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ABSTRACT

Object detection models are evolving and their wide range of
applications is expanding as well. Object detection models can be
utilized as a tool for sustainability and there are various methods
to aid climate change. Included in these benefits is the usage of
mobile applications with object detection models. Mobile devices
are resource constraint and have limited storage, therefore the
object detection model should attain to these limits. However,
object detection models can be complex and great in size. A state-
of-the-art object detection model is Co-DETR, which is currently
too large to deploy for mobile applications. This research will
focus on the effects of global unstructured magnitude pruning on
the hardware efficiency of the CO-DETR model for mobile
applications. As object detection models can be compressed in
order to decrease the model size and a method that can be applied
is pruning. With pruning, redundant components of a network
can be removed and there can be a trade-off between average
precision and model compression. However, to the best of my
knowledge, there is no research available on the application of
model compression on the Co-DETR model. This research applies
global unstructured pruning on the ResNet50 backbone of Co-
DINO, focusing on pruning the weights of the convolutional
layers. The impact on the average inference time, model size and
average precision with a range of sparsity levels is evaluated,
before re-training with a 20% sparsity level. The results showed a
negative impact on the Average Precision (AP), average inference
time and model size when applied, demonstrating an increase in
average inference time and model size and a decrease in AP. This
research aims to investigate the effects of pruning strategy on the
Co-DETR model for mobile applications and broaden the
knowledge of the effects of pruning on the average inference time,
model size and average precision of the Co-DETR model.

Keywords: Co-DETR model, hardware efficiency, model
compression, object detection, pruning.

1 INTRODUCTION

Object detection is a computer vision technique that can be
utilized to detect instances of objects from one or multiple classes
in an image [1]. There are various techniques to perform object
detection and this can be observed in different object detection
models. These different models can prioritize aspects such as
inference speed or accuracy. The results in these areas are
increasing as state-of-the-art models are researched and improved.
As object detection models and techniques are evolving, so are the
possibilities to utilize object detection. One of the ways in which it
can be utilized is to aid sustainability.

Climate change is a growing issue and with this sustainability is
becoming an increasingly more important aspect of artificial
intelligence. An advancement of climate change is renewable
energy and a demonstration of this is solar power. Solar power is
an exemplary field that can benefit from the usage of object
detection. Object detection can be used to detect the presence of
solar panels from aerial photographs, which can help estimate the
amount of solar energy generated in an area [31]. In this domain
of object detection the model can be trained and evaluated
specifically for detecting solar panels, however object detection
models can be trained for a range of object classes. The MS COCO
dataset is a popular dataset containing 91 object categories and
containing 2.5 million labelled instances in 328 thousand images
[16]. This dataset can be used as a benchmark for object detection,
different object detection models tested with the same MS COCO
dataset and the results are compared. The Co-DETR object
detection model is tested with the highest AP score on the COCO
test-dev with 66% AP [27]. This state-of-the-art object detection
model is based on the DETR object detection model. DETR
approaches object detection as a set prediction problem which is
part of the more flexible end-to-end detector that signifies the
DEtection TRansformer (DETR). This set prediction problem is a
direct approach in predicting bounding boxes and category labels
for each object of interest, where DETR predicts all objects
simultaneously. To prevent duplicate predictions, a set-based
global loss function is implemented which assigns a prediction to
a ground truth object, with bipartite matching to ensure an one-
to-one assignment [4]. Co-DETR advances this by using a
collaborative hybrid assignments training scheme [27]. An
enhancement Co-DETR makes to DETR is by training multiple
parallel auxiliary heads in the encoder supervised by one-to-many
label assignments, where a ground truth object can be matched to
multiple predictions. As this is done during training and
disregarded during inference, it does not add additional
parameters to the model [27]. The amount of parameters used by
Co-DETR on the COCO test-dev is 304 million. This makes the
Co-DETR model large to deploy on resource constrained devices
for instance for mobile applications. However, deployment on
mobile applications can have various benefits, including benefits
regarding sustainability, smartphone deployment could offer real-
time application, more accessibility and ease of use. In order to
reduce the size of the model, model compression techniques can
be used as for instance pruning. Pruning focuses on removing
inessential components of model [14]. Pruning can have
advantages as reduction of model size and increased inference
speed, but also downfalls as loss of accuracy [26]. However, to the
best of my knowledge there is currently no available literature on
pruning of the Co-DETR model and its effects. On the DETR
model there is a limited amount of literature regarding pruning.
The paper by Sun et al. [2023] discusses the application of sparse
structured pruning on the DETR model and Roh et al. [2022]



TScIT 41 June 23, 2024, Enschede, The Netherlands

introduce Sparse DETR, both papers include evaluation of the AP
on the COCO 2017 val set. The aim of this research is to give
insight into the affect of pruning on the hardware efficiency of the
Co-DETR model in relation to mobile applications. Specifically,
global unstructured pruning on the weights of the convolutional
layers of the ResNet50 backbone is implemented. The Co-DETR
model is trained with the MS COCO 2017 dataset and the results
before and after pruning are evaluated based on model size,
inference time and Average Precision (AP).

2 PROBLEM STATEMENT

Climate change is one of various fields in which object detection
models can make a positive impact. There are various examples of
research that has utilized object detection to help with climate
change. In the research by Khalid et al. [2023] object detection was
applied in detecting small pests in field crops. Field crops affect
climate change with their impact on greenhouse gases, related
through the amount of nitrogen fertilizer and crop growth [28].
By utilizing object detection in detecting pests, it can optimize
production, economic costs and usage of pesticide sprays, which
benefits climate change and sustainability in agriculture. Mobile
application allows the tool to be real-time and more accessible for
a large audience, such as farmers. Co-DETR is a state-of-the-art
object detection model, nevertheless it is limited in usage for
mobile applications. The Co-DETR model is rather large and to
the best of my knowledge, there is no research available into
compressing the Co-DETR model. For object detection models
such as the Single Shot Detector (SSD), the lightweight SSD is
introduced to make it suitable for mobile applications [7] and for
the YOLOv2 model mobile applications for various purposes are
researched [20]. This research aims to look into mobile application
for Co-DETR, by applying pruning to the model and investigating
the effect pruning has on the model's size, inference time and AP.

2.1 Research question

“How can pruning strategy affect the hardware efficiency of the
Co-DETR model for mobile application”

(1) “What is the effect of compression on the model size of
the Co-DETR model? ”

(2) “What is the impact of pruning on the inference time of
the Co-DETR model”

(3) “What is the impact of pruning on the mean average
precision of the Co-DETR model”

3 RELATED WORK

There is literature available on different aspects of the research
question on the effects of pruning strategy on the hardware
efficiency of the Co-DETR model for mobile applications. The

Sophie Takken

structure behind the object detection model is relevant as well as
literature on pruning and testing methods. In the following
section information on the background and relevant literature will
be given.

3.1 Background

Object detection is a computer vision technique that can be used
to identify and locate instances in images. There are different
classes to be detected in an image, object detection models
construct object classes based on training examples [1]. There are
different methods as to how to identify objects. The research
paper by Amjoud et al. [2023] discusses that traditional object
detection models have three common attributes, firstly evaluating
the entire image in steps and generation candidate boxes.
Secondly, feature extraction analyses the candidate boxes, paying
attention to features or patterns. Lastly, all these features are
classified [2]. The traditional models require handcrafted features,
but this can become redundant with the usage of Deep learning.
Deep convolutional neural networks can be used for feature
extraction and have more promising results as the feature
extraction is more representative. The CNN surpasses
handcrafted-features in discriminability and generalization of the
features [25]. The CNN is an end-to-end learning model in which
parameters can be trained and an important feature of the CNN is
its sharing weights over layers. Convolutional neural networks
generally consist of a convolutional layer, pooling layer and fully-
connected layer [2]. A standard CNN backbone is ResNet, which
can come in different variants containing specific amounts of
layers. The ResNet backbone differs itself through residual
learning, which increases the depth of the network while
maintaining accuracy. It implements shortcut connections, which
allow the model to skip one or more layers [9]. The architecture of
ResNet contains multiple convolutional and batch normalization
layers, additionally there is a fully connected layer that connects
to the final layer [2]. The ResNet backbone can be utilized in
various object detection models inclusive of the DETR model. The
DETR model deviates from the traditional architecture, it consists
of three main components, a CNN backbone followed by an
encoder-decoder transformer and a simple feed forward network
[4]. The key feature in the DETR model is the approach on object
detection, it views object detection as a set prediction problem,
which is reinforced in a set-based global loss function. The DETR
model aims to reduce the need for prior knowledge in the form of,
for example, initial guessing with proposals [4]. The DETR model
uses bipartite matching to uniquely match predicted to ground-
truth objects directly. The DETR model generates an activation
map in the CNN backbone which can be fed into the transformer
encoder, where a feature map is constructed. The decoder
proceeds with the encoder output and decodes the objects in
parallel. Each output embedding of the decoder is then decoded by
the feedforward network, locating and classifying the outputs.
The Co-DETR model extends the DETR model with collaborative
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hybrid assignments training [27]. The Co-DETR model
implements a training scheme that aids the training efficiency and
effectiveness of discriminative feature learning in the encoder and
training of positive samples in the decoder. An important aspect is
the usage of one-to-many label assignment during training. The
original one-to-one set matching in DETR assigned unique
matching pairs of predicted and ground-truth objects, whereas
many-to-one label assignments can match a prediction to multiple
ground-truth objects [27]. This one-to-many label assignment
method is implemented through auxiliary heads in the encoder
which are only used during the training period. The collaborative
hybrid assignments training scheme entails the implementation of
the one-to-many label assignments through multiple auxiliary
heads and customized positive queries during the training of the
model. This collaborative hybrid assignments training scheme can
be applied to a range of variant DETR models. One of these DETR
models is DINO which abbreviates Detr with Improved deNoising
anchOr box. DINO improves DETR by using three core methods,
contrastive denoising training, mixed query selection and look
forward twice scheme [23]. DINO focuses on enhancing query
selection during training by implementing the contrastive
denoising training. Contrastive denoising training rejects
irrelevant anchors, furthering the prevention of duplicate
predictions and selection of anchors that lie far apart from the
ground truth box. In addition, DINO improves the positional
information for feature selection and advances the effectiveness
and efficiency of the training process. Out of the DETR variants
DINO vyields the highest score on the MS COCO test-dev dataset
with the ResNet50 backbone, it achieves 49.4 AP in 12 epochs [23].
When testing with MS COCO AP is the most important metric,
this reflects the average precision. The COCO test-dev benchmark
does not differentiate between the mean average precision (mAP)
and average precision (AP)[30]. The AP is averaged over multiple
Intersection over Union (IoU) values ranging from 0.5 to 0.95 in
0.05 increases. IoU values represent a metric used for comparing
the localization of the predicted and ground-truth object. The MS
COCO dataset is a commonly used dataset to train and test object
detection models. The latest version is the MS COCO 2017 dataset,
this set includes 118k training images and 5k validation images in
which a variety of object instances can be found. Each image can
contain multiple object instances and the MS COCO dataset
prioritizes clear localization of each instance [16]. The MS COCO
dataset is also used to evaluate the Co-DETR model, the Co-DETR
model scored 66.0% AP with the ViT-L backbone. The Co-DETR
set a new record with this AP on the MS COCO test-dev and
reported 304M encoder parameters for the process [27]. In order
to reduce the model size, different compression techniques can be
utilized and a common technique is pruning. Pruning is the
method of removing parameters from a network. Pruning can be
applied with different amounts of sparsity, which refers to the
amount of parameters pruned [17]. Different amounts of sparsity
can affect a trade-off between accuracy of the model, however
there are a number of distinct pruning methods which induce
varying results. There is a distinction between structured and
unstructured pruning. Unstructured pruning eliminates individual
parameters while retaining the model structure whereas
structured pruning removes groups as channels which impact the
models structure. The pruning methods can be applied in different
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locations in the network, pruning can be applied locally or
globally. Local pruning removes a certain sparsity of each subset
of the group to be pruned, for example dividing the weights per
layer and taking a sparsity of each layer, while global pruning
removes the defined sparsity from all available locations in the
network [5]. In addition, pruning can happen during different
parts of the object detection process, there are pruning methods
that can be applied before, during and post training the object
detection model. Global unstructured magnitude pruning is a
pruning method that can be applied after training. Magnitude
based pruning is a pruning method that is based on the theory
that smaller weights are less important, therefore magnitude
based training removes weights ascending from the lowest to
highest weights [15]. The weights will be made redundant by
setting them to zero, the amount of weights is dependent on the
sparsity level. After applying the pruning, it is common to fine
tune the pruned model, this improves accuracy of the pruned
model by re-training the pruned model with a subset of the
dataset. As Li et al. [2023] discusses, unstructured pruning on the
network's weights can greatly reduce the amount of model
parameters, but when setting the weights to zero, the weights are
not removed. Therefore the pruning does not fully utilize the
hardware efficiency optimization by keeping the storage of
redundant weights unchanged [14]. Further compression can be
executed to optimize hardware efficiency. Sparse storage methods
aim to optimize storage of sparse matrices, with indexing
indicating whether an element in the matrix is non-zero. Hereby
removing the need to store the value of the zero weights as the
non-zero weights, optimally saving space. In order to implement
sparse storage, a format such as the COO format can be used. The
COO format is a more general format that stores the value, the
index of the row and the index of the column of each non-zero
weight [6]. However, this indexing can induce overhead that can
counteract the compression [26]. The measure in which the
overhead impacts the compression effectiveness of the Co-DETR
model will have to be determined, but generally the COO format
provides flexible and simple sparse storage.

3.2 Literature review

There is various literature on object detection models, mobile
application of object detection models and pruning methods.
Regarding the Co-DETR model, the main research paper that will
be used is the one by Zong et al. [2022]. An extensive amount of
literary research has been done that involves object detection. For
example Xiao et al. [2020] gives a general review of object
detection algorithms with deep learning methods, also mentioning
DETR and Co-DETR, as well as Jain et al. [2014], which analyses
the evolution of object detection methods. This information on
different object detection models can be used when looking at
mobile application of object detection by different models than
Co-DETR. In the literature by Sun et al. [2019] a mobile
application for food detection using YOLOv2 and DCNN based on
Mobilenet is presented and Ng [11] discussed the mobile
application for specific plant disease detection. This research
paper will be looking into compressing and pruning the Co-DETR
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model and literature regarding compressing and pruning models
is available. Han [20] discusses compression for deep neural
networks using pruning, quantization and Huffman coding.
Where Zhu et al. [2017] demonstrates research on the relation
between model size and accuracy in pruned deep neural networks
and concludes an positive outtake on model pruning for
compression. In addition, there is more literature regarding
pruning using more specific examples of object detection models.
Zhang et al. [2021] displays the affects of a channel pruning
pipeline implemented on YOLO v3/v5. The literature by Li et al.
[2021] introduces a compression pipeline for one-stage detectors,
in which pruning, knowledge distillation and quantization were
combined to reduce inference time and model size with minimal
mAP reduction. The object detection model DETR forms a basis
for the Co-DETR model and on the DETR model there exists
literature regarding pruning. After the application of sparse
structured pruning on the network structure of the DETR model
by Sun et al. [2023], the paper concluded an improvement in
inference speed and reduction in computational cost. Roh et al.
[2022] introduced Sparse DETR which introduces an encoder
token scarification method with learnable sparsity, this method
prioritizes favourable tokens for training with the ability to prune
encoder tokens based on results in the decoder. The results of the
Sparse-DETR and the pruning DETR are depicted in Table 3. Even
though there is not an exceeding amount of research involving
Co-DETR and to my knowledge no literature regarding the
application of pruning strategy on the Co-DETR model, these
related works approach similar topics.

Method Epochs AP Params
DETR 500 42.0 41M
Sparse-DETR 50 46.3 41M
Pruning DETR 50 42.7 26M

Table 3. Results on COCO 2017 val by Sun et al. [2023] on DETR
models [4, 18, 19].

4 METHODS OF RESEARCH

When researching how pruning strategy can affect hardware
efficiency of the Co-DETR model for mobile application, three
main methods of research were used, research into literature, by
experiment and evaluation. In this research three different models
are evaluated, an Co-DETR model referred to as the original
model, this model pruned and this model pruned and trained. The
research was conducted in the following order,

- training the original model
- pruning the original model
- fine tuning the pruned model
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- testing the pruned and original model

- training the pruned model

- testing the trained pruned model

- evaluating the results.
Where fine tuning and training utilize the same technique,
distinguished by the smaller subset of images that is used for fine
tuning. Once the original model was trained, research into the
application of pruning strategy was executed. There are various
pruning strategies available and the objective was to choose a
pruning strategy that is suitable with the Co-DETR model and is
rather simplistic, due to time constraints on the research. The
unstructured global magnitude pruning is applied to the original
model, this can be applied to the model with different levels of
sparsity and on various layers of the model. Testing was used to
evaluate the effects of different sparsity values when pruning the
model. Models for the different sparsity’s were computed from the
original model and these were fine tuned with a subset of the MS
COCO 2017 dataset. The various pruned models had to be
evaluated on the metrics of inference time, model size and AP.
Therefore additional research for testing these metrics was
conducted and implemented. From there the pruned and fine
tuned models were evaluated for the sparsity amount that yielded
on average the smallest model size, lowest inference time and
highest AP. This sparsity amount was used to prune the original
model which is then trained on the MS COCO 2017 dataset. This
trained pruned model alongside the original model and pruned
model are tested for inference time, model size and AP. These
results can then be analysed to see how the results can be
interpreted in relation to the research question. How the results of
the original model in contrast to the pruned and trained pruned
model performed on the basis of the inference time, model size
and AP and what possible conclusions could be drawn from this.

5 TESTING

5.1 Environment

The research is executed locally on an available laptop, in this case
the Lenovo Thinkpad P1 Gen3. This laptop consists of an NVIDIA
Quadro T100 Max-Q GPU and up to 64GB of RAM. The model
training and testing runs over the GPU and in a python
environment using python 3.8. A virtual environment is set up
with pytorch 1.12 with CUDA version 1.17 and mmcv-full==1.7.0.
The training of the model however is extensive and is unable to
run on the Lenovo Thinkpad P1 Gen3, consequently Google Colab
is used to train the models. The fine tuning of the pruned models
is able to run on the T4 GPU with 12.7 GB RAM via Google Colab.
The training more extensively with the MS COCO 2017 dataset
requires additional storage and the L4 GPU in Google Colab is able
to provide this to a certain limit. Because of the limitations in
hardware and time, the training is done in 3 epochs. For testing
and training of the models the files provided with the Co-DETR
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code by Zong et al. [2022] are utilized. These files are based on
MMDetection which provides a toolbox for object detection. In
addition, pytorch is implemented, this is for instance utilized in
applying the pruning method and sparse formatting. The pruning
method used is unstructured global magnitude based pruning, this
is done after training the Co-DETR model and before fine tuning.
There was a series of Co-DETR variants that could be used for
testing and training and Co-DINO with a ResNet50 backbone was
used. The pruning was applied to the convolutional layers of the
ResNet50 backbone. The pruning is applied on the weights of the
convolutional layer and is applied globally and unstructured. Fig
2. illustrates unstructured pruning of weights in the convolutional
layer. All the convolutional layers in the backbone were pruned
with different amounts of sparsity’s. In order to compare the
different sparsity levels, 5 sparsity’s were chosen, accounting for
resource constraints. The pruning sparsity’s tested are 10%, 20%,
30%, 40% and 60%. The sparsity amounts were chosen with
increments of 10%, starting from the baseline, which is the
original model with 0% pruning. Additionally, the last increment
is made with 20% to the sparsity of 60%, in order to consider a
higher sparsity level. After applying the pruning method, a sparse
formatting method was applied to all the convolutional layers.
This created tensors formatted in the COO format, which only
stores the indexes and values of the non-zero elements. This was
then exported into a checkpoint file which along with the
configuration file is used for fine tuning of the models. Taking
into account the resource constraints, a subset of random images
from the MS COCO dataset 2017 was selected for fine tuning, 595
testing images and 405 validation images. After evaluation of the
fine tuned models, the model with sparsity 20% was selected and
trained more extensively with the MS COCO dataset. The
configuration and checkpoint file after training were exported to
be used for evaluation.

Feature map
Convolution layer

Parameter

Pruned

"Unstructured” : weight pruning

Fig. 2. Unstructured pruning of the weights in the convolutional
layer, adapted from Tessier [2021].

5.2 Evaluation methods

In order to capture the effects of the pruning strategy on the Co-
DETR model various testing was done to compute results on
different metrics. Except for the test on sparsity level, when
referencing testing on the models, the following three models are
meant; the original Co-DINO model that has been trained, this
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original model that has been pruned and this original model that
has been pruned and trained. Each model consists of a
configuration and checkpoint file. The configuration file contains
information on the model structure and configurations for testing
and training whereas the checkpoint file is aimed toward storing
data during training, as weights and biases.

5.2.1 Sparsity levels

To determine which sparsity level to use to prune the original Co-
DETR model, testing was done on multiple levels of sparsity. For
the model 10%, 20%, 30%, 40% and 60% of the weights of the
convolutional layers pruned and the same tests were executed for
each sparsity. For each pruned model, the average inference time
was computed. This was done by computing the inference time for
an image 50 times and averaging these times to determine the
inference time for the image. The inference time was computed
for 15 random images from the MS COCO val2017 dataset. In total
the inference time is calculated over 750 times, 50 times per image
and the average inference time per model is computed based on 15
images. In addition, the AP is tested for each model, this is done
with the testing function included by Zong et al. [2022] with Co-
DETR. Following this, to each model sparse formatting is applied
by using the COO format executed by pytorch. Additionally, each
model is compressed into a zip file and the file size alongside the
amount of non-sparse parameters is computed. The results of the
three metrics, inference time, model size and AP, are normalized.
For the model size and inference time a low score is optimal so the
normalization is computed for the values of each model by

normalized value = (max - value)/(max - min) (1)

In this function (1) the ‘max’ is the maximum and ‘min’ the
minimum obtained value among the 5 models. The normalised
value of 1 will represent the smallest model size or lowest
inference time. Similarly, for the AP the highest score is preferred
so the normalization is calculated with

normalize value = (value - min)/(max - min) (2)

In this function (2) the normalised value of 1 depicts the highest
AP amongst the models with different sparsity levels. All three
metrics are considered equally important for the evaluation.

5.2.2 Model size

The model checkpoint files are compressed into a .zip file and the
file size is observed. For each model the amount of parameters are
computed as well as the amount of parameters in the
convolutional layers that have weight zero.

5.2.3 Inference per image

15 random images have been selected from the MS COCO val2017
dataset. For each of these images the inference time is computed
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50 times consecutively. Then the average time of these 50 times is
computed for each image, resulting in 15 inference times per
model. The average inference time of a model represents the
average of the inference times over these 15 images.

5.2.4 Average Precision (AP)

By using the testing function provided with the Co-DETR code by
Zong et al. [2022] the Average Precision (AP) is computed. This
correlates with the evaluation metrics of the MS COCO dataset.
Where the AP is calculated with the average AP for different IoU
thresholds considering a maximum of the 100-top detections [30].
The AP considers all object sizes, which is based on the amount of
area in the image that is occupied by the object.

B filesize @ inference

AP
1,00
0,75
0,50
0,25
0,00
0.1 0.2 03 04 0.6

sparsity amount

normal value

Fig. 1. Normal values of pruned and fine tuned models
differentiating in applied sparsity levels.

7 RESULTS

7.1 Sparsity levels

For the sparsity levels, the file size of the compressed checkpoint
file, average precision (AP) and average inference time is given in
table 1. The differences in results for file size and average
inference time between the sparsity levels are minimal, the
average deviation between the file sizes is 2,6 MB and between the
average inference time is 0,8 milliseconds. There is a visible
decrease in AP when the sparsity level increases, however the
average deviation of the AP is 0.0056. In fig 1. the normal values
for the Average Precision (AP), average inference time and file
size of compressed checkpoint file are given. The normal value of
0.1 on the file size and average inference time is 0, this represents
the largest file size and average inference time amongst the
models with different sparsity levels. Likewise, the normal value
for the AP of 0.6 is 0, illustrating the lowest AP. In fig 1. it is
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visible that the 20% sparsity level yielded the most balanced
scores, it is not the highest nor lowest performing in any category,
where as 0.4 for example has the fastest inference time but lowest
AP. The 20% sparsity level was chosen for further testing.

7.2 Model size, inference time and average precision (AP)

The results from the original Co-DINO model, the pruned Co-
DINO model and the trained pruned Co-DINO model on the
metrics average inference time, Average Precision (AP) and model
size are displayed in table 2. When pruning the convolutional
layers of the ResNet50 backbone 20% of the weights were set to
zero. This makes that 4137203 of the 65204005 parameters are
pruned, which leads to 6,37%. Table 2 displays the AP of the
original Co-DINO significantly dropped with pruning.

8 DISCUSSION

8.1 Research question

When interpreting the results of the original Co-DINO model, the
pruned model and the trained pruned model, it is observed that
pruning in combination with sparse file storage can affect the
model size. However, in this research pruning has increased the
file size, inference time and decreased the AP.

The results of two different pruning strategies applied on the
DETR model are given in Table 3.. Both the pruning strategy
implemented in Sparse-DETR and the pruning strategy
implemented on DETR by Sun et al [2023] show a decrease in
inference time and model size while not observing a significant
decrease in AP. This diverges from the results found within this
research on the application of pruning strategy on the Co-DETR
model, where the model size and inference time increased and the
AP decreased. Considering the Co-DETR extends the DETR
model, this could indicate that the Co-DETR model might benefit
from other pruning strategies.

Nevertheless, the increased file size, inference time and decreased
AP could be the cause of multiple factors. A possible cause could
be the pruning method, the unstructured global magnitude
pruning method is focused solely on the convolutional layers of
the ResNet50 backbone. The convolutional layers of the model
take up 31,73% of all parameters, whereas pruning with a sparsity
of 20% takes up 6,37% of all parameters. This could possible relate
to the file size not decreasing in combination with the sparse
formatting which can produce overhead. The COO format that is
used for sparse formatting, stores both the index of the row and
column of the non-zero weight. Even though the COO format is a
simple, general and widely-used data format, it can have a
negative effect on the memory footprint [6]. Therefore it is
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possible that a less general and more specific storage format, for
example focusing on memory efficiency, can be found more
suitable with the pruning of the Co-DETR model. Nonetheless,
this would have to be researched.

The sparse formatting method also influences the performance of
the CO-DETR model, specifically the operations performed
involving sparce matrices [6]. From the results displayed in Table
1. and Table 2. it can be observed that the average inference times
are close to remaining constant. The average deviation of the
average inference times for the various amounts of sparsity is 0,8
milliseconds, hence, the deviation is perceived to be minor. The
cause of this deviation could be due to the models architecture and
the efficiency of performing operations with the pruned weights.

When evaluating the results of models with various sparsity
amounts on model size, average inference time and AP, it is visible
that the file size slightly decreases with the increment in sparsity
up to 60% sparsity. At 60% sparsity, the file size seems to climb
again and it reaches a similar file size as with 10% sparsity. The
cause of this spike is currently unclear, it could be related to the
increase in sparsity affecting the amount of overhead relating to
the storage of pruned weights. Even so, to determine the cause of
the spike in file size, closer inspection into the change in storage
between the sparsity amounts will have to be conducted.

In addition, the training could be more extensive, whereas fine
tuning happened with a small subset of MS COCO val2017 and
there were 3 training epochs executed. It is possible the losses
through pruning are not compensated during the fine tuning or
training, resulting in a lower AP. Overall, the results show an
negative impact on the hardware efficiency of the Co-DETR
model.

Sparsity 0.0 0.1 0.2 0.3 0.4 0.6
File size 649,61 674,77 670,03 669,35 666,91 674,05
(MB) 32402 92425 20673 44054 77456 36537
AP 0,547 0,021 0,014 0,018 0,006 0,006
Average

inference 0,6906 | 0,6616 | 0,6603 | 0,6611 | 0,6592 | 0,6600
time (s) 36007 430953 | 747698 | 429084 | 593047 | 406612

Table 1. results of different sparsity levels after pruning and fine
tuning.

Model Zip file size Average inference | AP
mb time

Original 649,6132402 0,690636007 0,547

Pruned 670,0320673 0,6945705763 0,014

Trained 667,651516 0,6986917664 0,011

pruned

Table 2. results during different stages of pruning the model.

Sophie Takken

8.2 Limitations and future work

With the research into the effects of pruning strategy for the Co-
DETR model on hardware efficiency for mobile applications there
were resource and time constraints. The resource restraint
impacted the ability to test and train the models. The research on
Co-DETR model by Zong mainly used upwards from 12 epochs for
testing and training [27], whereas this research used 3 epochs. In
the research by Azadvatan et al [2024] on the real-time deep
learning algorithm for object detection MelNet, it displays an
improvement in AP when the amount of training epochs is
increased. Indicating that training with additional epochs might be
beneficial to explore in future work.

Furthermore, the fine tuning uses a rather small subset of the
original MS COCO 2017 dataset in which the images were
randomly selected, this could be improved in terms of general
optimization, investigating optimal images and dataset size. In
addition, the research could be improved by more extensive
testing, for example to explore a wider variety of pruning
strategies, as well as sparsity levels and compression methods.
The research by Tian et al. [2024] combines both structure and
unstructured pruning with quantization. Unstructured pruning
was applied as it generally has a higher compression rate than
structured pruning. However, the random pruning of the
individual parameters with unstructured pruning may lead to
worse hardware acceleration compared to structured pruning [10].
As structured and unstructured pruning both have different
strengths, it can be beneficial to evaluate structured pruning on
the Co-DETR model in the future. Alternative compression
methods as quantization could be applied, with which the
hardware efficiency could possibly benefit. Currently 32 bit
storage is used, whereas quantization can reduce the bit storage.
Using quantization to reduce the bit storage to 8 bits is commonly
used and research by Han et al. [2015] shows that quantization in
combination with pruning induces significant model compression.

Overall, the compression strategy can be adapted in various
aspects, as investigating structured pruning and different sparse
formats for future work. Even though, this research provided
inside into the impact of pruning strategy on the inference time,
model size and average precision of the Co-DETR model, there is
opportunity to further explore this.

9 CONCLUSION

In conclusion, when applying unstructured global magnitude
based pruning on the backbone of the Co-DETR model, it causes
an increase in file size, inference time and a decrease in average
precision. Therefore based on the results of this research,
exploration into different pruning strategy or pruning pipeline is
recommended for compression of the Co-DETR model for mobile
application.
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