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ABSTRACT 

Creating accurate and up-to-date land cover maps are essential for managing natural resources, strategic 
land use planning, and monitoring changes that occur in our environment. This study employed remote 
sensing to evaluate the effectiveness of Sentinel-2 and PlanetScope satellite imagery in distinguishing 
different maize cropping systems in Gaza province, Mozambique. Using a Random Forest (RF) classifier, 
the research investigated the relative importance of spectral indices, textural, and topographic features 
derived from high spectral resolution (Sentinel-2) and high spatial resolution (PlanetScope) data.  
Key research questions addressed included identifying the most effective features for distinguishing maize 
cropping systems and determining whether the two datasets had a statistically significant difference in 
classification accuracy. The study area encompassed diverse landscapes characterized by smallholder farms 
and mixed cropping systems. Sentinel-2 and PlanetScope imagery from 2023 were processed using the 
Google Earth Engine (GEE) platform followed by the extraction of spectral, textural, and topographic 
features.  
The results indicated that elevation, red edge bands (Sentinel-2) and visible bands (PlanetScope) were 
among the most significant features for classification. Feature importance analysis using Mean Decrease 
Gini (MDG), SHapley Additive exPlanations (SHAP), and Permutation Importance methods consistently 
highlighted these features. The RF model showed high accuracy for classes like trees, shrubs, and water 
bodies but recorded low performance with grass and mixed fields primarily due to spectral overlaps and 
imbalanced training samples.  
Comparative analysis using McNemar’s test revealed no statistically significant difference in classification 
accuracy between Sentinel-2 and PlanetScope for discriminating maize cropping systems. Despite the high 
spatial resolution of PlanetScope its classification performance was similar to Sentinel-2. This emphasizes 
the importance of spectral resolution.  
This research contributes to the understanding of the strengths and limitations of high spectral and spatial 
resolution datasets in agricultural monitoring. It provides insights into cost-effective methods for accurate 
land cover mapping, essential for informed agricultural policymaking and resource management in 
heterogeneous landscapes like Gaza Province. The study also emphasizes the need for balanced datasets 
and high-precision data collection to improve model performance and reliability.  
  
  
Keywords: Land cover mapping, Sentinel-2, PlanetScope, Random Forest classifier, spectral indices, 
textural metrics, topographic features, maize cropping systems, agricultural monitoring, SHapley Additive 
exPlanations (SHAP), Mean Decrease Gini (MDG), Google Earth Engine (GEE).  
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1. INTRODUCTION 

1.1. Background 

The precise and timely compilation of land cover maps plays a pivotal role in understanding the evolving 

dynamics of human societies and their impact on the environment (Somvanshi et al., 2020).  Researchers 

have increasingly employed remote sensing and Geographic Information Systems (GIS) tools to enhance 

accuracy and accelerate the making of maps showing land use land cover and various features of the Earth 

surface across the world (Schulz et al., 2021). Land cover mapping has grown exponentially in importance 

in contemporary society, playing a pivotal role across various fields (Giri et al., 2013; Schulz et al., 2021). 

For example, within the field of agriculture, accurate cropland mapping enables proper cropland 

management and provides insight into cropland and land cover dynamics(Hao et al., 2018). Land cover 

maps are particularly useful in providing information regarding suitable areas for the growing and 

cultivation of different categories of crops.  This aids in effective farm management, policymaking, and 

resource allocation (Singh & Sharma, 2022). Using satellite images for land cover mapping can offer 

significant advantages over traditional field data collection by providing large-scale coverage, consistent, 

and frequent observations(Villegas Rugel et al., 2023). various sensors like MODIS, Landsat, and Sentinel-

2 among others provide valuable datasets for agriculture mapping (F. Gao & Gao, 2021). Various useful 

information can then be extracted from these datasets for the monitoring of crop health, soil moisture, 

and crop yield among others (Pratik et al., 2023). 

 

Within the field of remote sensing, the selection of an appropriate sensor and algorithm is important for 

accurate image classification due to the complexities associated with remotely sensed data (Belgiu & 

Drăgu, 2016). Different types of sensors in relation to remote sensing image analysis relate to different 

types of roles (Melesse et al., 2007). There are many different types of remote sensing satellites that are 

used to gather information about the Earth’s surface. For example, The Sentinel-2 sensor, launched by the 

European Space Agency (ESA) has become popular with respect to cropland mapping applications due to 

its unique capabilities that surpass those of other sensors (Pazúr et al., 2022). The extended red-edge 

bands of Sentinel-2 offer a distinct advantage for detailed vegetation monitoring and cropland 

discrimination. This has been demonstrated by (Otunga et al., 2019). The red-edge bands positioned near 

the chlorophyll absorption edge in combination with the NIR band provide enhanced sensitivity to 

variations in vegetation health (Delegido et al., 2011). This enables more accurate identification of 

croplands. Additionally, the 13 spectral bands of the Sentinel-2 sensor encompass key wavelengths that are 

crucial for cropland identification and mapping (Masimula, 2020). The presence of narrow-wavebands in 

the blue, green, red, and near-infrared regions allow for effective discrimination between different 

vegetation types, including croplands (Phiri et al., 2020). This spectral depth contributes to improved 

classification accuracy compared to sensors with fewer bands (Zhang et al., 2019). In comparison to other 

sensors, the Sentinel-2 sensor outperforms other sensors like Landsat and MODIS in terms of spatial 

resolution (Meyer et al., 2019). With a spatial resolution ranging from 10 to 20 meters, Sentinel-2 provides 

a detailed view of the landscape surpassing these sensors in clarity (Mandanici & Bitelli, 2016). This 

enhanced spatial resolution enables the delineation of  
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smaller and more fragmented cropland areas. This can be particularly important in regions with complex 

land cover (Song et al., 2021). Another important feature of the Sentinel-2 sensor has to do with its revisit 

period (Spoto et al., 2012). Revisit time in remote sensing refers to the time it takes for a satellite to 

complete one orbit cycle and capture images of the same location on Earth again. The revisit time of every 

5 days provides a significant advantage over the longer revisit times of other sensors like Landsat and 

MODIS (J. Li et al., 2017). The superior capabilities of Sentinel-2 for cropland mapping have been 

recognized in some previous studies. For instance, Belgiu & Csillik, (2018) successfully employed Sentinel-

2 imagery to map croplands within three different study areas in Europe and North America. Another 

study by Rawat & Saini, (2022) used a single date Sentinel-2 image to map and detect changes in cropland 

sizes in Uttar Pradesh, India.  

 

On the other hand, another satellite which has gained popularity with regards to cropland mapping is the 

PlanetScope satellite. The PlanetScope constellation, which has been launched and operated by Planet 

Labs has gained important recognition in cropland mapping (Rao et al., 2021). This is due to the satellite’s 

high spatial resolution and frequent revisit times which offers an advantage over other satellite sensors 

(Houborg & McCabe, 2016). PlanetScope satellites provide imagery with a spatial resolution which ranges 

from 3 to 5 meters. The high spatial resolution capability of PlanetScope allows for a detailed monitoring 

and classification of cropland areas (Menefee et al., 2022). Additionally, with daily revisit capability, 

PlanetScope surpasses many other satellites including the Sentinel-2 satellite in terms of temporal 

resolution. Daily images captured by the PlanetScope satellite can help minimize data gaps caused by cloud 

cover providing consistent datasets for cropland analysis (Pickering et al., 2021). PlanetScope’s 

multispectral capabilities includes four spectral bands (blue, green, red, and near infrared). These spectral 

bands are essential for vegetation monitoring and health assessment. These bands enable the calculation of 

vegetation indices like the Normalized Difference Vegetation Index (NDVI) which helps assess crop vigor 

and biomass (Houborg & McCabe, 2016). Additionally, other vegetation indices like the Enhanced 

Vegetation Index (EVI), the Soil Adjusted Vegetation Index (SAVI), and the Green Normalized 

Difference Vegetation Index (GNDVI) among others can also be calculated. These indices are relevant for 

agriculture and cropland mapping as they offer more accurate assessments of plant health, biomass, and 

soil conditions (Vidican et al., 2023).  Although PlanetScope satellite has fewer spectral bands compared to 

other satellites like the Sentinel-2 sensor, Planet scope’s higher spatial resolution offers more precise 

delineation of crop boundaries and intra-field variability (Rao et al., 2021). Some previous studies have 

successfully used PlanetScope for cropland and land cover mapping. For instance, a study in Northern 

Mozambique used PlanetScope data to map active cropland and short-term fallows in smallholder 

landscapes. This research combined PlanetScope mosaics and an iterative learning method to achieve high 

mapping accuracy. This method utilized PlanetScope's high detail and frequent updates to provide precise 

cropland and fallow period estimates (Rufin et al., 2022). Another study by (Trivedi et al., 2023) focused 

on mapping cropland in tropical smallholder systems. In this study, the high resolution and frequent 

revisit times of PlanetScope helped overcome challenges like cloud cover and field variability. This study 

employed a Random Forest classifier with recursive feature elimination to effectively map arable fields in 

complex landscapes. Finally, a study by Liu et al., (2022) demonstrated PlanetScope's effectiveness in 

mapping and monitoring smallholder farms when combined with other satellite sensors. This study 

highlighted the superior performance of PlanetScope in detecting and classifying diverse crop types in 

smallholder farms.  These studies show that PlanetScope's high spatial resolution and frequent revisit 

capabilities can enhance the accuracy and reliability of cropland and land cover mapping.
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There are two main methods commonly used in remote sensing regarding image classification. These are 

unsupervised and supervised classification (Wang & Cheng, 2010). Unsupervised classification is a way to 

identify and group pixels in an image based on their spectral characteristics, without the need for prior 

knowledge or labeled data (Wang & Cheng, 2010). Two of the most used algorithms for unsupervised 

classification include ISODATA and K-means clustering. The k-means clustering algorithm groups pixels 

based on their spectral characteristics. This enables the algorithm to identify different land cover types. 

ISODATA clustering is another clustering algorithm used in remote sensing for classifying images. The 

term ISODATA stands for Iterative Self-Organizing Data Analysis Technique (de Bie et al., 2011). This is 

an unsupervised clustering algorithm commonly used in remote sensing and image analysis. The algorithm 

iteratively splits a dataset into clusters based on data point similarity. The algorithm calculates the mean 

and standard deviation of each cluster, reassigning data points to the nearest cluster based on a user-

defined distance threshold. ISODATA is useful for land use and land cover classification in remote 

sensing. Compared to K-means, ISODATA is more computationally complex, requiring multiple 

iterations, but it can be more accurate as it adapts to changes and adjusts the number of clusters 

accordingly(de Bie et al., 2008; lowast et al., 2020; Reda et al., 2019; Richards, 2022). 

   

 

Supervised classification involves selecting training samples and classifying the image based on the chosen 

samples. The training samples are key because they determine which class each pixel inherits in the overall 

image (Samaniego et al., 2008). Some of the most used supervised classification algorithms include 

maximum likelihood, support vector machines (SVM), decision trees (DT), and random forests (RF). 

Each algorithm has its own strengths and weaknesses. The choice of algorithm depends on the specific 

application and the type of data being analysed. For example, traditional classifiers like the maximum 

likelihood classifier is often used for image classification because it is simple and easy to use (Sunar Erbek 

et al., 2004). However, one of the main drawbacks is that the maximum likelihood classifier assumes that 

the data is normally distributed which may not always be the case in practice. Additionally, maximum 

likelihood can be sensitive to outliers in the data, which can lead to inaccurate classification results (Peng 

et al., 2019). SVM is a supervised learning algorithm primarily used for both classification and regression 

tasks (Belavagi & Muniyal, 2016). SVM works by identifying the optimal hyperplane that maximizes the 

margin between different classes and can handle non-linear datasets using a kernel trick (Nie et al., 2020). 

This approach transforms data into a higher-dimensional space to achieve linear separation, making it 

effective for complex datasets. SVM have proven useful in remote sensing for land cover mapping, 

achieving high classification accuracies (Ding et al., 2020; ElMannai et al., 2019; Shi & Yang, 2015) 

Despite its strengths, SVM can be computationally demanding and requires careful parameter selection 

(Dabija et al., 2021; Sheykhmousa et al., 2020) 

 

 

 

Another popular machine learning algorithm used in remote sensing for image classification is a decision 

tree (DT).  A decision tree is a machine learning algorithm which operates by breaking down a dataset into 

smaller subsets while at the same time developing an associated decision tree (Bansal et al., 2022). DT 

models work like a tree with branches (Costa & Pedreira, 2022). They divide the data step by step using 

simple rules which can be associated with the characteristic or features with the data. These steps lead to 

the end points of the tree called leaves where the final categories or decision is made. DT stand out for 

their flexibility and robustness in managing diverse datasets (Pal & Mather, 2003). One major advantages 

of DT algorithms are their capability to process data across various scales which makes them adaptable to 

different types of data (Brodley & Friedl, 1997). Notably, DT operate without making any prior 

assumptions about how data is distributed within each category (Fletcher & Islam, 2019). This allows for a 
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more thorough analysis of the data at hand. However, the simplicity of DT can also be a limitation as DT 

are prone to overfitting especially with complex datasets (Holloway et al., 2019). This means they can 

create overly complicated trees that do not generalize well to new unseen data. 

 

Addressing the main limitation of DTs, RF algorithms leverages the collective power of ensembles 

(Louppe, 2014). RF algorithms construct an ensemble of decision trees which collectively help predict 

outcomes with high accuracy  (Talekar, 2020). Each individual decision tree in the ensemble adds a vote to 

assign the input data to the most frequent class. The RF algorithm initially constructs numerous binary 

classification trees (ntree) using diverse bootstrap samples drawn with replacements from the original 

dataset. This majority vote strategy ensures that the final classification output is based on a collective 

decision (Dogan & Birant, 2019). This makes the RF algorithm resilient to noise and outliers in the data. 

Within the field of remote sensing, the Random Forest algorithm has emerged as a good foundation for 

image classification especially land cover mapping (Belgiu & Drăgu, 2016). RF algorithm distinguishes 

itself by its ability to integrate multiple decision trees thereby mitigating overfitting and reducing variance 

(Briem et al., 2002). The incorporation of the bagging method within the random forest algorithm ensures 

robustness by training each tree on a random subset of data (X. Zhou et al., 2019). This results in the 

development of a stable and accurate model. Moreover, RF is capable of handling multi-modal input 

datasets without assuming a normal distribution making it ideal for capturing complex spatial patterns 

(DeFries & Chan, 2000). For instance, studies by Belgiu & Csillik, (2018); Ghimire et al., (2012); Gislason 

et al., (2006) successfully employed the random forest algorithm for land cover classification achieving 

high accuracy. The ability of the random forest algorithm to adapt to diverse spectral data, its proficiency 

in modeling non-linear relationships, and its ability to reduce the risk of overfitting makes it an ideal 

choice for extracting meaningful information from satellite imagery. While Random Forest is a powerful 

machine learning algorithm that has improved image classification, it also has some limitations. One of the 

main limitations is that it can be computationally expensive and requires a lot of memory to run, especially 

when dealing with large datasets. Additionally, random forest can be prone to overfitting if the number of 

trees in the ensemble is too high. This can lead to poor generalization performance (Louppe, 2014). The 

incorporation of machine learning algorithms has improved image classification within remote sensing, 

which has led to more detailed analysis and better interpretation of remotely sensed data. 

 

 

 

 

Previous studies have demonstrated the potential of high-resolution satellite data such as those from 

PlanetScope and Sentinel-2 for general cropland mapping and vegetation monitoring (Liu et al., 2022; 

Pickering et al., 2021; Rao et al., 2021; Zagajewski et al., 2024). However, there is still limited research 

specifically focused on extracting and comparing useful features from these datasets to accurately 

distinguish between different maize cropping systems over a large area. Features such as vegetation 

indices, spectral information, and temporal patterns have been used in various studies but a systematic 

comparison of these features in the context of maize crop systems is lacking. While high spectral 

resolution data can provide detailed information on crop health and stress through various vegetation 

indices, high spatial resolution data offers the advantage of capturing fine-scale spatial patterns within 

fields. Studies have shown the effectiveness of both types of data in general land cover mapping but there 

is a gap in understanding what type of data is more effective for distinguishing different maize cropping 

systems especially in regions where the landscape is heterogeneous. The specific spectral bands and spatial 

details necessary to differentiate maize crop fields from mixed crop systems have not been thoroughly 

explored. Therefore, the current gap lies in the comparative analysis of features extracted from high 
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spectral resolution (Sentinel-2) and high spatial resolution (PlanetScope) optical satellite data specifically 

for distinguishing maize crop systems. 

 

This research aims to fill this gap by systematically comparing the outputs from Sentinel-2 and 

PlanetScope in effectively mapping different maize cropping systems. The focus will be on their efficacy in 

mapping and differentiating the various features that can help produce the best outputs. This comparison 

will help to determine the strengths and limitations of each dataset which can help contribute to improved 

methodologies for cropland monitoring and mapping. 
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1.2. Problem Statement 

 

Heterogeneous landscapes are recognized as significant challenges for accurate land cover map production 

crucial for Natural Resource Management (NRM). Environmental changes over time are tracked by these 

maps making them essential for sustainable resource management and development. This is because the 

natural environment is relied upon by society for sustenance and economic stability.  For instance, land 

cover maps are used by policy makers in making informed decisions regarding agriculture, forest 

monitoring and management among others which in tend affect many lives.  

 

In Gaza Mozambique, agriculture particularly farming is characterized by smallholder farms, shifting 

cultivation, and mixed cropping systems. Local food production is important for supporting livelihoods. 

This makes accurate crop field monitoring essential.  The high variability in farming practices combined 

with the heterogeneous landscape makes mapping land cover, such as agricultural fields particularly 

challenging in Gaza province, Mozambique. 

Field based monitoring and measurement is recognized as expensive and time-consuming often requiring 

extensive manpower and resources to cover large areas effectively. It also poses logistical challenges and 

risks especially in remote or conflict-prone regions. In contrast, remote sensing is seen as a potentially 

cheaper and more objective alternative. 

 

The research problem focuses on finding a cost-effective and efficient method to map land cover in the 

complex landscape of Gaza province, Mozambique. Field survey in this region is often expensive and 

time-consuming. This proves the need to find alternative means for mapping land cover in this region. As 

a result, this study relies on both a freely available dataset (Sentinel-2) and a commercial dataset 

(PlanetScope) which is also freely available upon request for specific purposes to assess cost effective and 

accurate means of mapping land cover in this region. By comparing the effectiveness of these two datasets 

using RF, this study aims to determine the most suitable approach for accurately differentiating maize 

cropping systems. This research is important as it seeks to provide reliable Insights into cost effective 

means of mapping which also guarantees accuracy and reliability. 
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1.3. Research Objectives, and Questions 

 

The overall aim of this research is to assess the effectiveness of high spectral resolution (Sentinel-2) and 
high spatial resolution (PlanetScope) optical satellite to distinguish different maize cropping systems and 
compare their classification accuracies.   
 
Research Objective 1  
To assess the usefulness and relative importance of spectral indices, textural and topographic features 
from optical satellite data for the discrimination of different maize cropping systems using RF algorithm.  

Research Question 1.1: Which spectral indices, textural metrics, topographic features, and 
spectral bands derived from optical satellite data are most effective in distinguishing different 
maize cropping systems.  

.   
Hypothesis1.1:  
H0: All the spectral indices, textural metrics, topographic features, and spectral bands derived 
from optical satellite data will be effective in distinguishing different maize  cropping systems.  
H1: Some of the spectral indices, textural metrics, topographic features, and spectral bands 
derived from optical satellite data will be more effective than others in distinguishing different 
maize cropping systems.  

   
Research Objective 2  
To compare the classification accuracy of high spectral resolution (Sentinel-2) and high spatial resolution 
(PlanetScope) satellite imagery for the discrimination of different maize cropping systems.  
Research Question 2.1: Is there a statistically significant difference in the classification accuracy between 
high spectral resolution (Sentinel-2) and high spatial resolution (PlanetScope) optical satellite imagery for 
discriminating different maize cropping systems?   

Hypothesis2.1:    
H0: There is no significant difference in the classification accuracy between high spectral 
resolution (Sentinel-2) and high spatial resolution (PlanetScope) optical satellite imagery for 
discriminating different maize cropping systems.   
H1: There is a significant difference in the classification accuracy between high spectral resolution 
(Sentinel-2) and high spatial resolution (PlanetScope) optical satellite imagery for discriminating 
different maize cropping systems.  
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2. METHODS 

This chapter contains a description of the study area, the data, and the methods used to achieve the 

objectives of this research. 

 

 

2.1. Study area 

This study is conducted in Gaza Province situated in southern Mozambique which can be found in the 

southern part of the African continent. Gaza Province spans an extensive area of 75,709 square kilometers 

and features diverse landscapes including wide plains ideal for agriculture (Ponguane et al., 2023). The 

landscape includes unique ecological areas such as peat bogs, raised moors, and significant waterways like 

the Limpopo and Changane rivers (Saveca et al., 2022).  

The province experiences a tropical savanna climate characterized by distinct wet and dry seasons, with 

average annual temperatures ranging from 23°C along the coast to 25°C inland and annual rainfall of 

approximately 600mm (Muhala et al., 2021). The geology of Gaza Province varies from sandy soils in the 

southeastern regions to clay sediments and traces of swamps in the northern parts (Lächelt, 2004). 

According to the 2017 population census, the population of this region is approximately 1.4 million (Azar 

et al., 2023). 

 

Agriculture is the primary economic activity in Gaza Province, with maize, rice, and cassava being among 

the main crops cultivated (Salite, 2019). The region predominantly relies on subsistence farming 

characterized by smallholder farms, shifting cultivation, and mixed cropping methods. Agriculture is not 

just an economic activity but a vital part of life for the inhabitants with many families depending directly 

on their farming outputs for food, income, and overall livelihood. This dependence on agriculture means 

that the success of crop yields directly impacts the community's well-being, influencing food security and 

economic stability.  

Over the last 30 years, Gaza Province has seen rapid changes, particularly in response to climate 

variability, making it a key area for agricultural research. (World Bank, 2017).  This research is fundamental 

to explore cost-effective methods for providing reliable and accurate spatial information which is essential 

for informed agricultural policy making. 
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Figure 1: Map showing the study area (Gaza Province) 
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2.2.  Data  

 
To achieve the research objectives, this study used satellite imagery from Sentinel-2 and PlanetScope to 

map maize cropping systems within the study area. These datasets include both vector and raster data 

which served different purposes. The data utilized is detailed below in Table 1. 

Table 1: Summary of Datasets used in this study. 

Dataset Type Source Purpose 

Country 

Administrative 

Data 

Vector data Mozambique National Cartography and 

Remote Sensing Centre (CENACARTA) 

Administrative boundaries and geographical 

context 

Sentinel-2 

Satellite Image 

Raster data Copernicus Open Access Hub 

(https://scihub.copernicus.eu/dhus) 

High-resolution spectral data for land cover 

analysis. 

Google Earth 

Imagery 

Raster data Google Earth High-resolution imagery for additional 

training and validation samples collection 

PlanetScope 

Satellite Image 

Raster data https://developers.planet.com/docs/data

/PlanetScope 

High spatial resolution data for land cover 

analysis 

Dynamic World 

Land Cover Map 

Raster data https://dynamicworld.app/explore Used as guide for collection of additional 

training samples 

Cropland 

Boundary 

Vector data Stats from Space project 

(ITC) 

Delineating the extent of croplands within  

the study area 

Field 

Observations 

Vector data Stats from Space project 

(ITC) 

 Observations of crop types 

Esa Land Cover Raster data European Space Agency (ESA) 

(https://www.esa-landcover-cci.org) 

Used as guide for collection of additional 

training samples 

 

 

 

 

 

 

 

 

 

 

 

https://scihub.copernicus.eu/dhus
https://developers.planet.com/docs/data/planetscope
https://developers.planet.com/docs/data/planetscope
https://dynamicworld.app/explore
https://www.esa-landcover-cci.org/
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2.2.1. Remote Sensing data 

Harmonized atmospherically corrected Sentinel-2 images acquired throughout the year 2023 were 

considered for the study. Before further analysis, a cloud masking function was applied to reduce noise 

caused by atmospheric conditions. This process was conducted using the Google Earth Engine platform 

which facilitates efficient processing and analysis of large satellite datasets.  Table 2 below details the 

sensor properties of the Sentinel-2 satellite. 

Table 2: Sentinel-2 spectral bands and spatial resolution 

Band Description Wavelength 

(nm) 

Spatial Resolution 

(m) 

B2 Blue 490 10 

B3 Green 560 10 

B4 Red 665 10 

B5 Red Edge 1 705 20 

B6 Red Edge 2 740 20 

B7 Red Edge 3 783 20 

B8 Near-Infrared (NIR) 842 10 

B8A Narrow NIR 865 20 

B11 Short-Wave Infrared (SWIR) 1 1610 20 

B12 Short-Wave Infrared (SWIR) 2 2190 20 

 

 

 
  
This study also made use of high-resolution imagery from PlanetScope acquired throughout the year 2023. 
Unlike Sentinel-2, PlanetScope imagery did not require a cloud masking process as the daily revisit 
capability allowed for the selection of cloud-free images. This high temporal resolution ensures that 
enough clear images are available throughout the duration of this study. This reduced the need for cloud 
filtering and allowed for consistent data acquisition. PlanetScope data was also processed using the Google 
Earth Engine platform.  
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Table 3: PlanetScope spectral bands and spatial resolution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2.  Field Data. 

This study used data collected from the field within the study area to complement existing datasets. The 

field data consisted of geotagged photos from various agricultural fields within the study area. This data 

was collected using mobile phones which contained inbuilt GPS. These geotagged photos provided the 

precise geolocations of different cropland types within the study area. Among the numerous farms in the 

study area, three primary cropping patterns stand out: maize fields, mixed fields, and rice fields. This 

pattern largely influenced the categorization of the croplands that can be mapped.  

Given the predominance of maize fields, mixed fields, and rice fields within the field data collected, the 

classification scheme for cropland mapping had to be adapted to accurately reflect these patterns. The 

intercropping practices particularly in the mixed fields where crops such as cassava and cowpeas, 

groundnuts among others are often grown together with maize posed a significant challenge for distinct 

crop mapping. Therefore, the classification performed in this study focused on these major categories 

ensuring that the primary agricultural landscapes were accurately represented. See (Figure 2) for an 

example of how some of the crop fields appear within the study area.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Band Description Wavelength 

(nm) 

Spatial Resolution 

(m) 

B Blue 455-515 3-5 

G Green 500-590 3-5 

R Red 590-670 3-5 

NIR Near-

Infrared 

(NIR) 

780-860 3-5 
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Figure 2: Photos showing Maize, Mixed crop fields and Rice fields. 

2.2.3.  Existing Landcover Products. 

 

This study used two existing land cover products to guide the collection of training samples for other 

landcover classes present within the study area for supervised image classification. This action was 

computed in the Google Earth Engine (GEE) platform. These datasets included the Dynamic World 

Land Cover Map and the ESA Land Cover dataset.  

The Dynamic World Land Cover Map which has been developed jointly by Google and the World 

Resources Institute provided up-to-date classifications of various land cover types. This dataset is a 10-

meter resolution near real-time global land cover dataset. The Dynamic World Land Cover Map was 

produced using a deep learning method. It offers per-pixel probabilities across nine land cover classes and 

updates globally every 2-5 days depending on location (Dynamic World, 2023). The ESA Land Cover 

dataset (Raster data) which has been developed by the European Space Agency (ESA) is an essential 

resource for land cover classification and analysis.  
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The ESA World Cover product provides global land cover maps at a 10-meter resolution. This dataset 

fuses data from Sentinel-1 and Sentinel-2 satellites to produce a global landcover products which is made 

up of 11 land cover classes. These landcover classes are in alignment with the UN FAO's Land Cover 

Classification System to offer a broad view of the Earth's surface. Both products were loaded into GEE 

and intersected with high-resolution imagery of the study area for the year 2023 which was provided 

within the GEE platform. This intersection aimed to verify the land cover within the study area to 

facilitate the collection of accurate additional training samples. A summary table for the land cover class 

distribution and description for both Dynamic World and ESA land cover products can be found in the 

Appendix. 

 

The flow chart below (Figure 3) represents the overall methodology used to analyze the data for 

distinguishing maize cropping systems in the Gaza Province of Mozambique. The methodology involves 

several key steps, each contributing to the comprehensive analysis and classification process. 

 

 
 

Figure 3: Overall flowchart of the study methods. This flowchart outlines the process of data acquisition, 
preprocessing, and analysis. 
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2.3. Data pre-processing 

Data pre-processing is a critical step in ensuring the quality and reliability of remote sensing data for land 

cover mapping. This process involves a series of techniques to enhance image clarity, minimize 

atmospheric noise, and prepare the data for analysis (Macarringue et al., 2022). In this study pre-

processing was applied to the Sentinel-2 satellite imagery to ensure high-quality inputs for further analysis. 

The next section details the specific pre-processing steps undertaken for the Sentinel-2 data. 

 

2.3.1.  Sentinel-2 Image pre-processing. 

In this study a thorough pre-processing was conducted on the Sentinel-2 satellite imagery. This was to 

ensure high-quality data for mapping maize cropping systems in the Gaza province of Mozambique. The 

Sentinel-2 image collection from the COPERNICUS/S2_SR_HARMONIZED dataset was used 

encompassing images acquired throughout the year 2023. To enhance image clarity and minimize 

atmospheric noise, a few additional key steps were undertaken. Firstly, a cloud masking function 

“maskS2clouds” was applied using the QA60 band to identify and mask pixels affected by clouds and 

cirrus. This method is effective for reducing atmospheric interference. Such cloud masking techniques are 

widely used in remote sensing to improve data quality(Mateo-García et al., 2018). Secondly, pre-filtering 

was performed to select images with less than 10% cloud cover. This was done to ensure the inclusion of 

only the clearest images. This step is crucial as it significantly reduces the impact of cloud cover which can 

conceal surface features and affect the accuracy of land cover classification. Furthermore, the Cloud 

Score+ collection (GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED) was integrated with 

the Sentinel-2 images to enhance cloud detection and masking. This integration was achieved using the 

linkCollection function in GEE. This cloud identification process further improved the quality of the 

dataset. 

 

2.3.2. Image composites calculations. 

After performing masking on the Sentinel-2 imagery, the next step involved calculating a median 

composite image. A median composite is created by determining the median value for each pixel across a 

series of images. This approach is aimed at reducing noise and eliminating anomalies like clouds thereby 

providing a clearer and more consistent representation of the land surface. This technique is fundamental 

for enhancing data quality and ensuring accurate land cover classification, as demonstrated in studies such 

as Phan et al. (2020). See Figure 5 for a snapshot of the before and after the application of cloud masking 

and the computation of a median composite on the Sentinel-2 imagery. For this study, four distinct 

median composites: annual, dry season, wet season, and a multi-stack composite that combines the annual, 

dry, and wet season composites to capture temporal variations were created.  

The annual median composite was created by collecting multiple images of the same area taken 

throughout the year 2023. For each pixel location the pixel values are sorted over time and the median 

value is calculated and assigned to the corresponding pixel in the composite image. This procedure is 

repeated for both the dry season and wet season composites for the year 2023. Finally, the three 

composite images were stacked on top of each other to create a multi-stack image composite. The same 

procedure except for cloud masking, was performed on the PlanetScope satellite imagery as well. The 

entire workflow was carried out in GEE.  Figure 4 below presents an illustration of the workflow used 

for the generation of an annual median composite image for the Sentinel-2 satellite imagery.   
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Figure 4: Workflow for Pre-Processing Sentinel-2 Imagery 

 

 

 
Figure 5: Comparison of Raw and Pre-Processed Sentinel-2 Imagery after cloud removal and median 
composite calculation. 
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2.4. Preparation and refinement of field observations 

To prepare the field data to be used as input into the RF model which as later implemented, a few 

systematic steps were followed to ensure data accuracy.  Firstly, already existing plot segments delineated 

as polygons for the study area provided the necessary information regarding the spatial location of 

different land cover classes or features within the study area. A spatial selection was done to select all 

cultivated crop fields identified for the study area.  

Geotagged field photos were collected from various identified farms spread across the study area using a 

mobile phone GPS. The geotagged field photos were then converted to vector data (points) using the 

“GeoTagged Photos To Points” tool within the ArcGIS software (Esri, 2020). The conversion of these 

geotagged photos to point data was a crucial step because it allowed for the accurate association of crop 

types identified from the field observation with the crop field segmented plots. Furthermore, the 

converted point data was intersected with the crop segment polygon data and only polygons which fully 

contained point observations were selected for further analysis. The points that did not fall within any 

crop segment(polygon) were discarded indicating positional error on the part of the GPS devices used in 

collecting the field observations. This action was to ensure data quality to generate reliable outputs. The 

extracted crop field polygons were subsequently overlaid on high-resolution PlanetScope satellite imagery 

in the Google Earth Engine platform and inspected visually for consistency. This visual inspection step 

was necessary to validate the field data against the satellite imagery.  

The aim was to ensure that the polygons accurately represented the crop fields. To further enhance data 

quality, the K-means clustering method was performed on the satellite imagery clipped with the crop field 

polygons. See (Figure 6). The K-means parameter like number of clusters used varied depending on the 

land cover composition of each plot. Typically, clustering was performed with (n) clusters ranging from 2 

to 4. This means that the data points were divided into 2 to 4 distinct groups which was sufficient to 

capture the spectral variations within each plot. 

For a description of the K-means algorithm, see (Background) in this study's introduction.  This step was 

vital as it enabled the refinement of the initial polygons to ensure that the training data was representative 

of actual crop fields not other land cover classes that were not relevant to the study. The refined polygons 

were merged to form one wholistic polygon containing all the individual crop fields boundaries. After that, 

the next step was to convert the polygon data to point data. Converting the training polygons to points 

has several benefits for many tasks performed in GEE. Firstly, this action reduces the computational load 

and memory usage making data processing more efficient. This simplification enhances spatial analysis by 

decreasing data volume hence leading to faster and more manageable workflows. Additionally, points 

ensure consistent data sampling across regions improving the reliability and accuracy of geospatial analysis.  

A flow diagram illustrating the entire workflow for preparing and refining field data is shown below in 

(Figure 7)  
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Figure 6: Refinement of Crop Field Polygon Data Using K-means Clustering Algorithm 
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Figure 7: Workflow for refining crop field data to be used as input into the RF model. 

2.5.  Feature Extraction 

Feature extraction is an important step in any image-based classification. This process involves 

transforming raw data into a set of measurable characteristics or features that can be used to categorize or 

analyze the image. The focus of image classification research has always been on feature extraction as it 

forms the basis of the classification process by isolating specific geometric, textural, and spectral 

information that distinguishes one land cover type from another. (Lu et al., 2023; Puls et al., 2023). This is 
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important for achieving precise and accurate classification outputs in remote sensing applications (Lu et 

al., 2023). For this study, four main different types of features were considered namely spectral, textural, 

spectral indices and topographic features.  

 

A) Spectral features from Sentinel-2 and PlanetScope image 

In this study, all bands from the Sentinel-2 satellite were considered for further analysis. This approach 

included the visible, near-infrared (NIR), and shortwave infrared (SWIR) bands as well as the red edge 

bands. This selection was based on common practices observed in previous studies on similar topics. For 

example, study by Inglada et al., (2022) has demonstrated the value of using the full spectral range of 

Sentinel-2 for diverse land cover classification tasks. This justifies the inclusion of all available bands in 

this research. Just like the case for the Sentinel-2 image, all the 4 spectral bands of PlanetScope were also 

considered for further analysis   See (Table 2) and (Table 3) for information regarding the band 

specifications of the Sentinel-2 and PlanetScope satellite respectively. 

B) Textural Features 

Texture is an important aspect of all satellite images, describing how pixel values are spread out across an 

image and revealing patterns that help us understand and categorize the content (Pratt et al., 1978). 

Extracting these textural features helps identify the spatial arrangement of pixels which is especially useful 

in remote sensing for classifying different types of land cover or crops. In image analysis various methods 

are employed to derive textural information that can aid in classification tasks.  

 

In this study, the Gray-Level Co-occurrence Matrix (GLCM) method was implemented to extract textural 

features for the classification task. The Gray Level Co-occurrence Matrix (GLCM) is a robust method for 

extracting textural features from images particularly in the context of remote sensing. This method was 

developed by (Haralick et al., 1973). GLCM analyzes the spatial distribution of pixel intensities in an image 

by creating a matrix that captures how often pairs of pixel values occur in specific spatial relationships. 

This method transforms raw image data into a set of statistical measures that describe texture, making it 

useful for classifying different land cover types or crops. A total of 18 GLCM textural features can be 

derived from the spectral bands of interest for both the Sentinel-2 and PlanetScope satellite images. These 

are  Angular Second Moment (asm), Contrast (contrast), Correlation (corr), Sum of Squares, Variance 

(svar), Inverse Difference Moment (idm), Sum Average (savg), Sum Variance (var), Sum Entropy (sent), 

Entropy (ent), Difference Variance (dvar), Difference Entropy (dent), Information Measures of 

Correlation1 (imcorr1), Information Measures of Correlation2 (imcorr2), Maximal Correlation Coefficient 

(maxcorr), Dissimilarity (diss), Inertia (inertia), Prominence (prom), and Shade (shade). However, for this 

study a total of seven features were used. See (Table 4 & 5). This selection was based on their proven 

effectiveness in similar studies. The aim of this action was to increase computational efficiency and reduce 

redundancy and irrelevant features (Clausi, 2002).  
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Table 4: GLCM Textural Features Computed for Sentinel-2 Bands 

GLCM Feature Sentinel-2 Bands Computed Textures 

Angular Second Moment 

(Asm) 

B4 (Red), B8 (NIR), B3 (Green), B7 

(Red Edge 3) 

asm_B4, asm_B8, asm_B3, asm_B7 

Contrast B4 (Red), B8 (NIR), B3 (Green), B7 

(Red Edge 3) 

contrast_B4, contrast_B8, 

contrast_B3, contrast_B7 

Correlation (Corr) B4 (Red), B8 (NIR), B3 (Green), B7 

(Red Edge 3) 

corr_B4, corr_B8, corr_B3, corr_B7 

Inverse Difference 

Moment (Idm) 

B4 (Red), B8 (NIR), B3 (Green), B7 

(Red Edge 3) 

idm_B4, idm_B8, idm_B3, idm_B7 

Entropy B4 (Red), B8 (NIR), B3 (Green), B7 

(Red Edge 3) 

ent_B4, ent_B8, ent_B3, ent_B7 

Dissimilarity (Diss) B4 (Red), B8 (NIR), B3 (Green), B7 

(Red Edge 3) 

diss_B4, diss_B8, diss_B3, diss_B7 

Variance B4 (Red), B8 (NIR), B3 (Green), B7 

(Red Edge 3) 

var_B4, var_B8, var_B3, var_B7 

 

 

Table 5: GLCM Textural Features Computed for PlanetScope Bands 

GLCM Feature PlanetScope Bands Computed Textures 

Angular Second Moment (Asm) R (Red), N (NIR), G (Green) R_asm, N_asm, G_asm 

Contrast R (Red), N (NIR), G (Green) R_contrast, N_contrast, G_contrast 

Correlation (Corr) R (Red), N (NIR), G (Green) R_corr, N_corr, G_corr 

Inverse Difference Moment 

(Idm) 

R (Red), N (NIR), G (Green) R_idm, N_idm, G_idm 

Entropy R (Red), N (NIR), G (Green) R_ent, N_ent, G_ent 

Dissimilarity (Diss) R (Red), N (NIR), G (Green) R_diss, N_diss, G_diss 

Variance R (Red), N (NIR), G (Green) R_var, N_var, G_var 
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C) Vegetation  Indices 

Vegetation indices are mathematical combinations of spectral bands from remote sensing images designed 

to highlight specific characteristics of the Earth's surface. Vegetation indices are important in various 

fields such as agriculture, forestry, and environmental monitoring because they transform raw spectral data 

into interpretable metrics. This enhances our ability to monitor, analyze, and manage natural resources 

effectively(Prasad et al., 2022; Tran et al., 2022).  In this study, seven vegetation indices were calculated to 

be used as part of the input features to the classification model. Five of these indices were consistently 

computed across both the Sentinel-2 and PlanetScope image. These indices included the Normalized 

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water 

Index (NDWI), Green Normalized Difference Vegetation Index (GNDVI), and Soil-Adjusted Vegetation 

Index (SAVI). The other two indices the Normalized Difference Moisture Index (NDMI) and Bare Soil 

Index (BSI) were specifically computed using the Sentinel-2 imagery due to the availability of additional 

spectral bands which are not present in the PlanetScope data.  

 

Table 6: Summary Table of Vegetation indices Calculated for Sentinel-2 and PlanetScope Images 

Index Image Formula Description & Explanation 

NDVI  Sentinel-2, 

PlanetScope 

(NIR - Red) / (NIR + 

Red) 

Indicates vegetation health and density. 

High values suggest healthy, dense 

vegetation. 

EVI  Sentinel-2, 

PlanetScope 

2.5 * ((NIR - Red) / 

(NIR + 6 * Red - 7.5 * 

Blue + 1)) 

Enhances vegetation signal with 

improved sensitivity in high biomass 

regions and better noise reduction. 

NDWI  Sentinel-2, 

PlanetScope 

(NIR - Green) / (NIR 

+ Green) 

Reflects water content in vegetation and 

soil. Higher values indicate higher water 

content. 

GNDVI  Sentinel-2, 

PlanetScope 

(NIR - Green) / (NIR 

+ Green) 

Sensitive to chlorophyll content in 

vegetation, useful for monitoring plant 

health. 

SAVI  Sentinel-2, 

PlanetScope 

((NIR - Red) / (NIR + 

Red + 0.5)) * 1.5 

Similar to NDVI but adjusts for soil 

brightness, improving vegetation 

detection in areas with less dense 

canopy. 

NDMI Sentinel-2 (NIR - SWIR) / (NIR 

+ SWIR) 

Indicates moisture content in vegetation 

and soil. Higher values signify more 

moisture. 

BSI  Sentinel-2 ((SWIR + Red) - (NIR 

+ Blue)) / ((SWIR + 

Red) + (NIR + Blue)) 

Differentiates bare soil from vegetation 

and other land covers. Higher values 

indicate bare soil presence. 
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D) Topographic Features 

Topographic features provide important information about the physical characteristics of the Earth's 

surface. The use of terrain features is essential for remote sensing applications, including image 

classification (Marzi et al., 2023).  These features are derived from Digital Elevation Models (DEMs) and 

include metric such as elevation, slope, aspect, curvature, and roughness. For this study, the Shuttle Radar 

Topography Mission (SRTM) dataset was used to extract aspect, elevation and slope data which were then 

used as input features for the RF model. SRTM data provides detailed elevation models with a resolution 

of 30 meters at a global scale. This makes it a useful resource for various applications including remote 

sensing image analysis. 

 

2.5.1. Preparation of input features for RF model 

For this study, the input features were prepared in GEE and then exported to a local Python environment 

to facilitate various experimental setups. This step was essential because it allowed for the manipulation 

and testing of different configurations of the input features. This was done to ensure that a comprehensive 

analysis was performed on the input features and ensure the RF is well optimized. The workflow for 

creating input features for the RF model in GEE involved several key steps. Firstly, the study area 

boundary and training points were imported to ensure the entire process was restricted to the region of 

interest. The various image composites as described in section 2.4.2 served as the basis for the extraction 

of key spectral indices and textural features such as NDVI, EVI, NDWI, NDMI, SAVI, BSI, and GNDVI 

as well as the Grey Level Co-occurrence Matrix (GLCM) textural features. Topographic data such as 

elevation, slope, and aspect, were incorporated to account for terrain influences. The next step involved 

the combination of all processed into a single collection and sampled using the training points. The 

geometry parameter was set to true to retain the spatial information of each sample point.  Finally, the 

data is exported as a CSV file for further analysis. This process was performed on both satellite imagery 

thus Sentinel-2 and PlanetScope.  This workflow is illustrated in (figure 8) below. The exported CSV file 

containing all the input features was then joined with the training points shapefile using a unique ID 

common to both datasets. This step was to ensure that each point data is properly linked to the 

corresponding feature data. 
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Figure 8 : workflow for preparing input features in GEE. 

 

 

 

2.5.2. Correlation analysis on input features. 

To ensure relevance and non-redundancy of the input features to the RF model, this study implemented a 

Pearson correlation analysis on the spectral bands, topographic features, spectral indices, and GLCM 

texture features. Pearson correlation is a commonly used statistical method for assessing linear 

relationships between pairs of variables. This helps to identify variables that are highly correlated and 

might contribute redundant information to the model. By reducing redundancy, the RF model can 

become more efficient and effective. This is because machine learning models rely on the most 

informative and independent features for decision-making. This method has been extensively documented 

in scientific literature for its effectiveness in such analyses (Schober & Schwarte, 2018). 
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The results of the correlation analysis for both datasets (Sentinel-2 and PlanetScope) were used to 

organize the input features into different experimental groups. Each group represented a separate 

combination of features, allowing for a comparative analysis to determine which set produced the best 

classification outcome. This approach not only helps in improving model performance but also 

contributes to a better understanding of the significance of each feature set in the classification process. 

 

 

2.5.3.  Input features experimental setup. 

In total, four experiments were setup on the various image composites in line with the correlation 

coefficients of the input features. This approach was applied to both datasets thus Sentinel-2 and 

PlanetScope. The experiments were designed with the following goals: Experiment 1 aimed to include 

moderately correlated features for a balanced dataset. Experiment 2 focused on highly correlated texture 

features and essential indices for vegetation and moisture. Experiment 3 combined various vegetation 

indices with detailed texture features for comprehensive analysis. Experiment 4 used features with varied 

correlation levels for extensive coverage. 

Topographic features were constant in all experiments for both datasets because they were not highly 

correlated with any spectral bands, texture features, or vegetation indices. This constancy ensured that 

topographic information was always considered in the classification process without contributing to 

redundancy.  

 

 

Sentinel-2 Experiments: 

• Experiment 1: This experiment included moderately correlated features for a balanced dataset. The 
texture features used were B4_contrast, B8_contrast, B3_diss, and B7_var. The indices included EVI, 
NDWI, and BSI. The spectral bands were B2, B5, B8, and B11, along with the topographic features 
slope, elevation, and aspect. 

• Experiment 2: This experiment focused on highly correlated texture features and essential indices for 
vegetation and moisture. The texture features were B4_var, B8_diss, B3_var, and B7_contrast. The 
indices included NDVI, SAVI, and NDMI. The spectral bands used were B3, B6, B8A, and B12, with 
the topographic features slope, elevation, and aspect. 

• Experiment 3: This experiment combined various vegetation indices with detailed texture features 
for comprehensive analysis. The texture features included B4_diss, B8_var, B3_contrast, and B7_diss. 
The indices were EVI, NDVI, SAVI, GNDVI, NDMI, and BSI. The spectral bands were B3, B4, B5, 
B7, and B8A, along with slope, elevation, and aspect. 

Experiment 4: This experiment used features with varied correlation levels for extensive coverage. The 

texture features were B4_contrast, B8_contrast, B3_var, and B7_var. The indices included EVI, NDWI, 

and GNDVI. The spectral bands were B11, B2, B5, B6, and B8, along with the topographic features slope, 

elevation, and aspect. 
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PlanetScope Experiments: 

• Experiment 1: This experiment selected low to moderately correlated features to cover a broad 
spectrum. The texture features used were R_contrast, G_contrast, N_diss, and G_var. The indices 
included EVI, NDWI, and SAVI. The spectral bands were B, G, and N, along with the topographic 
features slope, elevation, and aspect. 

• Experiment 2: This experiment chose features with low to moderate correlations for a diverse 
dataset. The texture features were R_diss, N_var, G_diss, and G_var. The indices included NDVI, 
GNDVI, and SAVI. The spectral bands were R, G, and N, with the topographic features slope, 
elevation, and aspect. 

• Experiment 3: This experiment selected a range of correlations to cover more variance. The texture 
features used were R_var, N_contrast, R_diss, and G_diss. The indices included EVI, NDVI, 
GNDVI, and NDWI. The spectral bands were B, R, and G, along with slope, elevation, and aspect. 

• Experiment 4: This experiment included a wide range of data with varied correlations for 
comprehensive analysis. The texture features used were R_contrast, N_contrast, G_diss, and G_var. 
The indices included NDWI, GNDVI, and SAVI. The spectral bands were B, R, G, and N, along 
with the topographic features slope, elevation, and aspect. 

By structuring the input features into these experimental groups, the study aimed to identify the most 

effective combination for classifying maize cropping systems and to understand the impact of different 

feature sets on model performance. A summary of the experimental setup can be found below in (table 7 

& 8) for Sentinel-2 and PlanetScope datasets respectively. 

Table 7: Summary of Experimental Setup for Sentinel-2 Datasets 

Experiment Texture Features Indices 

Features 

Bands 

Features 

Terrain 

Features 

Reason  

1 B4_contrast, 

B8_contrast, B3_diss, 

B7_var 

EVI, 

NDWI, BSI 

B2, B5, B8, 

B11 

slope, 

elevation, 

aspect 

To include moderately correlated 

features for a balanced dataset. 

2 B4_var, B8_diss, 

B3_var, B7_contrast 

NDVI, 

SAVI, 

NDMI 

B3, B6, 

B8A, B12 

slope, 

elevation, 

aspect 

To focus on highly correlated texture 

features and essential indices for 

vegetation and moisture. 

3 B4_diss, B8_var, 

B3_contrast, B7_diss 

EVI, NDVI, 

SAVI, 

GNDVI, 

NDMI, BSI 

B3, B4, B5, 

B7, B8A 

slope, 

elevation, 

aspect 

To combine various vegetation 

indices with detailed texture features 

for comprehensive analysis. 

4 B4_contrast, 

B8_contrast, B3_var, 

B7_var 

EVI, 

NDWI, 

GNDVI 

B11, B2, 

B5, B6, B8 

slope, 

elevation, 

aspect 

To use features with varied 

correlation levels for extensive 

coverage 

 

 



 

27 

Table 8: Summary of Experimental Setup for PlanetScope Datasets 

Experiment Texture  

Features 

Indices Bands Topographic 

Features 

 

Reason  

1 R_contrast, 

G_contrast, 

N_diss, 

G_var 

EVI, NDWI, 

SAVI 

B, G, N slope, elevation, 

aspect 

Selected low to moderately correlated 

features to cover a broad spectrum. 

2 R_diss, 

N_var, 

G_diss, 

G_var 

NDVI, 

GNDVI, 

SAVI 

R, G, N slope, elevation, 

aspect 

Chose features with low to moderate 

correlations for a diverse dataset. 

3 R_var, 

N_contrast, 

R_diss, 

G_diss 

EVI, NDVI, 

GNDVI, 

NDWI 

B, R, G slope, elevation, 

aspect 

Selected a range of correlations to cover 

more variance. 

4 R_contrast, 

N_contrast, 

G_diss, 

G_var 

NDWI, 

GNDVI, 

SAVI 

B, R, G, N slope, elevation, 

aspect 

Included a wide range of data with 

varied correlations for comprehensive 

analysis. 

 

 

2.5.4.  Implementation of Random Forest  

In this study, the RF classifier was used to perform supervised classification on the various combinations 

of input features derived from Sentinel-2 and PlanetScope datasets. To ensure an unbiased assessment, the 

input data was split into training (70%) and testing (30%) sets using a stratified approach to ensure a 

balance class distribution. This is a typical split also used in other studies for training random forests on 

land cover classification (Eisavi et al., 2015; C. Zhou et al., 2022). See Figure 9 for a summary of the 

distribution of training and validation points across the various land cover classes respectively. 

 The ‘random_state’ was controlled for reproducibility and set to 100 ensuring that the same random 

processes such as data shuffling and model initialization produce consistent splits and results across 

different runs (Pedregosa et al., 2011). This action enhances the reliability and comparability of the outputs 

generated. A description of the RF model and its characteristics can be found within the introduction 

section of this study. Hyperparameter tuning was conducted using ‘GridSearchCV’ with a 5-fold 

‘StratifiedKFold’ cross-validation. This meant that the 70% training data was divided into 5 folds using the 

‘StratifiedKFold’ method to ensure that each fold preserved the class distribution. 

 GridSearchCV is a technique used in machine learning to perform hyperparameter tuning (Pedregosa et 

al., 2011). It systematically works through multiple combinations of hyperparameter values cross-validating 

each combination to determine the best-performing parameters (Yang & Shami, 2020). Hyperparameter 

tuning in general is the process of optimizing the parameters that control the learning process of a 

machine learning model (Yang & Shami, 2020). Through the ‘GridSearchCV’, parameters such as the 

number of trees (n_estimators), tree depth (max_depth), minimum samples required to split a node 

(min_samples_split), minimum samples required at each leaf node (min_samples_leaf), and the use of 

bootstrap samples (bootstrap) were explored. The choice of cross-validation in this study was motivated 
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by the need to ensure a robust and unbiased evaluation of the model's performance. This method divides 

the training data into five equal parts or folds. After which the model iteratively trains on four folds while 

validating it on the remaining one-fold. This process is repeated five times with each fold serving as the 

validation set once. By doing so ensures that every data point is used for both training and validation. This 

provides a thorough assessment of the model's performance and reduce the risk of overfitting. 

 

 
Figure 9: Distribution of training and validation points across different land cover classes. 

 

 

 

 

 

2.5.5. Variable Importance Analysis 

 
This study used three methods to assess variable importance: mean decrease Gini, SHAP (SHapley 

Additive exPlanations), and permutation importance.  

Mean decrease Gini measures feature importance by calculating the average reduction in Gini impurity 

when a feature is used to split a node in tree-based models like Random Forests (Sandri & Zuccolotto, 

2010).  

SHAP values explain each feature's impact on model predictions by distributing the prediction among 

features, considering all possible subsets(Lundberg et al., 2017).  

Permutation importance measures the change in model accuracy when feature values are shuffled(Pereira 

et al., 2021). Comparing these methods was aimed at gathering a complete understanding of feature 

importance from different perspectives. Each method offers unique advantages. For instance, mean 

decrease Gini is efficient for tree-based models, SHAP offers consistent and detailed explanations. Finally, 

permutation importance is flexible and applicable to any model. 
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2.5.6.  Evaluation of Classification Model 

In this study, the performance of the RF model in predicting the land cover classes of interest was 

evaluated using key metrics such as precision, recall, F1-score, and the confusion matrix. 

Precision measures the proportion of true positive predictions among all positive predictions. This 

indicates the model's accuracy in identifying the correct land cover classes (Navnath et al., 2022). 

Precision is calculated as follows: 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
True Positives

True Positives + False Positives
 

On the other hand, recall evaluates the ratio of true positive predictions to the total actual positives. It 

measures the model’s ability to capture all relevant instances of each land cover class(Navnath et al., 2022) 

. The formula for calculating recall is as follows: 

𝐑𝐞𝐜𝐚𝐥𝐥 =
True Positives

True Positives + False Negatives
 

F1-score represents the harmonic mean of precision and recall. This provides a balanced assessment by 

considering both false positives and false negatives (Maung et al., 2023).The F1-score is calculated as 

follows:   

 

𝐅𝟏 − 𝐬𝐜𝐨𝐫𝐞 = 2 X
Precision x Recall

Precision +  Recall
 

 

Additionally, the confusion matrix offers an inclusive view of the model's performance by displaying the 

counts of true positive, true negative, false positive, and false negative predictions. It enables the 

calculation of various metrics and helps to identify specific areas where the model may be misclassifying 

(Cheng et al., 2021).  
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2.6. McNemar's Test for Comparing Classification Models 

 
To compare the performance of the two classification models (Sentinel-2 and PlanetScope) in correctly 

distinguishing between maize fields and mixed fields, the McNemar's test was used. McNemar's test is 

useful for evaluating differences in performance between paired data (Leon, 1998). This test is conducted 

based on Chi-square (χ²) test for goodness of fit (Kavzoglu, 2017). The aim is to compare an observed 

count distribution to the expected distribution under a null hypothesis. The test creates a 2x2 contingency 

table. This table includes the counts of samples correctly and incorrectly classified by two different 

models. The McNemar test statistic is calculated using the following formula: 

 

 

Where:  

nij represents the count of samples that were misclassified in model i but correctly classified in model j. 

nji represents the count of samples that were misclassified in model j but not in model i. 

This formula is used to determine whether there is a statistically significant difference between the two 

classification models. If the calculated Chi-square statistic exceeds the critical value of 3.84 at a 95% 

confidence level, it indicates that there is a significant difference in the performance of the two models. 

For this study, the 2x2 contingency table was created based on the confusion matrices derived from both 

models (Sentinel-2 and PlanetScope) focusing only on the land cover class of interest thus (maize fields 

and mixed fields).   
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3. RESULTS 

 

This chapter presents the findings of the study, organized according to the research objectives. The 

outcomes of various experiments and analyses are reported to address each objective systematically. 

 

3.1.  Correlation results for Sentinel-2 input data. 

To assess the usefulness and relative importance of spectral indices, textural, and topographic features 
from optical satellite data for the discrimination of different maize cropping systems using the Random 
Forest (RF) algorithm, for this study, a series of experiments with different feature combinations was 
setup. The correlation analysis revealed key findings regarding the relationships between various input 
features.  

For Sentinel-2 bands, high correlations were observed among adjacent spectral bands such as B12, B11, 
B8, B8A, B7, B6, B5, and B4 (Figure 10) with correlation coefficients often exceeding 0.90. This high 
correlation indicates similar information capture due to their spectral proximity. Similarly, texture features 
derived from these bands also exhibited high correlations. for instance, features such as B4_contrast and 
B4_diss with a correlation of 0.87, and B8_contrast and B8_diss with a correlation of 0.90 suggest 
redundancy. Spectral indices like EVI, NDVI, and SAVI were also highly correlated with coefficients 
often above 0.90 (Figure 11), reflecting their similar derivation and purpose. 

In the PlanetScope dataset, high correlations were noted among visible bands (B, R, G), with coefficients 
ranging from 0.93 to 0.98 (Figure 12). Texture features such as R_contrast and R_diss had a correlation 
of 0.89 indicating some redundancy. Indices such as EVI, NDVI, and NDWI for PlanetScope also 
showed high correlations, often exceeding 0.90 (Figure 13). In contrast, topographic features (slope, 
elevation, aspect) displayed low correlations with each other and with the spectral bands, texture features, 
and vegetation indices. This suggests their unique contribution to the model. 
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Figure 10:  Pearson correlation matrix for Sentinel-2 spectral bands. 

 

 
Figure 11: Pearson correlation matrix of vegetation indices computed from Sentinel-2 image. 
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Figure 12:  Pearson correlation matrix for PlanetScope spectral bands 

 

 
Figure 13: Pearson correlation matrix of vegetation indices computed from PlanetScope image. 
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3.2.  Results of Input Features Experiments  

  

In this study, four experiments were setup on the various image composites in line with the correlation 

coefficients of the input features. The aim was to identify the best performing experiments for both 

datasets. In line with this, the tables displayed below show a comparison of the cross-validation 

accuracy, test accuracy, and OOB Score for the best combination of input features across the different 

experiments for Sentinel-2 and PlanetScope composite data. 

The performance metrics for the input features experiments using both Sentinel-2 and PlanetScope 

datasets revealed key results. For Sentinel-2 data, across the rain season, dry season, and annual 

composites, the cross-validation accuracy ranged from 0.82 to 0.84, the test accuracy ranged from 0.83 

to 0.85, and the OOB scores were consistent between 0.83 to 0.84 (Table 9). Similarly, for 

PlanetScope data, the cross-validation accuracy varied from 0.80 to 0.82. The test accuracy ranged 

from 0.81 to 0.83 and the OOB scores were around 0.82 (Table 10). These consistent results 

demonstrate the robust performance of the RF model across the different feature sets.  

 

 

Table 9: Summary of performance metrics for the input features experiments using Sentinel-2 data across 
different composite types (rain season, dry season, and annual composite) 

Composite Type Experiment Cross-

validation 

Accuracy 

Test 

Accuracy 

OOB Score 

Rain Season 1 0.84 0.85 0.83 

 2 0.82 0.83 0.83 

 3 0.83 0.83 0.83 

 4 0.82 0.83 0.83 

Dry season 1 0.84 0.84 0.84 

 2 0.83 0.84 0.84 

 3 0.83 0.83 0.84 

 4 0.83 0.84 0.84 

Annual Composite 1 0.84 0.83 0.84 

 2 0.83 0.83 0.84 

 3 0.83 0.84 0.84 

 4 0.83 0.84 0.84 
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Table 10: Summary of performance metrics for the input features experiments using PlanetScope data 
across different composite types (rain season, dry season, and annual composite) 

 

 

 

3.2.1 Comparative Performance of Experiments Across Datasets (Sentinel-2 vs PlanetScope) 

Comparing the performance of experiments across both datasets, it is evident that the Sentinel-2 data 

consistently outperformed PlanetScope in terms of accuracy and robustness. For Sentinel-2, Experiment 

1 which used the rain season composite displayed the highest test accuracy (0.85) and cross-validation 

accuracy (0.84) indicating that this combination of features and image composite was particularly effective 

(Table 9). The dry season and annual composites for Sentinel-2 also showed high and consistent 

performance across experiments with only minor variations in accuracy metrics. 

In contrast, for PlanetScope dataset, the annual composite in Experiment 4 exhibited the highest test 

accuracy (0.83) and consistent cross-validation accuracy (0.82) suggesting this combination was the most 

effective for this dataset (Table 10). The dry season and rain season composites for PlanetScope 

demonstrated slightly lower but uniform performance with Experiment 4 achieving marginally better test 

accuracy. 

Overall, the Sentinel-2 rain season composite (Experiment 1) and the PlanetScope annual composite 

(Experiment 4) emerged as the top performers. 

 

 

Composite Type Experiment Cross-

validation 

Accuracy 

Test 

Accuracy 

OOB Score 

Rain Season 1 0.82 0.81 0.83 

 2 0.82 0.81 0.83 

 3 0.82 0.82 0.83 

 4 0.83 0.81 0.83 

Dry season 1 0.81 0.80 0.82 

 2 0.80 0.81 0.82 

 3 0.81 0.81 0.82 

 4 0.81 0.81 0.82 

Annual Composite 1 0.82 0.82 0.82 

 2 0.81 0.82 0.82 

 3 0.82 0.82 0.82 

 4 0.82 0.83 0.82 
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3.3.  Variable Importance Results  

To assess the usefulness and relative importance of spectral indices, textural, and topographic features 

from (Sentinel-2 and PlanetScope) data for discriminating different maize cropping systems, this study 

computed feature importance using three methods: Mean Decrease Gini (MDG), SHapley Additive 

exPlanations (SHAP), and Permutation Importance.  

 

3.3.1. Variable importance for Sentinel-2 (Rain season composite-best experiment)  

The feature importance analysis using MDG, SHAP, and Permutation Importance methods highlights key 

features which enabled the predictive capabilities of the RF model is shown in Figures 14, 15, and 16. 

Figure 14 reveals that Band 5, Elevation, Band 2, and Band 11 are among the most significant features 

according to the MDG method. Figure 15 shows Permutation Importance scores and identifies 

Elevation, Band 7 Variance, and Band 3 Dissimilarity as the most critical features. Figure 16 with SHAP 

values shows Band 8, Band 3, and Band 7 as having the highest impact on the model output across 

various land cover classes. 

 

Figure 14: Bar chart showing feature importance using Mean Decrease Gini (MDG) Method on Sentinel-2 
rain season composite data. 
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Figure 15: Bar chart showing feature importance using permutation importance Method on Sentinel-2 rain 
season composite data. 

 

 
Figure 16: Bar chart showing feature importance using SHAP Method on Sentinel-2 rain season 

composite data. 
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3.3.2. Variable importance for PlanetScope (Annual composite-best experiment) 

 
Similarly, feature importance analysis using MDG, SHAP, and Permutation Importance methods for 

PlanetScope annual composite data is shown in Figures 17, 18, and 19. Figure 17 shows that the Green 

Band, Elevation, Red Band, and Blue Band are among the most important features based on the MDG 

method. Figure 18 shows that Elevation, Green Dissimilarity, and the NIR Band are the most crucial 

features according to Permutation Importance scores. Figure 19 using SHAP values, reveals that Red 

Dissimilarity, Red ASM, and SAVI have the greatest impact on the model output across various land 

cover classes. Similar analysis has been conducted on the multi-stack composite data for both Sentinel-2 

and PlanetScope datasets and the results can be found in the appendix section of this study. 

 

Figure 17: Bar chart showing feature importance using Mean Decrease Gini (MDG) Method on 
PlanetScope annual composite data. 
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Figure 18: Bar chart showing feature importance using permutation importance method on PlanetScope 

annual composite data. 

 
Figure 19: Bar chart showing feature importance SHAP Method on PlanetScope annual composite data. 
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The comparison between the feature importance of Sentinel-2 and PlanetScope data shows both shared 

unique features across the datasets. Common features identified as important in both datasets include 

Elevation, NDWI, EVI, NIR, and Blue highlighting their universal relevance in identifying different maize 

cropping systems. Sentinel-2 emphasized specific spectral bands such as B5, B2, B11, and B8, as well as 

textural features like B3_diss (Dissimilarity) and B4_contrast (Contrast). In contrast, PlanetScope 

highlights spectral bands like G (Green), R (Red), and B (Blue) and focuses on vegetation indices like 

SAVI, NDWI, EVI, and textural measures such as G_diss (Green Dissimilarity) and R_asm (Red Angular 

Second Moment). 
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3.4.  Classification Results for Sentinel 2 

 

In line with the second objective (section 1.3) of this study, the figures below illustrate the land cover 

classification outputs for the same region generated using Sentinel-2 data. The land cover maps were 

produced using RF classifier. In Figure 20, the classification uses the best features achieving an overall 

accuracy of 85%. This map distinguishes various land cover classes such as Maize Fields, Mixed Crop 

fields, Built-up areas, Shrubs, Trees, Bareland, Grass, and Rice fields. In Figure 21, the classification uses 

a multi-stack composite resulting in a slightly lower OA of 83%. This map similarly differentiates land 

cover classes as demonstrated in Figure 30. 

 

 
Figure 20: Land Cover Map Produced Using Sentinel-2 Data with the Best Identified Features. 
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Figure 21: Land Cover Map Produced Using Sentinel-2 Multi-stack Composite Data with the Best 
Identified Features 
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3.4.1. Classification Results for PlanetScope data 

Similarly, figures below show the classification results for the study area using PlanetScope data produced 

using RF classifier. In Figure 22, the classification used the best features resulting in an overall accuracy 

of 83%. The map identifies various land cover classes such as Maize Fields, Mixed Crop fields, Built-up 

areas, Shrubs, Trees, Bareland, Grass, and Rice fields. In Figure 23, the classification used a multi-stack 

composite achieving a higher overall accuracy of 86%. This map similarly distinguishes the land cover 

classes with notable differences in classification accuracy and distribution compared to Figure 22. 

 
Figure 22: Land Cover Map Produced Using PlanetScope Data with the Best Identified Features. 
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Figure 23: Land cover map produced using PlanetScope data with the best identified features. 
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3.4.2. Consistency in Land Cover Classification between Sentinel-2 and PlanetScope data 

Figure 24 shows a comparative analysis of land cover classification using PlanetScope data for areas A, B, 
C, and D. The top row presents satellite imagery snapshots of the study area while the subsequent rows 
display the classification outputs from the PlanetScope best feature maps and multi-stack maps. In area A, 
both datasets demonstrate consistent classification for rice fields and maize fields. Area B shows 
consistent classification for maize fields and built-up areas (red). In area C, both maps consistently classify 

trees and shrubs. Lastly, area D shows consistent classification for trees and built-up areas.  

 

Figure 24: Comparison of land cover classification using PlanetScope data for areas A, B, C, and D. The 
top row shows satellite imagery snapshots, the middle row displays the best feature maps, and the bottom 
row presents the multi-stack maps. 
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Just like the PlanetScope data, a similar trend can be observed in consistency of classifications using 
Sentinel-2 data as shown in figure 25 below. In area A, both datasets consistently classify rice fields and 
maize fields. Area B shows consistent classification for maize fields and built-up areas. In area C, both 
maps consistently classify trees and shrubs. Lastly, area D shows consistent classification for trees and 
built-up areas. 

 
Figure 25: Comparison of land cover classification using Sentinel-2 data for areas A, B, C, and D. The top 
row shows satellite imagery snapshots, the middle row displays the best feature maps, and the bottom row 
presents the multi-stack maps. 
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3.4.3. Inconsistencies in land cover classification between Sentinel-2 and PlanetScope data 

 
Figure 26 shows a comparison of the land cover classification inconsistencies for Sentinel-2 and 

PlanetScope data for areas A, B, C, and D. In this context, inconsistencies refer to instances where the 

land cover classes identified by the PlanetScope and Sentinel-2 maps do not match.  

Inconsistencies can be observed across the datasets in different areas. In area A, there is a discrepancy in 
the classification of maize fields and grass. Area B shows inconsistencies in identifying mixed crop fields 
and rice fields. Area C demonstrates variability in classifying shrubs and grass. Lastly, area D displays 
differences in the classification of shrubs, maize fields, and grass.  

Figure 26: Comparison of land cover classification inconsistencies using Sentinel-2 and PlanetScope 
data. 
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3.5. Evaluation of Classification Results for Sentinel-2   

 
In this study, the classification model was evaluated to assess its performance in predicting the landcover 

classes of interest using numerous metrics. These metrics included precision, recall, and F1-score. The 

performance of different land cover classes for the Sentinel-2 classification maps including the ‘best 

features map’ (Figure 27) and the ‘multi-stack composite map’ (Figure 28) reveals both high and low 

classification results.  

High classification performance is observed for water, trees, and shrubs, with precision, recall, and F1-

Score values consistently above 0.90 across both maps. This indicates the model’s strong ability to 

accurately classify these classes. Built-up areas also demonstrate strong performance with precision, recall, 

and F1-Score values around 0.87, 0.90, and 0.88 respectively in the best features map and slightly lower in 

the multi-stack composite map (Figure 27 & 28).  

On the contrary, grass and mixed crop fields show lower performance metrics with precision, recall, and 

F1-Score values significantly lower highlighting challenges in accurately detecting these classes. 

Specifically, mixed crop fields have the lowest scores observed in both composites. Notably, maize fields 

show a minor improvement in recall in the multi-stack composite map. However, the performance in 

terms of precision and F1-Score remains close in both composites (Figure 24 & 25). Overall, while the 

model performs well for water, trees, shrubs, and built-up areas, it performs low  with accurately 

classifying grass and mixed crop fields. 

 

 
Figure 27: Precision, Recall, and F1-Score by Class for the Sentinel-2 Best Features Map. 
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Figure 28: Precision, Recall, and F1-Score by Class for the Sentinel-2 Multi-Stack Composite Map. 
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3.5.1. Evaluation of Classification Results for PlanetScope 

 

Similarly, Figure 29 and Figure 30 below shows the performance of different land cover classes for the 

PlanetScope classification maps thus ‘best features map’ and the ‘multi-stack composite map’ respectively. 

In Figure 29, high precision, recall, and F1-Score values are observed across most land cover classes 

indicating effective classification. Specifically, built-up areas, shrubs, trees, and water show notably high 

scores. On the contrary, classes such as grass and mixed crop fields display lower performance metrics. In 

Figure 30, a similar trend can be observed with slightly varying scores. Built-up areas and water maintain 

high classification metrics while trees continue to show high scores across all metrics. The precision for 

maize fields improved compared to the best features map whereas grass and mixed crop fields still show 

lower scores. 

 

 
Figure 29: Precision, Recall, and F1-Score by Class for the PlanetScope Best Features Map 
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Figure 30: Precision, Recall, and F1-Score by Class for the PlanetScope Multi-Stack Composite Map. 
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3.5.2.  Comparison of the best classification outputs for Sentinel-2 and PlanetScope. 

To compare the best classification maps, agreement and disagreement metrics were used to evaluate the 

consistency between the classification outputs for both PlanetScope and Sentinel-2. This was computed 

using the confusion matrix of both classification outputs. Agreement indicates the proportion of land 

cover classifications where both datasets match reflecting consistency and reliability. Disagreement on the 

other hand, highlights areas where the classifications differ indicating potential differences in how each 

dataset interprets the land cover. Figure 31 below shows the agreement and disagreement in land cover 

classification between PlanetScope and Sentinel-2 data for various classes.  

For Bare Land, PlanetScope shows 90.48% agreement and 9.52% disagreement while Sentinel-2 shows 

86.17% agreement and 13.83% disagreement. Built-up areas have high agreement in both datasets with 

93.64% for PlanetScope and 90.09% for Sentinel-2. Grassland shows notable differences with 64.62% 

agreement for PlanetScope and 52.38% for Sentinel-2 coupled with higher disagreement (35.38% and 

47.62% respectively). Maize fields show variation with PlanetScope showing 91.43% agreement compared 

to 82.29% for Sentinel-2.  

Mixed fields show similar agreement levels with PlanetScope at 58.47% and Sentinel-2 at 59.32% though 

the disagreement percentages are close (41.53% and 40.68% respectively). Rice fields show a significant 

difference with PlanetScope at 91.18% agreement and 8.82% disagreement, compared to Sentinel-2's 

76.47% agreement and 23.53% disagreement reflecting the challenges in accurately classifying this 

category. Shrubs, Trees, and Water categories generally exhibit high agreement levels in both datasets with 

PlanetScope consistently showing slightly higher agreement percentages than Sentinel-2. 
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Figure 31: Agreement and disagreement in land cover classification between PlanetScope and Sentinel-2 data for 

various classes. 
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3.6.  McNemar's Test. 

 
McNemar's test was conducted to assess whether the classification of maize and mixed fields with Sentinel-2 

and PlanetScope were statistically significant. Table 9 summarizes this analysis presenting counts for various 
scenarios: fields where both models agreed (correct or incorrect), and where they disagreed (one dataset 
correct, the other incorrect). Based on this p-value (0.8283) there is no a statistically significant difference 
between the two datasets on classes of interest. A summary of the contingency table is displayed in Figure 
32. The table presents a comparison between Sentinel-2 and PlanetScope classification results for maize 
fields and mixed fields. Out of the total data points, 229 were correctly classified by both models, while 65 
cases were incorrectly classified by both. Additionally, there were 44 cases where Sentinel-2 correctly 
classified the data points, but PlanetScope did not and 41 cases where PlanetScope was correct, but 
Sentinel-2 was not. The McNemar test statistic for this comparison is 0.0471 with a p-value of 0.8283 
indicating no significant difference in the classification performance between the two models. This 
analysis suggests that both models perform similarly in classifying maize fields and mixed fields.  
  

Table 11: Summary of McNemar's Test for maize and mixed fields 
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4. DISCUSSION 

4.1.  Correlation Analysis and Experiments for input variables  

In general, machine learning (ML) models rely on useful features to make accurate predictions  (Theng & 

Bhoyar, 2024). It is good practice to supply these ML models with as much useful information as possible 

both in terms of correct sample data and explanatory variables including spatial information. The 

challenge lies in determining how much information is too much. While it might seem important to 

include all available variables to capture all possible characteristics, this approach can fail (Theng & 

Bhoyar, 2024). Too many variables, especially those that are redundant or irrelevant, lead to increased 

computational processing, overfitting, and eventually, poor model performance  (Danasingh et al., 2020; 

Sarker, 2021). This phenomenon is known as the curse of dimensionality. This occurs when adding too 

many features makes the model less effective. With too many variables, the space in which the model 

operates becomes so vast that the data points become sparse and spread out (Crespo Márquez, 2022). This 

makes it harder for the model to learn and make accurate predictions. In this study, the issue of curse of 

dimensionality and variable redundancy was handled by conducting a Pearson correlation analysis to 

identify variables that might potentially be providing redundant information to the model. Then the 

correlation coefficients of the various variables were used to set up different experiments as seen in 

(section 2.5.3, Table 7).  

By conducting a Pearson correlation analysis, this study aimed at inspecting the overall model 

performance across different experiments with different variable combinations. This was to ensure an 

optimal balance between input variables and model efficiency. While popular methods like principal 

component analysis (PCA) and feature selection techniques (forward selection, backward elimination, and 

recursive feature elimination) are commonly used, they have limitations (Nick et al., 2015; Srinivas et al., 

2023). PCA, for instance, reduces dimensionality but can make transformed features difficult to interpret. 

Feature selection methods simplify models by selecting important features but may not always capture the 

best feature set. However, the approach used in this study is straightforward to implement and allows for 

direct tracking of variable importance, reduces computational complexities, and increases efficiency. 

Unlike PCA, which can make features hard to interpret, this correlation-based approach keeps the original 

features understandable while ensuring the model is manageable and efficient. Similar ideas are 

demonstrated by (Chen et al., 2019; Hall, 2024). The findings from the correlation analysis in this study 

showed expected high correlations among adjacent spectral bands and texture features derived from these 

bands. This was particularly evident in the band correlation matrix (Section 3) where adjacent bands 

exhibited very high correlations. Similarly, texture features derived from these bands also showed high 

correlations. This is expected according to existing knowledge in remote sensing. This is because adjacent 

bands tend to often capture similar information because of their close wavelengths (Đidelija et al., 2023). 

By understanding and managing these correlations, this study was able to identify high-performing 

experiments as shown in (Table 10 and 11). This helped to fast-track the variable selection process for 

both datasets ensuring optimal performances and robust model predictions. 
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4.2.  Feature Importance for the discrimination of different maize cropping systems 

An important aspect of this study was determining which variables from the Sentinel-2 and PlanetScope 

datasets were most effective in distinguishing different maize cropping systems. This directly addresses the 

first research objective of this study. To achieve this, this study employed three methods to assess feature 

importance: Mean Decrease Gini (MDG), SHapley Additive exPlanations (SHAP), and Permutation 

Importance. Each method offers a unique perspective on the role of each feature in the model's predictive 

capabilities, as explained in Section 2.5.4. In this study, MDG and Permutation Importance helped assess 

overall the variables that were considered as important by the RF model. Additionally, SHAP provided 

detailed insights into the predictive power of each feature for predicting the specific classes under study.   

The overall variable importance analysis for Sentinel-2 and PlanetScope datasets generated using MDG 

and permutation methods revealed both expected and unexpected findings. For Sentinel-2, the high 

ranking of B5, B11, B2, EVI, and NDWI was expected due to their known effectiveness in vegetation 

monitoring and distinguishing different land cover types (Al-Ali et al., 2024; Misra et al., 2020; Phiri et al., 

2020). 

Elevation emerged as the top feature for both datasets indicating that topographic features played 

a significant role in the classification model. This might be because elevation is often uncorrelated with 

other remote sensing data providing unique information. Additionally, elevation influences climate 

conditions which affect crop suitability. In the study area, crops typically grow in valleys or where water is 

accessible while other land cover classes are distributed in higher and lower areas. 

For instance, Noi Phan et al., (2020) also demonstrated that elevation was a highly influential factor in 

their land cover classification study using the RF classifier on five different datasets. For PlanetScope 

dataset, the high importance of the green (G) and red (R) bands were anticipated due to their spectral 

sensitivity to vegetation health and biomass (Houborg & McCabe, 2016; Vidican et al., 2023). The 

presence of texture features like G_diss and R_contrast also aligns with expectations as they capture 

spatial patterns within the imagery. However, for PlanetScope, vegetation indices were less influential 

compared to Sentinel-2. This could likely be attributed to PlanetScope’s lower spectral resolution which 

limits the range of spectral information available for calculating indices. 

The SHAP analysis across different composites for the Sentinel-2 dataset revealed some key observations 

specifically for maize and mixed crops. For the rain season composite, Bands B8, B3, B7, and the GNDVI 

index were most influential in predicting maize and mixed crop fields. In the annual composite, Bands B4, 

B12, B3, and elevation emerged as significant with textural features like B3_diss, B4_contrast, and B7_var 

also playing important roles. For the multi-stack composite, Bands B11, B3, B2, were the most prominent 

in increasing the model’s predictive power to map maize and mixed fields.  

These findings are expected and align with existing knowledge in vegetation monitoring and remote 

sensing. This is because Bands B8 (near-infrared), B3 (green), and B7 (red edge) are well-known for their 

sensitivity to vegetation characteristics making them valuable for distinguishing crop types (Al-Ali et al., 

2024; Misra et al., 2020; Phiri et al., 2020).  Indices like GNDVI are effective in assessing crop health and 

biomass. (Huang et al., 2021). For instance, study by Hung et al., (2019) also found that by incorporating 

spectral bands and GLCM features their model achieved the highest accuracy highlighting the importance 

of both spectral bands and textural features in attaining an optimal classification performance. 

In contrast, topographic features like elevation were crucial but their influence on increasing the model’s 

predictive power for the two agricultural field types (only maize and mixed) was less significant. However, 

the influence of elevation in boosting the predictive power of the model for land cover classes like trees, 

shrubs, bare land, and grassland was high. This was expected as agricultural fields within the study area are 
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mostly in low-lying areas, whereas other classes are widely distributed across both low- and high-lying 

areas. Similar patterns were observed for the PlanetScope datasets. Given their limited spectral depth, the 

red and green bands contributed positively to the model in terms of discriminating maize from mixed 

fields with texture features generated from the visible bands being largely influential and elevation showing 

similar trends. 

To conclude, this study largely achieved its first research objective by identifying the most important 

features for distinguishing different maize cropping systems from the Sentinel-2 and PlanetScope datasets 

through variable importance analysis. This analysis helped to answer the research question associated with 

research objective 1 thoroughly by revealing variables which were useful for the discrimination of different 

maize cropping systems across the two datasets used in this study (Sentinel-2 and planetScope 

composites). 

4.3. Model performance 

Evaluating the overall performance of any ML model is necessary to ensure its effectiveness in performing 

designated tasks. This study used key metrics such as cross-validation, precision, recall, and F1-score, to 

assess the performance of the RF model (Section 3.4). These metrics are widely used in machine learning 

tasks such as classification to provide a robust assessment of model performance (Naidu et al., 2023). 

Cross-validation was particularly chosen to address sample imbalances. As demonstrated in (Figure 9), the 

distribution of training and validation points used in this study were not entirely balanced therefore there 

was a need to implement K-fold cross validation to confirm the model's performance is consistent and 

generalizable across different subsets of the data. The K-fold method has proven to be useful in situations 

of sample imbalances (Fontanari et al., 2022a).  

The performance of the classification model across different land cover classes evaluated using precision, 

recall, and F1-score metrics revealed both strengths and areas for improvement. While the model 

demonstrated robust performance for classes such as trees, shrubs, and water bodies across both 

datasets (Sentinel-2 and PlanetScope) due to their distinct spectral signatures, it recorded low 

performances with mixed crop fields, maize fields, and grasslands. Low performance for some of these 

classes has also been reported by other studies. For example, Rujoiu-Mare et al., (2017) revealed that the 

most significant omission errors observed in their classification result were that of grassland and pine trees 

attributed to spectral similarities. Similar conclusions can be drawn in this case for grasslands which seem 

to be confused up with maize, mixed fields, and shrubs by the model. Although, in this study, this 

confusion could partly be attributed to spectral overlaps between these classes as well as limited number 

of samples for training and validation. 

Furthermore, mixed crop fields and maize fields exhibited significant confusion as could be seen in their 

confusion matrix reports (Appendix, figures 13&14). This confusion was highly anticipated. The main 

reason could be attributed to the nature of the cropping system largely practiced within the study area. 

The mixed cropping system practiced within the study area makes it difficult to separate distinct crop 

types using optical data see (Section 2.3.3). In this case mixed fields also contain maize crops making it 

hard for the classifier to differentiate due to the spectral and textural similarity between these crop fields. 

This is further demonstrated through the input class variability check performed in this study (see 

Appendix). These two classes do not show enough variability in terms of spectral information. In other 

words, the two classes (maize and mixed fields) have very similar spectral information which makes it 

difficult for the model to properly separate them.   

Rice fields on the other hand, showed varied high performance which could be attributed to their distinct 

spectral signatures. Classification result for rice fields confirms that rice fields were best captured using the 

multi-stack composites for both Sentinel-2 and PlanetScope datasets. This is clearly shown by the high 
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precision, recall, and F1-scores. The multi-stack composites combine multiple temporal snapshots. This 

could have enhanced the model's ability to detect rice fields more accurately across different growth 

stages. This high performance is to be expected due to several reasons. Rice fields have unique spectral 

characteristics that change distinctly with different growth stages making them easier to identify when 

multiple temporal images are used. The multi-stack composite approach captures these temporal 

variations providing a more comprehensive dataset that improves the model's ability to distinguish rice 

fields from other land cover types as confirmed in a study by Kustiyo et al., (2024). Their study indicated 

that the integration of data from different seasonal periods, specifically the rainy and dry seasons enhanced 

the accuracy of classification results. 

In summary, the RF model performed well overall excelling with distinct classes like trees and water but 

had lower performance with similar classes like mixed crops and maize. Multi-stack composites effectively 

identified rice fields.  

4.4. Comparison of Classification Accuracy between Sentinel-2 and PlanetScope 

Although PlanetScope and Sentinel-2 models both performed moderately well, and the classification 

accuracies obtained for both models were close (Section 3.4), research objective 2 of this study 

remained unattained. For a definitive answer to research objective 2, a statistical test was needed to 

determine whether the accuracies obtained from the Sentinel-2 and PlanetScope models were significantly 

different in discriminating different maize cropping systems. This was done by focusing only on the maize 

and mixed fields class and required statistical testing to confirm the formulated hypothesis.  

Therefore, a McNemar's test was conducted as it is designed for paired nominal data which fits our 

scenario where the same set of fields is classified by both models  (Pembury Smith & Ruxton, 2020). The 

test specifically evaluates the differences in paired proportions, making it suitable for assessing whether the 

two models significantly differ in their classification performance (Kavzoglu, 2017). Mcnemar’s test has 

been used in closely similar application like comparing classification models (Abdi, 2019). This is because 

of its simplicity and clarity offering a straightforward result in terms of a test statistic and p-value.  

McNemar's test reaches its conclusion by calculating a test statistic based on the differences in the paired 

classifications of the two models. Specifically, it examines the cases where the models disagree and where 

one model correctly classifies an instance that the other model misclassifies, and vice versa. The test 

statistic is then compared to a critical value from the chi-squared distribution to determine statistical 

significance. If the test statistic exceeds the critical value, the null hypothesis (that there is no difference 

between the models) is rejected see (Section 2.5.6). 

The results of the McNemar’s test concluded that there was not a statistically significant differences 

between Sentinel-2 and PlanetScope models for discriminating maize and mixed fields (different maize 

cropping systems) as summarized in (Table 9 & Figure 29). This conclusion is reasonable considering the 

p-value obtained (08283). This was higher than the typical significance threshold (0.05) indicating that any 

observed difference in performance could be due to random chance rather than a true difference in model 

capability.  

For instance, a study by Rösch et al., (2022) comparing the same datasets (PlanetScope and Sentinel-2) in 

mapping pines found that Sentinel-2 achieved comparable results to PlanetScope with accuracies of 

90.65% and 90.96% respectively, despite its lower spatial resolution. Again, another study by (Zagajewski 

et al., 2024) found that Sentinel-2 outperformed PlanetScope in some cases when classifying goldenrod. 

Specifically, the use of multitemporal Sentinel-2 images classified with the RF classifier achieved higher 

F1-scores (0.92–0.95 for goldenrod-dominated areas and 0.85–0.89 for heterogeneous areas) compared to 
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PlanetScope data. These studies highlight not only the significance of high spatial resolution but also the 

crucial role of high spectral resolution in classification tasks. 

This result was contrary to the study’s initial expectation that PlanetScope would perform exceptionally 

well. The expectation was based on the assumption that finer spatial details would aid in better 

discrimination of crop types. However, the results demonstrated that both datasets have their strengths 

and spatial resolution alone may not be the determining factor in classification accuracy.   

 

4.5. Limitations and Recommendations 

Despite some promising results, this study has a few limitations that need to be acknowledged. A primary 

limitation was the accuracy of geotagged photos used to capture the location of various crop fields within 

the study area. These photos were taken with a variety of mobile phones which could have led to 

inconsistencies in GPS accuracy due to the varying quality of devices used. This variability was evident 

during the data preparation stage where a notable number of photos could not be accurately associated 

with any existing plot due to positional inaccuracies. (Zandbergen & Barbeau, 2011) highlighted the need 

for caution when using mobile phones as GPS devices for data collection. To overcome this limitation, 

future study could consider standardizing the data collection process by using high-precision GPS devices 

across all data collection efforts. Using high-precision GPS devices to standardize data collection enhances 

geographical data accuracy and consistency which is crucial for mapping and classification tasks. This 

uniformity will help to reduce positional errors, improve data integration, and promote data quality leading 

to the generation of more reliable and accurate results(Dauwalter et al., 2006; Gao, 2002.; Lunetta et al., 

1991). 

Secondly, this study also encountered difficulties in ensuring a representative distribution of samples 

across all land cover classes. The challenge of achieving a representative distribution of samples across all 

land cover classes is a common issue acknowledged in land cover classification studies (Fontanari et al., 

2022b; C. Li et al., 2021) particularly, when dealing with naturally imbalanced datasets. In this study, a 

stratified sampling approach was employed to split data into training and validation sets to maintain 

balance (section 2.5.4). However, because the original dataset itself was imbalanced, the stratified 

approach might still not fully mitigate the effects of class imbalance on model performance.  

This bias potentially could have also affected the model's ability to generalize effectively particularly for 

underrepresented land cover classes as evidently shown to be case for land cover classes such grass and 

mixed fields (Figure 9). To improve this in future studies, increasing the number of field observations to 

cover various land cover classes more adequately could strengthen the stratification method. Such 

enhancements would help ensure a more balanced dataset potentially leading to better model performance 

and a more reliable generalization across diverse land cover types. For instance, studies by Studies by 

(Mellor et al., 2015; Z. Zhou et al., 2023) emphasized the importance of having balanced training data for 

achieving high classification accuracy. Mellor et al., (2015)found that balanced datasets result in the lowest 

overall error rates for both binary and multiclass classifications. Similarly, Zhouet al., (2023) highlighted 

that unbalanced data can negatively impact classification accuracy in remote sensing image segmentation 

and proposed a dynamic weighting method to improve the accuracy of underrepresented classes while 

maintaining overall segmentation performance. These findings collectively emphasize the key role of 

balanced datasets in ensuring robust and accurate classification outcomes across various ML models not 

just RF.  

Finally, another potential limitation of this study stems from the use of standalone satellite images from 

Sentinel-2 and PlanetScope datasets without exploring the benefits of data fusion. While both datasets 

performed adequately on their own, merging these datasets could potentially enhance the classification 

accuracy and robustness. Data fusion could capitalize on the unique strengths of each dataset which could 
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allow them to complement each other where one falls short (Zhu et al., 2018). For instance, Sentinel-2 

offers high spectral resolution (Table 2) which is beneficial for distinguishing between different types of 

vegetation and other land covers based on their spectral signatures. On the other hand, PlanetScope 

provides high spatial resolution (Table 3) which is also important for identifying smaller features and finer 

details on the ground. By fusing these datasets, the combined data could offer a broad view integrating the 

high spatial resolution information from PlanetScope with the spectral diversity of Sentinel-2. The 

approach of fusing datasets has been proven effective in other studies (Albanwan et al., 2024; He & 

Wong, 2024; Zhu et al., 2018) where data fusion significantly improved the performance of the applied 

models.   

 

4.6.  Implications 

Considering that the latest land cover maps for this study area produced by the Mozambique National 

Cartography and Remote Sensing Centre (CENACARTA) per the knowledge of this study dates to 2013. 

The updated land cover maps produced by this study offer vital insights into the evolving landscape 

dynamics of the Gaza province. These new maps reveal the current distribution of land cover in the 

region providing stakeholders with accurate and up-to-date information. Policymakers, for instance, can 

compare these maps to previous versions to identify areas of significant change. For example, in instances 

where tree cover loss has increased, this could prompt immediate conservation efforts and actions. Given 

the moderate overall accuracy (OA) of the maps produced in this study, these maps hold significant 

potential as inputs for future models especially for studies involving suitability analysis that require 

accurate land cover data. These reliable land cover maps can improve the precision of analyses in areas 

such as agricultural planning and environmental conservation. For instance, these maps can be used to 

identify suitable sites for new agricultural projects or conservation efforts by providing current 

information on land cover.  

Furthermore, the maps produced in this study can assist in improving the methodological approaches of 

future studies. By analyzing the techniques and variables that contributed to the high accuracy of the maps 

in this study, future researchers can refine their own methods to achieve similar or better results. This 

iterative improvement process can lead to more robust and reliable land cover results. In practical terms, 

these maps can also facilitate better resource allocation for field validation and sampling efforts. Knowing 

which areas have been accurately classified can help future researchers focus their ground-truthing efforts 

on regions where the classification might be less certain thereby optimizing the use of time and resources. 
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5. CONCLUSIONS 

This research aimed to evaluate the effectiveness of high spectral resolution (Sentinel-2) compared to high 

spatial resolution (PlanetScope) optical satellite data in distinguishing different maize cropping systems in 

Gaza province, Mozambique. The study focused on two main objectives: first, assessing the usefulness 

and importance of spectral indices, textural, and topographic features from these datasets; and second, 

comparing the classification accuracy of Sentinel-2 and PlanetScope imagery to determine any statistically 

significant differences. To ensure the accuracy and reliability of the training data, a careful sample cleaning 

process was employed. This included aligning point data with crop segments, removing misaligned points, 

and visually validating the data with high-resolution satellite imagery. Finally, K-means clustering was used 

to refine the polygons ensuring only homogeneous areas were considered and merging them into a 

comprehensive polygon of crop fields. This thorough process substantially enhanced the robustness of the 

data and is a key methodological strength of this study. 

5.1. Effectiveness of spectral indices, textural metrics, topographic features, and spectral bands 

derived from optical satellite data in distinguishing different maize cropping systems 

This study uncovered that Sentinel-2 red edge bands ranked among the top 10 features across all three 

methods used and were collectively the most useful for discriminating both maize and mixed crops. 

Elevation emerged as the most important topographic feature overall, but it was not relevant for 

distinguishing between different maize cropping systems. Textural features derived from the green and red 

edge bands were important overall but not particularly influential for maize and mixed fields. Specifically, 

texture features from the red band were important for mixed fields but not for maize fields, where blue 

and green bands were more influential. For PlanetScope data, vegetation indices contributed less to 

discriminating different maize cropping systems. Instead, the red and green bands were more effective in 

distinguishing maize from mixed fields which was expected as previous research indicates that spectral 

bands sensitive to vegetation characteristics like the green band play important role in crop discrimination.  

Again, it was the study’s expectation that the indices calculated from PlanetScope’s high spatial resolution 

dataset would be highly influential in discriminating the different maize cropping systems, but this turned 

out not to be the case in this study. 

5.2. Comparison of classification accuracy between high spectral resolution (sentinel 2) and high 

spatial resolution (PlanetScope) satellite imagery for discriminating different maize cropping 

systems 

The findings revealed that while the RF model demonstrated robust performance for distinct classes like 

trees, shrubs, and water bodies across both datasets (Sentinel-2 and PlanetScope). Classification 

performance in discriminating different maize cropping systems with Sentinel-2 and PlanetScope was not 

statistically different. This outcome supports the null hypothesis (H0) that there is no significant difference 

in the classification accuracy between high spectral resolution (Sentinel-2) and high spatial resolution 

(PlanetScope) optical satellite imagery for discriminating different maize cropping systems. Despite the 

higher spatial and temporal resolution of PlanetScope, it did not result in significant performance 

improvements. This emphasizes the critical role of other factors such as spectral resolution. Additionally, 

the study also revealed that employing a multi-stack composite for PlanetScope improved the overall 

model accuracy in predicting the maize class. In contrast, the use of a multi-stack composite for Sentinel-2 

resulted in slightly lower accuracy compared to using the rain season composite data. The results 

demonstrated that both datasets have their strengths, and that spatial resolution alone may not be the 

determining factor in classification accuracy.  
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6. ETHICAL CONSIDERATIONS 

This research utilized secondary data, therefore, direct interactions with human subjects were not required. 

Therefore, the primary ethical concerns focused on safeguarding data privacy. The study adhered strictly 

to the ethical principles and guidelines outlined by the University of Twente's Research Ethics Policy, 

emphasizing the responsible use and handling of data. This included obtaining informed consent when 

necessary and implementing stringent measures to preserve data privacy. Specifically, all identifiable 

information was anonymized and stored securely. Access to sensitive data was restricted to authorized 

personnel only. These practices highlighted the commitment to maintaining the highest ethical standards 

in data handling throughout the research process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

63 

LIST OF REFERENCES 

 
Abdi, A. M. (2019). GIScience & Remote Sensing Land cover and land use classification performance of machine learning 

algorithms in a boreal landscape using Sentinel-2 data Land cover and land use classification performance of machine 

learning algorithms in a boreal landscape using Sentinel-2 data. 

https://doi.org/10.1080/15481603.2019.1650447 

Al-Ali, Z., Abulibdeh, A., Al-Awadhi, T., Mohan, M., Al Nasiri, N., Al-Barwani, M., Al Nabbi, S., & 

Abdullah, M. (2024). Examining the potential and effectiveness of water indices using multispectral 

sentinel-2 data to detect soil moisture as an indicator of mudflow occurrence in arid regions. 

International Journal of Applied Earth Observation and Geoinformation, 130, 103887. 

https://doi.org/10.1016/J.JAG.2024.103887 

Albanwan, H., Qin, R., & Tang, Y. (2024). Image Fusion in Remote Sensing: An Overview and Meta Analysis. 

https://arxiv.org/abs/2401.08837v1 

Azar, A. T., Barretta, R., & Cambaza, E. (2023). Mozambique: Country Profile. Encyclopedia 2023, Vol. 3, 

Pages 143-167, 3(1), 143–167. https://doi.org/10.3390/ENCYCLOPEDIA3010011 

Bansal, M., Goyal, A., & Choudhary, A. (2022). A comparative analysis of K-Nearest Neighbor, Genetic, 

Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine 

learning. Decision Analytics Journal, 3, 100071. https://doi.org/10.1016/J.DAJOUR.2022.100071 

Belavagi, M. C., & Muniyal, B. (2016). Performance Evaluation of Supervised Machine Learning 

Algorithms for Intrusion Detection. Procedia Computer Science, 89, 117–123. 

https://doi.org/10.1016/J.PROCS.2016.06.016 

Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-

weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523. 

https://doi.org/10.1016/J.RSE.2017.10.005 

Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future 

directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. 

https://doi.org/10.1016/J.ISPRSJPRS.2016.01.011 

Briem, G. J., Benediktsson, J. A., & Sveinsson, J. R. (2002). Multiple classifiers applied to multisource 

remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 40(10), 2291–2299. 

https://doi.org/10.1109/TGRS.2002.802476 

Brodley, C. E., & Friedl, M. A. (1997). Decision tree classification of land cover from remotely sensed 

data. Remote Sensing of Environment, 61(3), 399–409. https://doi.org/10.1016/S0034-4257(97)00049-7 

Chen, S. B., Ding, C. H. Q., Zhou, Z. L., & Luo, B. (2019). Feature selection based on correlation 

deflation. Neural Computing and Applications, 31(10), 6383–6392. https://doi.org/10.1007/S00521-

018-3467-4/TABLES/4 

Cheng, K. S., Ling, J. Y., Lin, T. W., Liu, Y. T., Shen, Y. C., & Kono, Y. (2021). Quantifying Uncertainty 

in Land-Use/Land-Cover Classification Accuracy: A Stochastic Simulation Approach. Frontiers in 

Environmental Science, 9, 628214. https://doi.org/10.3389/FENVS.2021.628214/BIBTEX 

Clausi, D. A. (2002). An analysis of co-occurrence texture statistics as a function of grey level quantization. 

Costa, V. G., & Pedreira, C. E. (2022). Recent advances in decision trees: an updated survey. Artificial 

Intelligence Review 2022 56:5, 56(5), 4765–4800. https://doi.org/10.1007/S10462-022-10275-5 

Crespo Márquez, A. (n.d.). The Curse of Dimensionality. https://doi.org/10.1007/978-3-030-97660-6_7 

Dabija, A., Kluczek, M., Zagajewski, B., Raczko, E., Kycko, M., Al-Sulttani, A. H., Tardà, A., Pineda, L., & 

Corbera, J. (2021). Comparison of Support Vector Machines and Random Forests for Corine Land 



 

64 

Cover Mapping. Remote Sensing 2021, Vol. 13, Page 777, 13(4), 777. 

https://doi.org/10.3390/RS13040777 

Danasingh, A. A. G. S., Subramanian, A. alias B., & Epiphany, J. L. (2020). Identifying redundant features 

using unsupervised learning for high-dimensional data. SN Applied Sciences, 2(8), 1–10. 

https://doi.org/10.1007/S42452-020-3157-6/FIGURES/2 

Dauwalter, D. C., Fisher, W. L., & Belt, K. C. (2006). Mapping stream habitats with a global positioning 

system: Accuracy, precision, and comparison with traditional methods. Environmental Management, 

37(2), 271–280. https://doi.org/10.1007/S00267-004-0270-Z/FIGURES/5 

de Bie, C. A. J. M., Khan, M. R., Smakhtin, V. U., Venus, V., Weir, M. J. C., & Smaling, E. M. A. (2011). 

Analysis of multi-temporal SPOT NDVI images for small-scale land-use mapping. International 

Journal of Remote Sensing, 32(21), 6673–6693. https://doi.org/10.1080/01431161.2010.512939 

De Bie1, C. A., Khan1, M. R., Toxopeus1, A. G., Venus1, V., & Skidmore1, A. K. (2008). 

HYPERTEMPORAL IMAGE ANALYSIS FOR CROP MAPPING AND CHANGE 

DETECTION. www.VGT.vito.be. 

DeFries, R. S., & Chan, J. C. W. (2000). Multiple criteria for evaluating machine learning algorithms for 

land cover classification from satellite data. Remote Sensing of Environment, 74(3), 503–515. 

https://doi.org/10.1016/S0034-4257(00)00142-5 

Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of Sentinel-2 Red-Edge Bands for 

Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, Vol. 11, Pages 7063-7081, 

11(7), 7063–7081. https://doi.org/10.3390/S110707063 

Đidelija, M., Kulo, N., Mulahusić, A., Tuno, N., & Topoljak, J. (2023). Correlation analysis of different 

optical remote sensing indices for drought monitoring: a case study of Canton Sarajevo, Bosnia and 

Herzegovina. Environmental Monitoring and Assessment, 195(11), 1–19. 

https://doi.org/10.1007/S10661-023-11930-2/FIGURES/8 

Ding, K., Wang, C., Tao, M., Xiao, H., Yang, C., & Huang, P. (2020). A Classification Method of Land 

Cover Based on Support Vector Machines. Lecture Notes in Computer Science (Including Subseries Lecture 

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12488 LNCS, 48–54. 

https://doi.org/10.1007/978-3-030-62463-7_5 

Dogan, A., & Birant, D. (2019). A Weighted Majority Voting Ensemble Approach for Classification. 2019 

4th International Conference on Computer Science and Engineering (UBMK), 366–371. 

https://doi.org/10.1109/UBMK.2019.8907028 

Eisavi, V., Homayouni, S., Yazdi, A. M., & Alimohammadi, A. (2015). Land cover mapping based on 

random forest classification of multitemporal spectral and thermal images. Environmental Monitoring 

and Assessment, 187(5), 1–14. https://doi.org/10.1007/S10661-015-4489-3/FIGURES/8 

ElMannai, H., Hamdi, M., & AlGarni, A. (2019). Enhanced Support Vector Machine Applied to Land-Use 

Classification. Communications in Computer and Information Science, 1097 CCIS, 236–244. 

https://doi.org/10.1007/978-3-030-36365-9_20 

Fletcher, S., & Islam, M. Z. (2019). 83 Decision Tree Classification with Differential Privacy: A Survey. 

ACM Comput. Surv, 52. https://doi.org/10.1145/3337064 

Fontanari, T., Fróes, T. C., & Recamonde-Mendoza, M. (2022a). Cross-validation Strategies for Balanced 

and Imbalanced Datasets. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 13653 LNAI, 626–640. https://doi.org/10.1007/978-3-

031-21686-2_43/TABLES/4 

Fontanari, T., Fróes, T. C., & Recamonde-Mendoza, M. (2022b). Cross-validation Strategies for Balanced 

and Imbalanced Datasets. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 



 

65 

Intelligence and Lecture Notes in Bioinformatics), 13653 LNAI, 626–640. https://doi.org/10.1007/978-3-

031-21686-2_43/TABLES/4 

Gao, F., & Gao, F. (2021). Remote Sensing for Agriculture. 7–24. https://doi.org/10.1007/978-3-030-66387-

2_2 

Gao, J. (n.d.). Integration of GPS with Remote Sensing and GIs: Reality and Prospect. 

Ghimire, B., Rogan, J., Galiano, V., Panday, P., & Neeti, N. (2012). An evaluation of bagging, boosting, 

and random forests for land-cover classification in Cape Cod, Massachusetts, USA. GIScience and 

Remote Sensing, 49(5), 623–643. https://doi.org/10.2747/1548-1603.49.5.623 

Giri, C., Pengra, B., Long, J., & Loveland, T. R. (2013). Next generation of global land cover 

characterization, mapping, and monitoring. International Journal of Applied Earth Observation and 

Geoinformation, 25(1), 30–37. https://doi.org/10.1016/J.JAG.2013.03.005 

Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover 

classification. Pattern Recognition Letters, 27(4), 294–300. 

https://doi.org/10.1016/J.PATREC.2005.08.011 

Hall, M. A. (n.d.). Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning. 

Hao, P., Löw, F., & Biradar, C. (2018). Annual Cropland Mapping Using Reference Landsat Time 

Series—A Case Study in Central Asia. Remote Sensing 2018, Vol. 10, Page 2057, 10(12), 2057. 

https://doi.org/10.3390/RS10122057 

Haralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image Classification. IEEE 

Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621. 

https://doi.org/10.1109/TSMC.1973.4309314 

He, S., & Wong, S. W. K. (2024). Spatio-temporal data fusion for the analysis of in situ and remote sensing data using 

the INLA-SPDE approach. 

Holloway, J., Helmstedt, K. J., Mengersen, K., & Schmidt, M. (2019). A Decision Tree Approach for 

Spatially Interpolating Missing Land Cover Data and Classifying Satellite Images. Remote Sensing 2019, 

Vol. 11, Page 1796, 11(15), 1796. https://doi.org/10.3390/RS11151796 

Houborg, R., & McCabe, M. F. (2016). High-Resolution NDVI from Planet’s Constellation of Earth 

Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sensing 2016, Vol. 8, 

Page 768, 8(9), 768. https://doi.org/10.3390/RS8090768 

Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of 

normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of 

Forestry Research, 32(1), 1–6. https://doi.org/10.1007/S11676-020-01155-1/FIGURES/2 

Hung, C.-C., Song, E., & Lan, Y. (2019). Image Texture, Texture Features, and Image Texture 

Classification and Segmentation. Image Texture Analysis, 3–14. https://doi.org/10.1007/978-3-030-

13773-1_1 

Inglada, J., Michel, J., & Hagolle, O. (2022). Assessment of the Usefulness of Spectral Bands for the Next 

Generation of Sentinel-2 Satellites by Reconstruction of Missing Bands. Remote Sensing 2022, Vol. 14, 

Page 2503, 14(10), 2503. https://doi.org/10.3390/RS14102503 

Kavzoglu, T. (2017). Object-Oriented Random Forest for High Resolution Land Cover Mapping Using 

Quickbird-2 Imagery. Handbook of Neural Computation, 607–619. https://doi.org/10.1016/B978-0-12-

811318-9.00033-8 

Kustiyo, K., Rokhmatuloh, R., Saputro, A. H., & Kushardono, D. (2024). Rice fields classification through 

spectral-temporal data fusion during the rainy and dry seasons using Sentinel-2 optical images in 

Subang Regency, West Java, Indonesia. Paddy and Water Environment, 1–11. 

https://doi.org/10.1007/S10333-024-00972-Y/FIGURES/7 



 

66 
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APPENDIXES 

Classification Scheme for Dynamic world and ESA land cover maps 

 
Table: 2 Classification and description of land cover types in the ESA 2021 map including colour 

representation and class values. 

 

Table: 2 Classification and description of land cover types in the Dynamic world 2023 map including 

colour representation  

Name Description Color 

Tree Cover Areas covered with trees Dark Green 

Shrubland Areas dominated by shrubs Light Green 

Grassland Areas covered with grass Yellow 

Cropland Areas used for growing crops Brown 

Built-up Urban areas and other man-made 

structures 

Red 

Bare/Sparse Vegetation Areas with minimal vegetation Light Brown 

Snow and Ice Regions covered with snow or ice White 

Permanent Water Bodies Bodies of water such as lakes and 

rivers 

Blue 

Herbaceous Wetland Wetlands dominated by 

herbaceous plants 

Light Blue 

Mangrove Coastal wetlands with mangrove 

trees 

Dark Blue 

Moss and Lichen Areas dominated by moss  Grey 

 

Class Name Description Color 

Tree Cover Areas predominantly covered by trees Dark Green 

Shrubland Areas predominantly covered by shrubs Light Orange 

Grassland Areas predominantly covered by grass Yellow 

Cropland Areas used for agricultural purposes Light Purple 

Built-up Urban and industrial areas Red 

Bare / Sparse Vegetation Areas with little to no vegetation Light Gray 

Snow and Ice Areas covered with snow or ice White 

Permanent Water Bodies Rivers, lakes, reservoirs, and other permanent water 

bodies 

Blue 

Herbaceous Wetland Areas with herbaceous plants that are permanently 

or seasonally inundated with water 

Cyan 

Mangroves Coastal wetlands with mangrove vegetation Light Green 

Moss and Lichen Areas predominantly covered by mosses and 

lichens 

Light Yellow 
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Variability plots 

 

This study used box plots to examine the variability of key for both Sentinel-2 and PlanetScope satellite 

imagery along with terrain features such as elevation, slope, and aspect. These plots help to evaluate the 

dispersion of data points within each land cover class offering insights into the distinctiveness and 

separability of these classes based on their properties. The plots provide a visual representation of this 

variability and can be seen below (1 to 12). 

 

 
Figure 1: Box plots showing the distribution of Sentinel-2 spectral band values (B2, B3, B4, B5, B6, B7, 

B8, B8A, B11, and B12) across maize fields, mixed crop fields, and rice fields. Each plot displays the 

interquartile range, median, and outliers for the respective spectral band showing the variability between 

the land cover classes. 
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Figure 2: Box plots showing the distribution of spectral index values (NDVI, GNDVI, NDWI, SAVI, 

EVI, BSI, and NDMI) from Sentinel-2 data across maize fields, mixed crop fields, and rice fields.  

 

 
Figure 3: Box plots showing the distribution of terrain feature values (elevation, slope, and aspect) across 

maize fields, mixed crop fields, and rice fields.  
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Figure 4: Box plots showing the distribution of Sentinel-2 spectral band values (B2, B3, B4, B5, B6, B7, 

B8, B8A, B11, and B12) across different land cover classes: trees, water, bareland, built-up areas, grass, 

and shrubs.  
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Figure 5: Box plots showing the distribution of spectral index values (NDVI, GNDVI, NDWI, SAVI, 

EVI, BSI, and NDMI) from Sentinel-2 data across different land cover classes: trees, water, bareland, 

built-up areas, grass, and shrubs.  

 

 
Figure 6: Box plots showing the distribution of terrain feature values (elevation, slope, and aspect) across 

different land cover classes: trees, water, bareland, built-up areas, grass, and shrubs.  
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Figure 7: Box plots showing the distribution of PlanetScope spectral band values (Blue, Green, Red, and 

Near-Infrared (NIR)) across maize fields, mixed crop fields, and rice fields.  

 
Figure 8: Box plots showing the distribution of spectral index values (NDVI, GNDVI, NDWI, SAVI, and 

EVI) from PlanetScope data across maize fields, mixed crop fields, and rice fields.  
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Figure 9: Box plots showing the distribution of terrain feature values (elevation, slope, and aspect) across 

maize fields, mixed crop fields, and rice fields using PlanetScope data.  

 

 
Figure 10: Box plots showing the distribution of PlanetScope spectral band values (Blue, Green, Red, and 

Near-Infrared (NIR)) across different land cover classes: bareland, grass, water, built-up areas, shrubs, and 

trees.  

 

 
Figure 11: Box plots showing the distribution of terrain feature values (elevation, slope, and aspect) across 

different land cover classes: bareland, grass, water, built-up areas, shrubs, and trees. 
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Figure 12: Box plots showing the distribution of spectral index values (NDVI, GNDVI, NDWI, SAVI, 

and EVI) from PlanetScope data across different land cover classes: bareland, grass, water, built-up areas, 

shrubs, and trees.  
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Confusion matrix 

 

Figure 13: Confusion Matrix for Sentinel-2 best features map 

 

 
14: Confusion Matrix for PlanetScope multi-stack map 
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Figure15: Bar chart showing feature importance using permutation importance Method on Sentinel-2 

multi-stack composite data.  

 

 
Figure16: Bar chart showing feature importance using MDG Method on Sentinel-2 multi-stack composite 

data.  
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Figure 16:  Bar chart showing feature importance using SHAP Method on Sentinel-2 multi-stack 

composite data. 

 
Figure 17:  Bar chart showing feature importance using MDG Method on PlanetScope multi-stack 

composite data. 
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Figure 18:  Bar chart showing feature importance using Permutation Method on PlanetScope multi-stack 

composite data. 

 

 
 

Figure 19:  Bar chart showing feature importance using SHAP Method on PlanetScope multi-stack 

composite data. 
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Figure 20: Pearson correlation matrix of GLCM features computed  

from Sentinel-2 image. 

 
Figure 21: Pearson correlation matrix for topographic features for Sentinel-2 
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Figure 22: Pearson correlation matrix of GLCM features computed  

from PlanetScope image. 

 

 
Figure23: Pearson correlation matrix for topographic features for PlanetScope image 
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