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Abstract. This work examines methods to enhance crowdsensing of road
quality using Inertial Measurement Units (IMUs) on bicycles. The focus of
this research has been on three main areas. Firstly, a centralized machine
learning model was developed to classify road types based on different
pavements. Secondly, a classical machine learning model was developed to
classify participants and identify unique features of participants. Lastly, a
federated learning model has been created to explore its potential to classify
road quality while mitigating privacy issues.

Through this study, significant personalized factors were found that im-
pact the accuracy and generalizability of road quality classification models.
Whereas prior studies have often overlooked these personalized biases, this
research highlights their importance in developing robust and universally
applicable models. Although, the federated learning approach did not fully
mitigate these biases, it offers promising direction for future research to
achieve more universally applicable road quality insights.

Additional Key Words and Phrases: machine learning, time-series classifica-
tion, federated learning, road quality, bicycle, IMU, classification algorithms,
non-IID data, vibration

1 INTRODUCTION
In 2022, the Dutch government announced that it would invest 780
million euros in cycling infrastructure [7]. Combined with exist-
ing municipal and provincial commitments, this brings the total
investment to 1.1 billion euros by the year 2030.
This financial investment underscores the growing demand for

safe and pleasant cycling experiences. The funds will be allocated
towards various initiatives, such as bicycle parking facilities, new
bicycle roads, tunnels, bridges, and road maintenance. The effec-
tiveness of cycling infrastructure is dependent on both quantity
and quality. Factors such as pavement smoothness, potholes and
irregularities impact the overall riding experience and safety. How-
ever, determining which roads (in general, not only bicycle roads)
require maintenance can be challenging. Traditional pavement dis-
tress inspection methods are carried out manually, which may be
subjective and require extensive effort [5].
Inertial Measurement Units (IMUs) attached to bicycles can be

used to assess road quality through the vibrations and motions that
they capture. Prior studies have examined the effectiveness of such
methods with promising results. Despite previous studies that at-
tached IMUs to bicycles to understand road conditions, the majority
have developed solutions from a single probe bicycle. Several per-
sonalised factors such as tire pressure, cyclist’s weight, bicycle type,
suspension, and riding style affect the vibrations of bicycles. These
personalized biases impact the accuracy and generalizability of road
classification models.
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This research highlights the importance of recognizing person-
alized biases and investigates methods to classify road quality and
identify unique participant features using machine learning tech-
niques.
This study involves the development of a centralized machine

learning model, a model for participant classification and feature
extraction, and an exploration of federated learning. A combination
of these techniques could facilitate a reliable mechanism for measur-
ing road quality using IMUs on bicycles. To guide this investigation,
the following research question has been formed:

• How can machine learning models be developed to extract
generic road quality insights from data collected using IMU
sensors on a bicycle?

This research question can be answered with the following sub-
questions:

(1) How can a centralized machine learning model be developed
to classify different types of road quality from crowdsensed
data collected using IMU sensors on a bicycle?

(2) How can personalized features that influence road quality
assessment be identified and captured from IMU data of mul-
tiple cyclists?

(3) How can federated learning be utilized to address privacy
concerns in the development of a bicycle road quality classi-
fication model?

In addressing these questions, this research aims to contribute to
the existing knowledge in the field of road quality assessment using
IMU sensors on bicycles. Firstly, a centralized machine learning
model was developed using Edge Impulse [1] to classify different
road types based on IMU data. This model enhances the reliability
of road quality assessments. Secondly, another machine learning
model was also developed with Edge Impulse to classify partici-
pants and identify features unique to each participant. Thirdly, a
federated learning model was developed. The implementation of
this model contributes to the existing knowledge by demonstrating
how privacy-preserving techniques can be effectively applied to
road quality classification using IMU data from bicycles. This paves
the way for more secure and scalable crowdsensing applications.
These contributions help towards the development of a generic

road quality classification model, which in turn can contribute to
more informed decision-making in infrastructure planning and
maintenance. The development of a model capable of extracting
generic road quality insights from heterogeneous data is also ex-
pected to add to the field of crowdsensing. This could lead to a
scalable and cost-effective approach to road quality assessment. For
instance, one possible use case could be the integration of IMU
sensors in public shared bikes to assess road quality. Lastly, this
research seeks to offer valuable insights and methodologies that
can be applied not only in the context of cycling, but also in other
domains of transportation and urban planning. The focus of the
research is on the use of IMU sensors on bicycles, but a similar
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approach could be adapted for use in other modes of transportation,
such as cars or trains.

The structure of this proposal is as follows: In section 2 an overview
of related works in the field of road quality assessment and the use
of IMUs on bicycles is given. Section 3 will detail the methodologies
used to answer the research question and sub-questions. Section
4 will discuss the results. Section 5 gives a brief discussion about
the potential reasons for the lower accuracy of the new central-
ized model in Python. Finally, section 6 shows the planning of the
research.

2 RELATED WORK
A substantial amount of research has already been done on road
quality and road surface detection. In general, there are three pop-
ular approaches to monitoring road surfaces: 3D reconstruction,
vibration/sensory-based, and computer vision-based [4]. The scope
of this research is vibration/sensory-based monitoring. As this is
still a broad field of research, a specification for IMUs on bicycles
can be made. Both smartphones and dedicated IMUs have been
used with bicycles to determine road quality. Prior research how-
ever often lacks personalized factors, such as tire pressure, cyclist’s
weight, bicycle type and suspension which affect the vibrations
of the bicycle. Nagaraj et al. [9] and Vittorio et al. [15] assessed
road quality using the IMU data processed by smartphones. Peng
et al. [12] looked into the use of IMUs on dock-less shared bikes.
In their experiment, two bikes were used. A dynamic calibration
was needed as the IMUs on the bikes were mounted at different
angles. A few years later, more extensive research continued on this
work [6]. The work of Tazelaar [13] uses an IMU connected to a
Raspberry Pi [2] and focuses on the labelling of road quality using
two buttons on the handlebar. In contrast to the other studies, the
participants themselves specify which roads are classified as ’good’
or ’bad’ in this study. López [8] also researched crowdsensing road
quality and roughness using IMU sensors on bicycles. Where this
research will focus on the personalized factors, their research had a
focus on making estimations under various speed conditions. Heidt
and Dorer [3] also predicted road quality using IMUs on bicycles
and mentions that a variety of routes, bicycles, riders, speeds and
tire pressure could be taken into account for future work. Peirens
[11] analysed vibrations made by speed-pedelecs.
In conclusion, multiple studies have assessed road quality using

bicycles. In general personalized factors are overlooked. This re-
search will have an emphasis on these personal factors. How this
research is conducted can be read in the methodologies below.

3 METHODOLOGIES
This section outlines the methodologies employed in this research
to develop and evaluate models for road quality classification and
participant identification using IMU data.

3.1 RQ 1 - Centralized road quality classification model
To address the first research question, a centralizedmachine learning
model was developed to classify road quality based on data collected
from IMU sensors on a bicycle.

3.1.1 The dataset. Prior and ongoing research at the University
of Twente has involved collecting data from cyclists. This data has
been examined for its utility in classifying road quality. The already
collected data was deemed sufficient for this research. The obtained
dataset consists of crowdsensed data from 17 participants. Only
participants who cycled at least once per month in the past half-
year were eligible to take part in the research. The participants were
asked to cycle a specific route on the e-bike at a safe speed while
following traffic regulations.

During the field trials, the bicycle and participants were equipped
with various sensors. Four IMU sensors were placed on the helmet,
handlebar, pedal and frame, respectively. Additionally, a sensor was
used to capture the location data, a wristband captured biometric
data and a sensor on the chest provided even more accurate heart-
rate data. In some trials, button presses have been used to determine
how pleasant the participant experienced their cycling experience.
Furthermore, a camera was attached to the bicycle to record the
cycled route.
For this research, only the data from the IMU sensors on the

handlebar and frame, the camera, and the location data was used.

3.1.2 Data labelling and synchronization. This study requires the
crowdsensed data of multiple participants who cycle on a bicycle
with sensors attached to it. Firstly, roads of different qualities have
been classified. The road quality was classified manually by looking
at the camera footage in combination with the IMU data. Three
different road qualities have been labelled: ’asphalt’, ’good brick’,
and ’bad brick’. An approximately even amount of data has been
labelled for each label. The scope of this research was determined to
classify continuous data of the whole road. So, instead of an event-
based classification, the overall pavement of a road is determined.
This is done in segments of approximately 35 seconds.

In Excel, a ’master file’ was created to label the data of the partic-
ipants. At the start of a field trip, a synchronization movement was
made by moving the handlebars of the bicycle left, right, and left
again. The ProMove-mini sensors from Inertia Studio were used to
capture acceleration, gyroscope, and compass values in x, y, and z
directions. The Inertia Studio application visualises these values in
graphs. The synchronization movement’s timestamp was identified
using this visualization.

3.1.3 Data preprocessing. Using the programming language Python
[14], various functions were made to preprocess the data into a for-
mat that can be utilized and handled by Edge Impulse. The ’master
file’ is used to connect the filenames with the participants and the
relevant segment times with different road qualities. The timestamps
in the Inertia Studio application, the IMU data file, and the video
files all have different time formats. Functions have been created
to convert these timestamps. It was thoroughly checked whether
the time conversion was correct. An example can be found in Fig-
ure 1, where a timestamp from a video file was used to find the
corresponding visualisation in Inertia Studio.

The preprocessing workflow included the following steps:

(1) Looping Through Participant Trips: The ’master file’ is
used to iterate over all participant trips. The relevant data is
accessed and processed systematically.
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Fig. 1. A clear transition in road quality

(2) Removing Metadata: The metadata is removed from the
raw files. This is done such that Edge Impulse can process
the files.

(3) Segmenting Road Quality Data: The relevant columns of
the IMU files are extracted. For both the handlebar and frame,
these are the acceleration and gyroscope values in x, y, and z
direction. Separate csv files are created for the different road
quality segments. The synchronization movement at the start
of each trip was used as a reference point. By calculating the
time since this movement, data was segmented into different
road quality categories (asphalt, good brick, bad brick).

(4) Merging IMU Data: The IMU data from the handlebar and
frame are merged based on the timestamp in milliseconds.

(5) AddingVelocityData: From the location data, the velocity of
the participant is extracted. Since the IMU data was sampled
at 200 Hz and the location data at 1 Hz, linear interpolation
was used to estimate and insert the velocity values into the
IMU data.

(6) Updating the Master File: The filenames of the newly cre-
ated csv files were written back to the ’master file’. This
ensures that all processed data files were systematically cata-
loged and easily referenced.

3.1.4 Model development. The preprocessed data was used as input
for a centralized machine learning model using Edge Impulse. The
model was trained to classify the three different road types (asphalt,
good brick, bad brick).

The final model has a 67%/33% train/test split. This split was cho-
sen, as for each participant two trips were allocated to the training
set, and one trip is reserved for testing. This approach ensures that
the model trains and tests on data from all participants. Thus a
representative and unbiased evaluation is maintained.
In table 1 an overview of the most important model parameters

is shown. Multiple combinations of parameters have been tested
extensively to optimize the road quality classification model. The
final model has a window size of 4 seconds with a window increase
of 1 second. This window approach led to the best results as it gives
the model enough time to accurately classify the road quality while
producing enough samples. Zero-padding is applied if a sample in
the dataset is shorter than the window size. The model performs
spectral analysis on 13 input axes. Namely, the acceleration and gy-
roscope in x, y, and z direction for both the handlebar and frame, plus

Table 1. Road classification model parameters

Parameter Value
Window size 4000 ms

Window increase 1000 ms
batch size 32
FFT length 64

Training cycles 200
Learning rate 0.0005

Table 2. Road classification neural network architecture

Model layer Value
Input 481 features
Dense 20 neurons
Dense 10 neurons
Dropout 0.5 rate

the velocity data. The spectral analysis uses FFT (Fast Fourier Trans-
form) to convert the signal from the time domain to the frequency
domain. This reveals the strength of each frequency component. An
FFT length of 64 was chosen. Through testing, this appeared as the
most optimal balance between the time resolution and frequency
resolution. A log base of 10 was applied to the FFT spectrum to
compress the dynamic range. This makes it easier for the neural
network to learn from the data. The setting to allow overlapping
FFT Frames was checked. This works similar to a frame stride.

The training process involves 200 learning cycles with a learning
rate of 0.0005. These values offer sufficient learning time while
reducing the risk of overfitting.
In Table 2 the architecture of the road classification model is

shown. Edge Impulse extracted 481 distinct features for the model
input. The model has two dense layers with 20 and 10 neurons,
respectively, followed by a dropout layer with a rate of 0.5. This
relatively high dropout rate is chosen to prevent overfitting and
improves the model’s ability to generalize on new, unseen data.

Edge Impulse has a tool called the ’EON Tuner’. This tool analyzes
the input data, processing blocks, and neural network architecture
and gives an overview of possible architectures. One intended use
for this is to create amodel that fits the chosen target device’s latency
and memory requirements. Edge Impulse does not recognize the
ProMove-Mini sensor from Inertia Studio as a deployment device.
However, the platform provides an estimated processing time of 48
milliseconds and a peak RAMusage of 46 kilobytes. The ’EON Tuner’
is also used to fine-tune the parameter values. This greatly helped
to develop a model with the promising performance as described at
the results in section 4.

3.2 RQ2 - Identifying personalized features
The second sub-question focuses on finding features to differenti-
ate between the participants. Personalized factors can significantly
influence the data collected by the sensors. Several personalized
factors such as tire pressure, cyclist’s weight, riding style, bicycle
type, and suspension can alter the captured data. The Pervasive
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Table 3. Participant classification model parameters

Parameter Value
Window size 4000 ms

Window increase 1000 ms
batch size 32
FFT length 64

Training cycles 300
Learning rate 0.0005

Table 4. Participant classification neural network architecture

Model layer Value
Input 481 features
Dense 40 neurons
Dense 20 neurons
Dense 10 neurons
Dropout 0.5 rate

Systems research group at the University of Twente has multiple
studies that use data from the sensor-embedded bicycles. In this
research, the road quality was assessed, where the free variable was
the different participants that participated in the study. This vari-
ability was expected to influence the data captured by the sensors.
For instance, through the different riding styles and the total weight
of the system. To capture these personalized features, an additional
machine learning model was developed in Edge Impulse to classify
the participants based on the collected data.

3.2.1 The dataset and preprocessing. The raw dataset used for the
participant classifcation model is identical to that of the road quality
classification model. The preprocessing steps are largely similar
with one key difference. Instead of solely focusing on segments of
different road quality, also the intervening parts are used. In the
dataset, this is most commonly asphalt pavement. This approach
results in approximately 9 minutes of data being utilized per field
trip. The model uses the data of 4 participants.

3.2.2 Model development. The participant classification model was
also developed using Edge Impulse. Themodel has a 71%/29% train/test
split.

In Table 3 the model parameters can be found. Interestingly, the
optimal model selected by running the ’EON Tuner’ exhibited near
identical parameters for both the road classification and participant
classification models. In comparison with the road classification
model, the final participant classification model uses more training
cycles (300), and it has an extra dense layer of 40 neurons.

In Edge Impulse, an option can be enabled during the model train-
ing to calculate the feature importance. This gives an overview of
which features are the most relevant to uniquely identify a certain
participant. This tool also shows what features are the most influ-
ential overall. In section 4 the results of the model and the feature
importance will be analysed.

Table 5. Centralized model parameters (Python)

Parameter Value
Window size 4000 ms

Window increase 2000 ms
batch size 16

Training cycles 200
Learning rate 0.001

3.3 RQ 3 - Federated learning
Federated learning is a decentralized approach to machine learning
that aims to train a machine learning algorithm on multiple local
datasets without explicitly exchanging raw data samples. Instead,
multiple participants collaboratively train a model locally using
their own data and only share the model weights and gradients with
a central server.
Crowdsensed data involves the data of a lot of participants. As

shown in the results section, the participant classification model is
able to correctly classify participants to a certain extend. Federated
learning is particularly useful to mitigate privacy issues as it allows
data to remain on local devices.
In this research, federated learning is used to assess whether it

can achieve a performance similar to traditional models. By training
the models locally and subsequently aggregating these models, this
approach aims to improve the generalizability and robustness of the
road quality classification model while addressing privacy concerns
associated with crowdsensed data.

3.3.1 Challenges in adapting the road classification model. Extract-
ing the road classification model from Edge Impulse along with
its weights proved to be more challenging than anticipated. As a
consequence, an agreement was made with the supervisor of this
research to utilize his Python code for federated learning. This code
had been used for a similar project and has been adapted to fit the
dataset used in this research.

3.3.2 Data preparation. Several steps were needed to change the
data before feeding it to the machine learning model. The road
quality classification model in Edge Impulse uses the same data files
as the federated learning approach. Even so, the structure is slightly
different as data files were merged to have all training data of a
participant in one file. The data is windowed into windows of 4
seconds with an overlap of 2 seconds. A function was created to
generate the label files, corresponding to the data segments. Lastly,
the filenames were changed to the format used in the existing code.

3.3.3 The centralized model (Python). Table 5 shows the model pa-
rameters used for the centralized model that is used for the federated
learning model. These values are slightly different from the cen-
tralized model in Edge Impulse. Changing (part of) the parameter
values and or model architecture seemed to worsen the accuracy.

3.3.4 The federated learning model. The received Python code was
adapted to work with the dataset. Data from two participants was
used to train the centralized model, while data from another two
participants was used for federated learning. The final model is
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Table 6. Centralized model neural network architecture (Python)

Model layer Value
Input 13 features
Dense 128 neurons
Dense 64 neurons
Dropout 0.5 rate

Fig. 2. Road quality training perfomance metrics

trained over 3 rounds, with a batch size of 16 and 20 epochs per
round.

4 RESULTS
This section presents the results of the three developed models
in this research: the road quality classification model, the partici-
pant classification model, and the federated learning model. The
performances and insights are written down in the subsections.

4.1 Road quality classification model
The centralized road classificationmodel was trained using a 67%/33%
train/test split, where two field trips per participant are used for
training and one trip for testing. The final model achieved a training
accuracy of 100% and a testing accuracy of 97.04%. This indicates
that the model performs quite well with robust generalization to
unseen data.

4.1.1 Road qualification training results. In Figure 2 an overview
of the training performance metrics is shown. A training accuracy
of 100% might indicate some overfitting of the model. Nevertheless,
this is not necessarily the case here, since the testing accuracy is
also quite high.

Figure 3 shows Edge Impulse’s data explorer visualisation for the
training set. Edge Impulse uses UMAP (a dimensionality reduction
algorithm) to project the high dimensionality feature input data into
a 2 dimensional space. With the exception of a singular node, all data
point all points seem to be neatly separated into different clouds.
This indicates that the model can accurately identify differences in
features between the differently labeled data.

Fig. 3. Road quality training data explorer

Fig. 4. Road quality test metrics

Fig. 5. Road quality test feature explorer

4.1.2 Road qualification test results. Figure 4 shows the metrics
of the test set for classifying the road quality. The high precision,
recall and F1 scores across all classes indicate the model’s ability to
accurately distinguish between the different road quality classes.

For the confusion matrix a minimum confidence rating of 0.6 was
used. The confusion matrix shows that the model can effectively
and correctly identify each road quality class.
Figure 5 shows the visualisation of the features for the test set.

There is a separation between the different classes and the wrongly
labeled classes are in the area between two classes. This indicates
that the model is well-trained and shows the model is not likely to
be overfitting.
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Fig. 6. Participant classification training performance metrics

Fig. 7. Participant training data explorer

4.2 Participant classification model
In order to find personalized features a participant classification
model was created. The shown model trains and tests on data of 4
participants.

4.2.1 Participant classification training results. Figure 6 shows the
performance metrics for the participant classification model. There
is a training accuracy of 95.6% and a loss of 0,21.

Figure 7 shows the participant classification data explorer. Just as
for the other model, the data points seem to be clearly separated.
The wrongly labeled data points are mainly at the edge of a class.

4.2.2 Road qualification test results. Figure 8 shows the test metrics
for the participant classification. With 4 participants, the model is
able to correctly classify a participant with a 73.92% accuracy. Some
participants perform better than others. The accuracy, precision,
recall, and F1 scores are somewhat lower than the corresponding
training metrics. It’s possible that the model is slightly overfitting.
Figure 9 shows the feature explorer of the test set for the par-

ticipant classification model. In comparison with the other feature
visualisations, it is much harder to humanly identify the different
classes. This is also reflected in the lower testing accuracy of 73.92%
in comparison with the training accuracy of 95.6%.

4.2.3 Personalized features. One of themain goals of the participant
classification model is to find personalized features. Table 7 shows

Fig. 8. Participant classification test metrics

Fig. 9. Participant test feature explorer

Table 7. Feature importance (all data)

Feature Importance score
az_f Spectral Power 4.69 - 7.81 Hz 3/100
ay_h Spectral Power 4.69 - 7.81 Hz 2/100
ay_h Spectral Power 1.56 - 4.69 Hz 2/100
ax_h Spectral Power 67.19 - 70.31 Hz 2/100
az_h Spectral Power 23.44 - 26.56 Hz 1/100

gz_h Spectral Kurtosis 1/100

a subset of the on average most relevant features found for all data.
The most important feature to classify a participant appears to be
the Spectral power of the acceleration data of the frame, in the
z direction, with a frequency of 4.69 - 7.81 Hertz. This suggests
that the way the participant moves the bicycle in this direction
within this frequency range contains unique characteristics that
help to distinguish between the different participants. The full list
of relevant features (per participant) can be found in the appendix.
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Table 8. Centralized model metrics (Python)

Metric Value
overall accuracy 69% (52334/75200)

Test loss 0.946618
Asphalt test accuracy 82% (20362/24800)

Good brick test accuracy 33% (8292/24800)
Bad brick test accuracy 92% (23680/25600)

Precision 0.77
Recall 0.69
F1-score 0.67

Fig. 10. Centralized confusion matrix (Python)

4.3 Federated learning
In this section the results of applying federated learning to classify
road quality are presented. With the code of the supervisor of this
research a new centralized model was created. This model serves as
a benchmark to compare the performance of the federated learning
approach.

4.3.1 centralizedmodel performance (Python). The centralizedmodel
achieved an overall accuracy of 69% (52,334 correctly classified in-
stances out of 75,200). The metrics can be found in Table 8 and a
confusion matrix is shown in Figure 10. The overall accuracy of
69% is quite lower than the accuracy that was achieved with Edge
Impulse. This is likely due to slightly different and less optimized
parameters and a slightly different model architecture. Adapting
part of the parameters to the ones used in Edge Impulse worsened
the accuracy.

4.3.2 federated learning model performance. Different parameters
were tested for the federated learning model. The final model was
trained over three rounds with a batch size of 16, with 30 epochs
per round. The results are shown in Table 9.
The results of the federated learning model are comparable to

the centralized model, with an accuracy of 67% versus 69%. This

Table 9. Federated learning model metrics

Metric Value
overall accuracy 67% (49656/73600)

Test loss 0.797593
Asphalt test accuracy 51% (12864/24800)

Good brick test accuracy 84% (18995/22400)
Bad brick test accuracy 67% (17797/26400)

Precision 0.71
Recall 0.67
F1-score 0.67

indicates that federated learning can be a viable alternative to cen-
tralized learning. Especially considering the additional benefits that
federated learning has on mitigating privacy issues.

5 DISCUSSION
With more time available this research could have continued by
analysing why the new centralized model in Python has a lower
accuracy than the model in Edge Impulse. The amount of labeled
data could also be increased. The current model is only classifying 3
different road quality classes. Due to the nature of the received data,
it was difficult to (manually) determine more different road quality
classes. It would be interesting to see how the model performs with
more road quality classes.

6 CONCLUSION AND FUTURE RESEARCH
This study aimed to develop a reliable approach to road quality
assessment using inertial measurement units (IMUs) on bicycles.
This is done with both centralized and federated learning models.
Prior research has been done on road quality assessment using IMUs
on bicycles. In comparison with the existing literature, this research
focused on personalized factors in the data.
The centralized model developed in Edge Impulse achieved an

overall testing accuracy of 97.04% with a weighted F-1 score of
0.97. The model performs well across all 3 different road quality
classifications. These results underscore the effectiveness of the
model to accurately identify the various road surfaces using data
collected from the sensors.
In addition to the road quality classification model, a separate

machine learningmodel was developed to classify participants based
on personalized features derived from the IMU data. This gave
valuable insights into which features have the biggest importance
in uniquely identifying the different participants.
Federated learning was employed to mitigate the privacy con-

cerns that come with crowdsensed data. A new centralized model
was created as extracting model weights from Edge Impulse model
turned out to be more challenging than expected. The new central-
ized model has an overall accuracy of 69% with a weighted F1-score
of 0.673774. Subsequently, the federated learning model achieved
an overall accuracy of 67% and a weighted F1-score of 0.671661.
This slight decrease in performance demonstrates the potential of
federated learning models as a viable privacy-preserving alternative
to centralized models.
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Future research could delve deeper into the personalized factors
that affect the IMU data. Originally, this research aimed to mitigate
personalized factors. For instance, through personalized federated
learning. Due to the limited time available for this research, this was
not achieved and is left for future research. Another interesting idea
for future research is to combine more sensors in the classification
of the road condition. For this research the camera was only used to
determine the different road quality segments. Future research could
combine video/image recognition with IMU data and other sensors
such as LiDAR to form an even more comprehensive understanding
of road conditions.

In conclusion, this research validates the feasibility of using IMU
sensors on bicycles to effectively assess the road quality. Both cen-
tralized and federated learning approaches proved capable of accu-
rately classifying different road surfaces. This study advances the
current understanding of crowdsensing applications and lays the
way for new research to mitigate personalized factors in crowd-
sensed road quality data.

REFERENCES
[1] EdgeImpulse Inc. (2023). 2024. Edge Impulse - The Leading edge AI platform.

https://edgeimpulse.com/
[2] Warren Gay. 2014. Raspberry Pi Hardware Reference. https://doi.org/10.1007/978-

1-4842-0799-4
[3] Johannes Heidt and Klaus Dorer. 2023. Classification and Prediction of Bicycle-

Road-Quality using IMU Data. (2023).
[4] Mohammad Hijji, Rahat Iqbal, Anup Kumar Pandey, Faiyaz Doctor, Charalampos

Karyotis, Wahid Rajeh, Ali Alshehri, and Fahad Aradah. 2023. 6G Connected
Vehicle Framework to Support Intelligent Road Maintenance Using Deep Learning
Data Fusion. IEEE Transactions on Intelligent Transportation Systems 24, 7 (July
2023), 7726–7735. https://doi.org/10.1109/TITS.2023.3235151 Conference Name:
IEEE Transactions on Intelligent Transportation Systems.

[5] Mohammad Jahanshahi, Farrokh Jazizadeh, Sami Masri, and Burcin Becerik-
Gerber. 2012. An Unsupervised Approach for Autonomous Pavement Defect
Detection and Quantification Using an Inexpensive Depth Sensor. Journal of Com-
puting in Civil Engineering 27 (Aug. 2012). https://doi.org/10.1061/(ASCE)CP.1943-
5487.0000245

[6] Shuo Jiang, Zach Strout, Bin He, Daiyan Peng, Peter B. Shull, and Benny P. L.
Lo. 2023. Dual Stream Meta Learning for Road Surface Classification and Riding
Event Detection on Shared Bikes. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems 53, 11 (Nov. 2023), 7188–7200. https://doi.org/10.1109/TSMC.2023.
3295424 Conference Name: IEEE Transactions on Systems, Man, and Cybernetics:
Systems.

[7] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties and Ministerie van
Infrastructuur en Waterstaat. 2022. Miljardeninvesteringen voor bereikbaarheid
woonwijken in heel Nederland - Nieuwsbericht - Rijksoverheid.nl. https:
//www.rijksoverheid.nl/actueel/nieuws/2022/11/14/miljardeninvesteringen-
voor-bereikbaarheid-woonwijken-in-heel-nederland Last Modified: 2023-10-
05T16:58 Publisher: Ministerie van Algemene Zaken.

[8] Fátima González-Novo López. 2022. Bike lane quality estimation under variable
speed conditions using off-the-shelf motion sensors. (2022).

[9] Deepak Nagaraj, Marcel Mutz, Supreeth Mysore Venkatesh, Lea Riebschlaeger,
and Dirk Werth. 2022. A Practical Approach for Road Quality Estimation using
Smartphone based Inertial Data: IMU data processing pipeline to estimate road
quality. In Proceedings of the 2022 7th International Conference on Machine Learning
Technologies (ICMLT ’22). Association for Computing Machinery, New York, NY,
USA, 87–91. https://doi.org/10.1145/3529399.3529414

[10] OpenAI. 2024. ChatGPT [Large language model]. https://chatgpt.com
[11] Kiran Peirens. 2023. Design and use of a modular measurement module for speed

pedelecs. (2023).
[12] Daiyan Peng, Zach Strout, Shuo Jiang, and Peter Shull. 2019. A Road Condition

Classifier via Lock Embedded IMU on Dock-Less Shared Bikes. In Proceedings of
the International Conference on Industrial Control Network and System Engineering
Research. ACM, Shenyang China, 32–36. https://doi.org/10.1145/3333581.3333597

[13] Steven Tazelaar. 2022. Automatic labeling of road quality using machine learning.
(2022).

[14] Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateS-
pace, Scotts Valley, CA.

[15] Astarita Vittorio, Vaiana Rosolino, Iuele Teresa, Caruso Maria Vittoria, P. Giofrè
Vincenzo, andDeMasi Francesco. 2014. Automated Sensing System forMonitoring
of Road Surface Quality by Mobile Devices. Procedia - Social and Behavioral
Sciences 111 (Feb. 2014), 242–251. https://doi.org/10.1016/j.sbspro.2014.01.057

A APPENDIX

A.1 On the use of AI
During the preparation of this work the author(s) used ChatGPT3.5
/ ChatGPT4.0 [10] in order to create a structure for the paper, to
review the written text, and to help in reformulating sentences. It
was also used to help the coding process and was used as a base
for the comments that explain the written functions. After using
this tool/service, the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the content of the work.

A.2 Personalized features

8

https://edgeimpulse.com/
https://doi.org/10.1007/978-1-4842-0799-4
https://doi.org/10.1007/978-1-4842-0799-4
https://doi.org/10.1109/TITS.2023.3235151
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000245
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000245
https://doi.org/10.1109/TSMC.2023.3295424
https://doi.org/10.1109/TSMC.2023.3295424
https://www.rijksoverheid.nl/actueel/nieuws/2022/11/14/miljardeninvesteringen-voor-bereikbaarheid-woonwijken-in-heel-nederland
https://www.rijksoverheid.nl/actueel/nieuws/2022/11/14/miljardeninvesteringen-voor-bereikbaarheid-woonwijken-in-heel-nederland
https://www.rijksoverheid.nl/actueel/nieuws/2022/11/14/miljardeninvesteringen-voor-bereikbaarheid-woonwijken-in-heel-nederland
https://doi.org/10.1145/3529399.3529414
https://chatgpt.com
https://doi.org/10.1145/3333581.3333597
https://doi.org/10.1016/j.sbspro.2014.01.057


Crowdsensing road quality using inertial measurement units on bicycles TScIT 41, July 5, 2024, Enschede, The Netherlands

Fig. 12. Feature importance participant 51

Fig. 13. Feature importance participant 59
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Fig. 15. Feature importance: all data

Fig. 11. Feature importance participant 19
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Fig. 14. Feature importance participant 70
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