
 

 

 

     

 Minimizing utilization 
error of reserve crew by 
optimizing scheduling at 
NS 
Summary of confidential thesis 

  

  

  

  

  

    
    
    
    
    
    

Student:   Luuk Nijs 

First supervisor:   dr. S.M. Meisel 

Second supervisor: dr. I. Seyran Topan 

Company supervisor: M. Jacobs 

Date:   30-06-2024 

 



 

Summary of confidential thesis  
  

 

1 

 

 

Table of contents 

Table of figures 2	

Table of tables 3	

1	 Introduction 4	

2	 Problem context and identification 5	

3	 Rail crew scheduling concepts 7	

4	 Design of the Metamodel 8	

5	 Validation and experiment design 11	
5.1	 Validation 11	
5.2	 Simulated annealing parameter selection 11	
5.3	 Experiment design 14	

6	 Experiments 15	

7	 Conclusion 16	

8	 Bibliography 17	

Colophon 20	



 

Summary of confidential thesis  
  

 

2 

 

Table of figures 

Figure 1 Reserve types and their schedule 5	
Figure 3 Formulation of metamodel 8	
Figure 4 Starting temperature determination 12	
Figure 5 Cooling Scheme (case 1) 13	
Figure 6 Cooling scheme (case 2) 13	
Figure 7 Best solution graph (case 2) 13	
Figure 8 Current solution graph (case 3) 14	



 

Summary of confidential thesis  
  

 

3 

 

Table of tables 

Table 1 Variables machine learning model 9	
Table 2 Validation on test dataset 11	
Table 3 Results of experiments 15	
 
  



 

Summary of confidential thesis  
  

 

4 

 

1 Introduction 

NS, short for "Nederlandse Spoorwegen" traces its roots back to 1837 with the founding of 'de 
Hollandsche Ijzeren Spoorweg Maatschappij (HIJSM)'. It underwent several evolutions, merging in 1937 
to become the primary rail service provider in the Netherlands (NS, NS Geschiedenis, 2023). 

In 2022, NS facilitated 960,000 passenger journeys daily, totalling 437 million passengers for the year, 
using 761 trainsets—383 'sprinters' and 378 'inter-city' trains. NS had a turnover of €3.055 million in 
2022 (NS, NS Jaarverslag, 2022). 

This assignment is carried out within the Data, Innovation, and Analysis (DIA) subdepartment, 
specifically the Driving Personnel team, which supports Operations with data insights and 
driver/conductor scheduling. NS employs around 18,800 individuals: 12,900 in Operations, 700 in 
Commercial and Development, 2,300 in Staff and Central Services, and 2,900 in Stations. 

NS wants to provide the best train service possible by balancing their resources with demand. To 
support stability of this balance, the goal is to minimize disruptions and maximize the number of trains 
driving according to the timetable. NS has several systems for material and personnel to support this, 
we focus on the personnel. 

The department of Transport Control (TB) manages the operations on the day before and the day of 
execution. So-called ‘TB reserve personnel’ is present on certain locations throughout the network. 
Together with rescheduling regular tasks within shifts, TB minimizes the effects of unexpected staff 
shortages. When for example a conductor is sick, TB cannot always find a substitute conductor to fulfil 
all its tasks. Not filling these tasks leads to cancelling train services from the timetable. This has large 
effects on the whole network and leads to losses on financial aspect and passenger experience. 

For this problem, NS has a performance measure: the utilization of a TB reserve shift. The target of this 
performance measure is what NS agrees to be a good utilization. The error is the absolute difference 
between the target and actual utilization. Together with history data, this target value is used in 
creating next year’s schedule. NS aims at minimizing TB utilization error. Therefore, the problem 
statement is formulated as: 

Actual utilization and target utilization of the TB reserve differ by X% for drivers 
and X% for conductors, NS wants to reduce these discrepancies. 

To do so the schedule needs to be optimized. A schedule consists of reserve shift quantities per day, 
per shift type (early, late, night), per function, and per location. Currently this is a standard week 
schedule for the whole year (e.g. every Monday night in 2023 there was 1 TB reserve conductor in 
Amsterdam). However, since the timetable is updated 6 times per year and the TB reserve schedule is 
not, this research also aims at investigating the impact of reducing this scheduling horizon updated 
timetables. 

Therefore, the objective of this research is: 

Minimizing TB reserve utilization error by changing the TB reserve crew schedule 
and by reducing the scheduling horizon. 
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2 Problem context and identification 

NS’s scheduling process is divided into four key components: timetable, material, node, and personnel, 
which operate in a hierarchical and iterative manner. 

• Timetable:  

Planning of train services and times. 

• Material:  

Scheduling rolling stock to meet the timetable. 

• Node:  

Managing the parking and turnaround of rolling stock. 

• Personnel:  

Assigning staff to shifts and specific tasks. 

The scheduling is performed in multiple phases, ranging from long-term strategic planning (beyond 5 
years) to daily updates (Specific Day phase). The entire process culminates in the Donderdagse Week 
(DW) schedule, which is shared with personnel the Thursday before the execution week. The 
department of Network Design and Operations (NO) handles long-term timetabling and shifts. The 
Preparation and Adjust (V&B) department adapts and executes the timetable. Service and Operations 
(S&O) oversee the entire scheduling process up to the day before execution, when control is handed 
over to Transport Control (TB). 

NS employs three types of personnel reserves to manage disruptions: 

• S&O Reserve: Used for long-term issues like illnesses and regulatory time off, planned annually 
within the employability budget. 

• V&B Reserve: Scheduled for events and construction works, with extra shifts requested as needed. 

• TB Reserve: Used for unexpected disruptions, managed by TB for issues occurring from the night 
before to the day of execution. 

Each type of reserve has a specific timeline and scheduling phase where they are "locked" for use by 
the relevant department. Figure 1 depicts the reserves and their timeline.  

 

Figure 1 Reserve types and their schedule 
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With scheduling personnel reserve, several problems exist. They have been discovered by talking to 
company experts on this matter from the corresponding departments. The specifics of these challenges 
are linked to each reserve type, affecting their overall effectiveness. Due to confidentiality, we cannot 
mention these. 

To narrow down the research scope, the focus was directed specifically at TB reserve issues for the 
following reasons: 

• S&O and V&B Reserves:  

Addressing challenges in these reserves was deemed too extensive for a master’s thesis due to their 
organizational interconnections and the resources required for comprehensive analysis. 

• TB Reserve:  

The challenges associated with TB reserve were more confined and manageable, making them 
suitable for in-depth analysis within the constraints of this research. 

The focus of this research is on addressing these issues to improve the utilization rates of TB reserves. 
The current TB reserve scheduling is handled annually by the business owner using a model developed 
by Capgemini. The process includes summarizing total shift hours, calculating utilization rates, and 
setting target utilization based on historical data.  

The primary performance measure for TB reserves is the utilization rate, defined as the percentage of 
time reserve shifts are engaged in 'useful' tasks such as driving and shunting. This measure is crucial 
because it reflects how effectively TB reserves are being used to handle disruptions. Despite considering 
other performance measures like train cancellations due to personnel shortages, utilization remains the 
most practical metric given current data limitations. 
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3 Rail crew scheduling concepts 

Extensive research exists on railway optimization focusing on timetabling and rolling stock. However, 
railway crew optimization, particularly scheduling and rescheduling, has been less explored. Heil, 
Hoffman, & Buscher (2020). distinguish the planning of crew scheduling into three phases: strategic 
and tactical crew management, operational crew scheduling, and real-time crew rescheduling. 
Understanding this progression is crucial to position the TB reserve scheduling within the broader 
context. Heil, Hoffman, & Buscher delineate between crew scheduling (short-term tactical planning) 
and crew rostering (long-term strategic planning). The integration of these aspects can yield better 
results but is complex. The review by Cacchiani, et al. (2014) on real-time rescheduling provides insight 
into managing unforeseen incidents but does not specifically address reserve crew quantities. 

The literature on reserve crew scheduling is scarce, particularly for railways. Some insights can be drawn 
from the airline industry, where models estimate necessary reserve crew based on probabilistic methods 
or machine learning techniques. However, these models rely on data and variables that NS currently 
lacks, making direct application challenging. 

 

Our aim is to adapt the TB reserve crew schedule in a manner that ensures utilization aligns as closely 
as possible to the target, thereby minimizing utilization error. Various scheduling approaches have been 
explored, but none fully aligned with our research objective.  

We are therefore combining two concepts to reach our goal of estimating the needed reserve shifts. 
This approach involves using a model within a model, also known as a metamodel. By definition, a 
metamodel mimics a model while being inexpensive to evaluate, in contrast to the original model. This 
is used when the original model is too complex or too computationally challenging to solve within an 
acceptable amount of time (Sudret, 2012). Like models are abstractions of reality, metamodels are 
abstractions of models (Jeusfeld, 2009).  

To achieve the desired utilization targets,  the number of scheduled reserve shifts needs to be adjusted. 
We do that in a mathematical optimization model. To evaluate the quality of the solution of the 
mathematical optimization model, we use machine learning inside the objective function to predict a 
variable. By integrating the predictive model in a mathematical optimization model, we can dynamically 
adjust the schedule to target at the least possible error. This results in a metamodel that conceptually 
can solve our problem case. Figure 2 depicts how the metamodel works. 

The input of this mathematical optimization model encompasses all potential TB reserve schedules. 
However, the complexity of the solution space necessitates the use of metaheuristics to approximate 
optimal solutions efficiently. Metaheuristics are advanced methods for solving complex optimization 
problems. We compared several metaheuristic approaches: Greedy Randomized Adaptive Search 
Procedure (GRASP), Genetic Algorithms, Simulated Annealing, and Tabu Search. Each method has its 
strengths and weaknesses. 

Ultimately, Simulated Annealing is chosen due to its balance of simplicity, global optimization 
capability, and ease of implementation. Genetic algorithms, while also effective, are more challenging 
to implement and parameterize, making Simulated Annealing the preferred choice for integrating with 
the existing machine learning model. 
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4 Design of the Metamodel  

This chapter elaborates on how we will use the metamodel. Figure 2 visually presents the use of the 
metamodel and how the different parts work together.  

 

Figure 2 Formulation of metamodel 

Below we elaborate of the use of each part of Figure 2: 

• Input  

Consists of history data and targets. History data is used as training data for the machine learning 
model and the schedule we want to optimize in the metaheuristics. 

• Machine learning model  

The machine learning model is targeted at predicting the utilization based on an input schedule.  
Input:  

Schedule (timetable) data with regular shift minutes, tb-reserve shift minutes, and TB utilization for 
2022, 2023, and 2024. 

Output:  
Machine learning model able to predict TB utilization based on schedule with regular shift minutes. 

• Mathematical optimization model  

The mathematical optimization model is targeted at translating the problem of scheduling shifts into 
a mathematical formulation. This is necessary for implementation in the metaheuristic.  

• Metaheuristic  

The metaheuristic is targeted at improving a schedule. The metaheuristic uses the machine learning 
model’s prediction to calculate the performance measure. By changing parameters in the schedule 
of the machine learning model and followingly evaluating the performance measure, the 
metaheuristic can find improvements in schedules. 

Input: 
Machine learning model and timetable with regular shifts minutes that needs to be optimized. 
Output: 
Optimized schedule 

• Optimized schedule  

The optimized schedule, which started as the schedule we wanted to optimize, has gone through 
the metamodel and underwent changes to improve its performance according to the performance 
measure. 
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To forecast the utilization of the TB reserve schedule, we train a machine learning model. It is tasked 
with predicting TB reserve utilization based on the input variable explained in Table 1. These parameters 
are based on the available data and parameters we want to consider. The first seven are the dependent 
variables and the last is the independent variable. 

Table 1 Variables machine learning model 

Variable Explanation 

Function Type of function (e.g. driver or conductor) 

Day Day of the week 

Plan phase BD The planning phase, which BD is active 

Location TB reserve location 

Shift-type Part of the day 

Planned regular shift minutes The total sum of planned regular shift minutes. 

Planned TB reserve shift minutes The total sum of planned TB reserve shift minutes. 

Utilization TB reserve shift The average utilization of a TB reserve shift. 

 

Training this model, results in a function that can predict the utilization based on weekday, function, 
location, shift-type, sum of regular planned shift minutes, and sum of TB reserve minutes. 

 

Followingly, we translate the scheduling problem into a mathematical formulation, using variables and 
constraints to find optimal solutions. 

• Index Variables: 

Function, Location, Weekday, Shift-type. 

• Decision Variable: 

Quantity of personnel in the TB reserve schedule. 

• Input Variable: 

Sum of scheduled regular minutes, target utilization, length of a shift. 

• Objective Function: 

Minimize the difference between predicted utilization and target utilization for TB reserve shifts. 

 

The size solution space for this model depends on the levels in the start solution and the maximum 
number of shifts per level. The number of levels is determined by the possible combinations of weekday, 
shift, function, and location. Meanwhile, the maximum number of shifts states the maximum 
availability of personnel in the certain level. These two factors determine, for instance, how many 
conductors can be scheduled for a late shift on a Thursday in Amsterdam. 

For example, if 1094 unique rows (levels) represent the total combinations of parameters and each row 
has 5 shifts available, this results  5!"#$ possible solutions. However, this results in an exceedingly large 
number of potential solutions, making it impractical to evaluate all of them within a reasonable 
timeframe. Consequently, it is computationally unfeasible to solve all possible solution within 
acceptable time making alternative method necessary to approach optimality. 
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We selected simulated annealing as the most appropriate metaheuristic for our problem. The algorithm 
starts with an initial solution and temperature (𝑇%&'(&). In each iteration, a random change creates a 
new neighbouring solution. If this solution is better, it is accepted. If it is worse, it can still be accepted 
based on an acceptance probability, which depends on the current temperature (𝑇) and the energy 

difference (∆𝐸)	between solutions, calculated as 𝑒
∆"
# . The temperature gradually decreases according 

to a cooling factor (𝛼), balancing global and local search. The process continues until the temperature 
reaches a low fixed point +𝑇%&)*,. 

 

The initial neighbourhood operator is an increment-decrement operator that randomly adds or 
subtracts one shift from the current solution. However, to prevent the model from optimizing towards 
scheduling no shifts (yielding a trivial 'optimal' utilization error of zero), the operator is modified to 
disallow adjustment of shifts to zero. Despite preventing trivial optimizations, this adjustment made 
the model highly dependent on the starting solution, limiting the exploration of alternative 
neighbouring solutions. While other operators, like a swap operator, could potentially address these 
limitations, time constraints restricted the ability to validate and implement them. 

 

Data is gathered from Microsoft Azure Data Lake and processed using Snowflake SQL. The training 
data includes planning data and execution data since December 2021. 

Apache Spark (PySpark) is used for computational efficiency, enabling large-scale data processing. The 
technical specifications include: 

1-3 workers (16-48 GB Memory, 4-12 Cores) 

1 Driver (16 GB Memory, 4 Cores) 

Runtime (14.3x-scala2.12) 
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5 Validation and experiment design 

5.1 Validation 

While running experiments for validation, excessive runtimes where experienced due to use of a 
machine learning prediction model in an iterative algorithm. 5000 iterations take around 3-20 hours, 
depending on available memory and Sparkperformance.  

 

For the validation of the XGBoost machine learning model we chose to evaluate three performance 
measures. 

• The Root Mean Squared Error (RMSE) 

• R-Squared (𝑅+) 

• Mean Absolute Error (MAE) 

 

We use two methods to train and validate the Machine Learning model:  

• Random split  

This is done by randomly putting 30% of the data in the testing dataset and 70% in the training 
dataset.  

• Fixed split 

Dividing the training and testing data based on timetable year. In our case on timetable year 2022 
and 2023. 

Random split has 2208 training instances and 1015 test instances. Fixed split has 1054 training 
instances and 1075 testing instances. Table 2 shows the performance measures of validation on both 
the testing dataset and the training dataset. 

Table 2 Validation on test dataset and training dataset 

 Testing dataset Training dataset 

Performance measure Random split Fixed split Random split Fixed split 

RMSE 0,0413 0,0394 0,0312 0,0183 

𝑅+ 0,9627 0,9673 0,9793 0,9938 

MAE 0,0232 0,0233 0,0183 0,0108 

 

Both methods indicated potential overfitting, with the random split showing less difference between 
training and testing data. Given the overall strong predictive capability (minimum R-squared value of 
0.96) and less sign of overfitting compared to fixed split, the random split was chosen for its ability to 
incorporate more recent, uncontaminated (Covid) data. 

5.2 Simulated annealing parameter selection 

The initial temperature should result in a quasi-equilibrium state where all solutions are equally 
acceptable (Atiqullah, 2004). We do this by visual inspection of the solution. Because of the excessive 
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running times, this was time intensive. Figure 3 depicts the result of the experiment with the most 
graphs hovering near the quasi-equilibrium. We see that an initial temperature of 0,075 results in a 
solution graph that moves around a near horizontal line. Therefore, we chose 0,075 as our initial 
temperature. 

 

Figure 3 Starting temperature determination 

Already in these graphs we can see strange behaviour of the model. The steep descents and ascents in 
the graphs of 0,06, 0,07, and 0,08 show us that the solution space maybe behaves differently than 
expected. 

 

For the cooling schedule we need to determine a cooling strategy, cooling rate (𝛼) and stopping 
temperature (𝑇%&)*). Again, experiments with visual inspection are needed to determine the right 

strategy and parameters. By trial and error, we discovered different cooling rates with a constant 
stopping temperature of 𝑇%&)* = 0,01 . We first tried the most promising cooling approach, only cooling 

the temperature down when we find an improvement. This results in the cooling rates depicted in 
Figure 4. The first 4 experiments were all done within 1 hour each. The experiment with 𝛼 = 0,94 was 
cancelled after running for 12 hours. 
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Figure 4 Cooling Scheme (case 1) 

One can see that the algorithm gets stuck quite often and for a long number of iterations. This is an 
indication of a fragmented solution space. Because of this behaviour, we are not able to continue with 
this cooling strategy since the algorithm sometimes gets stuck and takes over 12 hours to run with 
higher cooling rates and lower cooling rates converge too fast. This experiment has been repeated, but 
with a temperature of 0,94 the algorithm again gets stuck. 

Therefore, the cooling strategy is adapted to cooling down every iteration. The stopping temperature 
is decreased accordingly to  𝑇%&)* = 0,0001. Figure 5 immediately shows a good graph one wants to 

see. The temperature gradually decreases and allows for local search at the end. However, if one 
examines Figure 6, it quickly reaches the best solution value found and then gets stuck. Most of the 
running time was not useful.  

To dive deeper into this matter, the behaviour of the metamodel with different cooling strategies is 
compared to an iterative algorithm with only accepting improving solutions. This also strengthens the 
suspicion of a fragmented solution space. Figure 7 depicts the graph of the current solution value 
during the algorithm. As one can see, after around 1700 iterations, the current solution value jumps 
to another neighbourhood and does not decrease any further. After 13 hours this experiment is 
cancelled.  

Figure 5 Cooling scheme (case 2) Figure 6 Best solution graph (case 2) 
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5.3 Experiment design 

Due to unexpected behaviour observed during parameter selection, four experiments were designed 
to further explore and improve the model performance: 

• Hill climbing 

The hill climbing algorithm is a local search method to explore improvements within neighbouring 
solutions. It iteratively searches for improvements by selecting a random neighbouring solution. If 
no improvement can be found, the algorithm stops. 

• Iterative improvement algorithm 

The iterative improvement algorithm works like the hill climbing algorithm, but it does not stop when 
a worse solution is found. The algorithm runs for a predetermined number of iterations, only storing 
improving solutions. 

• Simulated annealing 

The simulated annealing algorithm works as explained in the previous chapter.  

• Adapted simulated annealing 

Because we experienced unexpected behaviour of the model when a worse solution is accepted, we 
adapt the model in a way that it enables getting out of worse solutions. If a worse solution is 
accepted and the algorithm finds no improving solution within 100 iterations, the best solution is 
restored.  

  

Figure 7 Current solution graph (case 3) 
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6 Experiments 

Table 3 presents the results of the 3 best performing experiments we have conducted. The hill climbing 
stopped after 2 iterations and was not considered for further analysis. The standard simulated 
annealing approach did not reach promising solutions. The iterative algorithm and adapted simulated 
annealing however did reach more promising solutions. Both improved the starting solution with 
around 10%, but this is not the significant improvements we have hoped for. We furthermore 
discovered interesting locations, and patterns in shift-type and weekday.  

The adapted simulated annealing reached the best solution, which was only 1,16% better than the 
iterative algorithm. Notably, the iterative algorithm needed over 6000 more iterations to reach this 
point. This suggests that our implementation of adapted simulated annealing balanced global and local 
search in a more efficient way. However, when running the iterative algorithm again with the exact 
number of iterations the adapted simulated annealing needed to reach its best solution, the iterative 
algorithm reached a solution better than the adapted simulated annealing. This again shows the 
strange behaviour of our solution space. 

To further investigate the results, we compared the iterative algorithm and adapted simulated 
annealing on location, shift-type, and weekday level. For location and shift-type significant overlapping 
patterns emerged. On weekday level we see a minimal pattern of increased added shifts around 
Thursday, Friday, and Saturday. Despite this observation, the pattern is too minimal to draw strict 
conclusions from that. 

The main conclusion of the experiments is that the randomness of the neighbourhood operator 
together with the limited number of iterations due to long computational times, led to insufficient 
results to draw strict conclusions. The fragmented nature of the solution space and the unexpected 
behaviour of the model are key issues that will be discussed further in the next chapter. 

Table 3 Results of experiments 

 Iterative 
algorithm 

Simulated 
annealing 

Adapted 
simulated 
annealing 

Number of iterations 5000 8920 2228 
Number of improvements 208 10 202 
Running time 05:47:39 03:24:43 04:38:18 

Difference error sum -10,91% -0,75% -11,94% 

Δ Conductor shifts | FTE 89  |  24,7 8    |  2,22 40    |  11,11 
Δ Driver minutes | FTE 83  |  23,1 21  |  5,83 59    |  16,39 
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7 Conclusion 

Despite the research's goal to minimize TB reserve utilization error by optimizing the TB reserve crew 
schedule, significant improvements were not achieved. The key reasons are summarized below along 
with points of discussion and limitations. 

• Performance Measure: 

The utilization metric used to measure TB reserve performance showed inadequacies. Numerous 
assumptions and adaptations were necessary to arrive at a functional metamodel. Utilization may 
not be a sufficient metric for forecasting new schedules and should be reconsidered. 

• Fragmented Solution Space: 

The experiments indicated a possible fragmented solution space, evidenced by the metamodel 
frequently jumping to local maxima and the hill climbing algorithm failing beyond two iterations. 
These observations suggest underlying complexities, although complete validation was hindered by 
computational constraints. 

• Computational Difficulties: 

Combining machine learning, mathematical optimization, and metaheuristics resulted in high 
computational demands, leading to long runtimes and limited iterations. Consequently, the results 
may have been influenced by randomness, complicating conclusive findings. 

• Fit/Overfit: 

The machine learning model exhibited signs of overfitting, necessitating further model validation 
and robustness checks. 

 

Within the research we found points to further look into by NS or another researcher. Unfortunately, 
due to confidentiality reasons we cannot share them here. 

 

Below we summarize the contribution to theory and practice: 

This research showcases the potential of integrating machine learning with mathematical optimization 
to form metamodels. While the chosen performance measure posed limitations, the metamodel 
concept for forecasting and optimization combined holds promise. Future research should focus on 
validating such models on smaller instances with fewer assumptions to improve efficacy and 
computational efficiency. 

Discussions with NS stakeholders revealed that the problem remains too complex for direct 
optimization. Essential insights into TB reserve crew performance, the importance of target values, and 
the implications of such optimization processes were gleaned. NS should further clarify their 
performance objectives and the intended outcomes for optimized scheduling. 
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