
Using Natural Language Processing to
interact with geospatial data

By: Valentijn Embrechts

Supervisors: Andreas Kamilaris and Asfa Jamil
Critical Observer: Ozlem Durmaz

Creative Technology Bachelor Graduation Project

18-7-2024

Abstract
Geospatial data can provide valuable insights into environmental patterns, (urban) development
and resource management. Currently the analysis and interpretation of geospatial data requires
knowledge of complex softwares and methods, effectively limiting the power of geospatial
science to a small group of knowledgeable individuals. Background research shows a lack of
current end to end natural language systems that perform question answering while referencing
geospatial data. Using the Creative Technology design process and co-design, multiple natural
language question answering systems were prototyped, during specification one system was
chosen to be built for production. In a constant loop of evaluation and optimization individual
modules were improved. The system met the requirements of being speedy, accurate and
non-proprietary / self hosted. The tested speed was under 10 seconds on average, the system
accurately answered questions 92% of the time, struggling more with complex questions than
simple ones. Lastly the system can be run on a local machine and does not depend on
proprietary software. This new geospatial question answering system allows inexperienced
users to interact with and use geospatial data to improve our world.

2

Acknowledgements
I would like to sincerely thank everyone who supported and guided me throughout this project.
Firstly my deepest thanks go to my project supervisor, Andreas Kamilaris, whose guidance and
feedback played an important role in my project and my own personal development. I also
would like to thank my critical observer, Ozlem Durmaz, for being critical, asking pertinent
questions and giving me constructive feedback.

Besides my supervisor, other members of the SuPerWorld team have provided invaluable
support. Asfa Jamil, an expert in many different forms of artificial intelligence guided me through
the complex world of machine learning and large language models. Aytac Guley, a fullstack
developer at SuPerWorld worked closely with me in the final realization steps of this project.
Aytac helped me realize a program into a working api that has been integrated into Gaea.

Additionally I used resources from the Utwente (jupyter) cluster and would like to thank the
University of Twente and the staff maintaining the cluster. Without the computational capabilities
this project would have taken much longer. I would also like to thank the creators and
maintainers of the open source tools and systems that I used, such as Spacy, Langchain and
LLama3. Without their neatly written and structured documentation, this project would not have
been possible.

Finally I would like to express gratitude to my friends and family, who at tough times provided
me with motivation and support, they also provided me with critical feedback that allowed me to
improve my work.

3

Table of Contents
Abstract 2
Acknowledgements 3
Table of Contents 4
List of figures 6
Chapter 1 - Introduction 9

1.1 Introduction 9
1.2 Research Questions 10

Chapter 2 - Background Research 11
2.1 Literature research 11

2.1.1 NLP in Geospatial Sciences 11
2.1.2 Possible use of LLMs in Geospatial Sciences 13

2.2 State of the art 14
2.3 Reflection on background research 15

Chapter 3 - Methods and Techniques 16
3.1 Co-design 16

3.1.1 Engaging & Understanding 16
3.1.2 Ideation & Validation. 16

3.2 CreaTe Design Process 17
3.2.1 Ideation 19
3.2.2 Specification 19
3.2.3 Realization 19
3.2.4 Evaluation 20

Chapter 4 - Ideation 21
4.1 Basic NLP System 21
4.2 Endpoint Recognition 22
4.3 Answer Generation 22
4.4 Complexities 22
4.5 Autonomous API Calling 23

Chapter 5 - Specification 24
5.1 Functional Requirements 24
5.2 Non-functional requirements 24
5.3 Autonomous LLM vs. NLP system 24
5.4 System Selection 25

Chapter 6 - Realization 27
6.1 Endpoint prediction 29
6.2 Location extraction 29
6.3 Conversion of location to coordinates 30
6.4 Requesting data from the GAEA API 31
6.5 Generating a natural language answer using an LLM 32

4

6.6 Training the endpoint prediction module 33
6.7 Training location recognition model. 37

Chapter 7 - Optimization 42
7.1 Endpoint extraction 42
7.2 Extract location 43
7.3 Converting the location to coordinates 47
7.4 Requesting data from the Gaea GeoApi 48
7.5 Generating a natural language answer 49

7.5.1 Prompt Structure 1 50
7.5.2 Prompt Structure 2 50
7.5.3 Prompt Structure 3 51
7.5.4 Prompt Structure 4 51
7.5.5 Comparing prompt structure 52

7.6 API Wrapper & Chatpage 53
Chapter 8 - Evaluation 56

8.1 Answer evaluation 56
8.2 Requirements evaluation 56

8.1 Accuracy 56
8.2 Speed 58
8.3 Local Deployment 59
8.4 Integratability 59

Chapter 9 - Discussion & Future work 60
Chapter 10 - Conclusion 61
References 62
Appendix A - Template questions 65

Appendix A1 - Vicinity related Template Questions 65
Appendix A2 - Questions related to weather 66
Appendix A3 - Weather related template questions 69
Appendix A4 - Template questions relating to vicinity 70

Appendix B - API Documentation 71
/query endpoint 71
/rate_response endpoint 72

Appendix C - Evaluation questions 74

5

List of figures
Figure 5.4.1: Results of comparing autonomous LLM V1 (blue), autonomous tool LLM V2 (red)
and the NLP system (yellow) to each other. 27
Figure 6.1: NLP system pipeline overview from question to final answer, showing the five
intermediary steps. 28
Figure 6.2: Global overview of how data is passed between the different modules and how
modules interact with each other. 29
Figure 6.1.1: inference code for using the fine tuned Bert classification model to predict the
endpoint relevant to that question. (Boilerplate code that was not deemed important for
explanation has been left out, it can all be found in the Meliferea git repository [21]). 30
Figure 6.2.1: Using the ‘model-best’ that was trained the locations in questions are identified
and visually shown using displacy (figure 6.2.2). 30
Figure 6.2.2: Shows the output of the code in figure 6.2.1. 31
Figure 6.2.3: Logic used to extract a list of locations from the question. 31
Figure 6.3.1: Code that converts the locations into coordinates which is an excerpt out of the
main run() code from figure 6.2. 32
Figure 6.3.2: Using the locationIQ geocoding api the location name is converted into a tuple
containing the latitude and longitude. 32
Figure 6.4.1: Excerpt from figure 6.2 that loops through all the coordinates and makes a request
for each coordinate to get the relevant data then adds that data to the list. 33
Figure 6.4.2: Request data function that handles API requests to the GeoAPI and returns the
json data. 34
Figure 6.5.1: Excerpt from figure 6.2 that passes the data from the Gaea GeoAPI and the
original question into the process_answer_data function. 34
Figure 6.5.2: Inside the process_and_answer function the llm is started and then for every call it
is prompted to use the data and original question to generate a natural language answer. 35
Figure 6.6.1 : Datasets for each category of endpoints are imported (due to the length of the
dataset these have been left out of this report, but can be found at the github repository [21]).
These datasets are merged together and split into two lists, the first containing the questions
and the second containing the endpoints. 35
Figure 6.6.2: To simply classification the different possible endpoints are mapped to an
enumerator. Each endpoint in the list is then replaced with its corresponding number. 36
Figure 6.6.3: The dataset is then split into a training dataset and a validation dataset. 80% of the
questions are for training and 20% are for validation. A fixed random state was used to allow for
easy reproduction of the results. 37
Figure 6.6.4: Training and evaluation loop. (hidden: conversion of the dataset into the
dataloader done before training) 38
Figure 6.6.5: Lastly the model needs to be saved, this is done in the models/endpoint folder.
The model name is dependent on the amount of epochs and the last accuracy. This is for easy
identification later. 38
Figure 6.7.1: Code that imports the csv’s that contain the questions and items that are
substituted in. Finally questions and annotations are added to their respective lists. (hidden:

6

conversion from dictionary to lists and definition of lists). 39
Figure 6.7.2: Converting the data in the lists to a format that spacy can use to fit the model. 40
Figure 6.7.3: Converting each entry into an annotated Spacy doc. These are added to a docbin
which is saved for training 40
Figure 6.7.4: Using the training config file (config.cfg) and the training files to train the NER
model. 41
Figure 6.7.6: Output of the code in figure 6.7.5, shows the location and topic that the system
identified in the question. 42
Figure 7.1.1: Different datasets that GAEA offers to users. From A. Jamil et al [1] 43
Figure 7.2.1: Results from testing three fine tuned models on four different locational formats.
Average accuracy per model is also shown 44
Figure 7.2.2: Location detection model class that (down)loads the model on initiation. The text
can be passed into the extract function to extract a list of different locations. 45
Figure 7.2.3: Programmatically combine all locational names together when nothing is found
using the coordinate search. 46
Figure 7.2.4: When we still can't find a location then try splitting the combined string from figure
7.2.3 in two and try again. 46
Figure 7.2.5: When both logic approaches shown in figure 7.2.3 and figure 7.2.4 don’t yield any
coordinates for locations in Cyprus we notify the user and advise them to try capitalizing
locational pronouns. 47
Figure 7.3.1: Programmatically convert a location name into coordinates by first checking the
caching database, else making a request to the external geocoding API. 48
Figure 7.4.1: If the api is down and unusable, the system always returns an error stating that it
cannot get any information. This is done to prevent hallucination by the LLM due to missing
data. 49
Figure 7.4.2: Explaining what the data from the API is on by mentioning the endpoint that it is
from and the location for which it is, after which it is added to the data list. 49
Figure 7.4.3: User defined custom data filtering rules implemented to prevent and overload on
data for the answering LLM. 50
Figure 7.5.1: A simple prompt explaining the context of geospatial answer generation with the
user question and API response data plugged in. 50
Figure 7.5.2: Using conversational chat history to split the instructions from the user question
and data that is to be used. 51
Figure 7.5.3: Use a conversational chat history to pass a contextual system message, user
question and the data needed to answer the question. 52
Figure 7.5.4: Using human and system messages to pass all the data into the LLM for
answering. Using more human messages to reinforce the importance of using the API response
data for answer generation. 53
Figure 7.5.5: Results of testing the different answer generation approaches shown in figure
7.5.1 up to figure 7.5.4. The code in figure 7.5.1 is shown as structure 1 (blue), the code in
figure 7.5.2 is shown as structure 2 (red), the code in figure 7.5.3 is shown as structure 3
(yellow) and lastly the code in figure 7.5.4 is shown as structure 4 (green). 53
Figure 7.6.1: Using Flask to wrap the run function, allowing the system to accept rest
APIrequests (full code can be found on github [21]). 54
Figure 7.6.2: A simple web app that interacts with the production API and displays answers in a
text box, green if the API returns success as true and red if success is false. Users can also

7

easy rate answers using the thumbs up and thumbs down. 55
Figure 8.1.1: Question answering text box where a user can rate their question using a thumbs
up or thumbs down. 56
Figure 8.2: System accuracy per complexity level for the questions defined in appendix C. 57
Figure 8.2: Comparing the production system (GeoAI) accuracy to the prototype system (NLP,
LLM v1, LLM v2). 58

8

Chapter 1 - Introduction

1.1 Introduction
By using sensors that monitor specific aspects of our earth, we can learn more about a
geographic region. In earth observation we use sensors on planes, buoys and satellites to
collect a vast amount of data over a large spatial region. Using this data we can identify spatial
trends such as how a certain area like a delta is different from its surroundings or temporal
trends like average temperature of an area rising over the span of decades, which is also known
as global warming. Besides analysis of historic trends we can also use this data for future
modeling to better understand the processes of our earth and make more well informed
decisions.

Traditionally accessing and manipulating geospatial data has required knowledge of complex
geographic information systems (GIS). The steep learning curve associated with GIS software
creates a significant barrier which limits the ability of non-experts to utilize this data to its full
potential. Lowering this barrier would allow more people to use geospatial data to make better
informed decisions and allocate resources more efficiently and effectively.

Besides collecting data the SuPerWorld team aims to democratize access with their innovative
online tool to allow everyone to access and understand geospatial data. Despite the efforts of
the SuPerWorld team and their GAEA webtool there still appears to be a need for a simple tool
that does not require any understanding of GIS tools to get simple data points [1].

Natural language might provide a solution to the inaccessibility of geospatial data, a type of
digital chatbot that could reference geospatial data. This could fundamentally change the way
we interact with geospatial data. It would allow inexperienced users to ask the system questions
just like we would ask a friend or a colleague. It would provide quick answers and remove the
need for complex GIS software for quick and simple queries, thus allowing anyone with an
internet connection to use the power of geospatial data to improve our world.

9

1.2 Research Questions
The main research question is
How can a geospatial question answering system be built?

The following sub-questions are formed to answer the research question:
1. How is natural language processing currently being used in geospatial sciences?
2. How can a system that uses natural language processing to interact with geospatial data

be realized?
3. How could large language models be used to interact with geospatial data?

10

Chapter 2 - Background Research

2.1 Literature research

2.1.1 NLP in Geospatial Sciences
Natural language processing (NLP) is a machine learning technology that allows computer
systems to understand the meaning of words and the relationship between words in texts.
Primitive historic NLP systems relied on user defined rules, whereas modern systems use
complex statistical methods to determine the meaning of words. McKenzie and Adams [2] have
identified three main applications of natural language processing in geospatial sciences. Firstly
toponym disambiguation, secondly identification of spatial relationships in text and lastly
identification of thematic patterns. These three uses also each come with their own challenges
respectively. We must solve the respective problems before being able to use NLP to its full
potential for geospatial sciences.

Thematic pattern analysis in research is one of the main uses for natural language processing, it
is often used to analyze huge amounts of unstructured texts. Cai [3] has shown that the use of
natural language processing (NLP) in urban studies has exponentially increased over the past
decade. NLP is often used to analyze social media user content such as Tweets and Instagram
comments, this was the case in 11 out of the 27 studies analyzed by Cai [3]. Besides entire
sentence analysis these systems also use named entity recognition (NER) to analyze the
unstructured text and quickly identify entities such as locational, temporal or organizational
information from the text [4]. As can be seen in Helderop et al. [5] that used NER to analyze
police reports and extract data from these reports to be used in further plotting and analysis.

NER and part of speech tagging both center around analyzing each individual word on its own.
These individual word analysis tools are the main NLP functions that are used to understand the
user queries provided to the navigational map-like system called Direct-Me, created by
Withanage et al. [6]. Their system can direct users to a location or help them find a location
based on user defined directions. Users can interact with the system using speech. The Direct
me application pipeline first runs an automatic speech recognition algorithm on the recording,
secondly uses natural language processing to linguistically analyze what the user said to then at
last be able to understand the question and create a dependency graph to be used in the
application to provide the user with directions to a location. The Direct-Me system is a highly
specialized system which allowed its creators to make it really efficient for certain specific tasks.

Using the reviews that users leave on sites such as Yelp, the point of interest review question
answering (POIReviewQA) system [7] uses these to train itself on the knowledge about these
points of interests (POI’s). Thus the system can answer questions about locations using the
knowledge it gained from previous user to user question answering interactions and user

11

reviews. Places QA [8] expands on this idea by also incorporating the use of images found
online of the point of interest. Places QA then analyzes these images using a convolutional
neural network to see what is visible in them. It then uses a complex pooling algorithm to extract
a conclusion and answer a question.

Yin et al. [10] have proposed a geospatial question answering system that uses NLP to
understand questions and linguistically extract what data must be gathered. Using this data a
visualization is created and returned to the user. Their system uses lookup tables to extract the
entities needed to know what data must be gathered from the database. By using the lookup
table results the data is then used to create a visualization which is returned to the end user with
the specific points highlighted. Evaluation done by Yin et al. has shown that this system
performs well and is intuitive for users to look at. Interestingly possible future research
possibilities do highlight the potential use of artificial intelligence in the system.

12

2.1.2 Possible use of LLMs in Geospatial Sciences
Large language models (LLM’s) are a specific type of model within natural language processing.
They have been trained on a huge amount of natural language to be able to understand the
world around us, the huge increase in training data and (transformers) architecture is what sets
them apart from more traditional natural language processing systems [11]. There have been
several projects that have used LLMs for geospatial sciences. Projects such as LLM-Geo,
MapGPT and GeoLLM use the popular ChatGPT models developed by OpenAI.

SQL databases are often used to store geospatial data. Thus Jiang et al. [12] aimed at fine
tuning an LLM to generate sql queries that can then be run against a database to get the
necessary data. During fine tuning the LLM is given the SQL database structure schema and
example data on question and query requests. From testing the clear limiting factor preventing
chatgpt from becoming a geospatial analyst is the hallucination, as in complex queries requiring
joins of multiple tables or datasets it still often incorrectly answers questions.

Punjani et al. [13] used a similar approach to create their GeoQA2 system. Interestingly their
system was able to handle more complex queries as it generated sparQL queries that allowed
for arithmetic operations to be embedded inside.

Given the large amount of understanding that LLM’s have, the creators of LLM-Geo [14]
attempted to set five goals that the LLM must be able to do on its own to achieve the status of
autonomous AI-powered. On its own the LLM must be able to self-generate, self-organize,
self-verify, self-execute and self-grow [14]. Their proposed architecture to achieve these five
goals uses the proprietary gpt-4 model which has access to the entire internet, which allows it to
find datasets online. These datasets are then analyzed and used to generate python code that
creates the visualization for the end user.

Just like the LLM-Geo system the MapGPT [15] system found that GPT LLMs on their own are
incapable of answering geospatial contextual questions on their own. Thus a training dataset
containing both textual data and spatial information was proposed. Allowing the system to
effectively integrate spatial data into its internal reasoning methods producing contextually
aware responses when asked location based queries [15]. During post training inference a low
level vector database which contains location and spatial text vectors which is directly
referenced by the system in the tokenization phase to understand what data is needed to
answer the question.

In contrast to the LLM-Geo and MapGPT systems which both aim to fine tune existing large
language models for geospatial question understanding, the GeoGPT system [16] aims to
create a system that knows how to use GIS tools such as buffer, intersect and erase. Using
langchain a tool pool was created containing the tools and a short explanatory description of
each. The GPT3.5 model from openAI was then able to reason and select what GIS tool to use.
This tool could then lookup the data and the data would be used in the next inference step. This
does rely on the transformer architecture being used.

13

2.2 State of the art
Traditionally natural language processing systems used user defined rules to analyze and
understand text. Systems like NLP-QA created by Yin et al. [10] use lookup dictionaries to
understand what data is needed to answer a question. More contemporary methods utilize
statistical methods to interpret and understand the meaning of sentences and words. Named
entity recognition is often used to identify spatial, locations and temporal terms in text as shown
by Cai [3] and is also used in the “Direct Me” system implemented by Whithane et al. [6].
Current natural language processing systems are able to understand questions, they are unable
to generate natural language answers back to the end user. Despite this limitation the well
documented tools and fast algorithms that have been developed over the years do have a clear
future in natural language processing and modules such as named entity recognition are still
often used today as they are fast and easy to finetune. Current systems that use natural
language processing such as direct me and POIReviewQA [6][7] are rudimentary however this
is clearly reflected in their high accuracy as they tend to be very transparent and allow
developers to tinker with every aspect of the system.

Large language models on the other hand are less transparent than NLP as the trained
algorithms are like a black box where something goes in and something comes out, without
exactly knowing what happens inside the system on a case by case basis [11]. Fine tuning
however has provided a solution, allowing developers to provide the LLM with context about the
situation that can be used to create an answer as seen in ChatGPT as a geospatial analyst [12]
in which case the LLM was provided with database schemas and was prompted to generate sql
queries. Other systems such as [16] have shown us that it is possible to receive fairly accurate
answers when providing an LLM with the tools needed to answer questions. In the case where
an LLM is given access to tools it can also reason accurately which tools it needs to use [16]. A
clear drawback of using LLM’s with geospatial data is hallucinations tend to happen [11][12]. At
times the system hallucinates data points or answers that are not based on any data, this leads
to confident answers that actually are incorrect.

Currently most large language model systems such as MapGPT [15] are not end to end natural
language systems. They do take natural language in but usually output just pure data from a
database or a visual representation of the data. Even in GeoGPT [12] which is an LLM that has
data lookup tools, it outputs a visual shape and is not made to primarily output natural text. This
is as most underlying GIS tools used in GeoGPT are not aimed at producing natural language
results but instead produce visualizations with basic captions.

14

2.3 Reflection on background research
From the literature it is found that using natural language in geospatial sciences is a new but
emerging topic. There are a limited amount of studies available on the use of natural language
processing and large language models to interact with geospatial data. The studies that are
available do highlight the need for a system that allows for interaction with geospatial data using
natural language [10][12]. Currently there is a tradeoff between complexity of questions that a
system can answer and the accuracy of its answers. A system such as the geospatial-QA
system [10] that uses lookup tables consequently produces accurate results but uses
rudimentary user defined rules and cannot answer questions that it has not seen before in a
sense. A more open system such as the advanced GeoGPT [16] that uses large language
models for reasoning can answer any type of question, also ones that it hasn’t seen before. But
due to the inherent use of a LLM for reasoning the system is not able to answer complex
questions accurately [12].

LLMs have shown to be superior to NLP in geospatial question answering systems as they
allow for more autonomy and natural language answer generation. But before being able to use
an LLM for tool use reasoning with complex questions, more research needs to be done into the
reasoning capabilities of open source models, as all systems researched use a proprietary
model from a such as ChatGPT. From current research it is clear that closed source models are
better at tool use and reasoning than open source models [17]. As of writing there is also a lack
of literature and documentation on fine tuning open source models on tool use.

15

Chapter 3 - Methods and Techniques
From the previous chapter it is clear that an end to end natural language question answering
system for geospatial data does not yet exist to the extent that is needed for Gaea. So in this
chapter the design process of creating this system will be explained.

In this project a chatbot system is designed for the SuPerWorld research group, the main
approach used was the co design approach. The co-design process is detailed in section 3.2.
Besides co-designing the Creative Technology design process also played a key role in
development, this is specified in section 3.2.

3.1 Co-design
In this project a chatbot like system is built for the online Gaea tool. This system will allow users
to interact with geospatial data using natural language questions. As the SuPerWorld team (the
team behind Gaea) already were experts in the field of geospatial science, co-design was a
favorable method to develop this project.

3.1.1 Engaging & Understanding
In this first step of co-designing it was important to learn from the experts at SuPerWorld, they
already had valuable experiences and knowledge in the field of geospatial science. The team
members had also given the project some thought and explained their thoughts and ideas. They
explained how they envisioned the use of modern LLMs in this system.

After getting to know the team they were able to adapt to my kinetic learning style to help me
explore the topic of geospatial data by performing many smaller tasks that allowed me to better
understand the issue at hand.

Once the problem and topic was understood the challenge could be set. From here research
started by looking into current solutions of using NLP with geospatial data, as well as
researching the state of the art. The sub-research-question: “How is natural language
processing currently being used to interact with geospatial data?” was answered by performing
a literature review. The results of these steps can be found in chapter 2, background research.

3.1.2 Ideation & Validation.
After acquiring a clear understanding of the topic at hand and gaining more insights into
geospatial data and NLP the designing of concepts could start. Constant weekly meetings with
the team allowed for quick validation of new ideas.

Once ideas became more concrete and positive feedback was received, prototypes could be
built. Besides the in and output of a prototype, also the individual modules and models were
discussed at the meetings. Allowing for direct feedback and constructive criticism from industry
experts. This feedback would then be taken into consideration while redesigning and optimizing
the prototype.

16

Questions written for system testing were also reviewed by creators of the datasets. Allowing
quick and easy insights as to what users may want to ask questions about.

3.2 CreaTe Design Process
In this project the Creative Technology design cycle that has been developed by Eggink and
Mader [18] (figure 3.2.1) served alongside the co-design framework as a clear basis. The
Creative Technology design process consists of four steps: ideation, specification, realization
and evaluation.

17

Figure 3.2.1: The creative technology design process. Source: [18].

18

3.2.1 Ideation
During the ideation phase the stakeholders and their needs were identified. Key stakeholders
include the SuPerWorld team, end users and government agencies. Each stakeholder has their
own priorities and it is important to understand these.

Ideation started with the exploration of geospatial sciences and tools commonly used for
geospatial data analysis. Research also continued into natural language analysis and furthered
into exploration on the current capabilities of NLP tools and LLMs.

Next, by creating sample questions the needs of the end users were evaluated, patterns were
observed from these sample questions. These thematic patterns allowed for the processing of
natural language questions from users. While creating these questions and assessing the needs
of the stakeholders the first designs started being made. Co-designing allowed for easy and
quick validation of designs that later morphed into early prototypes.

During ideation it became clear that not all questions are created equally. Some questions
require a huge amount of data and complex comparisons. Simple questions on the other hand
may only consist of a simple data lookup. Thus a ranking of seven increasingly more complex
levels of questions was created to allow for specific complexity evaluation and clear scope
definitions. More on the levels of complexity can be found in section 4.1.

3.2.2 Specification
During the ideation phase both NLP prototypes and LLMs that were given access to tools were
used. These were both tested. The LLM system turned out to be poorly designed at first due to
the use of the microservices architecture which resulted in inaccurate data and thus also
inaccurate answers. So a step back was first made to the ideation phase to solve this issue.

Once a new system was built this was tested against the NLP system. A choice had to be made
as to which system would be optimized. The NLP system was chosen as it allows for more
tinkering during the optimization phase.

During the specification phase requirements were set. The key requirements were that the
system must be fast and accurate. To allow for open access the system must not rely on 3rd
party proprietary or paid technology, lastly the system must be easy to integrate.

3.2.3 Realization
During the realization phase of the Creative Technology design cycle the prototype system was
built out for all the different services that Gaea offers. Each individual module was optimized for
its purpose. The coherence between modules was also improved allowing for an increase in
accuracy. The realized system was also deployed on a server, allowing for fast responses.

19

3.2.4 Evaluation
To quickly evaluate the system and iterate on new designs, an answer evaluation system was
implemented that allowed users to rate their answers. The feedback received from these
evaluations could be used to reiterate in the ideation or optimization phases using these new
insights.

Lastly the project and system had to be evaluated. This was done by creating a list of questions
and testing the system on these questions. The system has also shortly been in production.
Allowing for data collection on real world usage. This data was also used to evaluate the
answering speed which is one of the requirements. The other requirements were also assessed
in this phase.

20

Chapter 4 - Ideation

4.1 Basic NLP System
The proposed NLP system uses the SuPerWorld GeoAPI to access necessary information to
answer a question, thus it can only answer questions that the GeoAPI has data on [19]. For this
reason it was chosen that a set of sample questions was to be created to give a deeper
understanding into the different types of questions that users might ask. Initially a set of 43
questions were created relating to the weather domain (appendix A2). These questions were
then manually annotated with their corresponding topic, category, if they require a temporal or
spatial comparison, their location and date time if mentioned.

An example is: “What was the warmest month in Agros in 2020?”, this question is comparative
temporally, the topic is “warmest month”, the location is Agros, the temporal range is 2020 and
the category is “temperature”, because the /temperature API-endpoint would need to be queried
to get the necessary data.

These 43 questions in appendix A2 were used to gain a firm understanding of the different
levels of complexity and possible patterns in these questions. From these questions it was
identified that the temporal and spatial values could be used as variables, thus these questions
were reformed into a set of template questions (appendix A3), where the temporal and spatial
value would be left as a variable which can be entered later. The question: “What was the
warmest month in Agros in 2020?” would now become “What was the warmest month in
[*location*] in [*date*]?”, where we can substitute in any location and date range to get a
correctly formulated question.

To identify which API endpoint needs to be requested it must be known what the topic of the
question is. Named entity recognition (NER) can be used for this, however an NER model
needs to be trained on example data, in this case questions, the extracted topics and locations
were used. To be able to do this the topic and location were annotated from each of the
questions. For training an NER model a list of 150 location names in Cyprus was obtained and a
list of a few different temporal ranges was created. These were then placed into the
placeholders “[*location*]” and “[*date*]” respectively. Using this method we were able to
extrapolate these 22 template questions into thousands of questions with their topic and location
automatically annotated. These could then be used to train an NER model on recognizing the
topic and locational information from a question. This model was able to accurately identify the
location names in Cyprus from questions, even names that were not in the training data. It was
also able to confidently extract topics from questions by using linguistic analysis.

Next when investigating and creating a template question set relating to the vicinity domain
(appendix A4) it became clear that questions started to become repetitive, as the question “How
far is [*location*] from the nearest road?” Is linguistically alike “How far is [*location*] from the
nearest beach?”. Thus another variable was introduced, the object of the sentence. This could
be: “the beach”, “a natura 2000 location”, “the electrical grid” and “a road”. Questions were then

21

created that had an object placeholder inside of them, such as: “What is the distance from
[*location*] to [*object*]?”. Because this domain does not support temporal variables these were
left out.

Just as before these 10 questions were combined with the list of 150 location names and 5
different objects to create a list of 7500 questions. The inserted locations and objects were also
automatically annotated, this dataset could then be used to train a new NER model on vicinity
questions.

4.2 Endpoint Recognition
The basic NER system works, it recognizes the intent of a question and detects the word that
describes the topic. This topic is then compared to a predefined dictionary to find what endpoint
must be queried. From the question: “How warm is it in Limassol in August?” the topic “warm” is
extracted. The system will have a predefined dictionary on topic words that describe the
temperature such as: “temperature”, “hot”, “warm”, “cold” and “cool”. The topic “warm” is in this
list so the system will automatically make a request to the /temperature endpoint.

This system requires a predefined dictionary of keywords pertaining to each endpoint. This also
prevents the system from accepting open questions that it has never seen before. To solve this
a model that could detect the endpoint needed to be developed.

The training data for this model would consist of a huge list of questions that now would have an
endpoint associated with them instead of just an annotated topic. This list was then created
containing [808 pairs of questions and their corresponding endpoint. More on the endpoint
recognition system can be found in section 6.1.

4.3 Answer Generation
Once the endpoint and location are extracted a request can be made to the SuPerWorld
GeoAPI to get the necessary data to answer the question. We can then pass the original
question and data into a large language model and prompt it to answer the question using the
provided data. After which it will output an answer based on the data. More on the use of the
LLM can be found in section 6.5.

4.4 Complexities
The example and template questions in appendix A were also used to identify different
difficulties in question answering. These questions can be placed in seven different levels of
complexities. These are based on the amount of requests that need to be made to the Gaea
GeoAPI and the difficulty of comparing the response data to formulate a natural language
answer.

Firstly the simplest question type is a factual question where only a single request has to be
made and little to no processing needs to be done, for example “What is the temperature data in

22

location?”. The system would simply return the temperature data for this location. A question
that would have a temporal parameter would be more difficult as it requires the system to
understand the data output from the GeoAPI and filter it to only give the output data relating to
the time frame asked. An example of this is “What is the temperature in *location* during May?”.

Secondly, a single request to the GeoAPI returns data for a single geographical point, at some
topics it may also return historical data. Thus questions that require comparison between the
data from a single request are harder to answer. These are categorized as comparative single
request questions. An example of this is “When was the hottest month in *location*?”.

When performing spatial comparisons multiple API requests need to be made to gather the
information of multiple locations. Thus comparative dual request questions such as “During May
2020 was *location1* colder or *location2*?” are harder to answer for the system. These
questions however can also cover a wider geospatial area such as a region. In this case it
would become a comparative multi request question that would require three or more requests.
The dual locational questions belong in the third category, wider area questions belong in the
fourth category.

Lastly, the most complex question would be a multi disciplinary question that requires multiple
requests to be made to different API endpoints. The question: “What is the largest risk for
location?”, would require an individual request to get the risk score for each of the different
risks that the GeoAPI supports, this type of question would fall into the fifth category. When also
considering possible temporal or spatial ranges, then questions can get more complex when
also requiring comparison between different locations or inside of a polygon area. The question
“At which location on the island is there the highest risk of a geohazard?” Would require an
analysis of the entire island for each of the possible geohazards. Thus these types of questions
belong to the sixth level. The most complex questions would also have a temporal variable,
these belong to the seventh category.

These taxonomies assume that it is increasingly difficult to generate accurate natural language
answers when the comparative difficulty increases.

4.5 Autonomous API Calling
Ideally the system could reason and make its own choices on which API endpoint to call to get
the necessary information to answer a question. Thus a tool use solution was explored. How
can we give an LLM access to the API?

Using the Langchain agents module it is possible to create tools, explain them to the LLM and
have it use them autonomously. Tools would be created for each endpoint, another tool would
allow the model to convert any location into coordinates. These coordinates could be used to
make an API request using the API endpoint tools. The json data would then be returned as an
observation and the system would use that to further reason and answer the question.

23

Chapter 5 - Specification

5.1 Functional Requirements
The natural language processing question answering system for geospatial data must above all
be end to end natural language. This entails that a natural language is input and also a natural
language answer is output. This answer of course must be based on the reference API data.

Because a system like this may request incorrect data or make other mistakes, there must be a
clear disclaimer warning visible to end users interacting with the system. It is important to
remind users that this is an experimental tool and only meant for orientational purposes, users
must always double check important information. The scope of this project is only to create an
API and a sandbox web environment for testing thus this is not a hard requirement for this
project now.

5.2 Non-functional requirements
The system must be accurate and provide correct answers to the questions that users have as
often as possible. The system must have an accuracy of at least 90% in production, we must
also give users the possibility to rate answers and mark incorrect ones. Allowing us to learn from
our mistakes.

The goal of this project is to help and serve users as much as possible and leave them with a
satisfied feeling as this leads to more use in the future. Gnewuch and Adam [20] clearly show
that users' satisfaction of using the product decreases when they have to wait longer. Thus an
answering time frame of 10 seconds was chosen. On average the system must answer
questions within 10 seconds when running in production.

An important value that the SuPerWorld team, the team behind Gaea, believes in is that
information must be open and available to all. Thus this project should not be built on paid
proprietary software. The system should be completely self hosted and be run locally without
the use of any external paid API’s or services.

Lastly this system is not meant to be directly used by users, instead this API is meant to be
integrated into the frontend of GAEA. Thus the API must have clear documentation on how
endpoints work and interact with each other. There must also be clear error messages
whenever possible.

5.3 Autonomous LLM vs. NLP system
As there are two different systems each with their own architecture a test was proposed to
explore both systems deeper and choose which system better matched the requirements of the
project.

24

For this test both systems, the natural language processing system and the autonomous tool
calling a large language model were built. Each would support questions about five endpoints:
nearest blue flag beaches, nearest roads, wildfire risk, temperature and wind data.

Once both systems were built out a set of 9 questions was created, three for each complexity
level. Each system would be scored on if the correct locations were extracted and correctly
converted into coordinates, if the correct endpoint was recognized and a request was correctly
made and lastly if the natural language answer that was output was correct and based on the
data.

From preliminary tests it quickly became obvious that the autonomous tool LLM struggled with
understanding that it must first convert a location into coordinates and then use those
coordinates, as in almost all cases coordinates used to make requests were hallucinated and
were incorrect. This also led to the API providing data that was not for that location which then
led to incorrect answers. In further testing and debugging it became clear that the system
struggled with correctly analyzing the multiple steps that it would need to take and that multi
step questions were exponentially harder for it to process.

To solve this issue a second version of the autonomous tool using LLM was created. The tools
in the system would be integrated as much as possible to allow for as little tool use as possible.
For each API endpoint tool the get coordinates function was now integrated into it. Instead of
first needing to use a tool to convert the location into coordinates and then use those
coordinates in another tool, now a more integrated tool was created allowing for direct input of a
location of which the coordinates would automatically be used to get the data. Thus eliminating
the possibility of hallucination by the LLM.

5.4 System Selection
Testing these three systems showed that the second optimized version of the autonomous tool
LLM performed much better than the first one as can be seen in figure 5.4.1.

25

Figure 5.4.1: Results of comparing autonomous LLM V1 (blue), autonomous tool LLM V2 (red)
and the NLP system (yellow) to each other.

Lastly a choice had to be made as to which system would be used. For this the NLP system
was chosen, even though the system has a slightly lower accuracy in testing done in this
experiment, the system does allow for more tinkering and fine tuning of individual modules. It
also allows for greater expansion which the LLM system does not allow for. Tool calling with the
open source Llama3 model is a new feature, thus the limited resources on it are focussed on
inference use and not on specific fine tuning on certain tools. The NLP system is also faster on
average compared to the LLM system that has to constantly iterate over itself every time it
makes an API request.

26

Chapter 6 - Realization
After testing and comparing both the NLP system and the Tooled LLM system, the NLP system
was chosen and built to production standards. The system consists of four individual modules
that process information and help answer the question.

Figure 6.1: NLP system pipeline overview from question to final answer, showing the five
intermediary steps.

The pipeline has been initialized in Python where flask is used to create a webserver. All code
can be found on github [21].

The relationship between the individual modules visualized in figure 6.1 is programmatically
shown in figure 6.2. The system starts with an input question which is then analyzed to extract
the locational information and determine what endpoint is relevant. The locations are then
converted into a pair of coordinates, after which requests are made to the Gaea GeoAPI. This
data and the original question are then passed into an LLM tasked with generating a natural
language answer.

def run(question):

get the endpoint

endpoint = predict_endpoint(question)

print(f"Predicted: {endpoint}")

Get locations

locations = get_locations(question)

print("Locations and addresses:", locations)

convert location to coordinates

coordinates = []

for location in locations:

c = get_coordinates(location)

coordinates.append(c)

print(c , '<-', location)

27

make the request to the api

data = []

for coordinate in coordinates:

d = request_data(

endpoint = endpoint,

coordinates = coordinate

)

index = coordinates.index(coordinate)

print(index)

data.append(f'Data on {endpoint} for {locations[index]}: {d}')

print(data)

answer = process_answer_data(question, data)

return answer

run('Is Paphos or Lefke closer to a beach?')

Figure 6.2: Global overview of how data is passed between the different modules and how
modules interact with each other.

28

6.1 Endpoint prediction
Firstly an incoming question is analyzed to find out what data needs to be requested from the
GAEA API to answer the question accurately. The predict_endpoint function is executed to use
the Bert model [23] that has been trained on classification of questions into endpoints. More on
the training of the model can be found in section 6.5.

def predict_endpoint(question):

Tokenize the input question

inputs = endpoint_tokenizer(question, return_tensors="pt")

Pass the question as tokens forwardly to the model.

outputs = endpoint_model(**inputs)

get the predicted class enumerator

predicted_class = torch.argmax(outputs.logits).item()

map the enumerator to an actual endpoint from the dictionary

predicted_intent_mapping = {v: k for k, v in label_mapping.items()}

endpoint = predicted_intent_mapping[predicted_class]

return endpoint

Figure 6.1.1: inference code for using the fine tuned Bert classification model to predict the
endpoint relevant to that question. (Boilerplate code that was not deemed important for
explanation has been left out; it can all be found in the Meliferea git repository [21]).

6.2 Location extraction
The locations of a question are extracted using the earlier trained NER model that previously
served to also extract the topic of a question.

import spacy

nlp_ner = spacy.load('model-best')

doc = nlp_ner('How far is kalo chorio from the electrical grid?')

print(doc)

colors = {"location":"#FFCBCB", 'topic':"FD8A8A"}

options = {"colors":colors}

spacy.displacy.render(doc, style="ent", options=options, jupyter=True)

Figure 6.2.1: Using the ‘model-best’ that was trained the locations in questions are identified
and visually shown using displacy (figure 6.2.2).

29

Figure 6.2.2: Shows the output of the code in figure 6.2.1.

After converting the question string into individual tokens and the corresponding entity
identifications, simple logic can be used to extract a list of locations from the question as can be
seen in the code in figure 6.2.3.

Get the location name

def get_locations(doc):

locations = []

for ent in doc.ents:

if ent.label_ == 'LOCATION':

locations.append(ent.text)

return locations

Figure 6.2.3: Logic used to extract a list of locations from the question.

6.3 Conversion of location to coordinates
After we successfully identify the locations in a question we need to convert these locations into
coordinates as the GeoAPI only accepts coordinates. In figure 6.3.1 the system loops through
the locations list and converts each location into a set of coordinates using the get_coordinates
function. It adds these to a new list ‘coordinates’.

coordinates = []

for location in locations:

c = get_coordinates(location)

coordinates.append(c)

print(c , '<-', location)

Figure 6.3.1: Code that converts the locations into coordinates which is an excerpt out of the
main run() code from figure 6.2.

The get_coordinates function (figure 6.3.2) then uses an external geocoding API provided by
locationIQ [22] to convert the location into coordinates. It then returns a tuple containing the
latitude and longitude, if it can find any in Cyprus for that location query.

def get_coordinates(query):

Encode the address

encoded_address = urllib.parse.quote(query)

api_access_token = "[**redacted**]"

30

insert the API key and encoded location name into the url

url =

f"https://us1.locationiq.com/v1/search?key={api_access_token}&q={encoded_addres

s}&format=json&"

make the request

response = requests.get(url)

data = response.json()

extract the coordinates if found

if (response.status_code == 200):

return (data[0]['lat'],data[0]['lon'])

elif (response.status_code == 404):

return f"Location: {query} does not exist!"

Figure 6.3.2: Using the locationIQ geocoding api the location name is converted into a tuple
containing the latitude and longitude.

6.4 Requesting data from the GAEA API
Finally when we have the coordinates for all the locations in the question and know the
endpoint, a request can be made to the Gaea GeoAPI. Just as when we get the coordinates,
here we also loop through the locations list and make a request for each location as can be
seen in figure 6.4.1

data = []

for coordinate in coordinates:

actually get the data from the api

d = request_data(

endpoint = endpoint,

coordinates = coordinate

)

calculate coordinate index

index = coordinates.index(coordinate)

add results to the list

data.append(f'Data on {endpoint} for {locations[index]}: {d}')

Figure 6.4.1: Excerpt from figure 6.2 that loops through all the coordinates and makes a request
for each coordinate to get the relevant data then adds that data to the list.

The data list in figure 6.4.1 is directly passed into the LLM for natural language answer
generation. Inside figure 6.4.1 the request_data function (in figure 6.4.2) takes care of
authentication and requesting data from the Gaea GeoAPI.

31

import requests

def request_data(endpoint, coordinates):

if endpoint == 'temperature':

endpoint = endpoint.capitalize()

construct the url

url =

f"http://213.7.195.74:8080/v2.0/{endpoint}?lon={coordinates[1]}&lat={coordinate

s[0]}"

print(url)

payload = {}

headers = {

'x-api-key': '[**REDACTED**]',

'Authorization': '[**REDACTED**]'

}

make the request

response = requests.request("GET", url, headers=headers, data=payload)

check the response

if response.status_code == 200:

r = response.json()

print(r)

return r['data']

else:

return 'could not find any data'

Figure 6.4.2: Request data function that handles API requests to the GeoAPI and returns the
json data.

6.5 Generating a natural language answer using an LLM
Lastly once we have all the data we can use an LLM to generate a natural language answer
(figure 6.5.1). For this we use the Llama3 model running in Ollama as it is open source, fast and
a highly capable model. Using Ollama also allows us to easily substitute in other models in the
future.

answer = process_answer_data(question, data)

return answer

Figure 6.5.1: Excerpt from figure 6.2 that passes the data from the Gaea GeoAPI and the
original question into the process_answer_data function.

32

Figure 6.5.1 shows the relationship between the output of the earlier stages and how the data is
passed into the process_answer_data function. Figure 6.5.2 shows the inner workings of that
function and direct use of the LLM through Ollama.

Llm = ChatOllama(model="llama3")

def process_answer_data(question,data):

response = llm.invoke(f'You are a question and answering chatbot that

users use to ask questions about geospatial data. You will be provided with the

question and the data that came from a rest api. Please answer the question

given short and consisely based on the data! Do not provide any internal

context or any other thoughts that cannot be verified using the data from the

request! Please answer the question {question} using the information: {data}')

return response.content

Figure 6.5.2: Inside the process_and_answer function the LLM is started and then for every call
it is prompted to use the data and original question to generate a natural language answer.

In figure 6.5.2 the question and the data are inserted into a premade prompt that gives the LLM
context as to what its task is. The prompt also tries to prevent hallucination by instructing the
LLM to answer using the data.

6.6 Training the endpoint prediction module
From a question the endpoint is predicted using a fine tuned Bert classification model that is
based on the bert-base-uncased pretrained model [23]. The corresponding tokenizer from the
pretrained bert-base-uncased is also used.

This section will highlight important code and explain it for a global understanding of how this
model was created. For reproducing, the full code and a jupyter notebook can be found in the
github repository [21].

datasets = [

'datasets/endpoint/weather.txt',

'datasets/endpoint/vicinity.txt',

'datasets/endpoint/risk.txt',

'datasets/endpoint/geohazards_other.txt',

'datasets/endpoint/geo_attributes.txt'

]

questions = []

endpoints = []

33

for dataset in datasets:

csv_dataset_path = dataset

dataset = pd.read_csv(csv_dataset_path)

Split the dataset into a list of questions and intents

questions.extend(dataset['question'].tolist())

endpoints.extend(dataset['endpoint'].tolist())

print(len(questions))

Figure 6.6.1 : Datasets for each category of endpoints are imported (due to the length of the
dataset these have been left out of this report, but can be found at the github repository [21]).
These datasets are merged together and split into two lists, the first containing the questions
and the second containing the endpoints.

34

label_mapping = {

'temperature': 0,

'precipitation': 1,

'wind': 2,

'humidity': 3,

'distance-sea': 4,

'nearest-blueflag-beach': 5,

'natura-region': 6,

'distance-electric-grid': 7,

'distance-road': 8,

'subsidence-risk': 9,

'landslides-risk': 10,

'wildfire-risk': 11,

'seismic-risk': 12,

'flooding-risk': 13,

'seismic-Zone': 14,

'geo-Suitability-Zone': 15,

'burned-area': 16,

'aspect-slope': 17,

'elevation': 18,

'near-tree': 19,

'vegetation': 20

} # map enumerators to labels

labels = []

for endpoint in endpoints:

if endpoint in label_mapping:

labels.append(label_mapping[endpoint])

else:

raise ValueError(f"No mapping found for endpoint: {endpoint}")

Figure 6.6.2: To simply classification the different possible endpoints are mapped to an
enumerator. Each endpoint in the list is then replaced with its corresponding number.

35

train_inputs, val_inputs, train_labels, val_labels =

train_test_split(

encoded_inputs['input_ids'],

labels,

test_size=0.2,

random_state=42)

Figure 6.6.3: The dataset is then split into a training dataset and a validation dataset. 80% of the
questions are for training and 20% are for validation. A fixed random state was used to allow for
easy reproduction of the results.

Training loop

num_epochs = 100

for epoch in range(num_epochs):

model.train()

loop through the dataloader batches

for batch in train_dataloader:

train and go forward

input_ids, labels = batch

optimizer.zero_grad()

outputs = model(input_ids, labels=labels)

loss = outputs.loss

loss.backward()

optimizer.step()

Validation loop

model.eval()

val_loss = 0.0

correct_predictions = 0

with torch.no_grad():

loop through batches in the validation dataloader

for batch in val_dataloader:

run validation inference, check and count correct

input_ids, labels = batch

outputs = model(input_ids, labels=labels)

val_loss += outputs.loss.item()

logits = outputs.logits

predictions = torch.argmax(logits, dim=1)

correct_predictions += torch.sum(predictions == labels).item()

Calculate validation metrics

36

val_loss /= len(val_dataloader)

accuracy = correct_predictions / len(val_dataset)

print(f'Epoch {epoch + 1}/{num_epochs}, Val Loss: {val_loss:.4f}, Accuracy:

{accuracy:.4f}')

Figure 6.6.4: Training and evaluation loop. (hidden: conversion of the dataset into the dataloader
done before training)

Save the fine-tuned model

save_path = f'models/endpoint/model-e{num_epochs}-{accuracy:.2f}'

model.save_pretrained(save_path)

tokenizer.save_pretrained(save_path)

Figure 6.6.5: Lastly the model needs to be saved, this is done in the models/endpoint folder.
The model name is dependent on the amount of epochs and the last accuracy. This is for easy
identification later.

Figure 6.6.1 up to 6.6.5 globally show how the model was trained. Examples on inference can
be seen in section 6.1. All code and example notebooks can be found on github [21].

6.7 Training location recognition model.
To know for what location a request needs to be made, the system identifies the locations in
questions using a custom made NER. The NER model was first also used to identify topics of
questions, however this part has been replaced by the endpoint classification bert model as
shown in section 6.6.

First the template questions list (‘template_questions.csv) and the list of locations
(town_and_cities.csv) are imported. The different locations are then substituted into the
template questions. This is shown in figure 6.7.1. (Note: the code has been condensed for
readability.)

import CSV's and convert to lists

csv_questions = open('template_questions.csv')

csv_tq = csv.DictReader(csv_questions)

tac = open('towns_and_cities.csv')

csv_tac = csv.DictReader(tac)

insert topics and locations into questions

for q in csv_tq_list:

for t in possible_topics:

question = q.replace('[*object*]', t)

37

for l in csv_tac_list:

new_question = question.replace('[*location*]', l)

append to lists

questions.append(new_question)

locations.append(l)

topics.append(t)

Figure 6.7.1: Code that imports the csv’s that contain the questions and items that are
substituted in. Finally questions and annotations are added to their respective lists. (hidden:
conversion from dictionary to lists and definition of lists).

Next the data is preprocessed, all letters are decapitalized and words such as ‘a’ or ‘the’ are
removed from annotations to prevent overfitting on the recognition of those words. All words are
de-capitalized as users might not always take the time to capitalize pronouns, thus the model
must not rely solely on capitalization of pronouns to detect location names.

Next the data in the lists is converted into the annotation format that is required for spacy. A
dictionary list is made that contains the question, location, starting and ending character number
of the location in the sentence, topic, the starting and ending character of the topic in the
question. This is done programmatically in figure 6.7.2 for each question.

training_data = []

for question, topic, location in zip(questions, topics, locations):

#print(question, topic, location)

Get location for topic

t_start = question.find(topic)

t_end = t_start + len(topic)

Get location for the location

l_start = question.find(location)

l_end = l_start + len(location)

training_data.append({

"question": question,

"location" : location,

"l_start" : l_start,

"l_end": l_end,

"topic" : topic,

"t_start" : t_start,

38

"t_end" : t_end

})

Figure 6.7.2: Converting the data in the lists to a format that spacy can use to fit the model.

This data is then used to create an annotated doc for each example. These are then added to a
Spacy doc bin which is saved. In figure 6.7.3 this has been done programmatically.

for entry in training_data:

Create a spacy doc for the question

doc = nlp.make_doc(question)

list for the annotated entity labels

spans will be placed in here

ents = []

Create a span object for the LOCATION annotation

span = doc.char_span(entry['l_start'], entry['l_end'],

label="LOCATION", alignment_mode='contract')

if span is not None:

ents.append(span)

Create a span objecct for the SUBJECT annotation

span = doc.char_span(entry['t_start'], entry['t_end'], label="TOPIC",

alignment_mode='contract')

if span is not None:

ents.append(span)

if ents:

filtered_ents = filter_spans(ents)

doc.ents = filtered_ents

doc_bin.add(doc)

doc_bin.to_disk('train.spacy')

Figure 6.7.3: Converting each entry into an annotated Spacy doc. These are added to a docbin
which is saved for training.

Before training can start a config file needs to be created. For this the online tool at spacy.io was
used [28].

39

Using the config file and the ‘train.spacy’ file training of the NER model can start. It is saved to
model-last and if it is the best until now it is also saved to model-best.

Figure 6.7.4: Using the training config file (config.cfg) and the training files to train the NER
model.

For easy inference the displacy package is used to annotate and highlight the predicted location
and topic of a question. The code for this can be seen in figure 6.7.5. In here the example
question: “How far is kalo chorio from the electrical grid?” is run. In figure 6.7.6 the output can
be seen, the location and topic have accurately been identified in this example.

import spacy

nlp_ner = spacy.load('model-best')

doc = nlp_ner('How far is kalo chorio from the electrical grid?')

print(doc)

colors = {"location":"#FFCBCB", 'topic':"FD8A8A"}

options = {"colors":colors}

spacy.displacy.render(doc, style="ent", options=options, jupyter=True)

Figure 6.7.5: Using displacy during inference for visualization. Output can be viewed in figure
6.7.6.

40

Figure 6.7.6: Output of the code in figure 6.7.5, shows the location and topic that the system
identified in the question.

In figure 6.7.1 until 6.7.6 a basic system can be seen, explaining how the NER system works.
Please note this is not the end system that is used in production, that can be found in section
7.2.

41

Chapter 7 - Optimization
After building out the basic system as seen in chapter 6 it became clear that individual modules
needed to be optimized, to perform better on their own but to also integrate and work together
with other modules more effectively. Thus this chapter focuses on each module and the
optimizations done to make the system production ready.

7.1 Endpoint extraction
Firstly the endpoint extraction module had to be expanded to serve almost all different services
that GAEA has data on (figure 7.1.1). For this more datasets needed to be created. In total a list
of 808 questions and the corresponding endpoints was made. This was used to train the
classification model.

21 out of the 26 services that Gaea offers were integrated into this system. It was chosen that
several land cover monitoring services would not be integrated as there was not a well defined
API endpoint or the data was hard to understand for an LLM. Furthermore the endpoint
providing the nearest amenities was also left out as the questions can be about a variety of
different amenities as it serves many different points of interests. The amenities endpoint also
returns a huge amount of data which for an LLM is too much to make sense out of. A custom
data processing function could solve this in the future.

42

Figure 7.1.1: Different datasets that GAEA offers to users. From A. Jamil et al [1]

7.2 Extract location
In a lab setting the NER model that recognizes locations performs well during testing and
accurately detects the location in a question. However when testing the model on real world
locations and street names the model struggles to identify locational information such as house
numbers, postal codes and (multi word) street names. The questions that the model has been
trained on only consist of town names. A list of 150 town and city names were used for this.
Thus the dataset did not accurately portray the real world situation.

At this point a new dataset could be created containing all the locations in Cyprus, however this
would take considerable time to create, taking away resources from the greater scope of this
project. Thus after researching, open source models were found that others had pre trained to
recognize locational information from texts. The fastest and most reliable tokenizer that was
also built to identify locational information was the Bert tokenizer. As the overarching Bert model
is easy to fine tune, there are a plethora of different fine tuned models available from the open
source community that each are specialized and fine tuned on their own tasks.

From preliminary testing three fine tuned models stood out:
1. Bert-base (NER) [24][25]
2. Bert-fine tuned [26]
3. Bert-large (NER) [27]

To determine the most capable model from the these three models, they were tested against
each other. A set of 350 example questions that had the correct location annotated were used.
These questions were split up into four categories based on the format of the location: single
town or city names, street name + house number, street name + city name and street name +
postal code. Each model was tested for questions in each of these categories.

43

Figure 7.2.1: Results from testing three fine tuned models on four different locational formats.
Average accuracy per model is also shown.

In figure 7.2.1 the results from these tests can be seen. Interestingly all models underperformed
in the second category: street name + house number. After more investigation it became clear
that the system struggles to recognize parts of street names such as “avenue”, “street” or “lane”.
All NER models struggle with recognizing these words as part of the locational information.

Given the results from figure 7.2.1, the bert large model was selected to be used in the
production system. Thus the module in the pipeline also had to be modified. A class was
created to enclose the model (figure 7.2.2), this class also allows for easy inference.

class Locations:

def __init__(self):

Load the model

self.location_classifier = pipeline(

"token-classification",

"dbmdz/bert-large-cased-finetuned-conll03-english",

grouped_entities=True,

)

def extract(self, question):

d = self.location_classifier(question)

locations = []

44

for l in d:

locations.append(l['word'])

return locations

Figure 7.2.2: Location detection model class that (down)loads the model on initiation. The text
can be passed into the extract function to extract a list of different locations.

This new system of extracting locations from questions now allows the pipeline to understand a
much wider variety of formats that locations might be in.

Because Bert tokenizes texts not by individual words but by parts of words it can happen that
not an entire word is recognized as a location. This part of word tokenization creates awkward
situations where because only a part of the word is recognized as a location the system cannot
find any coordinates associated with the half word.

Given the question: “What is the geo suitability of Kolokotroni Nicosia?”, the model should
output: ‘Kolokotroni Nicosia’ as the only location. Instead the system outputs that it has detected
two locations: ‘Kolokotroni Nico’ and ‘###sia’. Converting both of these strings into coordinates
using the get_coordinates function will not work and result in no coordinates for both locations.

To solve this some clever logic has been added. Whenever the system cannot find anything for
the individual location names it will first try to combine them all together and attempt to see if it
can find coordinates for those locations. The logic of this has been implemented
programmatically in Figure 7.2.3.

If nothing is found then try combining

if all(item in ((0.00, 0.00), None) for item in coordinates):

Place all locations without hashtags in combine list

combined_location = ''

for location in locations:

editied_location = location.replace('#', '')

combined_location += editied_location

Add space before capital letters

combined_location = re.sub(r'(?<!^)(?=[A-Z])', ' ', combined_location)

run coordinate check for combined list

c = get_coordinates(combined_location)

coordinates.append(c)

locations.append(combined_location)

Figure 7.2.3: Programmatically combine all locational names together when nothing is found
using the coordinate search.

45

However, at times when a question explicitly mentions two locations such as the question: “Is
Paphos or Limassol located at a higher elevation?”, then combining the two locations will not
result in correct coordinates. Thus if we still can't find any coordinates a third attempt will be
made to split the combined string in half and check if this gives us any coordinates. Figure 7.2.4
shows the programmatically implementation of this logic.

if still nothing is found then try splitting the combined string in half

if all(item in ((0.00, 0.00), None) for item in coordinates):

Check if combined location consists of two or more words

combined_words = combined_location.split()

if len(combined_words) >= 2:

mid_index = len(combined_words) // 2

first_half = ' '.join(combined_words[:mid_index]

second_half = ' '.join(combined_words[mid_index:])

get coordinates, add to lists for first half

c = get_coordinates(first_half)

coordinates.append(c)

locations.append(first_half)

do the same for the second half

c = get_coordinates(second_half)

coordinates.append(c)

locations.append(second_half)

Figure 7.2.4: When we still can't find a location then try splitting the combined string from figure
7.2.3 in two and try again.

If none of these extra logic steps work we must inform the user that we have detected locations
in their query, but we can't find any coordinates in Cyprus for these locations. We do this by
returning a simple message and advising people to capitalize locational pronouns, shown in
figure 7.2.5.

If we still cant find anything, then return an error message to the user

if all(item in ((0.00, 0.00), None) for item in coordinates):

ret_data = {

'success': False,

'answer': f'The locations {api_locations} were identified but we could

not find these in Cyprus. Please try capitalizing the names or providing more

information such as city or region.',

}

46

Figure 7.2.5: When both logic approaches shown in figure 7.2.3 and figure 7.2.4 don’t yield any
coordinates for locations in Cyprus we notify the user and advise them to try capitalizing
locational pronouns.

7.3 Converting the location to coordinates
As the GeoAPI from Gaea only accepts locational information as coordinates so we must first
convert the location extracted earlier into a set of coordinates. A geocoding API is used for this.
As there are many geocoding API’s available a few were examined and the choice was made to
use the LocationIQ API [22] as it has one of the best rate limits and in testing consistently
produced accurate results.

The LocationIQ system is ratelimited to 2 requests per second. As we want to keep response
times under ten seconds it is essential that this step should take as short as possible. Thus a
caching system was set up inside the get_coordinates function.

When a call is made to the get_coordinates function with a location, that location is first checked
against a database of known cached coordinate pairs. This simple database only has three
fields: timestamp, location_name and coordinates. Whenever we can’t find the coordinates in
the internal database we make a request to the geocoding API. We then save these newly
found coordinates in the database together with the location name. Thus in the future we can
reuse this API request and not have to make it again, saving us precious time. Besides the
location name and the resulting coordinates, the timestamp of the cached result is also saved,
allowing us to retire and refresh the cache after a certain amount of time. The get_coordinate
function with caching system can be seen well in figure 7.3.1.

def get_coordinates(query):

Check if coordinates are cached

cached_coordinates = dbcl.get_cached_coordinates(query)

if cached_coordinates != None:

return cached_coordinates

else:

if not then request the api

encoded_address = urllib.parse.quote(query)

api_access_token = "[**REDACTED**]"

url =

f"https://us1.locationiq.com/v1/search?key={api_access_token}&q={encoded_addres

s}&format=json&"

response = requests.get(url)

data = response.json()

if (response.status_code == 200):

found = False

loop through the results to find the top result in cyprus

for loc in data:

47

if (found == False) and ('Cyprus' in loc['display_name']):

add result to caching db

dbcl.add_cached_coordinates(

location=query,

coordinates=(loc['lat'],loc['lon'])

)

return coordinate set to program

return (loc['lat'],loc['lon'])

if no coordinates can be found return none

return None

elif (response.status_code == 404):

if no coordinates can be found return none

return None

Figure 7.3.1: Programmatically convert a location name into coordinates by first checking the
caching database, else making a request to the external geocoding API.

7.4 Requesting data from the Gaea GeoApi
After the coordinates and the endpoint are known a request can be made to the Gaea GeoAPI.
The API provides us with the data needed to answer the question. The API that the production
system relies on for its data can go offline. In this case the LLM will receive no response data.
Results from testing with the GeoAPI offline show that about half the time the LLM will return a
clear message stating that no data is found, other times it will return a hallucinated answer that
is completely incorrect and based on nothing.

To prevent this hallucination an api_offline mode is made. So that when the API is offline the
system will always return a message stating that part of the backend is offline and questions
cannot be answered at this moment.

if gaea_api_down == True:

ret_data = {

'success': False,

'answer': "I can't answer your questions now because the api

that I use to get information is down. Sorry for the inconvenience, please

try again later..."

}

return ret_data

Figure 7.4.1: If the api is down and unusable, the system always returns an error stating that it
cannot get any information. This is done to prevent hallucination by the LLM due to missing
data.

To pass the API response data into the LLM for answering the data must be explained, as some
questions need multiple requests we need to clearly distinguish which API response belongs to

48

which request. Thus the data is placed into a preformatted sentence: “Data on {insert endpoint}
for {location name}: {api response data}”. This sentence is then added into a list containing all
the response data as can be seen in figure 7.4.2. This list is then passed into the LLM for
answer generation.

data.append(f'Data on {api_endpoint} for {api_locations[index]}:

{requested_data}')

Figure 7.4.2: Explaining what the data from the API is on by mentioning the endpoint that it is
from and the location for which it is, after which it is added to the data list.

From testing it turns out that the LLM struggles with generating answers for questions if there is
a lot of data available. An LLM also struggles with making accurate comparisons between data
points. If we were to take the example question of “Is Lefke or Agros closer to a beach?”. The
classification system would identify that this question is about a beach and thus make a request
to the “/nearest-blueflag-beach” endpoint. Instead of showing the nearest beach it returns the
top three nearest beaches. This can be confusing for the LLM as it cannot accurately
understand the difference between the three in the results.

To solve this problem custom data filtering rules were implemented. These user defined rules
filter the response data and limit the amount of response data that is returned. In figure 7.4.3 a
custom data filtering rule has been implemented to only return the first item when the endpoint
on the nearest beaches has been queried.

custom filter per endpoint

if endpoint == 'nearest-blueflag-beach':

return r['data'][:1]

.........

else:

return r['data']

Figure 7.4.3: User defined custom data filtering rules implemented to prevent and overload on
data for the answering LLM.

7.5 Generating a natural language answer
Lastly when the data is known a natural language answer can be generated for the end user.
This is done by passing the data and the original question into the Llama 3 model and
prompting it to answer the question using the data.

49

To optimize the use of the LLM, four different prompt engineering techniques were tested to find
out in what format the original question and data could best be passed to the LLM for answer
generation.

All examples can be found in the git repository in: “notebooks/llm-prompt-engineering.ipynb”
[21].

7.5.1 Prompt Structure 1
The first structure that was tested is a simple prompt just containing the question and response
data from the API . This prompt also had a brief contextual explanation (Figure 7.5.1). The
results from this approach are shown in figure 7.5.5 as structure 1 (blue).

def process_answer_data(question,data):

response = llm.invoke(f'You are a question and answering chatbot that

users use to ask questions about geospatial data. You will be provided with

the question and the data that came from a rest api. Please answer the

question given short and concisely based on the data! Do not provide any

internal context or any other thoughts that cannot be verified using the

data form the request! Please answer the question {question} using the

information: {data}')

return response.content

Figure 7.5.1: A simple prompt explaining the context of geospatial answer generation with the
user question and API response data plugged in.

7.5.2 Prompt Structure 2
As seen in section 7.4, in testing the LLM struggles to make sense of the API response data
when there is a huge amount of text. Thus the contextual explanatory instructions were split
from the original question in the second structure. The prompt was split into several messages
that were passed in as conversational chat history. In figure 7.5.2 two messages have been
created. The first being the system message that gives the LLM context as to what its function
is, the second human message informs it about the question and the data that it can use for
answering.

def process_answer_data(question, data):

messages = [

SystemMessage(content="You are a question and answering chatbot

that users use to ask questions about geospatial data. You will be provided

with the question and the data that came from a rest api. Please answer the

question given short and consisely based on the data! Do not provide any

internal context or any other thoughts that cannot be verified using the

data form the request!"),

50

HumanMessage(

content=f"Answer the question {question} Using the data {data}"

)

]

chat_model_response = llm.invoke(messages)

return chat_model_response.content

Figure 7.5.2: Using conversational chat history to split the instructions from the user question
and data that is to be used.

7.5.3 Prompt Structure 3
To make the original user question even more clear a system was tested where the question on
its own is shown to the LLM as a user message, we then pretend that the LLM has made its
own choice to find the data after which it uses it to answer the question. (figure 7.5.3)

Process question and data from request into a normal answer

def process_answer_data(question, data):

messages = [

SystemMessage(content="You are a question and answering chatbot

that users use to ask questions about geospatial data. You will be provided

with the question and the data that came from a rest api. Please answer the

question given short and concisely based on the data! Do not provide any

internal context or any other thoughts that cannot be verified using the

data form the request!"),

HumanMessage(

content=f"{question}"

),

SystemMessage(

content=f"To answer the question I have found following data:

{data}. I will use this to answer the question.",

),

]

chat_model_response = llm.invoke(messages)

return chat_model_response.content

51

Figure 7.5.3: Use a conversational chat history to pass a contextual system message, user
question and the data needed to answer the question.

7.5.4 Prompt Structure 4
Lastly, to reinforce that the LLM uses the data to answer the questions and prevent hallucination
or incorrect data use, an extra human message is used. In figure 7.5.4 we pretend that the LLM
finds the data on its own after which it asks to verify it. We tell it that it is correct and that it must
use it to answer the question.

def process_answer_data(question, data):

messages = [

SystemMessage(content="You are a question and answering chatbot

that users use to ask questions about geospatial data. You will be provided

with the question and the data that came from a rest api. Please answer the

question given short and consisely based on the data! Do not provide any

internal context or any other thoughts that cannot be verified using the

data form the request!"),

HumanMessage(

content=f"{question}"

),

SystemMessage(

content=f"To answer the question I have found following data:

{data}, is it correct?",

),

HumanMessage(

content=f"Yess the data is correct. Please use it to answer the

question"

),

]

chat_model_response = llm.invoke(messages)

return chat_model_response.content

Figure 7.5.4: Using human and system messages to pass all the data into the LLM for
answering. Using more human messages to reinforce the importance of using the API response
data for answer generation.

7.5.5 Comparing prompt structure
The four different structures shown in figures 7.5.1 up to 7.5.4 were compared by passing each
a series of pairs containing a question and the data to answer that question. The question and

52

data pairs can be found in appendix C. For each question the data was already gathered and
each system got the exact same question and input data. The questions were also ordered
based on their respective complexity level, these levels were determined in section 4.4.

Figure 7.5.5: Results of testing the different answer generation approaches shown in figure
7.5.1 up to figure 7.5.4. The code in figure 7.5.1 is shown as structure 1 (blue), the code in
figure 7.5.2 is shown as structure 2 (red), the code in figure 7.5.3 is shown as structure 3
(yellow) and lastly the code in figure 7.5.4 is shown as structure 4 (green).

The answer results in figure 7.5.5 clearly show that there is a benefit as to researching the
different prompt engineering structures, as the previous structure used in preliminary testing
(structure 1) has the lowest overall score. Structure 3 on the other hand shows us that by using
conversational memory with human and system messages without explicit verification the
system performs the best.

Following the results form 7.5.5, structure 3 was chosen to be used in production.

7.6 API Wrapper & Chatpage
To allow for easy and fast integration of the production system, the python run function from
figure 6.2 (which encloses the entire pipeline from question to natural language answer) was
made into an API endpoint using flask.

Using flask the application was converted into an API endpoint. Systems could now make
requests to the /query endpoint, then after about ten seconds it would return an answer in json.

@app.route('/query')

def qeustion():

53

request.start_time = datetime.utcnow()

args = request.args

question = urllib.parse.unquote(args['q'])

answer = run(question)

return answer

Figure 7.6.1: Using Flask to wrap the run function, allowing the system to accept rest
APIrequests (full code can be found on github [21]).

To get an answer for your question from the /query endpoint the question is passed in using the
“q” parameter. This query is encoded using percent encoding to ensure all characters are sent
including the question mark.

Besides a query endpoint, the /rate_response endpoint allows users to rate their answer as
good or bad. The endpoint takes a rating parameter which can be 1 for good and -1 for bad. The
original question id is also passed in. Following an answer from the /query endpoint, the user
then has up to one hour to rate their answer. The rating is stored anonymously in a database
together with the original question, answer and metadata from the individual modules.

A rest API works great for developers wanting to integrate the production system into their
frontend such as with Gaea. However for quick testing and demo’s an API is not great as it
requires users to first convert the query into the percent encoded parameter and then read the
result from the json response. To solve this a simple webpage was created that allows users to
interact with the chatbot in a more intuitive manner. The webpage in figure 7.6.2 is designed to
run on any type of browser.

54

Figure 7.6.2: A simple web app that interacts with the production API and displays answers in a
text box, green if the API returns success as true and red if success is false. Users can also
easy rate answers using the thumbs up and thumbs down.

55

Chapter 8 - Evaluation

8.1 Answer evaluation
A system that uses trained models for prediction and classification is never 100% accurate.
Thus users can rate their answers and provide feedback. A basic thumbs up thumbs down
system is used. Using the API the resulting feedback is stored in a database allowing for later
investigation and possible use for reinforcement learning in the future.

Figure 8.1.1: Question answering text box where a user can rate their question using a thumbs
up or thumbs down.

The thumbs up and thumbs down system was chosen as it allows for easy evaluation by the
end user. A more complex system such as a textbox or a line scale would provide more
information about the incorrect answer but would require users to put in more effort into rating
their answer, resulting in less feedback.

8.2 Requirements evaluation

8.1 Accuracy
Section 5.2 describes the requirement for an accurate system. The system must have an
accuracy of at least 90% when answering questions with a working API.

To evaluate the accuracy a set of questions was defined. These questions were based on
questions that users had asked the system in production. Each question was asked and the
answer was noted. The answers were evaluated to determine if they were correct. The results
can be observed in figure 8.2.

56

Figure 8.2: System accuracy per complexity level for the questions defined in appendix C.

In figure 8.2 showing the results of testing, a clear drop in accuracy can be observed when
looking at more advanced questions such as those in complexity level 3. After investigating this
drop was a result of the increasing amount of data that is being passed on into the LLM,
furthermore the limited comparative functionality of an LLM also posed a limitation in question
answering. Further research into LLMs could increase the answering capabilities of this system
for more complex questions.

In figure 8.3, comparing the system to the prototype systems that were created in the ideation
and realization phases shows us that the numerous optimizations described in chapter 7 have
increased the systems answer accuracy by about twenty percent.

57

Figure 8.2: Comparing the production system (GeoAI) accuracy to the prototype system (NLP,
LLM v1, LLM v2).

8.2 Speed
In section 5.2 the requirement of the system being fast was set. The system should ideally
answer questions within 10 seconds to keep users focussed and motivate them to use the
system more often.

To achieve this numerous optimizations were made which are described in chapter 7. These
optimizations have resulted in the production system answering questions within 8.03 seconds
on average. On top of that 75% of all questions are answered within 7.23 seconds.

These calculations were made based on the recorded time from a request being received by the
server to the time that a response is returned to the server. Extra delays outside our control
such as those created by a poor internet connection were ignored and not logged. As the server
running the production application is connected to the university network through fast ethernet
the network delay is negligible.

58

8.3 Local Deployment
Another non functional requirement was that the system must be able to be deployed locally.
Data must not be shared with third parties. Using NLP tools such as Spacy and LLMs such as
Llama3 allows the system to be run locally on any server that has enough resources. The only
current issue preventing the system from working completely offline is the geocoding API that is
provided by a third party company. In theory as time progresses all the vast amount of locations
will be cached in the database, eliminating the need for the third party API. Another option
would be to curate a list of all possible locations in Cyprus and use that for geocoding.

8.4 Integratability
As defined in section 5.1 and 5.2 the system must be easy to integrate for developers. Allowing
the system to be implemented with as little effort as possible. To achieve this a well defined
Readme.md file was created (appendix B). Clear API documentation was made and according
to the developers polled it was clear to understand. As this requirement is hard to measure,
feedback was requested from experienced developers. The end user, the Gaea frontend
developer found the documentation very clear to understand and was able to integrate the API
seamlessly.

59

Chapter 9 - Discussion & Future work
The field of geospatial sciences is always growing and so is this NLP system. There are many
features that could be implemented to allow for a wider use of the system.

Firstly the current system always needs to make a request. The system could be modified so
that when it does not detect that a question is about a specific dataset or endpoint it would
instead refer the question to another LLM. This LLM could be finetuned as a help agent for
Gaea, allowing users to ask questions about the Gaea tool.

The answer evaluation feature that allows users to rate their answers currently only stores the
rating together with the request logs. In the future this data could well be used for manual
evaluation of individual modules and seeing where modules could be improved. Ideally this
process of constantly improving the system using the feedback would be done automatically.
Reinforcement learning could be used to allow the LLM to learn directly from its mistakes. More
research would be needed to prevent the LLM from over compensating.

Not all questions are answered correctly. The LLM responsible for answer generation is often
the module where the data is not correctly used to answer the question. Advancements in the
future will create a more powerful LLM. The use of Ollama in this module allows for easy
substitution of LLMs.

Sometimes however the LLM does not receive correct data. This is often caused by the location
detection module. As seen in section 7.2, where logic is used to correct for the difficult
linguistics, the system struggles to identify locational terms consistently as Greek and Turkish
linguistics are hard to understand. The solution could be the creation of a custom location
detection model, it could still be based on Bert but then be trained on all the different names and
locations in cyprus.

The current system only answers relatively simple questions that can be about one topic but
contain multiple locations. Future research could expand on this by allowing for more complex
questions to be asked and accurately answered.

Using LLMs that have been trained on tool use was researched and tested. Current open
source LLMs do not yet have the power to accurately reason. Future LLMs however might have
this power and allow us to implement the toolled LLM with high accuracy in a production
system. Allowing for more easy scaling into answering higher complexity level questions.

60

Chapter 10 - Conclusion
This research aimed to build a system that allows users to interact with geospatial data using
natural language. Initially a literature review was conducted to show the current state of the art
and the limitations of existing solutions. Several natural language processing (NLP) and
geospatial tools were analyzed and tested to get a firm understanding of the problem and an
understanding of how a solution might be built. Using the knowledge gained, requirements were
set in the specification phase. Using a combination of NLP and large language models (LLMs) a
system was realized that allows users to ask natural language questions and get natural
language answers that have been generated by referencing geospatial data to answer these
questions.

This research also identified several limitations. The occasional hallucinations by LLMs that
result in incorrect data and answers poses a challenge that needs to be addressed in future
research. This however is a larger problem that is not specific to the geospatial implementation
done in this project. Future work should focus on increasing the accuracy and reliability of LLMs
in geospatial contexts. The system's performance could also improve by developing new
methods to connect LLMs to datasets and by allowing for increasingly complex and at the same
time general questions to be asked. The current system can accurately answer questions upto
the third complexity level as defined in section 4.4. Future research could allow for more
complex questions to be processed.

In summary, this research highlights the potential of NLP and LLMs in transforming natural
language interactions with geospatial data. The advancement in the use of NLP and LLMs in
geospatial data will increase accessibility and usability of geospatial data. Continued research
and development in the fields of NLP and LLMs will allow full geospatial question answer
systems to be built in the future.

61

References
[1] A. Jamil, C. Padubidri, S. Karatsiolis, I. Kalita, A. Guley, and A. Kamilaris, “GAEA: A
Country-Scale Geospatial Environmental Modelling Tool: Towards a Digital Twin for Real
Estate,” Springer Nature Switzerland, Jan. 01, 2024.

[2] “PD-10 - Natural Language Processing in GIScience Applications,” GIS&T Body of

Knowledge.

https://gistbok.ucgis.org/bok-topics/natural-language-processing-giscience-applications

[3] M. Cai, “Natural language processing for urban research: A systematic review,” Heliyon,

vol. 7, no. 3, p. e06322, Mar. 2021, doi: 10.1016/j.heliyon.2021.e06322.

[4] H. Shelar, G. Kaur, N. Heda, and P. Agrawal, “Named Entity Recognition Approaches

and Their Comparison for Custom NER Model,” Science & Technology Libraries, vol. 39,

no. 3, pp. 324–337, May 2020, doi: 10.1080/0194262x.2020.1759479.

[5] E. Helderop, J. Huff, F. Morstatter, A. Grubesic, and D. Wallace, “Hidden in Plain Sight: A

Machine Learning Approach for Detecting Prostitution Activity in Phoenix, Arizona,” Applied

Spatial Analysis and Policy, vol. 12, no. 4, pp. 941–963, Nov. 2018, doi:

10.1007/s12061-018-9279-1.

[6] “Voice-based Road Navigation System Using Natural Language Processing (NLP),”

IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/8913387

[7] G. Mai, K. Janowicz, C. He, S. Liu, and N. Lao, “POIReviewQA,” in Proceedings of the

12th Workshop on Geographic Information Retrieval, Nov. 2018. Accessed: Jul. 06, 2024.

[Online]. Available: https://arxiv.org/pdf/1810.02802

[8] S. Muralidharan, F. Tung, and G. Mori, “PlacesQA: Towards Automatic Answering of

Questions on the Web”.

[10] Z. Yin, C. Zhang, D. W. Goldberg, and S. Prasad, “An NLP-based Question Answering

Framework for Spatio-Temporal Analysis and Visualization,” Mar. 2019, doi:

https://doi.org/10.1145/3318236.3318240.

62

https://arxiv.org/pdf/1810.02802

[11] “Large Language Models (LLMs),” MongoDB.

https://www.mongodb.com/resources/basics/large-language-models

[12] Y. Jiang and C. Yang, “Is ChatGPT a Good Geospatial Data Analyst? Exploring the

Integration of Natural Language into Structured...,” MDPI, Jan. 10, 2024.

https://www.researchgate.net/publication/377319486_Is_ChatGPT_a_Good_Geospatial_Data_

Analyst_Exploring_the_Integration_of_Natural_Language_into_Structured_Query_Language_wi

thin_a_Spatial_Database

[13] D. Punjani, S.-A. Kefaldis, K. Plas, E. Tsalapati, M. Koubarakis, and P. Maret, “The

Question Answering System GeoQA2”.

[14] Z. Li and H. Ning, “Autonomous GIS: the next-generation AI-powered GIS,” May 2023, doi:

https://doi.org/10.48550/arxiv.2305.06453.

[15] A. Fernandez and S. Dube, “CORE BUILDING BLOCKS: NEXT GEN GEO SPATIAL GPT
APPLICATION.” Accessed: Jul. 18, 2024. [Online]. Available:
https://arxiv.org/ftp/arxiv/papers/2310/2310.11029.pdf

[16] Y. Zhang, C. Wei, S. Wu, Z. He, and W. Yu, “ARTICLE TEMPLATE GeoGPT: Understanding

and Processing Geospatial Tasks through An Autonomous GPT.” Accessed: Jul. 18, 2024.

[Online]. Available: https://arxiv.org/pdf/2307.07930

[17]“Berkeley Function Calling Leaderboard (aka Berkeley Tool Calling Leaderboard).”

https://gorilla.cs.berkeley.edu/leaderboard.html

[18] A. Mader and W. Eggink, “A DESIGN PROCESS FOR CREATIVE TECHNOLOGY,”

unknown, Sep. 05, 2014.

https://www.researchgate.net/publication/265755092_A_DESIGN_PROCESS_FOR_CREATIVE

_TECHNOLOGY

[19] “SuPerWorld Geo-API: Artificial intelligence in real estate for modelling risks,”

SuPerWorld Research Group. https://superworld.cyens.org.cy/product1.html (accessed Apr. 17,

2024).

[20] U. Gnewuch, S. Morana, M. T. P. Adam, and A. Maedche, “Opposing Effects of Response

63

https://www.researchgate.net/publication/377319486_Is_ChatGPT_a_Good_Geospatial_Data_Analyst_Exploring_the_Integration_of_Natural_Language_into_Structured_Query_Language_within_a_Spatial_Database
https://www.researchgate.net/publication/377319486_Is_ChatGPT_a_Good_Geospatial_Data_Analyst_Exploring_the_Integration_of_Natural_Language_into_Structured_Query_Language_within_a_Spatial_Database
https://www.researchgate.net/publication/377319486_Is_ChatGPT_a_Good_Geospatial_Data_Analyst_Exploring_the_Integration_of_Natural_Language_into_Structured_Query_Language_within_a_Spatial_Database
https://doi.org/10.48550/arxiv.2305.06453
https://arxiv.org/ftp/arxiv/papers/2310/2310.11029.pdf
https://gorilla.cs.berkeley.edu/leaderboard.html

Time in Human–Chatbot Interaction: The Moderating Role of Prior Experience,” Springer
Nature, May 30, 2022.
https://www.researchgate.net/publication/360950385_Opposing_Effects_of_Response_Time_in
_Human-Chatbot_Interaction_The_Moderating_Role_of_Prior_Experience

[21] V. Embrechts, "Meliferea," GitHub repository, https://github.com/darkroasted/Meliferea,

accessed July 16, 2024.

[22] “LocationIQ,” Free Reverse Geocoding API, Geocoding API, Autocomplete API.

https://locationiq.com/ (accessed Jul. 16, 2024).

[23] “google-bert/bert-base-uncased · Hugging Face.”
https://huggingface.co/google-bert/bert-base-uncased (accessed Jul. 17, 2024).

[24] “dslim/bert-base-NER · Hugging Face.” https://huggingface.co/dslim/bert-base-NER
(accessed Jul. 17, 2024).

[25] E. F. Tjong Kim Sang and F. De Meulder, "Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition," in *Proc. Seventh Conf. Natural Language
Learning at HLT-NAACL 2003*, 2003, pp. 142-147. [Online]. Available:
https://www.aclweb.org/anthology/W03-0419

[26] “nielsr/bert-finetuned-ner · Hugging Face.” https://huggingface.co/nielsr/bert-finetuned-ner
(accessed Jul. 17, 2024).

[27] “dslim/bert-large-NER · Hugging Face.” https://huggingface.co/dslim/bert-large-NER

(accessed Jul. 17, 2024).

[28] “Training Pipelines & Models · spaCy Usage Documentation,” Training Pipelines & Models.

https://spacy.io/usage/training

‌

64

https://github.com/darkroasted/Meliferea

Appendix A - Template questions

Appendix A1 - Vicinity related Template Questions

How close is [*location*] to [*object*]

What is the distance from [*location*] to [*object*]

How far away is [*object*] from [*location*]

What is the proximity of [*object*] to [*location*]

How distant is [*object*] from [*location*]

How far is [*location*] located from [*object*]?

What is the approximate distance from [*location*] to [*object*]?

How far is [*object*] situated from [*location*]?

What is the distance between [*object*] and [*location*]

What is the distance between [*location*] and [*object*]

Table A1: Template questions relating to vicinity, containing placeholders for the location and the
object of the sentence.

65

Appendix A2 - Questions related to weather
question category comp topic location time

What is the temperature in Agros in
May 2023? temperature FALSE temperature Agros May 2023

How hot was it in Nicosia on June
2021? temperature FALSE hot Nicosia June 2021

How warm was it in Lofou in
January 2019? temperature FALSE warm Lofou

January
2019

What was the warmest month in
Agros in 2020? temperature TRUE warmest

month Agros 2020

How cold was it in Marki in Febuary
2023? temperature FALSE cold Marki

Febuary
2023

Which month was the coldest in
Agraka in 2018? temperature TRUE coldest month Agraka 2018

How cold was the coldest month in
Paphos? temperature TRUE coldest month Paphos

In the Nicosia district, which town
was the hottest in september 2023? temperature TRUE hottest

location
Nicosia
district

September
2023

What was the overall coldest year
for Peyia? temperature TRUE coldest year Peyia

For how many months a year is the
average temperature under 10*C in
Phicardou? temperature

TRUE temperature
under 10*c Phicardou

Which year had the hottest June in
Zygi? temperature TRUE hottest year Zygi June

What was the highest temperature
recorded during the summer of
2016? temperature

TRUE highest
temperature

summer of
2016

What was the hottest place during
the winter of 2021-2022? temperature TRUE hottest

location
winter
2021-2022

How humid was it in Paphos forest
on March 2021? humidity FALSE humidity

Paphos
Forest

March
2021

What was the humidity level in Pano
Lefkara in April 2018? humidity FALSE humidity

Pano
Lefkara April 2018

Is the summer or winter more humid
on Girne? humidity TRUE humidity

season Girne

What month was the most humid in
Dali in 2022? humidity TRUE humidity

month Dali 2022

In Kapulica, which month is the most
humid? humidity TRUE humidity

month Kapulica

66

Which city is the most humid of the
Famagusta district during october? humidity TRUE humidity

location
Famagust
a october

Which year had the most humid July
in Aloa? humidity TRUE humidity Aloa July

Which month is more humid in
Omodos? January or July? humidity TRUE humidity Omodos

January,
july

How dry was Pomos in August
2021? humidity FALSE dryness Pomos

August
2021

Which year had the dampest August
in Pissouri? humidity TRUE damp Pissouri August

When was the dryest month
recorded in Limassol? humidity TRUE dryest month Limasol

How dry was the dryest month in
Astrometritis? humidity TRUE dryest month

Astrometri
tis

Where was it the dryest in
November 2017? humidity TRUE dryest

location
November

2017

How damp was it in Peyia during
December 2019? humidity FALSE dampness Peiya

December
2019

How moist was it in Pissouri in
March 2018? humidity FALSE moistness Pissouri

March
2018

How windy was it in Germansogeia? wind FALSE windiest
Germans
ogeia

Which month was the windiest in
Kalavasos? wind TRUE windiest

month
Kalavaso
s

How windy was the windiest month
in Mazotos? wind TRUE windiest

month Mazatos

How windy is Kirklar on average
each year? wind TRUE windyness Kirklar

What is the windiest city in Cyprus? wind TRUE windiest
location Cyrpus

How fast was wind in the windiest
month in Pasakoy? wind TRUE windiest

month Pasakoy

How fast was the wind in Bafra
during wind FALSE wind speed Bafra

From where did the wind come in
Kirklar? wind FALSE wind direction Kirklar

What was the most prominent wind
direction in Liopetri? wind FALSE wind direction Liopetri

What is the average yearly wind
speed in Bahceli? wind FALSE wind speed Bahceli

67

Which city has the fastest wind
yearly? wind TRUE wind speed

What was the wind speed on Mount
Olympos? wind FALSE wind speed

Mount
Olympos

How fast was the wind on average
in Pyrgos? wind FALSE wind speed Prygos

Which mountain has the fastest
wind? wind TRUE wind speed mountain

Where on the island can i find the
fastest wind? wind TRUE wind speed island

Table A2: Sample questions about the weather that have been annotated.

68

Appendix A3 - Weather related template questions

How hot was it in [*location*] on [*date*]? temperature hot

What was the temperature on [*date*] in [*location*]? temperature temperature

How warm was it in [*location*] on [*date*]? temperature warm

What was the hottest month in [*location*]? temperature hottest

How cold was it in [*location*] on [*date*]? temperature cold

When was the coldest month in [*location*]? temperature coldest

Where was it the coldest in [*date*] temperature coldest

How fast is the wind in [*location*] on average? wind wind

At what speed does the wind in [*location*] blow on average? wind wind

From what direction does the wind come from in [*location*]? wind wind

What is the prominent wind direction in [*location*]? wind wind

Where doest the wind come from in [*location*]? wind wind

What was on average the most humid month in [*location*]? humidity most humid

How humid was is it in [*location*] during [*month*]? humidity humid

What was the highest recorded humidity in [*location*] humidity humidity

Which month has the lowest humidity in [*location*] humidity lowest humidity

What was the percipitation like in [*location*] during [*month*]? percipitation percipitation

Which month had the highest percipitation in [*location*]? percipitation
highest
percipitation

What was the rainfall score in [*location*] during [*month*]? percipitation rainfall score

How much rainfall is there on average in [*location*] during the
year? percipitation rainfall

What is the average rainfall in [*month*] in [*location*]? percipitation average rainfall

Which month has the least rainfall in [*location*]? percipitation least rainfall

Table A3: Template question about the weather per endpoint.

69

Appendix A4 - Template questions relating to vicinity

How close is [*location*] to [*object*]

What is the distance from [*location*] to [*object*]

How far away is [*object*] from [*location*]

What is the proximity of [*object*] to [*location*]

How distant is [*object*] from [*location*]

How far is [*location*] located from [*object*]?

What is the approximate distance from [*location*] to [*object*]?

How far is [*object*] situated from [*location*]?

What is the distance between [*object*] and [*location*]

What is the distance between [*location*] and [*object*]

Table A4: template questions relating to the vicinity domain, containing placeholders for the
object and the location.

70

Appendix B - API Documentation
Note this is a copy of the api documentation that can be found in the github repository [21]

There are two api endpoints:

1. /query for asking questions and getting an answer from the system
2. /rate_response for rating the response given

/query endpoint

To get an answer for your question you can use the /query endpoint with a q parameter that is
set to the query that the user has. This query is encoded using percent encoding to ensure all
characters are sent.

A request will almost always return 3 values:

● "success": A boolean that when everything went correctly is set to True and when an
error occurred is set to False

● "answer": provides the system answer when "success": True, else it provides a hint
as to what went wrong and sometimes what the user may do to improve the chance their
query succeeds

● "request_id": A unique ID for the request that can be used to rate the request (See
/rate_response endpoint)

URL: [GET] http://c53.student.utwente.nl/1X85B95UQGNI/query?q={INSERT
ENCODED QUESTION}

Example

For example the question “What is the average temperature in Limassol?” would initiate this
request:

[GET]http://c53.student.utwente.nl/1X85B95UQGNI/query?q=How+warm+is+it
+in+Limassol%3F

This request would then return the following code after about 10 seconds:

{

"request_id": 178327,

"success": true,

"answer": "According to the provided temperature data for Limassol, the

average temperature throughout the year ranges from around 12.6°C in

71

January (the coolest month) to approximately 29.2°C in July and August (the

warmest months). So, it's generally quite warm in Limassol during the

summer season."

}

/rate_response endpoint

To allow the system to learn, users can provide feedback about their request. They can give it a
👍 or👎 to rate the answer they got. The frontend must translate this into a request to the
/rate_response endpoint.

The /rate_response endpoint takes 2 parameters:

● request_id: is the original request id of the request that we want to rate
● rating: can be 1 (positive) or -1 (negative). So👍-> 1 and👎-> -1.

To prevent misuse feedback can only be provided up to 1 hour after the original answer
from the /query has been given!

URL:
[GET]http://c53.student.utwente.nl/1X85B95UQGNI/rate_response?request_
id={INSERT REQUEST ID}&rating={INSERT RATING}

Example

72

If we want to rate the answer that we got in the /query example as correct we can initiate the
following request:

[GET]
http://c53.student.utwente.nl/1X85B95UQGNI/rate_response?request_id=17
8327&rating=1

This can return 2 responses:

success: true

{

"success":true,

"error":"no errors :)"

}

●

success: false

{

"error": "Something went wrong but we cant specifically say what :(",

"success": false

}

At times when we know what went wrong the system may provide a hint as to how it can be
fixed but sometimes it will return this. When a non descript error like Something went wrong
but we cant specifically say what :(occurs this is mostly because the timeout limit
of 1 hour has been crossed.

73

Appendix C - Evaluation questions
Questions and relevant data pairs. Used in section 7.5.

Question Data

How close is
Aipeias Ave in
Nicosia to the
sea?

["Data on distance-sea for Aipeias Ave: {'Coordinates': [35.33482250038557, 33.34833150013221],
'Distance': 19673.787893804485, 'Unit': 'm'}", "Data on distance-sea for Nicosia: {'Coordinates':
[35.3338159996877, 33.37023980013088], 'Distance': 17668.16369105547, 'Unit': 'm'}"]

How much risk
is there of a
wildfire at
Agiou Andreou
3035?

["Data on wildfire-risk for Agiou Andreou: {'Coordinates': [35.17255877609483, 33.34723530193588],
'Distance': 26.58331186722666, 'Risk': 'Very Low Risk', 'Score': 1, 'Unit': 'm'}"]

Please give me
information
about the
vegetation at
Famagusta ["Data on vegetation for Famagusta: {'Vegetation': 'no vegetation', 'Vegetation Score': 0}"]

Where does
the wind blow
to in Melini? ["Data on wind for Melini: {'Unit': 'Knots', 'Wind Direction': 'SE', 'Wind Speed': 10}"]

How likely is a
flood at Oron
street Larnaca?

["Data on flooding-risk for Larnaca: {'Coordinates': [34.9236095, 33.6236184], 'Risk': 'Very Low Risk',
'Score': 1}"]

What is the
slope at Digeni
Ave 5281?

["Data on aspect-slope for Digeni Ave: {'Aspect': 1, 'Coordinates': [35.1706277, 33.3759634], 'Slope':
7, 'Unit': 'Degree'}"]

Is Limassol in a
natura 2000
location?

["Data on natura-region for Limassol: {'Closest Zone Index': 39, 'Distance from Natura':
7924.347578318594, 'Natura_Region': 0, 'Unit': 'meters'}"]

What is the
vegetation like
at 20 Nikis Ave
in Nicosia?

["Data on vegetation for Nikis Ave: {'Vegetation': 'no vegetation', 'Vegetation Score': 0}", "Data on
vegetation for Nicosia: {'Vegetation': 'no vegetation', 'Vegetation Score': 0}"]

What is the
elavation at
Trodos?

["Data on aspect-slope for Trodos: {'Aspect': 195, 'Coordinates': [34.6980313, 33.0175999], 'Slope': 2,
'Unit': 'Degree'}"]

74

Provide me all
temperature
data for
Xenopoulou
Limassol

["Data on temperature for Limassol: [{'Average': 12.626734693877552, 'Minimum':
12.535714285714286, 'Maximum': 12.717755102040815, 'Unit': 'Degree Celsius', 'month': 1},
{'Average': 14.662893715479921, 'Minimum': 13.609770114942528, 'Maximum':
15.716017316017316, 'Unit': 'Degree Celsius', 'month': 2}, {'Average': 16.528360215053766,
'Minimum': 16.011021505376345, 'Maximum': 17.045698924731184, 'Unit': 'Degree Celsius', 'month':
3}, {'Average': 19.83423611111111, 'Minimum': 18.680694444444445, 'Maximum':
20.98777777777778, 'Unit': 'Degree Celsius', 'month': 4}, {'Average': 23.19758064516129, 'Minimum':
22.64354838709677, 'Maximum': 23.75161290322581, 'Unit': 'Degree Celsius', 'month': 5},
{'Average': 26.27835371634433, 'Minimum': 24.863651877133105, 'Maximum':
27.693055555555556, 'Unit': 'Degree Celsius', 'month': 6}, {'Average': 29.294339622641512,
'Minimum': 29.294339622641512, 'Maximum': 29.294339622641512, 'Unit': 'Degree Celsius', 'month':
7}, {'Average': 29.24099462365591, 'Minimum': 29.24099462365591, 'Maximum':
29.24099462365591, 'Unit': 'Degree Celsius', 'month': 8}, {'Average': 26.930434782608696,
'Minimum': 26.930434782608696, 'Maximum': 26.930434782608696, 'Unit': 'Degree Celsius', 'month':
9}, {'Average': 24.28266129032258, 'Minimum': 24.28266129032258, 'Maximum':
24.28266129032258, 'Unit': 'Degree Celsius', 'month': 10}, {'Average': 18.996105702364396,
'Minimum': 18.996105702364396, 'Maximum': 18.996105702364396, 'Unit': 'Degree Celsius', 'month':
11}, {'Average': 12.854504504504504, 'Minimum': 12.854504504504504, 'Maximum':
12.854504504504504, 'Unit': 'Degree Celsius', 'month': 12}]"]

What is the
average
temperature in
Makariou
Avenue
Limassol in
August?

["Data on temperature for Makariou Avenue Limassol: [{'Average': 11.804502688172043, 'Minimum':
11.225806451612904, 'Maximum': 12.383198924731182, 'Unit': 'Degree Celsius', 'month': 1},
{'Average': 13.689186427680587, 'Minimum': 12.04640804597701, 'Maximum':
15.331964809384164, 'Unit': 'Degree Celsius', 'month': 2}, {'Average': 15.274327956989247,
'Minimum': 14.17016129032258, 'Maximum': 16.378494623655914, 'Unit': 'Degree Celsius', 'month':
3}, {'Average': 18.420555555555556, 'Minimum': 16.748055555555556, 'Maximum':
20.093055555555555, 'Unit': 'Degree Celsius', 'month': 4}, {'Average': 21.76801075268817,
'Minimum': 21.766532258064515, 'Maximum': 21.769489247311828, 'Unit': 'Degree Celsius', 'month':
5}, {'Average': 24.765972222222224, 'Minimum': 23.052777777777777, 'Maximum':
26.479166666666668, 'Unit': 'Degree Celsius', 'month': 6}, {'Average': 27.39286132939695,
'Minimum': 26.608064516129033, 'Maximum': 28.17765814266487, 'Unit': 'Degree Celsius', 'month':
7}, {'Average': 27.568212365591396, 'Minimum': 26.914112903225803, 'Maximum':
28.22231182795699, 'Unit': 'Degree Celsius', 'month': 8}, {'Average': 26.309652777777778,
'Minimum': 26.05263888888889, 'Maximum': 26.566666666666666, 'Unit': 'Degree Celsius', 'month':
9}, {'Average': 23.25257159315339, 'Minimum': 23.079973118279568, 'Maximum':
23.42517006802721, 'Unit': 'Degree Celsius', 'month': 10}, {'Average': 18.1175, 'Minimum':
17.813055555555554, 'Maximum': 18.421944444444442, 'Unit': 'Degree Celsius', 'month': 11},
{'Average': 13.706586021505377, 'Minimum': 12.544354838709678, 'Maximum':
14.868817204301076, 'Unit': 'Degree Celsius', 'month': 12}]"]

How far is
Antoni
Samaraki 3117
from a road?

["Data on distance-road for Antoni Samaraki: [{'Coordinates': [34.712670489888175,
33.031387513618526], 'Distance': 0.17943243625346322, 'Type': 'residential', 'Unit': 'm'},
{'Coordinates': [34.71265686713147, 33.03138607453055], 'Distance': 1.6964108271612586, 'Type':
'proposed', 'Unit': 'm'}, {'Coordinates': [34.71231710034305, 33.03133309986523], 'Distance':
39.69835187592883, 'Type': 'residential', 'Unit': 'm'}, {'Coordinates': [34.71316954114658,
33.031453503536135], 'Distance': 55.51205325970738, 'Type': 'service', 'Unit': 'm'}, {'Coordinates':
[34.712130042472815, 33.03132966843828], 'Distance': 60.367849233662284, 'Type': 'residential',
'Unit': 'm'}, {'Coordinates': [34.713203300563926, 33.03119829957202], 'Distance':
61.4300022129353, 'Type': 'service', 'Unit': 'm'}, {'Coordinates': [34.71307300064087,

75

33.03218330048441], 'Distance': 85.37964064677227, 'Type': 'service', 'Unit': 'm'}, {'Coordinates':
[34.712128900470226, 33.032185799597535], 'Distance': 94.7443659926427, 'Type': 'residential',
'Unit': 'm'}, {'Coordinates': [34.712252299727325, 33.03045190018224], 'Distance':
97.5583926380372, 'Type': 'residential', 'Unit': 'm'}, {'Coordinates': [34.71286281056608,
33.03022530411089], 'Distance': 108.56386934024468, 'Type': 'residential', 'Unit': 'm'}, {'Coordinates':
[34.713668466790324, 33.031518535290566], 'Distance': 111.18017427183122, 'Type': 'service',
'Unit': 'm'}, {'Coordinates': [34.71185616232489, 33.0323677737758], 'Distance':
127.4906485598522, 'Type': 'residential', 'Unit': 'm'}, {'Coordinates': [34.71161440003438,
33.032166500192], 'Distance': 137.32323761064276, 'Type': 'residential', 'Unit': 'm'}, {'Coordinates':
[34.71254229969941, 33.032962400347195], 'Distance': 144.96921342498146, 'Type': 'residential',
'Unit': 'm'}, {'Coordinates': [34.71254229969941, 33.032962400347195], 'Distance':
144.96921342498146, 'Type': 'residential', 'Unit': 'm'}, {'Coordinates': [34.71231769995192,
33.02966449988624], 'Distance': 162.67830534070671, 'Type': 'residential', 'Unit': 'm'}, {'Coordinates':
[34.712135699991265, 33.03322630022484], 'Distance': 178.6302912063912, 'Type': 'residential',
'Unit': 'm'}, {'Coordinates': [34.71313890013175, 33.03327709995417], 'Distance':
180.66094329205396, 'Type': 'residential', 'Unit': 'm'}, {'Coordinates': [34.711087216247,
33.030795702532714], 'Distance': 183.9932989908609, 'Type': 'residential', 'Unit': 'm'}, {'Coordinates':
[34.71416370012791, 33.030444599573926], 'Distance': 186.66669798020015, 'Type': 'residential',
'Unit': 'm'}]"]

Which beach is
closest to
Agros?

["Data on nearest-blueflag-beach for Agros: [{'Beach Coordinates': [34.70403512909493,
33.11212107810617], 'Distance': 25200.48169457493, 'Municipality': 'Agios Tychonas Community
board', 'Name': 'Castella', 'Unit': 'm'}]"]

Is an
earthquake
likely to happen
at 19 Afroditis
Nicosia? ['Data on seismic-Zone for Nicosia: None']

How risky is a
landslide at
Demostheni
Severi
Avenue?

["Data on landslides-risk for Demostheni Severi Avenue: {'Coordinates': [35.164496799700636,
33.354070223844005], 'Distance': 97.89247793220835, 'Risk': 'Very Low Risk', 'Score': 1, 'Unit': 'm'}"]

How fast is the
wind in Andrea
Zakou 7101? ["Data on wind for Andrea Zakou: {'Unit': 'Knots', 'Wind Direction': 'SE', 'Wind Speed': 8}"]

What type of
road is closest
to Lefke? ['Data on distance-road for Lefke: []']

What type of
winds can I
expect at
mount
Olympus? ["Data on wind for Olympus: {'Unit': 'Knots', 'Wind Direction': 'SE', 'Wind Speed': 12}"]

76

How many
trees are there
around
Larnakos Ave
2101 ?

["Data on near-tree for Larnakos Ave: {'Trees': [{'Coordinates': [35.17254438664845,
33.37212480111008], 'Distance': 11.495980625613468, 'Tree': 1}, {'Coordinates':
[35.17257082828566, 33.371923105440544], 'Distance': 14.925076061647559, 'Tree': 2},
{'Coordinates': [35.17258171601863, 33.37202395327532], 'Distance': 7.170711393293223, 'Tree':
3}, {'Coordinates': [35.172535054305904, 33.37202395327532], 'Distance': 11.866039024633997,
'Tree': 4}, {'Coordinates': [35.172594159142015, 33.37237977488101], 'Distance':
28.934720476680948, 'Tree': 5}, {'Coordinates': [35.172594159142015, 33.371873632917826],
'Distance': 18.160381162682505, 'Tree': 6}, {'Coordinates': [35.17280102606843,
33.37183367434179], 'Distance': 27.99039668805683, 'Tree': 7}, {'Coordinates':
[35.17283057848649, 33.371869827339154], 'Distance': 28.024735631544583, 'Tree': 8}], 'Unit':
'm'}"]

Is Damagitou
street or
Rossias street
closer to a
beach?

["Data on nearest-blueflag-beach for Damagitou: [{'Beach Coordinates': [34.681300000173415,
33.0548726002827], 'Distance': 3498.4914004809343, 'Municipality': 'Limassol Municipality', 'Name':
'Akti Olympion A', 'Unit': 'm'}]", "Data on nearest-blueflag-beach for Rossias: [{'Beach Coordinates':
[34.681300000173415, 33.0548726002827], 'Distance': 6088.898811744518, 'Municipality': 'Limassol
Municipality', 'Name': 'Akti Olympion A', 'Unit': 'm'}]"]

When is it the
rainiest in
Kifisias 4549?

["Data on precipitation for Kyprou: [{'Average': 130.428, 'Month': 1, 'Score': 'high', 'Unit': 'mm'},
{'Average': 77.0578, 'Month': 2, 'Score': 'moderate', 'Unit': 'mm'}, {'Average': 64.9118, 'Month': 3,
'Score': 'moderate', 'Unit': 'mm'}, {'Average': 24.0919, 'Month': 4, 'Score': 'low', 'Unit': 'mm'}, {'Average':
44.7474, 'Month': 5, 'Score': 'low', 'Unit': 'mm'}, {'Average': 8.29263, 'Month': 6, 'Score': 'low', 'Unit':
'mm'}, {'Average': 2.32986, 'Month': 7, 'Score': 'low', 'Unit': 'mm'}, {'Average': 2.67441, 'Month': 8,
'Score': 'low', 'Unit': 'mm'}, {'Average': 3.97256, 'Month': 9, 'Score': 'low', 'Unit': 'mm'}, {'Average':
19.3452, 'Month': 10, 'Score': 'low', 'Unit': 'mm'}, {'Average': 34.4878, 'Month': 11, 'Score': 'low', 'Unit':
'mm'}, {'Average': 100.317, 'Month': 12, 'Score': 'high', 'Unit': 'mm'}]"]

Does it get
colder in
Paphos or
Limassol?

["Data on temperature for Paphos: [{'Average': 12.436962365591398, 'Minimum':
12.436962365591398, 'Maximum': 12.436962365591398, 'Unit': 'Degree Celsius', 'month': 1},
{'Average': 15.57413793103448, 'Minimum': 15.574137931034482, 'Maximum':
15.574137931034482, 'Unit': 'Degree Celsius', 'month': 2}, {'Average': 16.622311827956988,
'Minimum': 16.622311827956988, 'Maximum': 16.622311827956988, 'Unit': 'Degree Celsius', 'month':
3}, {'Average': 19.921388888888888, 'Minimum': 19.921388888888888, 'Maximum':
19.921388888888888, 'Unit': 'Degree Celsius', 'month': 4}, {'Average': 21.325940860215052,
'Minimum': 21.325940860215052, 'Maximum': 21.325940860215052, 'Unit': 'Degree Celsius', 'month':
5}, {'Average': 26.204444444444444, 'Minimum': 26.204444444444444, 'Maximum':
26.204444444444444, 'Unit': 'Degree Celsius', 'month': 6}, {'Average': 27.697983870967743,
'Minimum': 27.697983870967743, 'Maximum': 27.697983870967743, 'Unit': 'Degree Celsius', 'month':
7}, {'Average': 27.646370967741934, 'Minimum': 27.646370967741934, 'Maximum':
27.646370967741934, 'Unit': 'Degree Celsius', 'month': 8}, {'Average': 25.624861111111112,
'Minimum': 25.62486111111111, 'Maximum': 25.62486111111111, 'Unit': 'Degree Celsius', 'month': 9},
{'Average': 23.09529569892473, 'Minimum': 23.09529569892473, 'Maximum': 23.09529569892473,
'Unit': 'Degree Celsius', 'month': 10}, {'Average': 18.62986111111111, 'Minimum': 18.62986111111111,
'Maximum': 18.62986111111111, 'Unit': 'Degree Celsius', 'month': 11}, {'Average':
13.482281059063135, 'Minimum': 13.482281059063137, 'Maximum': 13.482281059063137, 'Unit':
'Degree Celsius', 'month': 12}]", "Data on temperature for Limassol: [{'Average':
12.626734693877552, 'Minimum': 12.535714285714286, 'Maximum': 12.717755102040815, 'Unit':
'Degree Celsius', 'month': 1}, {'Average': 14.662893715479921, 'Minimum': 13.609770114942528,
'Maximum': 15.716017316017316, 'Unit': 'Degree Celsius', 'month': 2}, {'Average':
16.528360215053766, 'Minimum': 16.011021505376345, 'Maximum': 17.045698924731184, 'Unit':

77

'Degree Celsius', 'month': 3}, {'Average': 19.83423611111111, 'Minimum': 18.680694444444445,
'Maximum': 20.98777777777778, 'Unit': 'Degree Celsius', 'month': 4}, {'Average':
23.19758064516129, 'Minimum': 22.64354838709677, 'Maximum': 23.75161290322581, 'Unit':
'Degree Celsius', 'month': 5}, {'Average': 26.27835371634433, 'Minimum': 24.863651877133105,
'Maximum': 27.693055555555556, 'Unit': 'Degree Celsius', 'month': 6}, {'Average':
29.294339622641512, 'Minimum': 29.294339622641512, 'Maximum': 29.294339622641512, 'Unit':
'Degree Celsius', 'month': 7}, {'Average': 29.24099462365591, 'Minimum': 29.24099462365591,
'Maximum': 29.24099462365591, 'Unit': 'Degree Celsius', 'month': 8}, {'Average':
26.930434782608696, 'Minimum': 26.930434782608696, 'Maximum': 26.930434782608696, 'Unit':
'Degree Celsius', 'month': 9}, {'Average': 24.28266129032258, 'Minimum': 24.28266129032258,
'Maximum': 24.28266129032258, 'Unit': 'Degree Celsius', 'month': 10}, {'Average':
18.996105702364396, 'Minimum': 18.996105702364396, 'Maximum': 18.996105702364396, 'Unit':
'Degree Celsius', 'month': 11}, {'Average': 12.854504504504504, 'Minimum': 12.854504504504504,
'Maximum': 12.854504504504504, 'Unit': 'Degree Celsius', 'month': 12}]"]

Is august
warmer in Zygi
or in Paphos?

["Data on temperature for Zygi: [{'Average': 10.826075268817204, 'Minimum': 10.56518817204301,
'Maximum': 11.086962365591399, 'Unit': 'Degree Celsius', 'month': 1}, {'Average':
12.861350574712644, 'Minimum': 11.838649425287358, 'Maximum': 13.88405172413793, 'Unit':
'Degree Celsius', 'month': 2}, {'Average': 14.679032258064517, 'Minimum': 14.135483870967741,
'Maximum': 15.22258064516129, 'Unit': 'Degree Celsius', 'month': 3}, {'Average': 17.640625,
'Minimum': 16.639861111111113, 'Maximum': 18.641388888888887, 'Unit': 'Degree Celsius', 'month':
4}, {'Average': 21.3442876344086, 'Minimum': 20.495967741935484, 'Maximum':
22.19260752688172, 'Unit': 'Degree Celsius', 'month': 5}, {'Average': 24.237916666666663,
'Minimum': 23.066388888888888, 'Maximum': 25.409444444444443, 'Unit': 'Degree Celsius', 'month':
6}, {'Average': 26.901344086021506, 'Minimum': 26.699596774193548, 'Maximum':
27.103091397849465, 'Unit': 'Degree Celsius', 'month': 7}, {'Average': 26.97056451612903,
'Minimum': 26.939919354838707, 'Maximum': 27.001209677419357, 'Unit': 'Degree Celsius', 'month':
8}, {'Average': 25.5638118723099, 'Minimum': 24.72375, 'Maximum': 26.403873744619798, 'Unit':
'Degree Celsius', 'month': 9}, {'Average': 22.730309139784946, 'Minimum': 22.18051075268817,
'Maximum': 23.28010752688172, 'Unit': 'Degree Celsius', 'month': 10}, {'Average':
17.57673611111111, 'Minimum': 17.311666666666667, 'Maximum': 17.841805555555556, 'Unit':
'Degree Celsius', 'month': 11}, {'Average': 12.813508064516128, 'Minimum': 10.908736559139786,
'Maximum': 14.718279569892472, 'Unit': 'Degree Celsius', 'month': 12}]", "Data on temperature for
Paphos: [{'Average': 12.436962365591398, 'Minimum': 12.436962365591398, 'Maximum':
12.436962365591398, 'Unit': 'Degree Celsius', 'month': 1}, {'Average': 15.57413793103448,
'Minimum': 15.574137931034482, 'Maximum': 15.574137931034482, 'Unit': 'Degree Celsius', 'month':
2}, {'Average': 16.622311827956988, 'Minimum': 16.622311827956988, 'Maximum':
16.622311827956988, 'Unit': 'Degree Celsius', 'month': 3}, {'Average': 19.921388888888888,
'Minimum': 19.921388888888888, 'Maximum': 19.921388888888888, 'Unit': 'Degree Celsius', 'month':
4}, {'Average': 21.325940860215052, 'Minimum': 21.325940860215052, 'Maximum':
21.325940860215052, 'Unit': 'Degree Celsius', 'month': 5}, {'Average': 26.204444444444444,
'Minimum': 26.204444444444444, 'Maximum': 26.204444444444444, 'Unit': 'Degree Celsius', 'month':
6}, {'Average': 27.697983870967743, 'Minimum': 27.697983870967743, 'Maximum':
27.697983870967743, 'Unit': 'Degree Celsius', 'month': 7}, {'Average': 27.646370967741934,
'Minimum': 27.646370967741934, 'Maximum': 27.646370967741934, 'Unit': 'Degree Celsius', 'month':
8}, {'Average': 25.624861111111112, 'Minimum': 25.62486111111111, 'Maximum': 25.62486111111111,
'Unit': 'Degree Celsius', 'month': 9}, {'Average': 23.09529569892473, 'Minimum': 23.09529569892473,
'Maximum': 23.09529569892473, 'Unit': 'Degree Celsius', 'month': 10}, {'Average':
18.62986111111111, 'Minimum': 18.62986111111111, 'Maximum': 18.62986111111111, 'Unit': 'Degree

78

Celsius', 'month': 11}, {'Average': 13.482281059063135, 'Minimum': 13.482281059063137,
'Maximum': 13.482281059063137, 'Unit': 'Degree Celsius', 'month': 12}]"]

When is the
warmest period
in Afroditis
Nicosia?

["Data on temperature for Nicosia: [{'Average': 10.365524193548389, 'Minimum':
10.191263440860215, 'Maximum': 10.53978494623656, 'Unit': 'Degree Celsius', 'month': 1},
{'Average': 12.876724137931035, 'Minimum': 11.392528735632183, 'Maximum':
14.360919540229887, 'Unit': 'Degree Celsius', 'month': 2}, {'Average': 14.894758064516129,
'Minimum': 14.366666666666665, 'Maximum': 15.422849462365592, 'Unit': 'Degree Celsius', 'month':
3}, {'Average': 19.01673611111111, 'Minimum': 17.19986111111111, 'Maximum': 20.83361111111111,
'Unit': 'Degree Celsius', 'month': 4}, {'Average': 22.928091397849464, 'Minimum':
22.41962365591398, 'Maximum': 23.436559139784944, 'Unit': 'Degree Celsius', 'month': 5},
{'Average': 27.05375, 'Minimum': 25.775555555555556, 'Maximum': 28.331944444444446, 'Unit':
'Degree Celsius', 'month': 6}, {'Average': 30.338239247311826, 'Minimum': 30.168010752688172,
'Maximum': 30.508467741935483, 'Unit': 'Degree Celsius', 'month': 7}, {'Average':
29.9559811827957, 'Minimum': 29.88467741935484, 'Maximum': 30.02728494623656, 'Unit':
'Degree Celsius', 'month': 8}, {'Average': 27.549128334960145, 'Minimum': 26.445694444444445,
'Maximum': 28.652562225475844, 'Unit': 'Degree Celsius', 'month': 9}, {'Average':
23.562567204301075, 'Minimum': 23.001747311827955, 'Maximum': 24.12338709677419, 'Unit':
'Degree Celsius', 'month': 10}, {'Average': 16.663194444444443, 'Minimum': 16.319583333333334,
'Maximum': 17.006805555555555, 'Unit': 'Degree Celsius', 'month': 11}, {'Average':
12.06619623655914, 'Minimum': 10.551075268817204, 'Maximum': 13.581317204301076, 'Unit':
'Degree Celsius', 'month': 12}]"]

Is the wildire
risk higher in
Agros or in
Lefke?

["Data on wildfire-risk for Agros: {'Coordinates': [34.917436510667926, 33.01845097395608],
'Distance': 23.088961058374785, 'Risk': 'Very Low Risk', 'Score': 1, 'Unit': 'm'}", "Data on wildfire-risk
for Lefke: {'Coordinates': [35.136626062654386, 32.85136385645825], 'Distance':
30.776583978546427, 'Risk': 'Very Low Risk', 'Score': 1, 'Unit': 'm'}"]

Is Nicosia or
Limassol
situated at a
higher
elevation?

["Data on elevation for Nicosia: {'Coordinates': [35.1746503, 33.3638783], 'Elevation': 141, 'Unit':
'm'}", "Data on elevation for Limassol: {'Coordinates': [34.6852901, 33.0332657], 'Elevation': 21, 'Unit':
'm'}"]

Table C1: Containing questions and relevant data used for evaluating the end system and the
answering LLM.

79

