio.h>

3 #include "sdkconfig.h"

4 #include "esp_log.h"

5 #include "freertos/FreeRTOS.h"

6 #include "freertos/task.h"

7 #include "freertos/semphr.h"

8 #include "driver/adc.h"

9

10 #define ADC_RESULT_BYTE 2 // Size

of ADC result in bytes↪→

11 #define ADC_CONV_LIMIT_EN 1 //For ESP32, this should always be

set to 1↪→

12 #define ADC_CONV_MODE ADC_CONV_SINGLE_UNIT_1 //ESP32 only supports ADC1 DMA

mode↪→

13 #define ADC_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE1

14 #define TIMES 1024

15 #define GET_UNIT(x) ((x>>3) & 0x1)

16 #define SAMPLING_RATE 83333 // Sampling

rate. Max expected value is 83333↪→

17

18 // Define channels

19 static uint16_t adc1_chan_mask = BIT(7);

20 static uint16_t adc2_chan_mask = 0;

21 static adc_channel_t channel[1] = {ADC1_CHANNEL_4};

22

23 static const char *TAG = "ADC DMA";

24

25 // Define functions

26 static void continuous_adc_init(uint16_t adc1_chan_mask, uint16_t adc2_chan_mask,

adc_channel_t *channel, uint8_t channel_num);↪→

27

28 void app_main(void){

29 //Main app.

30 esp_err_t ret;

31 uint32_t ret_num = 0;

32 // Log to serial monitor for debugging

33 ESP_LOGI(TAG, "HERE");

34 uint8_t result[TIMES] = {0};

35 // Initialize memory

36 memset(result, 0xcc, TIMES);

37

38 //Initialize the ADC driver

39 continuous_adc_init(adc1_chan_mask, adc2_chan_mask, channel, sizeof(channel) /

sizeof(adc_channel_t));↪→

40 adc_digi_start();

41

42 // Start loop

43 bool go = true;

44 while(go){

45 //Loop
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46 ESP_LOGI(TAG, "IN LOOP");

47 ret = adc_digi_read_bytes(result, TIMES, &ret_num, ADC_MAX_DELAY);

48 ESP_LOGI(TAG, "READ");

49 if (ret == ESP_ERR_INVALID_STATE){

50 ESP_LOGI(TAG, "INVALID STATE");

51 }else if (ret == ESP_ERR_TIMEOUT){

52 ESP_LOGI(TAG, "TIMEOUT");

53 }else{

54 ESP_LOGI(TAG, "DONE1");

55 vTaskDelay(1);

56 }

57 ESP_LOGI(TAG, "DONE");

58 ESP_LOGI("TASK:", "ret is %x, ret_num is %d", ret, ret_num);

59 for (int i = 0; i < ret_num; i += ADC_RESULT_BYTE) {

60 adc_digi_output_data_t *p = (void*)&result[i];

61 ESP_LOGI(TAG, "Unit: %d, Channel: %d, Value: %d", 1, p->type1.channel,

p->type1.data);↪→

62 }

63 go = false;

64 }

65 //Stop digi read

66 adc_digi_stop();

67 // Deinitialize

68 adc_digi_deinitialize();

69

70 }

71

72 static void continuous_adc_init(uint16_t adc1_chan_mask, uint16_t adc2_chan_mask,

adc_channel_t *channel, uint8_t channel_num)↪→

73 {

74 adc_digi_init_config_t adc_dma_config = {

75 .max_store_buf_size = 1024,

76 .conv_num_each_intr = TIMES,

77 .adc1_chan_mask = adc1_chan_mask,

78 .adc2_chan_mask = adc2_chan_mask,

79 };

80 ESP_ERROR_CHECK(adc_digi_initialize(&adc_dma_config));

81

82 adc_digi_configuration_t dig_cfg = {

83 .conv_limit_en = ADC_CONV_LIMIT_EN,

84 .conv_limit_num = 250,

85 .sample_freq_hz = SAMPLING_RATE,

86 .conv_mode = ADC_CONV_MODE,

87 .format = ADC_OUTPUT_TYPE,

88 };

89

90 adc_digi_pattern_config_t adc_pattern[SOC_ADC_PATT_LEN_MAX] = {0};

91 dig_cfg.pattern_num = channel_num;

92 for (int i = 0; i < channel_num; i++) {

93 uint8_t unit = GET_UNIT(channel[i]);

94 uint8_t ch = channel[i] & 0x7;

95 adc_pattern[i].atten = ADC_ATTEN_DB_2_5;

96 adc_pattern[i].channel = ch;

97 adc_pattern[i].unit = unit;

98 adc_pattern[i].bit_width = SOC_ADC_DIGI_MAX_BITWIDTH;

99

100 ESP_LOGI(TAG, "adc_pattern[%d].atten is :%x", i, adc_pattern[i].atten);

101 ESP_LOGI(TAG, "adc_pattern[%d].channel is :%x", i, adc_pattern[i].channel);
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102 ESP_LOGI(TAG, "adc_pattern[%d].unit is :%x", i, adc_pattern[i].unit);

103 }

104 dig_cfg.adc_pattern = adc_pattern;

105 ESP_ERROR_CHECK(adc_digi_controller_configure(&dig_cfg));

106 }

B Code i2s adc

This code is based on the i2s adc dac example from esp-idf version 4.4 [24]. The code can also be used
to calculate the 1024 point FFT of a test signal.

1 #include <stdio.h>

2 #include <stdlib.h> // for DSP

3 #include <string.h>

4 #include "freertos/FreeRTOS.h"

5 #include "freertos/task.h"

6 #include "esp_system.h" // for DSP

7 #include "esp_err.h"

8 #include "esp_log.h"

9 #include "driver/i2s.h"

10 #include "driver/adc.h"

11 #include "esp_rom_sys.h"

12 #include <esp_task_wdt.h> // to change wdt seconds to allow for data transfer to pc

13 #include "driver/spi_master.h"

14 // All includes under this text = DSP

15 #include "soc/gpio_struct.h"

16 #include "driver/gpio.h"

17 #include "driver/uart.h"

18 #include "soc/uart_struct.h"

19 #include <math.h>

20 // See

https://docs.espressif.com/projects/esp-dsp/en/latest/esp32/esp-dsp-benchmarks.html

for benchmarks (w.r.t. compiler settings)

↪→

↪→

21 #include "esp_dsp.h"

22

23 // Choose to sample or to do a 1024 point FFT on sample data

24 #define SAMPLING 1

25 //#define DSP 1

26

27 static const char* TAG = "ad/da";

28 #define V_REF 1100

29 #define ADC1_TEST_CHANNEL (ADC1_CHANNEL_4)

30

31 //i2s number

32 #define I2S_NUM (0)

33 //i2s sample rate

34 #define I2S_SAMPLE_RATE (384000) // multiples of 48k seem to work best, 384k (=768

kHz) seems to be the max w/o bugs↪→

35 //i2s data bits

36 #define I2S_SAMPLE_BITS (16)

37 #define BUF_LEN 1024

38 #define BUF_CNT 2

39 //i2s read buffer length

40 #define I2S_READ_LEN (I2S_SAMPLE_BITS * BUF_LEN)

41 //i2s data format

42 #define I2S_FORMAT (I2S_CHANNEL_FMT_RIGHT_LEFT)

43 //i2s channel number
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44 #define I2S_CHANNEL_NUM ((I2S_FORMAT < I2S_CHANNEL_FMT_ONLY_RIGHT) ? (2) : (1))

45 //i2s built-in ADC unit

46 #define I2S_ADC_UNIT ADC_UNIT_1

47 //i2s built-in ADC channel

48 #define I2S_ADC_CHANNEL ADC1_CHANNEL_4

49

50 //define samples to record

51 #define RECORD_SIZE 8 * I2S_READ_LEN

52

53 //Defines from DSP example

54 #define N_SAMPLES 1024

55 int N = N_SAMPLES;

56 // Input test array

57 __attribute__((aligned(16)))

58 float x1[N_SAMPLES];

59 __attribute__((aligned(16)))

60 float x2[N_SAMPLES];

61 // Window coefficients

62 __attribute__((aligned(16)))

63 float wind[N_SAMPLES];

64 // working complex array

65 __attribute__((aligned(16)))

66 float y_cf[N_SAMPLES * 2];

67 // Pointers to result arrays

68 float *y1_cf = &y_cf[0];

69 float *y2_cf = &y_cf[N_SAMPLES];

70

71 // Sum of y1 and y2

72 __attribute__((aligned(16)))

73 float sum_y[N_SAMPLES / 2];

74

75

76 void i2s_init(void){

77 int i2s_num = I2S_NUM;

78 i2s_config_t i2s_config = {

79 .mode = I2S_MODE_MASTER | I2S_MODE_RX | I2S_MODE_TX | I2S_MODE_DAC_BUILT_IN |

I2S_MODE_ADC_BUILT_IN,↪→

80 .sample_rate = I2S_SAMPLE_RATE,

81 .bits_per_sample = I2S_SAMPLE_BITS,

82 .communication_format = I2S_COMM_FORMAT_STAND_MSB,

83 .channel_format = I2S_FORMAT,

84 .intr_alloc_flags = 0,

85 .dma_buf_count = BUF_CNT,

86 .dma_buf_len = BUF_LEN,

87 .use_apll = 1,

88 };

89 //start driver

90 i2s_driver_install(i2s_num, &i2s_config, 0, NULL);

91 // init ADC pad

92 i2s_set_adc_mode(I2S_ADC_UNIT, I2S_ADC_CHANNEL);

93 }

94

95 // Important function: translates the I2S signal to an integer from 0 to 4095

96 void example_disp_buf(uint8_t* buf, int length)

97 {

98 printf("======\n");

99 for (int i = 0; i < length; i = i+2) {

100 // Do bit shift and or operation (explained in paper)
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101 uint16_t combined = ((uint16_t)(buf[i+1]) << 8) | buf[i];

102 // Mask to ensure it is 12-bit

103 combined &= 0x0FFF;

104 printf("%d\n", combined);

105 }

106 printf("======\n");

107 }

108

109 void i2s_adc(void*arg){

110 // Print to console for debugging

111 printf("running task\n");

112 int i2s_read_len = I2S_READ_LEN;

113 int currentPos = 0;

114 size_t bytes_read;

115 char* i2s_read_buff = (char*) calloc(i2s_read_len, sizeof(char));

116 char* i2s_buff = (char*) calloc(RECORD_SIZE, sizeof(char));

117 i2s_adc_enable(I2S_NUM);

118 while(currentPos < RECORD_SIZE){

119 //read data from i2s ADC

120 i2s_read(I2S_NUM, (void*) i2s_read_buff, i2s_read_len, &bytes_read,

portMAX_DELAY);↪→

121 memcpy(i2s_buff + currentPos, i2s_read_buff, i2s_read_len);

122 currentPos += i2s_read_len;

123 }

124 i2s_adc_disable(I2S_NUM);

125 // Error in code: displayed both buffers, which is what led to the NaN errors

in MATLAB. Resolved by commenting out the bad code.↪→

126 //example_disp_buf((uint8_t*) i2s_read_buff, i2s_read_len);

127 example_disp_buf((uint8_t*) i2s_buff, RECORD_SIZE);

128 // Free memory

129 free(i2s_read_buff);

130 i2s_read_buff = NULL;

131 free(i2s_buff);

132 i2s_buff = NULL;

133 vTaskDelete(NULL);

134 }

135

136 void app_main(void){

137 //main app

138 // change wdt to 120 seconds for serial communication

139 esp_task_wdt_init(120, false);

140 esp_log_level_set("I2S", ESP_LOG_INFO);

141

142 // Tasks for sampling

143 #ifdef SAMPLING

144 i2s_init();

145 xTaskCreate(i2s_adc, "i2s_adc", 1024 * 2, NULL, 5, NULL);

146 #endif

147

148 //Tasks for DSP

149 #ifdef DSP

150 esp_err_t ret;

151 ESP_LOGI(TAG, "Start Example.");

152 ret = dsps_fft2r_init_fc32(NULL, CONFIG_DSP_MAX_FFT_SIZE);

153 if (ret != ESP_OK) {

154 ESP_LOGE(TAG, "Not possible to initialize FFT. Error = %i", ret);

155 return;

156 }
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157

158 // Generate hann window

159 dsps_wind_hann_f32(wind, N);

160 // Generate input signal for x1 A=1 , F=0.1

161 dsps_tone_gen_f32(x1, N, 1.0, 0.16, 0);

162 // Generate input signal for x2 A=0.1,F=0.2

163 dsps_tone_gen_f32(x2, N, 0.1, 0.2, 0);

164

165 // Convert two input vectors to one complex vector

166 for (int i = 0 ; i < N ; i++) {

167 y_cf[i * 2 + 0] = x1[i] * wind[i];

168 y_cf[i * 2 + 1] = x2[i] * wind[i];

169 }

170 // FFT

171 unsigned int start_b = dsp_get_cpu_cycle_count();

172 dsps_fft2r_fc32(y_cf, N);

173 unsigned int end_b = dsp_get_cpu_cycle_count();

174 // Bit reverse

175 dsps_bit_rev_fc32(y_cf, N);

176 // Convert one complex vector to two complex vectors

177 dsps_cplx2reC_fc32(y_cf, N);

178

179 for (int i = 0 ; i < N / 2 ; i++) {

180 y1_cf[i] = 10 * log10f((y1_cf[i * 2 + 0] * y1_cf[i * 2 + 0] + y1_cf[i * 2 + 1]

* y1_cf[i * 2 + 1]) / N);↪→

181 y2_cf[i] = 10 * log10f((y2_cf[i * 2 + 0] * y2_cf[i * 2 + 0] + y2_cf[i * 2 + 1]

* y2_cf[i * 2 + 1]) / N);↪→

182 // Simple way to show two power spectrums as one plot

183 sum_y[i] = fmax(y1_cf[i], y2_cf[i]);

184 }

185

186 // Show power spectrum in 64x10 window from -100 to 0 dB from 0..N/4 samples

187 ESP_LOGW(TAG, "Signal x1");

188 dsps_view(y1_cf, N / 2, 64, 10, -60, 40, '|');

189 ESP_LOGW(TAG, "Signal x2");

190 dsps_view(y2_cf, N / 2, 64, 10, -60, 40, '|');

191 ESP_LOGW(TAG, "Signals x1 and x2 on one plot");

192 dsps_view(sum_y, N / 2, 64, 10, -60, 40, '|');

193 ESP_LOGI(TAG, "FFT for %i complex points take %i cycles", N, end_b - start_b);

194

195 ESP_LOGI(TAG, "End Example.");

196 #endif

197

198 }

C A note on performance: esp-dsp

The performance of the FFT as well as the maximum length are dependent on the compiler/SDK settings.
Using esp-idf menuconfig some settings can be changed to enhance the performance of the FFT.
In the component config, then DSP Library, the maximum FFT length can be set. Standard this is 4096
with a maximum of 32768. Furthermore the compiler can be optimized for speed or (program) size. This
option can be found under partition table, then compiler options. Lastly it is important to check the
actual CPU frequency under ESP32-specific, then CPU frequency (max = 240MHz).
To see the performance impact of the compiler settings a 1024 complex point FFT was performed. It
should be noted that setting the configuration to ”Optimize for performance” instead of ”Optimize for
size” made the FFT slower. When optimized for size it takes 139558 cycles to complete and 140525
otherwise. These findings are in line with the official benchmarks [25].
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