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Abstract

The growing use of battery-intensive technology has driven the requirement for accurate and
efficient methods to determine the State of Health (SoH) of batteries. This paper describes
a novel SoH estimation concept, using a Cascaded H-Bridge (CHB) which facilitates battery
parameter estimations for different State of Charges (SoC). The concept consists of a Bi-
Directional Converter circuit that delivers a Hybrid Power Pulse Characterisation (HPPC)
signal to the battery. The CHB provides the converter circuit with a constant DC voltage
from an AC power grid input voltage. Current and voltage sensors record the data, and a
MATLAB data-fitting script is utilized to obtain the battery parameters.
To verify that this SoH estimation concept works, a representative Equivalent Circuit Model,
namely a Dual Polarisation Battery Model (DPM) is created in SimuLink MATLAB. Com-
parison of the DPM outcome parameters against the initial input parameters, estimated for
different SoC settings, reveal relatively minor errors which indicate that this SoH estimation
concept has merit. These errors are mainly related to limitations in the modelling set-up like
sampling rate, simulation step size, data fitting algorithms. The DPM including a CHB still
resulted in an unsatisfactory large error range which could not be resolved on time.
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1 Introduction

In modern-day technology, battery usage is rapidly becoming more prominent. As an example,
in the rapid development of electric cars and other battery-intensive technologies, large arrays
of batteries are needed to provide power to enable these systems to work. Although this fast
development pace of the technology is good, there are still many issues to be solved around the fully
electric technology. One important issue with this technology is that the performance and efficiency
of a battery decrease the more times or the longer the battery is used and charged [1]. Therefore,
each battery has a performance lifespan determined by a threshold limit at which batteries are
deemed unreliable and by which they need to be replaced [1]. Another problem or issue is that all
battery cells are different, even when they are produced by the same manufacturer. The efficiency
of each battery is based on its microscopic composition, which is difficult to fully control during the
manufacturing phase [1]. Furthermore, the efficiency of an entire array of batteries is dependent
on the least efficient battery [2]. Due to this, it is essential to know which battery is causing
issues, so that it can be replaced. To do this, the State of Health (SoH) of the batteries needs to
be determined. For this it is critical to determine the remaining charge in the battery, the State of
Charge (SoC), which is essential in predicting the battery’s performance, efficiency, and lifespan [3].
Measuring battery SoC is not a straightforward process. Several methods, subdivided in ‘online’
or ‘offline’ methods, each with its advantages and disadvantages, can be used to determine the
State of Charge (SoC) of batteries [4,5]. The advantage of online methods is that the battery is not
disconnected from its circuit during battery health testing as is the case for offline methods [4,5].
Drawback is that this limits the kind of tests that can be performed during online testing [4, 5].
Offline or ‘direct’ methods involve measuring the battery’s actual electrical charge [4,5]. Therefore,
these methods are the most accurate, but as they require specialised equipment, these methods
can be difficult to implement and can be time-consuming [4, 5]. Online or ‘indirect’ methods
estimate the SoC based on the battery’s voltage, temperature, and other characteristics [4, 5].
These methods are less accurate than offline methods but are easier to implement and thereby
less expensive [4].
The goal of this thesis is to develop an online State of Health (SoH) estimation method and to
simulate a working prototype of a complete SoH estimation method using a Cascaded H-Bridge
(CHB) with a Bi-Directional DC-DC converter for varying State of Charges (SoC) of a battery.
This will be done via Simulink, a MATLAB simulation program [6].
The outline of the paper is as follows: Section 2 (‘Analysis’) summarises definitions and background
information regarding State of Health (SoH), State of Charge (SoC), Equivalent Circuit Models
(ECM), Hybrid Power Pulse Characterization (HPPC), Data Fitting Models (DFM), Cascaded H-
Bridge (CHB), and Bi-Directional converter. Section 3 (‘Methodology’) describes the methodology
of the MATLAB simulations and the set-up for the battery SoH testing. The simulation testing
results are described in Section 4 (‘Results’) and the simulation outcomes are presented and
discussed in Section 5 (‘Discussion’). Finally, the conclusions of this thesis are presented in Section
6.
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2 Analysis

To understand the objective of this thesis paper, some background information and definitions are
required regarding the different aspects of the project, which are summarised in the following sub-
sections. The ‘State of Health Estimation’ (SoH) sub-section presents its definition and outlines
some factors that have a deteriorating effect on the battery’s health. In the sub-section ‘State
of Charge’ (SoC) the estimation methodology that defines the battery’s health is presented. The
‘Equivalent Circuit Models’ (ECM) sub-section delves into the particulars of the battery model
chosen for the MATLAB simulations in this paper. The subsequent sub-sections ‘Hybrid Power
Pulse Characterisation’ (HPPC), ‘Data Fitting Models’ (DFM), ‘Cascaded H-Bridge’ (CHB), and
Bi-Directional converter circuit delve more specifically, on how the battery model parameters are
determined and how the testing set-up is achieved for the battery model parameter estimation.

2.1 State of Health Estimation

The State of Health (SoH) of a battery can be defined as the ratio of the current maximum capacity
relative to the battery’s maximum nominal capacity [7]. In other words, the State of Health of the
battery is the ratio of the battery’s maximum capacity at its current state of usage in relation to
the battery’s maximum capacity as stated in the battery specifications from the manufacturers.
This can also be described as the equation below.

SoH(t) =
Qmax(t)

Qn
· 100% (1)

Where Qmax is the current maximum battery capacity, and Qn is the nominal capacity of the
battery as stated in the battery specifications from the manufacturers [7].
The more used the battery is, the less ’health’ it has as batteries begin to deteriorate with time due
to various factors [1,4]. One factor is related to the chemical reactions that occur within the battery,
and which decreases in efficiency the longer the battery is used. This is also often referred to as
‘battery aging’ [1,4]. Other factors include the temperature of the battery, the internal resistance
of the battery, and the charge-discharge rate (also referred to as cycling rate) of the battery, which
also negatively impact the ’health’ of the battery if not used under correct conditions [1,4]. High
temperatures accelerate the chemical reactions, and vice versa, lower temperatures decrease the
chemical corrections [8]. Extreme temperatures can damage the battery and reduce its lifespan [8].
Hence, batteries must be operated within a specific temperature range according to the battery
specifications [8]. Cycling rate refers to the process of charging and discharging a battery [9]. The
charge-discharge rate refers not only to how the battery sends power, but also how it is able to
charge after it has been depleted in cases of rechargeable batteries [4]. Each charge-discharge cycle
affects the battery health due to the accumulation of irreversible chemical reactions within the
battery [9]. This is closely linked to the internal resistance of the battery. As the battery has been
used for a longer time, it has been observed that the internal resistance of the battery increases,
which affects the charge-discharge rate of the battery [9, 10]. All these factors contribute to the
health of the battery, and should be considered when estimating the remaining health of a battery.

2.2 State of Charge

Whereas the State of Health (SoH) indicates the overall health of the battery and how much it
has degraded over time, the State of Charge (SoC) of the battery is the terminology used to define
the amount of charge of the battery at its present state, i.e., it is a measure of how much charge
is left in the battery relative to its initial maximum capacity (Nominal Capacity, Qn). This can
described as the equation below.

SoC(t) =
Q(t)

Qn
· 100% (2)

Similar to the state of health, the total SoC of a battery can change due to many factors such
as temperature, internal resistance, battery use, etc., which all negatively affect the battery’s
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effectiveness during the battery’s life-cycle. As the State of Charge (SoC) capacity of the battery
is progressively decreasing during its lifespan, many battery manufacturers set a minimum limit
for maximum SoC capacity below which batteries are deemed unreliable and unusable. In most
cases, especially in electrical vehicles and everyday electronic devices, this minimum capacity limit
for maximum SoC is set at 80% of its Nominal Capacity [1]. This hard limit is set for many reasons
such as to secure adequate battery performance and reliability by limiting the allowable decrease
of power that the batteries in use can deliver, to secure a sufficient charge and discharge rate of the
batteries, to prevent that the batteries reach temperatures exceeding the specified temperature
range when being used, which all can occur as battery health deteriorates [1]. All these factors
affect the performance of the battery system and can cause issues when batteries over-used [1].
From Equation 2 and Equation 1 it can be concluded that the State of Health (SoH) of a battery
is determined by the maximum achievable charge capacity, i.e., the maximum State of Charge
(SoC) of that battery at that moment in time. As previously mentioned, the maximum charge
capacity of a battery slowly decreases during its lifespan due to various factors. By measuring
the maximum SoC capacity of the battery at any given time, and dividing it by its rated nominal
capacity, the State of Health of the battery can be determined.

2.3 Equivalent Circuit Model

To be able to calculate the State of Charge (SoC) of a battery, a model of the battery along with
its parameters needs to be determined for different initial voltages. This can be done through the
use of an Equivalent Circuit Model (ECM) [11–13]. An ECM is a simplistic representation of the
battery, and the different internal components that form the battery [11–13].
The accuracy of the ECM is determined by a combination of three different factors, namely (1)
the number of battery elements/characteristics that are required to be modelled which determines
the complexity of the ECM, (2) the accuracy of the method(s) that is(are) applied to measure the
battery parameters that need to be modelled, and (3) the type and accuracy of test profile that is
used to measure the battery parameters [11].
Regarding the first factor, a simpler model results in less accurate parameters as the model design
of the ECM limits the number of internal battery elements accounted for [11]. This can be seen
in ECMs such as the Rint Model (Figure 1a), which consists of only a voltage source as the Open
Circuit Voltage (OCV) and a resistor, which can model a limited amount of the characteristics of
a battery [11, 13, 14]. A slightly more complex model, the Thevenin Model, consists of the same
building blocks as the Rint Model but with an additional parallel resistor and capacitor (RC)
pair [11]. This allows it to model additional battery characteristics compared to the Rint Model.
An even more complex ECM, such as the Dual Polarisation (DP) Model (Figure 1b), consists
of a voltage source similar to the Rint model, but then includes two parallel RC pairs in series,
which thereby allows for even more of the characteristics of the battery to be modeled [11–15].
Understandably, increasing the complexity of the ECM allows for more battery characteristics to
be modeled, while a simple model can only portray a few of the battery characteristics. Although it
might appear counter-intuitive, in some cases it actually might be beneficial simplifying the ECM,
i.e., concentrating on modelling a few key elements instead of all possible elements of the battery,
allowing for a better understanding of the battery that is being investigated [13]. This would also
allow to use less complex equations to describe the battery characteristics [12,15]. Another benefit
of the ECM design is the flexibility of the model [12]. As alluded to previously, the complexity
of the battery model can be adjusted by the number of RC pairs included in the ECM to achieve
the desired accuracy [12]. The drawback of adding more RC pairs, as stated in [13, 14], is that
the computational complexity increases while the level of accuracy doesn’t significantly change.
Therefore, there is an efficiency limit between the amount of RC pairs added to the ECM model
and the added accuracy of the model
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Figure 1: Example of (a) Rint Model and (b) Dual-Polarisation Battery Model [14]

The second factor that impacts the accuracy of the ECM is the method by which the battery pa-
rameters are obtained [11]. Some more complex and direct methods, such as Electrical Impedance
Spectrometry (EIS), can achieve a higher level of accuracy for parameter identification compared
to simpler methods [4]. EIS is an experimental direct measurement method that is used to study
the electrochemical process inside the battery [4]. Although this might be beneficial, complex
battery parameter measurement methods might not be advantageous due to the resulting increase
in computational complexity, as well as the need for complex models to visualize the system in
question [14]. The EIS is an offline method as the battery needs to be removed from its initial
circuit for its parameters to be tested and identified through a long experimental process [4]. As
stated in [5], EIS is considered an effective methodology for SoH estimations, especially since the
estimations could be further improved by integrating it with other measurement methods to derive
a more comprehensive and effective battery model, although it currently has an error rate of 3.73%.
An alternative, online measurement method that could be considered is using Hybrid Power Pulse
Characterisation (HPPC) (see subsection 2.4). This particular method consists of sending the
battery short positive and negative current pulses [16]. One important factor of HPPC is being
able to measure the current pulses and the voltage response of the battery, therefore an additional
circuit may need to be added to be able to conduct measurements during HPPC testing. From
the voltage response of the circuit, the parameters of the battery can be estimated using machine
learning software, linear-regression approximation estimations, and data-fitting models [17]. Each
of these combined HPPC and data-fitting model methods has its own accuracy due to the different
constraints and complexity in which each method works. Therefore, similar to the ECM, there is
a limit and/or trade-off between which methods provide the best measurement accuracy and what
level of computational complexity is required for modeling those measurement methods.
The third factor that impacts the accuracy of the ECM is related to the test profile that is carried
out to measure the battery parameters [11]. Test profiles can vary depending on the information
that is wanted from the experiment. Some test profiles such as the Cycle Experiment, Open-
Circuit Voltage Experiment, and Hybrid Power Pulse Characterisation (HPPC) test different
aspects of the batteries [13]. Furthermore, different test profiles also contain different test set-ups
and parameters which can influence the accuracy that can be obtained from the ECM. Hence,
choosing the correct test profile is key in obtaining the required measurements and accuracy of
these measurements for the relevant battery parameters.

2.3.1 Dual Polarisation Model

As mentioned above, several different battery models can be used, according to [11, 12, 14]. The
most simple model is the Rint Model (Figure 1a). This model consists of a single voltage source
which represents the Open Circuit Voltage (OCV) as a function of the State of Charge (SoC) of the
battery, and a resistor in series which represents the internal resistance of the battery as a function
of the SoC [14]. Although this is a valid battery model, it is generally not accurate enough and it
is unable to model many of the relevant parameters of a battery [14,18]. A different model which
can be used is the Thevenin Model. This model consists of the Rint model, but with an additional
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in parallel resistor and capacitor (RC) pair in series with the resistor of the Rint model. In an
ECM, according to [11,18], RC networks are used to simulate the electrical behavior of the battery
without explicitly taking into account the internal mechanism inside the battery. This includes
the physical and chemical properties of the positive and negative materials, the internal diffusion
process of the battery, the electrochemical reaction process, etc. [11]. This additional RC pair in
the Thevenin Model is able to portray the electrochemical polarisation within the battery [19].
Electrochemical polarisation, as explained in [19], refers to the polarisation phenomenon caused
by the electrochemical reaction velocity on the positive and negative electrodes being less than
the electron movement velocity in the battery. In order to model additional battery parameters
and improve the accuracy of the ECM, more RC pairs need to be included [18]. This is the case
in the Dual Polarisation Model (Figure 1b), which is similar to the Thevenin Model, but with an
additional RC pair included. This additional RC pair is utilised to model another aspect of the
electrochemical polarisation phenomenon [19]. In this case, the additional RC pair characterises
the concentration difference polarisation of the battery [19]. This is defined as the diffusion rate of
the battery in the solid phase, which is less than the electrochemical reaction rate when the battery
is being used [19]. With this additional RC pair, as seen in Figure 2, more of the characteristics
of the battery can be obtained [11,18].
The ECM used in this paper, namely a Dual Polarisation (DP) ECM, is illustrated below in
Figure 2. There are a few reasons for this choice. To begin with, a lot of research and testing
has already been conducted using this particular ECM, therefore making it easy to compare and
verify the process with other research papers that have done similar tests. Secondly, as mentioned
previously, increasing the number of RC pairs improves accuracy, but at a certain point the
complexity outweighs the added accuracy. Due to this, a two RC pair ECM such as the Dual
Polarisation Model is considered more than sufficient regarding complexity and accuracy. Lastly,
the type of model is not the most important aspect of this paper, the HPPC testing combined
with the Cascaded H-Bridge (CHB) is. Therefore, the focus has been on the process of testing
and the parameter identification method rather than on the particular ECM chosen.

Figure 2: Dual Polarisation ECM for Battery [14]

2.3.2 Parameter Identification

To determine the circuit parameters (R0, R1, C1, R2, C2) of the Dual Polarisation (DP) model,
a Hybrid Power Pulse Characterisation (HPPC) test is conducted. This test consists of sending a
varying current pulse through the DP ECM simulation, and with the data of the test, calculating
the values of the circuit parameters.
An example of the current pulse used to determine the parameters of the DP ECM can be seen
below in Figure 3. The goal of sending a varying current pulse through the circuit is to produce
a voltage response graph, as seen in Figure 3. From the voltage graph, key points can be found
which can be used to determine the DP ECM circuit parameters. As mentioned in section 1,
the goal of this paper is to develop an online state of health estimation method using a cascaded
H-Bridge for different State of Charges (SoC) of a battery. To do this, the current pulse seen in
Figure 3 needs to be conducted for a range of State of Charges of the battery.
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Figure 3: Ideal HPPC Current Input (left) and Ideal Voltage Response of DP ECM for HPPC
Current Input (right)

To determine the equation for the battery output voltage, Kirchoff’s voltage law can be applied
to Figure 2. Defining the voltage VOCV as the Open Circuit Voltage of the battery and V1 and V2

as the voltage across the RC pairs respectively, the following equation can be found.

VOut = VOCV − VR0
− V1 − V2 (3)

Where VR0 is the voltage across the resistor R0. Furthermore, due to the HPPC current input
signal varying with time, the voltages over VR0 , V1, and V2 also vary with time. This means
that the equations that are needed to describe the voltages across the components will also be
dependent on the time of the current within the circuit.
To determine the equations for the voltages VR0

, V1, and V2, Kirchoff’s voltage for each component
can be used to derive the characteristic equations. These equations can be seen below [18,20,21].

VR0 = I(t) ·R0 (4)

dV1

dt
= − V1

C1 ·R1
+

I(t)

C1
(5)

dV2

dt
= − V2

C2 ·R2
+

I(t)

C2
(6)

Where I(t) is the current, R0 is the internal resistance, R1 and C1 represent the electrochemical
impedances, and R2 and C2 represent the polarisation impedances.
From Figure 3, it can be seen that the voltage response to the HPPC input current is exponential.
This is because the equations for V1 and V2 can also be written in discrete time form. This is
done for easier implementation later on when using data fitting models to estimate the parameter
values. The discrete time equations can be seen below [11,18–21].

V1(t) = V1(t− 1) · exp(−∆t

τ1
) −R1 · I(t− 1) · exp(−∆t

τ1
) (7)

V2(t) = V2(t− 1) · exp(−∆t

τ2
) −R2 · I(t− 1) · exp(−∆t

τ2
) (8)

Where ∆t indicates the stepping size of the function, τ1 is the time constant of the first RC pair,
and τ2 is the time constant of the second RC pair. The time constants can be calculated using
the following equation, where n is the order of the RC pair.

τn = Rn · Cn (9)

Using Equation 4, Equation 7 and Equation 8, the parameters values R0, R1, R2, C1, and C2, can
be estimated using a data fitting model script in MATLAB.
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2.3.3 State of Charge Derivation

As outlined in 2.1 - 2.2, the estimation of the SoH requires the determination of the maximum
capacity, Qmax(t) of the battery at any point while it has been used. For this, the State of
Charge also needs to be determined for the DP ECM. The equation for the SoC can be seen
below [18,20–22].

SoC = SoC(t) − η

Qn

ˆ
I(t)dt (10)

Where η is the coulombic efficiency of the battery, and Qn represents the nominal battery capacity
[18,21]. Equation 10 describes the current SoC as a function of the initial SoC of the battery.
As with the voltages V1 and V2 in Equation 7 and Equation 8, the SoC equation has to be converted
into a discrete time equation to simplify the integration with the MATLAB script. The discrete
time SoC equation can be seen below [18–20].

SoC(t) = SoC(t0) − η

Qn
· ∆t · I(t− 1) (11)

Where, similar to the discrete equations for V1 and V2, the ∆t is the stepping size of the function.

2.4 Hybrid Power Pulse Characterisation

Hybrid Power Pulse Characterization (HPPC) is a model-based (’online’) estimation method that
consists of alternating sending short square wave signals and relaxation periods that charge and
discharge the battery [16]. By alternating sending signals and charging/discharging the battery, a
constant State of Charge (SoC) of the battery can be obtained. This is crucial to limit the change
in parameter values for different SoC values. Through HPPC, an analysis of the power capability
of the battery is conducted under different conditions [23]. These conditions can be: charge and
discharge, current rate, ambient temperature and State of Charge (SoC) [23]. By investigating
the battery under these different conditions, a better understanding of how the battery operates
can be obtained.
The general concept of HPPC, as outlined in [24], consists of having a battery in a steady-state
before the battery is pulsed with charging and discharging currents. In this context, steady-state
refers to the battery being charged to a specific State of Charge before allowing it to rest to ensure
that the battery temperature does not affect the results. The battery is then pulsed with a varying
current pulse and then left to rest to return to the initial SoC of the test. Furthermore, the battery
is monitored using voltage and current sensors which record the response of the battery to the
HPPC signal. With the current and voltage measurements, data fitting models can be used to
determine the battery parameters R0, R1, R2, C1, and C2.
To determine the parameters of the HPPC test, pulse length, pulse rest, and pulse height need to
be considered. According to [11], two parameters that can affect the accuracy of the ECM with
HPPC as a method of testing are the length of the pulse and the height of the positive pulse. It
was deduced that a shorter pulse produced a higher simulation accuracy [11]. Therefore, in this
paper, 20 seconds were used for pulse lengths. Furthermore, the pulse length also has an effect on
the accuracy of the simulation [11,12]. As stated in [12], the length of time after the pulse should
be much longer than the time constants (τ1 and τ2) of the battery model. This ensures that the
battery has enough time to stabilize before the next pulse [12]. Lastly, pulse height refers to the
current used in the HPPC test. In standard HPPC practice, positive and negative pulses have
varied C-rates, as outlined in [11, 24]. C-rates are defined as the charge/discharge current rate of
the battery divided by the nominal battery capacity [25]. Many research papers do have varied
C-rates for charging and discharging pulses, although this is not always the case as seen in [23].
This is due to running tests/simulations in which the SoC is varied, which can be achieved by
having the negative pulse have a larger C-rate to draw more current. In this paper, the SoC is
maintained constant, therefore the pulse height for both positive and negative pulses is kept equal.
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2.5 Data Fitting Model

To be able to extract the parameter values of the ECM from the HPPC test, a Data Fitting Model
(DFM) is needed. DFM’s are algorithms that can be used to determine parameters from gathered
output data. There are many types of data fitting models that can be used. Examples of data
fitting models are the recursive least squares (RLS) model [18], the particle swarm optimization
(PSO) model [13], and exponential curve fitting (ECF) [26]. Different data fitting models have
different degrees of accuracy depending on the constraints and complexity of battery ECM used.
The goal of the data fitting models is to extrapolate relevant values of data from a test, and to
try to correlate the values with known initial values. The better the correlation between the test
values and the known initial values, the more accurate the battery test can be considered.
The data fitting model used in this paper is from the MATLAB Optimization Toolbox, more
specifically gamultiobj [27]. This particular MATLAB function that uses a Pareto front to set the
variables into a parameter space, and then evaluates each variable to find the set of parameter
values with the most likeness to the simulated output [27]. By giving the DP ECM initial values
and varying the OCV value, the function then calculates the values of the different components
based on voltage output response.

2.6 Cascaded H-Bridge

As mentioned in the Introduction, the aim of this paper is to create an online method for battery
State of Health (SoH) estimation using a Cascaded H-Bridge (CHB). An overview of the CHB is
illustrated below in Figure 4.

Figure 4: Overview of Cascaded H-Bridge Integrated with Battery Modules [2, 28]

The main function of an H-Bridge is to be able to change the polarity of the initial voltage signal
by changing the configuration of the MOSFETs. The Cascaded H-Bridge (CHB), shown in the
figure above, is comprised of two sets of four MOSFETs. From the configuration of the MOSFETs,
it can be seen that there are four basic states in an H-Bridge [2, 28]. These states are namely: P,
N, Z1, and Z2, where the outputs are +VDC , −VDC , and zero respectively [2,28]. An overview of
the different MOSFET configurations is illustrated below in Figure 5.
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Figure 5: Possible MOSFET Configurations in an H-Bridge [2]

The advantage of using HPPC as a testing procedure for battery state of health estimation is
that it can be combined with a cascaded H-Bridge. As outlined in [16] and [29], sending positive
and negative currents allows for the voltage response of the system to be determined. Due to
the structure of a CHB, input voltages can be varied by switching different MOSFET pairs to
power other components. For example, looking at Figure 5, if MOSFETs S2 and S3 are activated
then a positive voltage can be measured across the output of the H-Bridge. On the other hand,
MOSFETs S1 and S4 can be activated to be able to measure a negative output across the H-
Bridge. To rest the battery between the tests, then either MOSFET pairs S1 and S2 or S3 and
S4 can be activated.
Furthermore, the advantage of using a Cascaded H-Bridge (CHB) is that the speed of the state
switching can be varied. This allows for the CHB to be used for different input frequencies and
for different amounts of time.
A Cascaded H-Bridge would be used for multiple arrays of batteries, but due to simulating a
singular battery, a single H-Bridge will be used instead.
Furthermore, the input of the cascaded H-Bridge will not be a constant DC voltage source, as
seen in Figure 5, but an AC voltage source. An AC voltage source is used instead of a DC voltage
source to mimic the H-Bridge connection to a power grid, such as a connection to an outlet in
a house. This means that the layout of the H-Bridge will be slightly different, as illustrated in
Figure 6, but the working principle stays the same.
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Figure 6: AC Input Signal H-Bridge Configuration

The advantage of using an AC voltage source is that due to the possible MOSFET configurations,
the sinusoidal input can be manipulated to output a DC voltage source. This is achieved by timing
the switching of the MOSFET pairs to mimic the sign of the sinusoidal input, creating what is
known as a full wave rectifier [30–33]. An example of the output of the full wave rectifier and the
initial sinusoidal input is illustrated below in Figure 7.

Figure 7: Comparison of Initial Sinusoidal Signal and Full Wave Rectified Signal

To control the switching of the MOSFETs in the H-Bridge to ensure that the AC voltage is fully
rectified, a voltage PI controller is needed. The goal of the PI controller is to regulate the voltage
link between the H-Bridge and the Bi-Directional converter. The PI controller is illustrated below
in Figure 8.
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Figure 8: H-Bridge PI Controller Schematic

The PI controller receives the calculated voltage error between the battery voltage and the DC
voltage input of the converter circuit. The controller output is then scaled with the duty cycle
of the initial H-Bridge AC voltage before being converted into a Pulse Width Modulated (PWM)
signal. This signal is then split, and sent to the two different MOSFET configurations S1&S4 and
S2&S3.
The full wave rectified signal can then be filtered, using a low-pass Pi filter to create a constant
DC voltage [34]. By filtering the full wave rectified signal, there is some voltage loss [30–33].
Therefore, a higher initial AC voltage is needed to ensure that the Bi-Directional DC-DC Buck-
Boost Converter has enough input voltage to operate correctly. The relation between input voltage
and output voltage of the full wave rectifier is described in the equation below [31].

VDC =
2 · Vmax

π
= 0.637 · Vmax (12)

Where Vmax is the maximum voltage of the sinusoidal input voltage, and VDC is the DC output
voltage value. By setting the desired VDC value, the equation can be rearranged to calculate the
initial sinusoidal voltage input needed.
The Pi filter for the H-Bridge is illustrated below in Figure 9. A Pi filter is used to smooth the
full wave rectified output due to its low ripple factor and high voltage output [34].

Figure 9: H-Bridge Filter Model

As can be seen in the figure above, the Pi filter consists of two capacitors separated by an inductor.
The first capacitor in the filter provides a low resistance to the AC ripple and a high resistance to
the underlying DC voltage [34–36]. The filtered signal passes through the inductor, which provides
low resistance to the DC voltage while amplifying any remaining AC ripple in the signal [34–36].
The second capacitor further filters the remaining AC ripple, leaving only the DC component
of the signal [34–36]. This is then used as the reference voltage of the Bi-directional DC-DC
converter.
To determine the values for the components in the Pi filter, the following equation is used [37].

fc =
1

2π
√
LC

(13)

Where fc is the cut-off frequency, C is the capacitance value, and L is the inductor value. By
determining the desired cut-off frequency, of the input signal and setting one of the parameter
values, the remaining parameter value can be calculated.
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2.7 Bi-Directional DC-DC Buck Boost Converter Circuit

To implement the H-Bridge for HPPC testing, a small converter circuit is needed. In this case,
the circuit needed is a Bi-Directional DC-DC converter [29, 38]. This circuit is illustrated below
in Figure 10.

Figure 10: Bi-Directional DC DC Buck Boost Converter [29,38]

The goal of this circuit is to provide an up or down voltage conversion between the battery and
the reference voltage, as well as a switching mechanism for the HPPC signal. Due to the structure
of the Bi-Directional DC-DC Buck-Boost Converter, the circuit can vary how it reacts to different
voltages across Vout by switching the gates of the two MOSFETs. To determine the necessary
input voltage as the reference voltage of the circuit, the following equation can be used [39].

VDC =
Vbattery

1 −D
(14)

Where VDC is the input reference voltage, Vbattery is the battery voltage, and D is the value of
the duty-cycle which varies between 0 and 1. By determining the voltage of the battery at a point
in time, the reference voltage can be determined using the equation stated above.
As mentioned above, this circuit is also used due to the inductor, which is used as a current
storage element, and as a voltage controlled current source during different state of operation.
Furthermore, the inductor also reduces ripples and smooths signals within the converter.
To find the value of the inductor in the Bi-directional converter, the two state of the converter
needs to be taken into account. Due to VDC being larger then Vbattery, the converter works mostly
in buck mode. Therefore, the value of the inductance value can be calculated using the buck mode
equation [40].

L =
D

2 · Io · fs
· (VDC − Vbattery) (15)

Where L is the value of the inductance, D is the value of the duty cycle, Io is the current value,
fs is the switching frequency, VDC is the value of the DC voltage link between the H-Bridge and
the converter, and Vbattery is the voltage of the battery.
The timing of the MOSFET switches is done using a Proportional-Integral (PI) Controller. The
controller set-up is illustrated below in Figure 11.
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Figure 11: Bi-directional Converter PI Controller Schematic

The idea behind the PI Controller is to be able to sense changes in the measured current of the
Bi-directional converter and to be able to adapt the switching of the MOSFETs to match with
the desired signal input [38]. In this case, the desired signal input is the HPPC signal, seen on the
right in Figure 3. This input is compared to the measured output of the circuit, which is sent to
the PI controller to create a controller signal. From the PI controller, the signal is then summed
with the duty ratio of the MOSFETs. The equation can be seen below [41–43].

D =
Vbattery

VDC
(16)

Where D is the duty ratio, Vbattery is the voltage across the battery and VDC is the input DC
voltage of the converter. The sum of the PI output and the duty cycle is done to scale the output
of the PI controller. This ensures that the output of the PI controller matches the required duty
cycle of the system. This signal is then compared to a saw-tooth wave to create the Pulse Width
Modulated signal. The PWM signal is then sent to the MOSFETs, which drives the switching of
the gates in the circuit. To ensure that the MOSFETs are not powered at the same time, which
would cause a short circuit, one of the MOSFETs has an inverted input. This ensures that the
gates are on at alternating intervals.
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3 Methodology

3.1 Battery

The battery used in this paper is a Sanyo NCR18650GA Li-ion battery cell [25,29]. This battery
is a high energy 18650-type battery cell, with a total capacity of 3350 mAh, a maximum discharge
current of 10 A and a voltage range between 2.5 and 4.2 V [25,29].

3.2 Dual Polarisation Equivalent Circuit Model Parameter Derivation

To be able to conduct testing, the Dual Polarisation ECM needs to be constructed. This was done
in Simulink, a simulation program from MATLAB [6]. The Dual Polarisation model can be seen
below in Figure 12.

Figure 12: Simulink Dual Polarisation ECM

Similar to the model seen in Figure 2, the DP ECM in Figure 12 consists of a voltage source that
represents the Open Circuit Voltage (OCV), the resistor R0 which is the internal resistance of the
battery, and the two RC pairs. The initial values of the parameters are derived from [29]. An
overview of the values is given below in Table 1.

Table 1: Initial Parameter Values

Parameter Initial Values
VOCV 3.55[V ]
R0 0.0473[Ω]
R1 0.0340[Ω]
R2 0.0283[Ω]
C1 0.637[F ]
C2 641[F ]

To conduct the HPPC testing, a controlled current source, located on right side of the ECM, is
used. This source block sends a varied signal which represents the current drawing and sending
current to the battery.
To determine the parameter values for different voltages, the OCV is changed within a defined
range, in this case between zero and five volts. The data from these simulations is then gathered,
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and through the use of data fitting models available in MATLAB, the parameter values are ex-
tracted from the data.
Having extracted the parameter values for independent OCV values, the circuit can be modified
to work for varying OCV inputs. The Simulink circuit model can be seen below in Figure 13.

Figure 13: Simulink Dual Polarisation ECM with Variable Components and Lookup Tables

The new model consists of variable components, which can receive the correct resistance or ca-
pacitance values from their respective lookup tables, based on the input voltage of the OCV.
Lookup tables are used to speed up the simulation process as they mitigate the need to calculate
parameter values for different input voltages. Furthermore, within the lookup tables, values be-
tween measured voltages can be interpolated, further reducing the amount of initial simulations
needed to gather circuit parameter values. The estimated parameter values are given in Table 2,
in subsection 7.2.

3.3 State of Charge

To derive the State of Charge of the circuit, Equation 10 is used as a basis. Using the Simulink
blocks, as seen in Figure 14, Equation 10 can be reconstructed to calculate the SoC while the
simulation is running. The continuous equation is used instead of the discrete one as integrating
while the simulation is running ensures no discontinuities are introduced.

Figure 14: SoC Calculation Circuit

The output of the calculation is then fed back into the dual polarisation model to help deter-
mine the values for the components from the lookup tables. This ensures that the values change
accordingly to the voltage of the circuit.
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3.4 Hybrid Power Pulse Characterisation Test Set-up

To conduct an HPPC test, an input signal needs to be designed. The goal of the input signal is
to vary the state of the charge of the battery by either charging or discharging the battery with
current pulses. From the data collected from these tests, the parameters within the model can be
computed for the changing circuit parameters.
An example of the input current and the expected voltage response of the DP ECM are illustrated
in Figure 3. The input current pulses are created using the H-Bridge and the Bi-Directional
Dc-DC Buck-Boost Converter. A value of 2 ampere was chosen as for the HPPC current pulses.
This specific current value, which translates to 0.6 C-rate of the battery, is used as it is equivalent
to one-fifth of the maximum discharge of the battery [25]. This represents a moderate charge
and discharge rate for the battery [44]. In practice, as mentioned earlier, the standard HPPC
practice uses different C-rates for charging and discharging rates. The common C-rate values
seen in many research papers such as [11], and outlined in [24], are 0.75C for charging and 1C
for discharging. Furthermore, in [11], broader C-rates were also tested to see the effectiveness of
different parameters on the accuracy of ECMs. Based on this, a C-rate of 0.6C was chosen.

3.5 Data Fitting Model Selection

Within MATLAB, there are many toolboxes that can be used for parameter identification. In this
case, the Optimization Toolbox is used to determine the parameters. By extracting the current,
voltage, and OCV from the simulation, and defining the equations for the two RC pairs, the Op-
timization toolbox is able to find the best values for the individual parameter components.
To ensure that the component values are non-zero, upper and lower boundaries are set. For this
paper, the maximum boundary for each component is the value of each component presented in
Table 1. The lower boundary is one-tenth of the upper limit. This ensures that a large range
of values can be used by the Optimization script to find the best values. Furthermore, these
boundaries are set with these limits as the expected parameter values should be within range of
previously estimated parameter values.
Within the Optimization toolbox, for data fitting the function gamultiobj was used [27]. This was
the recommended option in the Optimization Toolbox for multi-variable optimization. Further-
more, inserting Equation 3, Equation 4 Equation 7, Equation 8 into the script, and defining the
boundaries for all variables allowed for the optimized parameters to be estimated. From the results
of the optimized parameters, a separate MATLAB script was used to find the lowest value for each
parameter. The lowest value is used due to how the MATLAB gamultiobj function works. The
function creates a Pareto front, which searches for the lowest values that satisfy the requirements
set in the optimization script [27]. These values were subsequently used for calculating the voltage
response of the circuit for different OCV values.

3.6 H-Bridge and Bi-Directional Converter Circuit

As with the DP ECM, mentioned previously, the combined H-Bridge and Bi-Directional DC-DC
Buck-Boost Converter circuit also needs to be implemented into Simulink to be able to conduct
testing. The circuit schematic is illustrated below in Figure 15
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Figure 15: Circuit Schematic of H-Bridge and Bi-Directional Converter

The Simulink model for the combined circuit can be seen below in Figure 16.

Figure 16: Simulink H-Bridge and Bi-Directional DC-DC Buck-Boost Converter

The individual circuits for the H-Bridge and the Bi-Directional DC-DC Buck-Boost Converter is
illustrated below in Figure 17 and Figure 18

Figure 17: Simulink H-Bridge Circuit
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Figure 18: Simulink Bi-Directional DC-DC Buck-Boost Converter Circuit

The entire circuit is illustrated below in Figure 19.

Figure 19: Entire Simunlink Model

Combining the three separate circuits, along with the SoC calculation block, the model is able to
adapt to different OCV input values. By using a H-Bridge and Bi-Directional DC-DC Buck-Boost
Converter, the initial OCV can be manipulated to test the battery at different voltage values.
Due to the high voltage used as the input of the converter circuit, the set-up of the complete model
is slightly different from the initial DP ECM model. In the complete circuit model, it is assumed
that an array of batteries is used instead of a singular low-voltage battery. Therefore, ten batteries
in series are used to ensure that the operating voltage of the controller matches the maximum
input voltage of the batteries. It is also assumed that the batteries all have the same internal
component values. This means that the initial parameters derived need to be adjusted to fit the
model. In this case, the resistances R0, R1, and R2 are multiplied by ten, and the capacitances
C1, and C2 are divided by ten.
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4 Results

In the following sections, the results of the two circuits, the initial DP ECM and the complete DP
ECM with the Bi-Directional converter circuit and H-Bridge, will be presented. To begin with,
the results of the initial Dual Polarisation Model, illustrated in Figure 12 will be presented. This
includes the parameter values obtained from the MATLAB Optimization Toolbox and the voltage
response graphs. Following this section, the results of the complete Dual Polarisation Model, as
illustrated in Figure 19 will be presented. This includes graphs showing the parameter values
obtained from simulations, the voltage response graphs, and the SoC graphs for the different OCV
values. Lastly, the HPPC output graphs of the Bi-directional converter and the DC output voltage
of the H-Bridge will be presented.

4.1 Initial Dual Polarisation Model Results

4.1.1 Estimated Parameter Values

Using the initial values from [29], summarized in Table 1, the estimated parameter values for a
range of OCV values are derived. The estimated Dual Polarisation parameter values are illustrated
below in Figure 20, Figure 21, Figure 22, Figure 23, and Figure 24. Furthermore, Table 2, found
in subsection 7.2, states all values presented in the following graphs.

Figure 20: Estimated R0 Values versus VOCV Figure 21: Estimated R1 Values versus VOCV

Figure 22: Estimated R2 Values versus VOCV
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Figure 23: Estimated C1 Values versus VOCV Figure 24: Estimated C2 Values versus VOCV

4.1.2 Voltage Response

To determine the validity of the estimated parameters, shown above, the voltage response of the
circuit for different OCV values can be observed. The following graph, Figure 25, shows the
voltage responses of the circuit with an OCV value of 2.55V.

Figure 25: Voltage Response of Dual Polarisation Equivalent Circuit Model for Input Voltage of
2.55V

In the figure, the simulated voltage response, the red curve, and the estimated parameter voltage
response, the black curve are shown. The simulated voltage response is the output of the Dual
Polarisation ECM simulation, while the estimated parameter voltage is the calculated voltage
response using Equation 7 and Equation 8. As illustrated in the figure, the calculated output
overlaps the simulated output, indicating a high correlation between the values used in the model
and the values derived using the data-fitting model.
The following graph, Figure 26, shows the voltage error between the simulated voltage of the
circuit, and the calculated voltage using the parameter values corresponding to the initial 2.55V.
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Figure 26: Voltage Response Error of Simulated Voltage Response and Calculated Voltage Re-
sponse for Input Voltage of 2.55V

Similar to the parameter estimations, this is conducted across the 0 to 5.55 V OCV range. The
graphs for the voltage response and error for the other OCV values can be found in subsection 7.3.

4.2 Complete Dual Polarisation Model Results

4.2.1 Estimated Parameter Values

Using the estimated parameters from the initial Dual Polarisation Model, the parameter values
from the complete model were derived using the MATLAB Optimization script. The range of the
estimated parameters is from 25.5 - 50V, which is ten times the operating voltage of the battery
modelled in this paper. The values are then adjusted, using the impedance laws of resistors and
capacitors, to model a single battery instead of the array of ten batteries in series. This is done to
be able to compare the values from this simulation to the initial circuit simulation shown above
in subsection 4.1. The graphs with the estimated values of R0, R1, R2, C1, and C2 can be seen
below in Figure 27, Figure 28, Figure 29, Figure 30, and Figure 31 respectively. The values are
also summarized in Table 3, in subsection 7.4.

Figure 27: Estimated R0 Values from Com-
plete Circuit Model versus VOCV

Figure 28: Estimated R1 Values from Com-
plete Circuit Model versus VOCV
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Figure 29: Estimated R2 Values from Complete Circuit Model versus VOCV

Figure 30: Estimated C1 Values from Com-
plete Circuit Model versus VOCV

Figure 31: Estimated C2 Values from Com-
plete Circuit Model versus VOCV

In the following figures, the parameter values obtained from the simulation through the use of the
lookup-table for an initial OCV value of 25.5V are plotted. The graphs are illustrated below in
Figure 32, Figure 33, Figure 34, Figure 35, and Figure 36.

Figure 32: Simulated R0 Values from Com-
plete Circuit Model Lookup Table

Figure 33: Simulated R1 Values from Com-
plete Circuit Model Lookup Table
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Figure 34: Simulated R2 Values from Complete Circuit Model Lookup Table

Figure 35: Simulated C1 Values from Com-
plete Circuit Model Lookup Table

Figure 36: Simulated C2 Values from Com-
plete Circuit Model Lookup Table

4.2.2 Voltage Response

The voltage response of the complete circuit for different OCV values are plotted. The following
graph, Figure 37, shows the voltage response of the circuit with an initial OCV value of 25.5 V.

Figure 37: Voltage Response of Complete Circuit with Initial VOCV Value of 25.5V
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In the figure, the simulated voltage response of the complete circuit, plotted in red, along with
the estimated parameter voltage response, plotted in black, are shown. Similar to the procedure
stated in subsubsection 4.1.2, the estimated parameter voltage is calculated using Equation 7 and
Equation 8.
The following graph, Figure 38, shows the voltage error between the simulated voltage of the
circuit and the calculated voltage using the parameter values corresponding to the initial OCV
value of 25.5 V.

Figure 38: Voltage Response Error of Simulated Voltage Response and Calculated Voltage Re-
sponse for Input VOCV of 25.5V

The voltage response for the other OCV values are presented in subsubsection 7.4.1.

4.2.3 State of Charge

To determine the effects of the H-Bridge and the Bi-Directional DC-DC Buck-Boost Converter
circuit on the Dual Polarisation ECM, the State of Charge (SoC) for the different OCV values
can be plotted. The graph below, Figure 39, shows the Open Circuit Voltage (OCV) for an initial
OCV value of 25.5V.

Figure 39: Calculated OCV of the Complete Circuit for an Initial OCV Value of 25.5V

This graph can be compared to the simulated OCV from the complete circuit simulation. The
OCV from the complete circuit can be seen below in Figure 40, and the OCV error between the
calculated and the simulated SoC can be seen in Figure 41.
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Figure 40: Simulated OCV of the Complete Circuit for an Initial OCV Value of 25.5V

Figure 41: Error of the Complete Circuit OCV and the Simulated OCV for an Initial OCV Value
of 25.5V

4.2.4 Current Graphs from Bi-Directional Converter

To verify the output of the Bi-Directional converter, the HPPC current output can be compared
to the reference HPPC current input. The two HPPC current graphs can be seen in Figure 42,
with the input curve plotted in red and the output curve plotted in blue.
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Figure 42: HPPC Current Comparison Between Bi-Directional Converter Current Output and
Reference HPPC Signal

In the graph below, Figure 43, the calculated error between the two signals in Figure 42 is illus-
trated.

Figure 43: HPPC Current Error Between Bi-Directional Converter Current Output and Reference
HPPC Signal

4.2.5 DC Voltage Graph of H-Bridge

To verify if the DC voltage link between the H-Bridge and the Bi-directional converter is stable,
the voltage output can be graphed. This is illustrated below in Figure 44.
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Figure 44: H-Bridge DC Voltage Output

4.3 ECM Parameter Value Comparison

To view the error between the estimated parameters of the initial DP ECM and the complete DP
ECM, which includes the Bi-Directional converter, can be plotted. The graphs for the battery
parameters R0, R1, R2, C1, and C2 are illustrated in Figure 45, Figure 46, Figure 47, Figure 48,
Figure 49 respectively.

Figure 45: Graph with Comparison of Esti-
mated R0 Values from the Initial DP ECM
and the Complete ECM versus VOCV

Figure 46: Graph with Comparison of Esti-
mated R1 Values from the Initial DP ECM
and the Complete ECM versus VOCV
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Figure 47: Graph with Comparison of Estimated R2 Values from the Initial DP ECM and the
Complete ECM versus VOCV

Figure 48: Graph with Comparison of Esti-
mated C1 Values from the Initial DP ECM
and the Complete ECM versus VOCV

Figure 49: Graph with Comparison of Esti-
mated C2 Values from the Initial DP ECM
and the Complete ECM versus VOCV

The calculated error for each parameter R0, R1, R2, C1, and C2 are illustrated in Figure 50,
Figure 51, Figure 52, Figure 53, and Figure 54 respectively.

Figure 50: Graph with Calculated Error of R0

Values from the Initial DP ECM and the Com-
plete ECM versus VOCV

Figure 51: Graph with Calculated Error of R1

Values from the Initial DP ECM and the Com-
plete ECM versus VOCV
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Figure 52: Graph with Calculated Error of R2 Values from the Initial DP ECM and the Complete
ECM versus VOCV

Figure 53: Graph with Calculated Error of C1

Values from the Initial DP ECM and the Com-
plete ECM versus VOCV

Figure 54: Graph with Calculated Error of C2

Values from the Initial DP ECM and the Com-
plete ECM versus VOCV
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5 Discussion

5.1 Initial Dual Polarisation Model Discussion

The estimated parameter values, R0, R1, R2, C1, and C2 taken from the initial values given
in [29] show some variation. The initial values from [29], shown in Table 1, somewhat correspond
to the estimated parameters found using the MATLAB Optimization script. Looking at the
derived estimated parameter values, found in Table 2, for the same initial VOCV value, the derived
parameter values for R0, R1, and R2 do not differ. On the other hand, looking at parameter
values C1 and C2, the values differ greatly. Both C1 and C2 are a tenth of the value of the
initial parameter values given in Table 1. This large difference could be due to a few factors.
One factor that could cause this is the method in which the parameters were estimated using
data fitting models. In [29], the MATLAB fminsearch function was used, which differs from the
MATLAB Optimization Toolbox that was used in this paper. This could lead to the difference in
the estimated parameter values. Another factor that could influence this difference in capacitance
values is the current input used in the HPPC test. In [29], the current input is a combination of
positive and negative pulses with irregular timings. This could affect the time constants of the
circuit. In this paper, a more regular current input is used with one positive and negative pulse.
This could help the time constants of the circuit be more consistent and therefore the values of
the capacitance are different.
Regarding the results from the initial Dual Polarisation model, there is a slight variation between
the simulated voltage response and the estimated parameter voltage response, in the order of 10−6

difference for the different input voltages. The only voltage response error greater than 10−6 is
for the input voltage of 1.55V. This is due to a few different factors. Initially, this very slight
difference is due to the final parameter values derived from the MATLAB Optimization script.
One way to fix this small difference would be to improve the optimization script by defining better
boundaries. By defining better boundaries, the MATLAB Optimization can cycle through more
possible parameter value combinations to find the values with the most Pareto efficiency for each
parameter. Another way to fix the small difference in values could be by increasing the sample
time of the MATLAB simulation. Increasing the sample time allows for more data points to be
used in the derivation of the parameter values, allowing for a better and more accurate result.

5.2 Complete Circuit Model Discussion

Due to simulating an array of batteries instead of a single battery, as done for the initial parameter
estimations, some assumptions need to be made. To ensure that the chosen battery could be used,
an array of ten batteries in series is assumed. Furthermore, it is assumed that all ten batteries
have the same internal component values. This meant multiplying the resistance values by ten
and dividing the capacitance values by ten to ensure that they correspond to the ten batteries in
series. Due to this, the values used for the OCV are also multiplied by ten to fit the new model
parameters. This does add a lot of uncertainty to the model as all these assumptions need to be
incorporated.
From the parameter estimation, it can be seen that the parameters do follow the initial estimated
parameters seen in Table 2. There are some outliers in the complete circuit estimated values,
as seen in Table 3. This is also illustrated better in Figure 45, Figure 46, Figure 47, Figure 48,
Figure 49. This can be due to a few factors. Initially, this could be due to the data fitting
model script and the boundaries set within the DFM. By setting the lower boundary values at
a tenth of the maximum boundary values, a limited range is used. This could limit the values
that the MATLAB Optimization script uses, and therefore the most accurate value is not found.
Additionally, due to the HPPC signal used, the estimated parameters could be skewed as the
HPPC signal does have some errors, as illustrated in Figure 42 and Figure 43. This could lead to
errors within the DFM, as it uses the generated signal from the complete circuit DP ECM HPPC
signal as an input in the parameter estimation script. Furthermore, errors within the code used to
graph the estimated values could also contain errors, causing discrepancies in the data. The data

33



results show that the chosen data fitting model does work fairly well but further optimisation is
required. To overcome any further issues, improvements could be made to the DFM to limit errors
in further testing. Additionally, accuracy of simulations vary with the step-size used in Simulink.
Therefore using a lower step-size could also improve the accuracy of the data used in the DFM.
The parameters were obtained by only simulating the converter circuit and the battery model. The
H-Bridge controller was not designed in time and therefore could not be used. This is illustrated
in Figure 44, as the plotted signal increases in amplitude during the simulation. For further
development, the controller for the H-Bridge needs to be refined to ensure that the complete
circuit works. Additionally, improving the filter used to link the H-Bridge and the Bi-Directional
converter could ensure that there is less ripple in the output.
Looking at the voltage response graphs, there are some errors between the calculated and the
simulated values. This can be due to a few factors. Initially, this could be due to the noise within
the system. By not reducing the noise further, the DFM has a much larger input range. This
could lead to errors in the parameter estimation, which when compounded with the calculations
that use the same signals, causes the errors in the voltage response. From the calculated error,
it can be seen that the voltage error is quite large in some cases. This is particularly evident
in Figure 81-Figure 82 and in Figure 83-Figure 84, where the difference between the estimated
voltage response in red and the simulated voltage response in black vary during the peak of the
HPPC input. Apart from the estimated parameter values, this could also be due to the simulation
settings. Due to MATLAB’s limitation of data that can be used in the DFM, the range of data is
very limited. This made it very difficult to reduce the noise as the stepping size of the simulation
could not be decreased to improve the accuracy of the simulation. For future simulations, a larger
data set and a lower stepping size could help reduce the noise of the circuit and therefore improve
not only the calculated voltage response but also the estimated parameters.
Regarding the State of Charge, it can be seen that due to the HPPC current, the SoC does change.
This is evident in Figure 39 - Figure 41. Due to the HPPC, the measured voltage across the battery
before and after the test does vary. This indicates the State of Charge of the battery varies with
the HPPC input signal. Again, similar to the results of the voltage response, this could be due to
the simulation of the model. By having to limit the time the simulation can run but ensuring that
the HPPC is as accurate as possible, as discussed in subsection 3.4, the model is not able to fully
settle after the second pulse. To ensure that this doesn’t happen in future simulations, a longer
simulation time could be beneficial. Furthermore, reducing noise could also improve the SoC, as
the large value range increases the cumulative error.
Regarding the HPPC signals from the converter, it can be seen that they are not completely
square. This, similar to the issues outlined already, is due to the combination of the stepping size
and the simulation run time. Allowing the simulation to run for longer with a smaller stepping
size would increase the accuracy of the HPPC currents. Furthermore, fine-tuning the inductor
value and the PI controller value could also improve the measured HPPC signal from the converter
circuit. Improving these factors could reduce the error in the HPPC signal, which would improve
many of the errors encountered in the simulations and results.

5.3 Comparison Between Initial and Complete Circuit Models

Looking at the comparison of the initial model and the complete model, it can be seen that there
are some differences. As outlined above, an assumption of ten batteries in series is made. This
does change the values, but as can be seen from the results, the values are closely correlated.
This is better illustrated in Figure 45 - Figure 54. There are a few values for C1 and C2 that
are quite different, but this could be due to the simulation time, the data fitting model, and the
noise within the system, as mentioned previously. Furthermore, there are large errors present in
parameter values between the initial DP ECM and the complete DP ECM at lower OCV values.
This, similar to what has already been mentioned could be due to many factors within the DFM
and the simulation, which carry over and become compounded as the simulated signals are used
for further calculations.
Secondly, looking at the voltage response of the two models, it can be seen that the maximum
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values attained during the simulation do vary slightly. This, again could be due to the parameter
values and the assumption of ten batteries in series. Furthermore, due to using a perfect HPPC
signal in the initial model, and the HPPC signal in the complete model, there are some errors that
could be introduced, when calculating the voltage error, compound the total error of the system.
Using a more perfect HPPC signal could improve the results of the voltage response. This, as
outlined above, can be done by improving the PI controller values and the inductor value within
the converter circuit.
Lastly, due to a lack of time, SoH estimations could not be done. To do this within this model, a
method to degrade the battery values is needed. For future improvements, this would need to be
taken into consideration.

6 Conclusion

Through the simulations done in this paper, it can be seen that the principle of using a converter
circuit as an HPPC signal generator for battery parameter estimation does work. Furthermore,
the integration of an H-Bridge is also feasible. Having an H-Bridge, which can be connected to
power the converter for different battery voltages and sizes of battery arrays, allows for a wider
range of batteries to tested. From the outcomes of this paper, it can be seen that further improve-
ments in the simulations can lead to a more accurate SoH method. This includes improvements
in controlling the H-Bridge and the Bi-Directional converter, improving the simulation settings
regarding step-size and data size, and reducing noise within the simulation. Doing these steps
could lead to further developments and actual construction of the complete circuit.
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7 Appendix

7.1 AI Statement

Artificial Intelligence (AI) was used in this paper. Spellcheck and autocorrect from Grammerly
and Overleaf were used as a means to ensure that the grammar and the spelling were consistent,
and that no simple writing mistakes are found in the text. After use of these tools, I have reviewed
and edited the content as needed. I take full responsibility of the content of this work.

7.2 Initial Estimated Parameter Values

Table 2: Initial Estimated Parameter Values

Parameter Parameter Values
VOCV [V ] 0 0.55 1 1.55 2 2.55 3 3.55 4 4.55 5 5.55
R0[Ω] 0.1628 0.1800 0.2282 0.1421 0.1641 0.0830 0.1494 0.0473 0.0905 0.0784 0.1222 0.0965
R1[Ω] 0.0360 0.0384 0.0368 0.0361 0.0342 0.0394 0.0340 0.0340 0.0341 0.0340 0.0344 0.0343
R2[Ω] 0.0341 0.0291 0.0296 0.0287 0.0296 0.0351 0.0283 0.0283 0.0284 0.0284 0.0285 0.0303
C1[F ] 0.1969 0.1622 0.3342 0.0778 0.2017 0.2159 0.0637 0.0637 0.1425 0.0891 0.1597 0.2316
C2[F ] 215.79 155.40 81.789 73.089 75.708 94.354 64.100 64.100 76.164 96.762 69.530 119.46

7.3 Voltage Response of Initial Dual Polarisation Model

Figure 55: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input Volt-
age of 0V

Figure 56: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 0V
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Figure 57: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 0.55V

Figure 58: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 0.55V

Figure 59: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 1V

Figure 60: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 1V

Figure 61: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 1.55V

Figure 62: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 1.55V
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Figure 63: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 2V

Figure 64: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 2V

Figure 65: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 3V

Figure 66: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 3V

Figure 67: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 3.55V

Figure 68: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 3.55V
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Figure 69: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 4V

Figure 70: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 4V

Figure 71: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 4.55V

Figure 72: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 4.55V

Figure 73: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 5V

Figure 74: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 5V
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Figure 75: Voltage Response of Dual Polarisa-
tion Equivalent Circuit Model for Input volt-
age of 5.55V

Figure 76: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put Voltage of 5.55V

7.4 Complete Circuit Estimated Parameter Values

Table 3: Complete Circuit Estimated Parameter Values

Parameter Parameter Values
VOCV [V] 25.5 30 35.5 40 45.5 50
R0[Ω] 0.0182 0.1206 0.0590 0.0953 0.0701 0.100
R1[Ω] 0.03406 0.0341 0.0340 0.0340 0.0340 0.0340
R2[Ω] 0.0306 0.02838 0.0283 0.0283 0.0283 0.0283
C1[F ] 0.0703 0.0682 0.0637 0.0637 0.0637 0.0637
C2[F ] 72.235 120.00 64.100 64.100 64.100 64.100

7.4.1 Voltage Response of Complete Dual Polarisation Model

Figure 77: Voltage Response of Complete Cir-
cuit with Initial VOCV Value of 30V

Figure 78: Voltage Response Error of Simulated
Voltage and Calculated Voltage for Input VOCV

of 30V
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Figure 79: Voltage Response of Complete Cir-
cuit with Initial VOCV Value of 35.5V

Figure 80: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put VOCV of 35.5V

Figure 81: Voltage Response of Complete Cir-
cuit with Initial VOCV Value of 40V

Figure 82: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put VOCV of 40V

Figure 83: Voltage Response of Complete Cir-
cuit with Initial VOCV Value of 45.5V

Figure 84: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put VOCV of 45.5V
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Figure 85: Voltage Response of Complete Cir-
cuit with Initial VOCV Value of 50V

Figure 86: Voltage Response Error of Simu-
lated Voltage and Calculated Voltage for In-
put VOCV of 50V
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