Master’s Thesis Computer Science

University of Twente

CodeQuizzer: Improving codebase
understanding for code review via a gamified

quiz taking system

Filip Ivanov

July 2024

Supervisors

Vadim Zaytsev

Arjan van Hessen

Abstract

This research attempts to apply gamification to the code review process. In particular, it
applies it to the challenge of gaining a better understanding of the surrounding codebases
that changes presented for review belong to. This is done in order to improve the quality
and efficiency of code reviews, but more importantly in order to get an answer to the

question if gamification can be used to tackle this challenge and if so - how.

To do so, first a background research was conducted involving an examination of
available literature, coupled with semi-structured expert interviews. This was done in
order to set a foundation for what the code review process is, what it involves, what the
expectations and outcomes are and what challenges are still present. Afterwards, a
prototype for a gamified quiz taking system named CodeQuizzer was developed and an
evaluation survey was conducted to see if and to what extent this prototype proves
successful in increasing participants’ understanding of a mock-up codebase via
gamification.

The results obtained indicate that a majority of participants found CodeQuizzer effective
in increasing their understanding of the mock-up codebase. Furthermore, it was
established that the gamification elements included were motivational for the majority of
participants as well. There were also other relevant findings about the specifics of
CodeQuizzer’s prototype such as its usability and its specific content, which provide

several avenues for future research.

Based on the positive reception of CodeQuizzer, it can be concluded that gamification can
indeed be used to tackle the challenge of understanding in code review. Furthermore, the
system’s effectiveness in this shows its implementation is a valid approach to take,
answering the question of how exactly gamification can be used in this regard as well.
There were several areas for improvement also identified such as making quizzes feel less
like exams and expanding the usage of gamification elements further. These coupled with
various feasibility concerns can serve as a good direction for future research built on top

of the solid foundation that this paper provides.

Keywords: code review, gamification, codebase understanding, quizzes, learning tools

Acknowledgements

I would like to acknowledge and thank both of my supervisors for this thesis - Vadim and
Arjan. They provided guidance and feedback throughout the entire period of this project
and helped whenever uncertainties arose. I am in particular grateful for Vadim’s
technical expertise and vast knowledge of research which made ideation and background
research much easier than they otherwise would have been. I am also very thankful to
Arjan for his willingness to provide insights and recommendations about the user
research done, as this contributed to the quality of essential results for this thesis.

Aside from my two supervisors, I would like to acknowledge every participant who took
time out of their day to provide their opinions and thoughts. As the code review process is
one that is very human-centric, this data is the backbone for every bit of work done here.
In particular, I would like to thank all my colleagues working at El Nifio for their support

and eagerness to participate and provide pointers for improvement.

Finally, I want to thank my friends and family who provided invaluable moral and mental
support throughout the process of this research. Without this I surely would not have
achieved a good final result and would certainly have had a much worse work-life balance
than I did throughout the duration of the thesis.

Table of contents

CodeQuizzer: Improving codebase understanding for code review via a gamified quiz
taking system

Abstract
Acknowledgements
Table of contents
Introduction
Background research
Literature examination on code review
The code review process
Early formalizations of code review
Modern code review
Motivations and outcomes of code review
Motivations for doing code review
Outcomes of doing code review
Challenges in code review
Understanding the changes presented for review
Understanding the change context
Additional challenges
Expert interviews on code review
The code review process
Motivations for code review
Expected outcomes of code review
Challenges
Understanding
Understanding the change code
Understanding the codebase context
Understanding the ticket context
Additional challenges
Feedback
Change size and presentation
Tool related challenges
Process related challenges
Conclusions on code review

Literature examination on gamification

O OV O N & WN -

W W W W NN N N N DN DNDNNMNDNMNDNDNDNMNDNDNRPER PR R BB BB R B 2
N ©O © © VW O OV 00 NN O O v 1 A W N B O O NN O & P O

Gamification - a workable definition
Applying gamification to the problem of obtaining understanding
Which gamification elements to apply?
Existing applications of gamification
Conclusions on gamification
Prototype and evaluation
Prototype Design
Quizzes
Exercises
Multiple choice and open question exercises
Function flow exercises
Component diagram exercises
Functionality altering exercises
Variable role exercises
Gamification Elements
Quiz progress bar
Quiz completion message
Profile badges
Comprehension levels
Leaderboard
UI / UX Design
Evaluation Design
High Level Approach
Survey Design
Participant Context
Example Quiz
Exercise Types
Gamification
Usability
Evaluation results
Participant context
Example quiz
Exercise types
Multiple choice exercise

Open question exercise

32
33
34
34
36
37
37
38
39
40
40
41
42
43
43
44
44
45
46
47
48
48
49
49
50
50
51
51
52
53
53
54
59
59
61

Function flow exercise
Component diagram exercise
Functionality altering exercise
Variable role exercise
Conclusions on exercise types
Gamification
Quiz progress bar
Quiz completion message
Profile badges
Comprehension levels
Leaderboard
Conclusions on gamification
Usability
Conclusion
Discussion
Limitations and future research
Limitations
Future research
Appendix

Appendix A. Interview questions used during the expert interviews done as
part of this paper’s preliminary research phase

Appendix B. Survey questions presented to participants in CodeQuizzer’s
evaluation survey.

References

63
65
67
69
70
71
71
73
74
76
77
79
79
81
82
84
84
85
86

86

87
91

Introduction

The code review process is one of the most essential for the proper functioning of the
software development industry. It has changed significantly since first being formalized
and is currently viewed as a lightweight, asynchronous and iterative process. The goals,
expectations and specific implementation of this process can vary among different
companies, but its importance for ensuring good quality code and well designed
solutions is acknowledged and agreed upon nonetheless.

Despite its widespread usage and the different ways it is put into practice code review still
comes with a variety of challenges that can be addressed in the interest of increasing
review quality and efficiency. One of the biggest such challenges identified by research is
the challenge of understanding. This challenge is present in a variety of contexts such as
understanding the code presented for review or understanding reviewers’ feedback. For
the purposes of this thesis, the type of understanding that is the focus is understanding
the surrounding context of code presented for review. In particular, the codebase that the
specific change is meant for. Hopefully through increasing understanding of it, code
reviews can be done more efficiently as contextual knowledge can make them go faster,
but also their quality can increase, as such knowledge can be useful for providing less
superficial feedback.

Although obtaining this type of understanding could be beneficial in many ways, it is still
an issue developers struggle with. The reasons are most likely multifaceted, but the one
of interest to this paper is the problem of lacking motivation. Put simply, developers may
be able to obtain a deeper understanding of a codebase, but they may simply choose not
to because they see it as a waste of time or because there is nothing that motivates them
to do so. This paper will introduce a technological intervention to tackle this problem
named CodeQuizzer. This solution allows the most knowledgeable members of a software
development team (for example tech leads) to set up quizzes about the team's codebases.
Through doing these quizzes, developers are hopefully exposed to and made to think
about more of the codebase’s parts, thus, providing better quality feedback in their code

reviews.

The lack of motivation problem in particular will be addressed through the usage of
gamification elements in CodeQuizzer. Design elements such as progress bars, badges,
levels, positive feedback and leaderboards, as well as the interactive nature of the quizzes

themselves will hopefully motivate developers to actually do them. This then would

motivate them to also increase their understanding and lead to more efficient and better

quality code reviews in the future.

The particular objectives of this thesis are several. Firstly, a prototype of CodeQuizzer is
developed that illustrates its functionality, as well as the concept of using gamification for
the purposes described above. Then, an evaluation study is done to test its design and
implementation, but more importantly to find an answer to the following research

questions:

e Can gamification be used to motivate developers to gain a better understanding in the
context of code review?
e How can gamification be used to motivate developers to gain a better understanding in

the context of code review?

If the prototype is well received in regards to boosting understanding and motivation to
obtain it, then this shows gamification can in fact be used in this way and for this
purpose. It also indicates that the way CodeQuizzer uses it in particular (via gamified
quizzes) is a viable way to tackle the challenge. If the opposite holds true, a definitive
answer is obtained for the second question (CodeQuizzer’s particular approach is most
likely not the way to go), but the first question remains more open ended. Nevertheless,
the evaluation results still can be used to indicate if such a solution holds some ground

for further research that attempts a different implementation.

Naturally, the end goal is to provide answers to both research questions presented. Some
of the work done to gain these answers was briefly outlined in this section already, but is
described in much greater detail throughout this report. The report begins by presenting
the background research, which focuses on providing a workable definition of the code
review process, as well as outlining its goals, expected outcomes and most importantly -
challenges. Next, the design and implementation of both CodeQuizzer’s prototype as well
as its evaluation study are described and all decisions made are justified. Afterwards, the
results of the study are presented and analyzed, upon which the conclusion of the thesis
is presented with an answer to both research questions. Some discussion follows,
together with limitations and recommendations for future work. Finally, the appendix

and references are outlined as well.

Background research

In this chapter, the background research done for this paper is summarized and its
relevant findings are outlined. This research takes the form of a literature review which
has three parts - examining available literature on code review, examining available
literature on gamification and conducting a set of expert interviews with software
developers. The first aims to provide needed context for the code review process, its
motivations, expected outcomes and challenges. The second gives some insight into how
gamification has been and could be used in a software development context to solve
similar challenges. The last aims to provide additional findings that literature may have
missed, but also in particular to confirm or refute the identified biggest challenge that
developers face while doing code reviews.

Literature examination on code review

As aforementioned, this section provides an overview and synthesis of the findings
obtained via examining available literature on code review. The primary goals are to
establish:
e What the code review process used to look like and what it looks like currently
with the necessary tasks involved in it.
e The different motivations and expected outcomes of the code review process.
e The various challenges that developers face during the code review process.

These are all important bits of context and knowledge that will inform the rest of the
work to be done. The particular reasons why they were chosen as the focus and why they
are important are provided next, coupled with the findings obtained.

The code review process

In order to introduce a technological intervention into the code review process, it is first
necessary to establish what the code review process actually is and what tasks it usually
consists of in the modern day. This is to ensure that the intervention does not conflict
with what is already there, but also in order to establish a workable definition of the
process for the rest of the paper. Moreover, it is important to understand what the process
looked like in the past so it can be established how and why it changed. This highlights
the contemporary needs of developers in regards to this process which are at the core of

the development of CodeQuizzer.

Early formalizations of code review

One of the earliest and most often cited formalizations of the code review process found
while examining available literature is the one done by Fagan in 1976 [1]. Thus, this
formalization will serve as a groundwork for how the code review process looked like in
the past. Fagan formalized the code review process introducing the concept of Inspections
at various points during the development of a piece of software. He claims that the
software inspection process should be “formal, efficient, and economical” [1]. The way
these qualities are to be achieved is through strictly defining all the aspects of code
review. Inspections are to be done at set points in the process (mainly after specification,
design and implementation are completed), the people involved are to be moderators,
coders and/or designers and testers, and the process itself is to consist of strictly defined
steps, performed in a strictly defined way and order [1]. The steps he proposes are
Overview, Preparation, Inspection, Rework and Follow-up, with a particular focus on the team
aspects involved in the Overview and Inspection, which should be performed together in a
scheduled meeting with all the people involved [1]. Additionally, Fagan even provides a
formalization of the questions to be asked and answered when inspecting at the different
stages mentioned before [1]. Moreover, this process is a cyclical one, meaning that the
Follow-up stage can easily lead to a full repeat of the entire process if enough new code
has been introduced or if a reinspection is requested [1]. A simplified high level diagram

of the process can be seen in Figure 1.

10

Overview
(group)

Preparation
(individual)

Inspection
{group)

Rewaork
(individual / group)

if =5% of the code changed or
as a result of being requested

Figure 1. A high-level overview of the first formalization of the code review process (Fagan’s

inspection process).

Without diving much deeper into Fagan’s work, the takeaway relevant for this paper is
that code review started as a very formalized, sequential and strictly defined process.
This is to ensure that errors are caught at an early enough stage so they do not have to be
resolved at later stages, where this can be much more costly both in terms of time and
effort [1]. This also shows that in the beginning the primary goal of code review was error
prevention.

Modern code review

To find out how modern code review compares to this early formalization, some sort of
definition must be given for this “modern” process. This paper looks at the one adopted
by Microsoft, Google, AMD and other big OSS projects [2][3]. This is because these
companies are leaders in the software industry and have been working in it for quite a
few years to great success. So, it is only logical they can provide a solid workable

definition for modern code review.

This definition stands in stark contrast to what Fagan proposed. It aims to be informal,

lightweight, asynchronous and tool-based. Aside from error prevention as with Fagan, a

11

big emphasis here is on being flexible. No longer are there very strict definitions for the
tasks involved in the process, nor their timing. There is still an outline behind how the
process should generally be conducted, albeit more loosely defined than in the past. This
outline generally consists of three steps, as given below and also in Figure 2.

e Creating a change for review before the new code is pushed to the main project
repository.

e Reviewing the change (done by other developers), with alterations, fixes and better
implementations being suggested.

e Merging the change into the main repository of the project once feedback is

addressed, with the possibility for it to be rejected also being open.

Note: This process is once again cyclical, so after feedback has been addressed, the changes will be reviewed
again (and possibly even again) until the code is deemed good enough to be merged in.

Change submitted Feedback given Feedback addressed

Figure 2. A high-level overview of the modern code review process as it is currently being done at
most companies.

As mentioned already, this process is adopted by large software companies like Microsoft,
Google, AMD and various big OSS projects [2][3]. HowevVer, it is also used by smaller size
companies, as outlined by [4]. This study focused on interviewing employees at 19
different companies about how code review is done. The range of companies was
relatively broad with the focus being on smaller companies in comparison to the large
ones mentioned previously. Through the interviews, it was found that how code review is
done on a small and medium scale is very similar to how it is done at a larger scale, with a
lot of the literature’s findings about such companies also being confirmed here [4]. There
are of course several differences as well, but they will be discussed as they become
relevant. The main takeaway is that the definition proposed is not exclusive to software

12

giants, but also applicable on a smaller scale, which makes it more universal and a better

starting point for further research.

Regardless of company size, it seems that the idea behind modernizing code review is to
have a more lightweight, flexible and less formal process. This process is often change
based, meaning that it happens only when new changes are introduced. This is the way it
is done at Microsoft, Google and other big companies [2][3], but also how it is done in
smaller companies as well [4]. The key difference seems to be that some smaller
companies do code reviews much less frequently with it being described as “irregular”
[4]. Regardless of frequency though, it seems to be majority change based, rather than
requiring explicit management and periodic scheduling. This once again contrasts to

Fagan’s formalization.

Furthermore, the modern process described is asynchronous and is conducted via
asynchronous channels of communication, such as mailing lists, rather than physical
sit-downs to look over code as Fagan proposes [1]. This way of working happens almost all
the time at bigger companies [2][3]. The reason for this is probably because in
organizations of such size it is difficult to schedule, arrange and manage in-person
meetings. This intuition seems to be confirmed as at smaller scale companies, sometimes
physical sit downs still happen [4], probably due to the smaller size allowing them to
happen easier. Sometimes it will also happen with bigger projects as well, such as at Sony
Mobile [5], but generally communication in the context of the modern code review
process aims to be asynchronous, regardless of company size.

A side effect of this asynchronicity is that code review can become difficult to track, if all
communication is through mailing lists. Therefore, most companies use specialized and
sometimes proprietary tools to do code review. This allows them not only to track the
process, but also tailor it to the company specific requirements. For example, Microsoft
uses CodeFlow [2], Google uses Critique [3] and AMD uses CodeCollaborator [2]. Smaller
companies use various tools, with Gerrit, Crucible, Stash, GitHub pull requests, Upsource,
Collaborator and ReviewClipse being mentioned [4].

Regardless of the specific tools used, it seems that as software development grew in both
size and importance, so did the code review process. Moreover, it also evolved into
something rather different than what was outlined by Fagan. The reasons for this change
are likely to be multifaceted and complex, but it would be reasonable to assume that as

the size and complexity of codebases increased, it became quite time consuming to do a

13

very formal and line-by-line style of review, which is also synchronous and requiring all
parties involved to sit down together at various points of the process. Research also seems
to support these reasons for the shift in how code review is done currently [6][7].
Furthermore, looking at Table 1, which highlights the primary differences between what
was outlined by Fagan and what we define as modern code review in this paper, it can be
seen that the changes all fall in line with the idea of a lightweight, asynchronous and less
formal process. Therefore, this outline will also be the one taken as a starting point in
further research and the idea of asynchronicity and flexibility will be respected in the
design and implementation of CodeQuizzer.

Traditional code review Modern code review
Process outline Formalized, rigid, time consuming Informal, flexible, lightweight
Process timing Synchronous, scheduled Asynchronous, not scheduled
Communication |Direct, in-person, synchronous Less direct, mostly textual, asynchronous

Loosely defined and outlined (sometimes not even outlined
Tasks Strictly defined and outlined formally)

Reviewers A set list of people in a set of roles Flexible with assignment often left to the change author

Table 1. A comparison between Fagan’s inspection process and the modern code review process in

regards to various aspects.

Motivations and outcomes of code review

Having established a workable definition of the code review process, next it is important
to identify the motivations behind it and its expected outcomes. This is important for
similar reasons as the previous findings - CodeQuizzer’s design and implementation
should respect the wants and needs of developers in regards to code reviews. However,
findings on this topic can also highlight areas that need improvement, as well as
directions that can be taken to explore such areas further.

Motivations for doing code review

There are various ways to go about this, but in this paper this will be done by examining
some case studies on code review in big software development companies - namely
Microsoft and Google. The reason for this is because these companies are very successful
and it is reasonable to assume they have put a lot of time and effort into optimizing all
aspects of software development, including code reviews. Therefore, a lot of insight can

14

be gained by examining their motivations and expected outcomes. Additionally, as
mentioned previously, medium and small companies seem to mirror what is done on a
larger scale [4], so universally applicable insights could be obtained to some degree as
well. Ultimately, this decision was also made with respect to the scope of this paper,
which can only cover so much of the literature available.

At first glance, the assumed primary (or maybe even only) motivation for code review is
what this paper will refer to as defect prevention. A defect in this context is some
unintentional behavior caused by code quirks or logical fallacies in the implementation,
resulting in some risk or damage to the system. A simple example would be some bug in
the code. This assumption about the motivation of code review is indeed proven correct,
as both at Microsoft [8] and Google [3], defect prevention is listed as one of the motivating
factors. Defect prevention is of course desired before changes go public, which is
relatively easy to ensure at large companies that do change based reviews. However, at
smaller scale companies where code review is done infrequently or without a schedule,
this desire to prevent defects before going live can become a more explicit motivator [4].

Furthermore, while at Microsoft preventing defects is still the primary motivation and
goal of the process [8], at Google things are different. As mentioned in the case-study [3],
the idea is to make changes to the codebase that other developers can understand, rather
than prevent bugs. This shows that Google has adopted maintainability and understanding
as its primary motivators for doing code review. So much so that defect prevention seems
to be viewed almost as a side effect of the pursuit of maintainable and understandable
code. The argument is that by aiming to write such code developers also produce
consistent, secure and bug-free code [3]. This idea is also present at Microsoft, although
less explicitly and more as a side effect of doing inspections [8]. In a sense, at Google
maintainable and understandable code produces bug-free code, whereas at Microsoft the
inverse holds - bug-free code is maintainable and understandable.

Closely relating to maintainability and understandability, another motivator at both
companies is knowledge transfer [3][8]. The basic idea is that by doing a code review
developers are exposed to code they otherwise would have not been, thus, increasing
their understanding of the codebase as a whole. For example, if a feature is to be
implemented by a developer who, through code review of similar features, has been
exposed to the relevant parts of the codebase, tasks can be accomplished more efficiently
due to the developer’s better understanding. This was even precisely noted by one of the

developers at Microsoft as a motivator [8]. Additionally, knowledge transfer may be more

15

explicit, with discussions about changes sometimes including external sources of

information that may educate developers further on the relevant topics [8].

Outcomes of doing code review

Next, as far as outcomes are concerned, they mostly follow as expected from the
motivations behind doing code review. At Google, developers expect that through this
process they will ensure the company-wide norms are followed, accidents are prevented
and there is some gatekeeping to the code being committed [3]. These expected outcomes
all relate to the idea of defect prevention. Gatekeeping especially seems to be enforced, as
code reviewers are required to not only own the parts of the codebase that changes are
being made to, but also to have passed a readability certification, which ensures they are
aware of the best practices for the language of the project [3]. This relates to the way
things are done at Google, as they have fewer code reviewers assigned than Microsoft
[3][8], but it seems they have a higher barrier of entry for who is allowed to review. While
Microsoft may differ slightly in their implementation of the inspection process, defect
prevention, code improvements and finding alternative solutions to problems are still

desired outcomes [8].

In regards to knowledge transfer, this is again expected at both companies to some
degree. At Google developers expect to be educated about the codebase though doing
code reviews [3] and so do developers at Microsoft [8]. Although not a primary motivator,
at Microsoft it is also expected that doing code reviews will lead to higher team awareness
and transparency, particularly in regards to what changes are made and when they are
made. Furthermore, a sense of shared code ownership and responsibility is created via
code reviews, as exposing your code to the rest of the team and collaborative effort on it
makes developers less possessive and protective of their work [8]. Interestingly enough,
research seems to suggest that this might be one of the advantages of in-person
meeting-based code review, similarly to what was proposed by Fagan. An experiment
conducted in [7] found that developers had a better sense of code ownership and a higher
confidence in the defects identified when doing more traditional in-person style code

review.

To conclude this section and summarize the findings so far, a comparison between
Microsoft and Google’s motivations and outcomes is given below in Table 2. It can be
observed that both companies do code reviews for similar reasons and expect similar
results, however, they have a slightly different approach and primary focus. Therefore,

these motivations and outcomes can serve as a groundwork for the design and

16

implementation of CodeQuizzer in regards to what developers want to achieve by

reviewing code.

Google Microsoft
Primary motivator Maintainability, understandability Defect prevention
Expected outcomes and - Education about the change - Increased knowledge of the codebase
secondary motivators - Ensuring norms - Knowledge transfer
- Gatekeeping code committed - Higher quality code written
- Defect prevention - Alternative solutions proposed
- Shared team ownership of code
- Increased transparency and awareness

Table 2. A comparison between Microsoft and Google’s primary motivations and expected

outcomes when doing code review.

Challenges in code review

Having established the motivations and expected outcomes of the code review process,
this gives a solid direction of what developers want and need, but also what they may
need help with. However, a more direct way to establish this would be to simply compile
some challenges currently faced by those involved in doing code review. The same case
studies will be examined as before, with the same rationale as to why behind this choice.
However, additional sources will be used as supporting and guiding material to expand
the insights gained. This is done in order to have as thorough an understanding as
possible of the challenges faced in code review as they are most relevant to the goal of the

research.

From the sources examined, the biggest challenge identified when it comes to code
review is Understanding. This is a multifaceted issue that affects various different
sub-issues faced at both Microsoft and Google. It is also identified as a problem at another

large company - Sony Mobile, as well as in the other supporting literature examined.

From the literature examined, understanding takes two forms - understanding the
changes presented for review and understanding the changes of the surrounding context
of the codebase these changes are meant for. These are two different types of
understanding both with two different sets of challenges developers face when trying to
obtain them.

17

Understanding the changes presented for review

In regards to understanding the changes presented for review, this is necessary in order
to provide a code review at all. Put simply, in order to provide a review it is necessary to
grasp what the change code does or is supposed to do, before one can comment on if and
how well it does said thing. Despite this fundamental need for this type of understanding,
obtaining it is often identified as a struggle. The study done at Microsoft identifies this
challenge explicitly, with developers mentioning it in the interviews done there [8]. This
is supported by other findings as well, as sometimes the purpose or function of the
change presented for review may not be clear immediately. In some cases obtaining this
understanding may even require understanding what the person writing the code was
thinking as they wrote it, rather than examining the code itself [9].

Moreover, what can further add to this issue of change comprehension is the nature of
the changes and the way they are presented to the reviewers. If changes are large and
contain a lot of code, it can often hinder understanding, but also motivation and
consideration while doing code review [9]. The research done at Sony Mobile expands on
this particular issue, suggesting that it can be solved by implementing a priority system
for changes, so that hotfixes and high priority bits of code are reviewed first and given
most time, regardless of change size [5]. This is an approach likely to be taken in some
bigger projects, but less adopted by OSS projects or other companies which may be less
mature in their approach to code review [5].

In addition to change size, the order in which changes are presented for review can also
have an impact on understanding them [9]. Sometimes reviewers must first understand a
part of a change before they can understand another part and if presented in an order
that does not facilitate this, changes can become less comprehensible. This issue could be
quite prominent as research seems to suggest that most reviewers simply observe
changes in the order they are presented, without any systematic approach that could

boost their understanding of them [9].

Similar issues of understanding change code are present at Google, despite their
commitment to writing understandable code as aforementioned [3]. Moreover, medium
and small scale companies seem to face the same issue. As outlined in the previous
sections of this chapter, at such companies communication is more often than not
asynchronous and written, however, it can occasionally be in-person and direct [4]. The
relevance of this in regards to the issue of understanding is the reasoning behind such
communication being opted for. The data gathered by the study suggests that in-person

18

meetings are needed mostly when code is not understandable without further
clarification [4]. What’s more, developers will also sometimes resort to looking at change
descriptions or commit messages in order to gain the knowledge needed [9]. These
sources of information are used at Microsoft as well, together with proactively
approaching the people presenting the changes in order to obtain the necessary
understanding [8]. All of these findings indicate that regardless of company size,

obtaining the understanding of the changes presented for code review is a big challenge.

Understanding the change context

Understanding the context in which a change is going to fit into is equally as important as
the fundamental understanding of the change itself. What is meant by context here is the
surrounding context of the existing codebase. Research shows that a high level of
contextual understanding leads to higher quality reviews and much deeper and more
meaningful feedback [8]. Moreover, developers claim that their code reviews are not only
of a higher quality when they have a good contextual understanding, but they are also
done faster and more efficiently [8]. This is to be expected, as understanding the existing
codebase can lead to a developer being able to orient themselves quicker when reviewing
changes for said codebase. Interestingly enough, obtaining this level of understanding is
not only seen as beneficial to the quality and efficiency of a code review, but also as a
necessary task in the process itself. Developers at Microsoft claim that often a review will
require reading much more code than just what is presented in the change [8].
Furthermore, obtaining this understanding will sometimes be needed in order to identify
if some behavior is intentional or a result of human error [4].

Nonetheless, despite the many benefits that understanding the surrounding codebase
context provides for a code review and the clear need for this type of understanding,
obtaining it is still a big challenge. At Microsoft developers claim that understanding code
takes them the most time when doing code reviews [8]. At Sony Mobile similar challenges
are faced, but even more so in the direction of obtaining a good level of context
comprehension. In comparison to the case studies done at Microsoft, Google, AMD and
other big OSS projects, the study done at Sony Mobile examines a project with a much
bigger emphasis on integration tasks [5]. This is because part of it is developed externally,
whereas another part of it is developed in-house. What the study found is that whether
something was developed in-house or not had an impact on the outcomes of code
reviews. Developers interviewed pointed out that when something is external it is a lot
more difficult to understand what the context for it is, making work more cumbersome
[5]. This finding supports the idea that Google, Microsoft, AMD and other OSS projects are

19

not outliers when it comes to large companies dealing with the problem of contextual

codebase understanding.

Furthermore, another big challenge in obtaining knowledge of the surrounding context
can be lack of motivation to do so. The case study done at Microsoft suggests that
employees may actively avoid taking the time to understand on a deeper level, choosing
to instead focus on more superficial feedback, centered almost exclusively on defect
prevention, as logical or stylistic issues are usually more easily identifiable as opposed to
deep design or implementation problems [8]. This active avoidance of providing deeper
feedback is most likely due to lack of the deeper contextual understanding needed in

order to provide such feedback.

In regards to tackling this challenge of lack of knowledge of the surrounding context,
often extra meetings are necessary for clarification. This is an accepted practice at Sony
Mobile [5], but also happens at Microsoft [8] and other smaller companies as well [4]. As a
side effect of such meetings alternative solutions can also be proposed, as mentioned

already in the larger scale studies [3][8].

Moreover, another way to tackle the challenge of obtaining contextual understanding is
by altering the process implementation itself. This can for example be done by choosing
the most appropriate reviewers for a certain review based on their familiarity with the
parts of the codebase that are relevant. The idea is that by doing so, the need to obtain
contextual knowledge is eliminated as the reviewers already have it. This type of
functionality is already implemented in certain code review tools which suggest
reviewers in such a way [9]. Even proprietary tools like Google’s Critique will suggest
reviewers not only based on the aforementioned ownership and readability requirements
but also based on how recently they worked on similar changes [3].

Other research also seems to support this line of thinking. For example, [10] found that in
several big codebases a decent chunk of code review requests suffer from problems in
regards to assigning an appropriate reviewer. Moreover, the bigger the codebase, the
bigger this problem becomes. The study’s proposed solution is a new algorithm for
recommending the appropriate reviewer for the task based on them having history
reviewing files adjacent to the ones proposed in the changes [10]. This algorithm was
found rather effective in shortening the time it takes to review a change with the

suggestion that this is because the appropriate reviewer has a larger understanding of

20

relevant code chunks, increasing their efficiency and once more illustrating the

importance of contextual codebase knowledge [10].

Another study developed a tool that suggests reviewers based on code familiarity with the
additional aid of automating the review process itself using static code analysis [11]. This
was also found to be very effective in picking the right reviewers for the job [11]. The
studies mentioned support the findings at Microsoft and Google as well, and while they
propose good solutions to this particular problem, they can lead to only certain people
looking over certain parts of the code as time passes, thus, limiting understanding on a
more global level [9]. In such situations it was found that direct in-person meetings can be
quite beneficial for a shared sense of understanding, common ground and ownership of
code. This seems to apply to both large scale companies like Sony Mobile [5], as well as

smaller companies such as the ones in [7].

All of these studies seem to support the idea that understanding the surrounding context
of a change presented for review not only results in deeper and more high quality
feedback, but also in making the overall process more efficient. Nonetheless, there seem
to still be many struggles obtaining such understanding and while some solutions are in
place already there is room for additional research into tackling this challenge.

Additional challenges

Although obtaining understanding was the biggest challenge identified by the literature,
several additional challenges were identified. While these are not the focus of the
research it is still worth highlighting them briefly in this section. The first set of such
issues are related to the code review process implementation itself. A case study done
with six Finnish software companies highlighted that companies do not always have a
formalization of any kind for their code reviews and when they do - developers are not
always aware of this [12]. If they are, then the practice at these companies seemed to
suggest that these formalizations are not applied. The primary reason for this seemed to
be lack of motivation to go through changes in a systematic and thorough way or simply
lack of knowledge and awareness about the process or changes themselves. The paper

recommends more training to increase motivation and spread knowledge.

Moreover, while understanding was identified as a big problem already it manifests itself
in some other ways than just the two already identified. For example, understanding
plays a role in various other challenges at Google, mostly in regards to the organizational
struggles at the company. The case study [3] found that Distance, Review subject and Context

21

are other areas where understanding plays a role. Distance refers to both physical
distance, but in the context of understanding - organizational distance. A tech lead and a
junior developer may be far apart enough from each other in terms of experience or
organizational positions that this distance leads to misunderstandings and delays [3].
Review subjects may also be unclear, meaning that there is a misunderstanding about what
the purpose of a code review is. One party involved may see it as simply a final inspection
step, whereas another may view it as a part of the implementation process itself. This lack
of common understanding of the subject of a review can also be problematic [3]. Finally,
the context of the review is sometimes misunderstood as well. If a change is a
nice-to-have, but treated as urgent or vice versa, this may cause delays or friction

between developers [3].

Expert interviews on code review

While understanding has been identified as the biggest problem by the literature
examined in this paper, it is important to support these findings with additional research
which takes into account the developers’ grounded perspectives. Therefore,
semi-structured expert interviews were conducted with the aim of gaining insight into
the exact same topic - defining the code review process, its motivations, expected
outcomes and challenges. This is so these findings can then be compared to the ones in
literature to see if they support, refute or expand them. In this way a more solid
groundwork for CodeQuizzer can be established.

The questions asked during the interviews can be found in Appendix A. As can be seen
there, they are divided in sections, with each aiming to gain some information about a
different topic. Firstly, there are some questions about the interviewee themselves in
order to gather context about them that could inform or correlate with the reasoning
behind their answers. The remaining sections are self-explanatory, with each one
focusing on one of the three aspects already established in the literature examination

section.

The interviews were conducted with 9 participants working at 2 companies in the
Netherlands - one medium sized and the other large. In total, the participants have
worked at 6 different companies over their careers. Some also have experience in running
their own business and working at startups in the software industry. Their ages vary from
21 up to 28 years old, with an average age of about 24. Their experience level also varies
from about 4 months to 8 years in the industry, with a mean of about 5 years. Positions

22

also naturally vary based on this level of experience from junior to senior, but also in
responsibilities. Both frontend and backend developers were interviewed, but also tech
leads, product owners and testers who have a background in development or are
currently working as developers. The variety of perspectives is purposeful, as the goal is
to get as broad of a pool of participants as possible given the limitations of this paper.

This is also why the interviews are semi-structured, as to allow participants freedom to
express as many thoughts as they have without strictly conforming to a structure that
could discard valuable answers. The remainder of this section summarizes the findings of
the interviews, divided into the same areas of interest seen previously.

The code review process

All participants have experience doing code reviews. Some recall the first time or times
they did it to not be change based, but rather given on-demand when asked by a
colleague. Others cite their first experiences being a conversation in person, rather than
the asynchronous modern process. These initial experiences seem to align with how
things are done at smaller companies [4] or take the in-person elements from the original
definition proposed by Fagan [1]. Regardless, their most recent experiences and general
perception of code review aligns entirely with the definition of modern code review

outlined in this paper.

The tools used for conducting code reviews are also unanimous with every participant
using Git services to conduct the process. Either GitHub or GitLab’s change view or merge
request view is used to examine proposed changes. Some participants also mention using
an integrated development environment to get a better understanding of the changes,
which already points to this sometimes being a struggle. This is somewhat similar to the
findings in [9].

Moreover, seven out of nine participants begin the code review process by looking at the
ticket that introduced the need for these changes, citing the reasoning being the need for
understanding context, using statements like “Once I understand what's [...] to be
achieved, then I dive into the changes.” and explicitly mentioning the need to “have an
understanding of what needs to be done”. This already points to understanding as an
issue even at this early stage of the interviews. It is interesting that the participants who
do not mention this as a part of their process have managerial positions and one even
explicitly mentions that they skip this because they most likely wrote the ticket and
already have the necessary context.

23

After gaining the needed comprehension, the tasks listed as part of the process include
looking over the code for defects, looking at the high level logic of the code, checking
semantics and styling and leaving feedback. These tasks are sometimes done in a slightly
different order, but the majority of participants name all of them as part of the process.
This aligns with the findings of the literature as well, described in the previous section.
The tasks themselves also are most likely a result of the motivations and expected

outcomes which are described next.

Motivations for code review

As far as the motivations behind doing code review are concerned, they also mostly
follow what literature has established in regards to this. Firstly, about 40% of participants
cite defect prevention as the primary motivation for engaging in the process.
Interestingly enough, this applies not only to preventing defects that would immediately
be introduced by the changes, but also ones that could be introduced in the future. A
participant mentions that code reviews should make the system more “expandable” and
ensure that future bugs and pitfalls are avoided. Regardless, these interviewees’ opinions
seem to align with Microsoft’s primary motivation for the process, which is defect

prevention [8].

Another 40% of participants mention a different primary goal, relating in some way to
code quality. “Quality and reliability of code” are listed and participants believe that these
can be achieved by making code “readable and easy to understand” through code review.
Additionally, code styling is also cited in relation to this, with reviews sometimes seen as
a way to do “code cleanup”. It is even highlighted that defect prevention should not be a
focus at all, as it is deemed impossible by a participant who claims “it's pretty hard to
catch bugs in code reviews, just because they are edge cases”. Instead, code smells should
be avoided and in the process and by doing so defects are prevented as well. This seems
to be very similar to the stance found at Google [3].

Finally, the participants in managerial roles once again have a slightly different view,
providing a primary motivator in the form of achieving feature complete code. In this
sense, code reviews are seen as a way to ensure all functionality of the proposed feature is
present. This seems logical, as product owners and tech leads may care more about these
aspects due to their job’s unique responsibilities. It also seems to align with what was
found previously in literature that suggests that distance between organizational roles
could inform a different main focus and cause misunderstandings [3].

24

Expected outcomes of code review

In regards to expected outcomes, a big point mentioned is also code quality. Essentially,
the participants who did not list this as a primary motivation, list it as an expected
outcome. This is very similar to the difference at Microsoft and Google, with one
company thinking bug-free code is clean code [8] and the other that clean code is bug-free
[3]. Regardless, code reviews ensure readable and understandable code and that is an
expected outcome. This outcome also carries an additional positive of making the
codebase better in the long run, with a participant saying that “people who started newly

in a project can understand a project much better”, if code is written well.

Another major outcome expected from the process is what was defined in the previous
section as knowledge transfer [3][8], although here it is referred to as “knowledge sharing”
by an interviewee. Despite different semantics, the concept is basically identical.
Essentially, participants see code review as a way to familiarize themselves with the
codebase, with one saying it can “help you understand other parts of the code” and “you
can also see different parts of the code that you never worked on”. Another says that this
is especially useful due to the process setup which allows this familiarization to happen
“bit by bit”. These views seem to indicate that increased understanding through this
knowledge sharing is an expected and valued outcome of the process. Moreover, some
participants mention that they can get ideas from the way something is implemented in a
proposed change, using statements like “You get to learn how others think and problem
solve which impacts your future work“ and describing code review as “a very good way to
[...] get some ideas from other people, understand what is going on, understand the

project itself”. In this way this outcome is nearly identical to what was found in [3] and [8].

Functional testing is also cited by participants as an expected outcome. What is meant is
that through testing the logic for defects, sometimes code review can also test if the
feature functions as intended. This is subtly different from defect prevention, as it tests
the whole change in a manner akin to end-to-end testing. It is important to note that this
opinion is not universal, as some participants view this task as completely separate and
dedicated specifically to testers. As a result, they don’t focus on this proactively. A
participant highlights this difference by comparing his current company to his previous
company, where testing was not a differentiated task from code review. This led them to
“try to be more precise in the reviews, because there was no tester there”. Some

participants are even completely satisfied with the automated tools that provide testing

25

and don’t do anything in regards to this when code reviewing, saying “looks fine to me, as

long as the tests passed”.

Finally, some smaller outcomes are also listed, mainly optimization and gatekeeping. The
former is especially important for mobile phone applications where performance is key,
while the latter is seen as a way to provide a sense of safety about one’s work. In this way
code review serves as a barrier of entry for those who are “very scared of breaking
something” with their changes. This is again similar to the findings in [3].

Challenges

The interviews highlighted various challenges in the code review process. These were all
of different nature, but could somewhat be categorized. Below each of these findings is
outlined and described in-depth.

Understanding

Asindicated by the literature review in the previous section, understanding is the biggest
challenge in the context of code review. The outcome of the conducted interviews also
support this conclusion, as the majority of participants indicated either explicitly or
implicitly that understanding is something they struggle with during the process. There
was so much data in regards to this that to make it more comprehensible, it can be
divided into roughly three areas of understanding - understanding the code in the change,
understanding the context in regards to the codebase and understanding the context of the
change ticket. This is similar to the findings in literature.

Understanding the change code

Firstly, participants claim to struggle with understanding the code in the change, similar
to what literature already identified. This seems to take the largest amount of time for
some, with participants listing “Understanding what is happening there [...] the new logic
introduced”, “understanding [...] how the person thought [...] to implement the idea” and
“interpreting” the logic as their biggest time sinks. Some participants point to this more
explicitly, saying “understanding different perspectives, different views” is the biggest
challenge or straight up seeing it as a prerequisite for conducting a review, saying “ if you
cannot understand [...] what is being implemented, then [...] you cannot review the code”.

Another participant warns of the dangers in regards to lack of this type of understanding,
stating “you might think you understand the code and miss one specific edge case” and
elaborating that “it's quite quick or quite easy to think that you understand the code

26

within a few seconds but it's not always that”. This implies that this lack of understanding
can have negative consequences and not investing the proper time into it can be a
common pitfall. The importance of avoiding this pitfall is highlighted by another
interviewee, who aims to be “very sure about every detail of the pull request, like I've
written it myself”.

However, despite this importance, it is sometimes the case that even the person who
wrote the change does not completely understand their own work. One participant cites
an example of a negative experience doing code review, when one of their colleagues got
lost in their own logic, so they had to spend “a couple of hours explaining again” what it
does and what is wrong with it. This outlines lack of understanding the change code as a
multifaceted problem for most of the participants. This was an aspect of understanding

also mentioned in literature with much the same struggles identified as well.

Understanding the codebase context

Understanding can be problematic in the context of the larger codebase surrounding the
proposed changes as well. A vast majority of participants mention this is an issue or is
something that they spend a large amount of time on, with some even saying
“understanding the context” takes them the most time. This also “depends on the project
and how well [they] know the code base” and if a change is “obscure”. Moreover, it can
become especially bothersome for more complex changes that require checking multiple
files. A participant says this takes the most time, which might be related to lack of
understanding of the relationships between components. Sometimes these components
can even be coming from other unfamiliar teams, with one participant saying “you need
to spend a lot of time just to understand whether their changes are fine and compatible
with your team's changes”. This seems to be similar to the struggles at Sony Mobile [5].

What’s more, there might also be a lack of motivation to gain an understanding to begin
with, as checking everything and gaining context is described as a “hassle”. This lack of
motivation can also be further impacted by a feeling of intimidation, as some say they
were “a bit afraid of doing code reviews” because they were not “familiar with the
codebase”, especially at the beginning of their careers. This can be described as a “steep
learning curve” because “it's a 1ot to take in initially [...] to understand a lot of code that
you have never seen in your life”. Even participants who do not experience this feeling of
intimidation are empathetic towards it, with one claiming they do not personally get
intimidated, but they understand why others might be “hesitant” to provide feedback for
projects they don’t know a lot about.

27

This hesitation might be caused by an increase in difficulty. This seems to be indicated by
participants as a vast majority of them find code review for a project they are less familiar
with more difficult, even if they do not find it more intimidating. According to one
interviewee, this increase in difficulty is because “you don’t know the context [...] which
generally tends to be quite important”. Another states that “you're not 100% sure if there

could be some potential issues or it might interfere with other [...] parts of the code”.

Moreover, the quality of feedback also seems to decrease when lacking context
knowledge, which in one participant’s words is because “if you don't know the project [...]
very often you also don't know the best practices”, implying that the quality of the review
goes down due to this. Other participants share the same sentiment, making the claims
they “have less of value doing the code review” or even refusing to do the review
outright, saying “I'm not doing the code review if I don't know the project”. This indicates
context understanding has a very large impact on the quality of feedback. This is
elaborated upon further with the reasons cited being mostly related to depth of feedback,
with statements like “I can flag some stuff that looks weird on the surface, but there's less
in-depth knowledge from my side” and “I'm not going to have a deep understanding [...]
I'm just going to review it from experience”. These indicate that when having lower
context understanding, one’s feedback tends to become superficial. This is further
supported by claims like “there's not really that much to code review apart from general
language best practices that are independent of the project” and also the fact that even
though some participants claim to look for deeper issues with the code, it is often the case
they rely solely on intuition and experience to do so. This implies that with better

understanding of the context, the feedback also becomes more in-depth.

All in all, there seems to be almost total alignment between this issue as presented in the
literature examined and the issue as identified by the expert interviews. All the same
benefits of having contextual understanding are acknowledged by the participants and all
the same struggles are faced with obtaining knowledge about the surrounding codebase
of a change presented for code review.

Understanding the ticket context

An aspect of understanding that is also sometimes a struggle but was not identified by the
literature examined is understanding the tickets behind the proposed changes
themselves. Some participants claim that “reading and understanding the problem” or
“understanding what is needed” takes a significant amount of time. Another states that

28

knowing “the reasoning behind changes that were made” is important. These are more
tangential remarks, however, as the primary focus of understanding remains the actual
code and the context it lives in. Even statements relating to understanding the tickets
have an underlying implication that this is important in order to understand “whether
the intention of the ticket is aligned with the implementation”.

Additional challenges

Aside from the most commonly cited struggles of understanding, there seem to be some
other problems identified as well. Below each is touched upon briefly, as the primary

focus of this paper is still on the issue of understanding.

Feedback

Feedback is cited as a point of struggle by some interviewees. Mostly these challenges
seem to stem from two things - one is the wording of the feedback and the other is
determining which feedback to actually give. The first mostly relates to the tone and level
of directness used. This is referred to as “level of feedback” by one participant, who
struggles with how direct and concise to be and how much “fluff” to add to their
comments. Another states that they try to word things in a “positive constructive way”
but also to explain and justify “why [...] I provide this feedback to you”.

The second point mostly relates to the struggle of what feedback is considered a “nitpick”,
with some participants omitting comments they have in an attempt to avoid this. One
person even calls this “overachieving” and sometimes prefers to not provide all their
feedback as they want to use code review to give people “a confidence boost”.

Another factor impacting this is the time sensitivity of issues, with some participants
saying they have approved code without leaving feedback even though they have it. The
reason for this is precisely this time sensitivity, as for tickets that are high priority and
need to be deployed quickly, it is preferable to deploy them now and fix any minor issues
with the code later. This lack of feedback is also sometimes justified by a mindset of “no
code is perfect” or offloading the task of a more detailed code review to the other assigned

reviewer. This once again might stem from a lack of motivation.

Change size and presentation

Another challenge is relating to change size and change presentation, similar to what was
found in [9]. Participants cite “too many lines of code, too many files in one [...] merge

request” as a problem or even “scary for the reviewer”. This also impacts the review itself,

29

as it is stated that finding edge cases is “very hard” especially “when there are like 300
changes in the code review”. This can lead to a less in-depth review, but also to the review

being considered a negative experience by interviewees.

Tool related challenges

Some participants cite that the Git tools they employ are sometimes cumbersome to use
and navigate code with. This is why they use an integrated development environment or
additional tools to navigate the code better. This can also impact the level of feedback, as
some state that it is more difficult to leave feedback than it should be due to a bad user

interface and experience.

Process related challenges

Finally, some participants seem to have some challenges relating to the process itself.
One such challenge is a large amount of back-and-forth. This deals with the situation of a
change having to go through a lot of cycles, which can be considered “annoying” for both

the reviewer and the review receiver.

Another challenge in the same vein is the large time between requesting a review and
receiving a review. This is even cited as the biggest potential for decreasing the time
costs, as it can sometimes take weeks until feedback is received. This could be because of
another issue, referred to as “context switching”, meaning transitioning from
development work to code review work. This is cited as a reason for putting off code

reviews by some and could be another area where motivation can play a role.

Finally, the people involved in the process can be a challenge in and of themselves. One
participant claims they struggle with giving or receiving feedback to and from people
they dislike. Finding a professional tone while keeping your personal feelings to the side
can be an issue in this sense, somewhat similar to the organizational distance issues

highlighted previously [3], although far more personal.

Conclusions on code review

To conclude the background research in regards to code review, the primary findings of
the available literature as well as the expert interviews are outlined. The idea here is to
compare the two and create a combination of both that hopefully provides the fullest
picture of the process itself, the motivations, expected outcomes and challenges. These

can then be used as not only a foundation for the development of CodeQuizzer, but also as

30

a starting point for looking into gamification aspects that could integrate well into the

process while also helping with the issues found in it.

Examined literature establishes that the code review process began as a very formal,
rigid, synchronous and time-consuming process in the late 70’s, with interview
participants having experience with some elements of this formalization as well. As time
went on, code review slowly evolved into the modern code review process due to many
factors, including a larger code and team sizes. This new process is widely adopted by
companies, both large and small due to its informal, flexible, asynchronous and
lightweight nature. This modern process definition is shared by both literature and the
interview findings, as participants essentially described this definition when asked about
what code review is according to them. Therefore, as this definition is shared between the
two it will also be the definition used in this paper and respected by CodeQuizzer’s design

and implementation.

The motivations and outcomes of code review are various, but to sum up they are mostly
related to defect prevention, code quality, gatekeeping and knowledge sharing. Different
companies and people give these different priorities, but in general the idea is always to
ensure a working, well implemented solution as efficiently as possible. This is the
sentiment in the examined literature, but all of these aspects were also mentioned and
elaborated upon by the interview participants. This once again shows alignment between
the two and indicates this is a solid set of motivations and outcomes to consider for this
paper and when developing CodeQuizzer.

Finally, the biggest challenge identified by both the literature and the expert interviews is
that of obtaining the necessary level of understanding. The literature highlighted two
types of understanding - understanding the code presented for review and the
surrounding context (codebase) it fits into. The interview participants confirmed that
they struggle the most with understanding as well and mentioned exactly the same types
of understanding. Additionally, they highlighted understanding the tickets introducing
the changes themselves as another understanding-related challenge.

Moreover, while the literature examined pinpointed some smaller tool related issues or
issues that are less abstract and more dealing with practical problems, the interview
results expanded this considerably, giving four more areas of issues that aligned with
what has been seen so far. They also provided a more grounded and in-depth look at the

problems themselves from a developer perspective. While these findings are also

31

important, they are outside the scope of this particular research, but can provide

interesting insights and direction for other papers.

In conclusion, the literature and expert interviews align almost entirely on the three
points of interest. The literature covers them more abstractly, while the interviews
provide a more grounded look. Both together provide a solid definition for the code
review process and its expected outcomes and motivations. Most importantly, both the
literature examination and interview results point to the challenge of understanding
being the largest one faced by developers doing code reviews. With all this in mind, next
it is necessary to examine gamification as a concept and see how it could potentially be

applied to tackle this challenge.
Literature examination on gamification

Gamification - a workable definition

In order to understand how gamification could potentially be applied in the context of
obtaining understanding in code review, it is necessary to establish a groundwork about
what gamification itself is similar to how this was done for the code review process. The
definition used throughout this paper will be the one proposed by [13], which defines the
concept verbatim as “the use of game design elements in non-game contexts”. The
primary focus here is on game elements, rather than elements of play. Gamification is
more about applying concepts from games as artifacts, rather than of the actions that one
usually performs while interacting with them (i.e. playing) [13]. Sometimes these two
may overlap, but the starting point are games, rather than play and they will also be the
starting point for the solution proposed in CodeQuizzer.

Furthermore, [13] makes a distinction between gamifying an activity and transforming
the activity itself into a game. The former is achieved through the aforementioned
elements being borrowed, which implies that only parts of games are being applied to an
activity that is not in a game context. If this activity is in and of itself transformed into a
game, then this would no longer be gamification, but rather something more akin to a
serious game (i.e. a game in a serious context) [13]. While this is perfectly acceptable, it
does not align with the definition proposed for gamification, which only uses specific
elements of games. Furthermore, this paper will only apply game design principles and

features partially, rather than attempt to make a serious game out of the code review

32

process. This is in order to have the research applicable in a professional context, which

is not the best suited for gaming activities.

Applying gamification to the problem of obtaining understanding

Having established a workable definition for gamification and what type of elements will
be used in CodeQuizzer, it is next important to examine how these can be applied to the
challenge of obtaining understanding for code review. As already outlined, getting the
necessary understanding can be a challenging task in several different ways. Out of these
identified ways, it seems that the most suited for a solution that implements gamification
is obtaining understanding of the surrounding codebase context. Firstly this is because
gamification is usually done in order to boost users’ enjoyment, engagement or
motivation when doing an activity [13] and as aforementioned in the previous section of
this chapter, a big problem for developers can often be finding exactly the motivation
needed to familiarize themselves with a codebase. Perhaps making this process more

engaging and enjoyable via gamification can provide the motivation needed.

Secondly, this is because the other identified areas of understanding do not seem the
most suitable to apply gamification to. When it comes to understanding change code, this
is not often an issue of lack of motivation, but rather a lack of well-written
understandable code. While submitting understandable code can certainly be gamified as
well, it seems like a less natural fit to do so, although this approach is a good direction for
another research paper. On the other hand, when it comes to understanding challenges
that have to do with organizational distance or ticket content, these seem closer to
communication issues than to issues of lack of engagement and motivation. So for similar
reasons as the previous, this aspect of understanding is better delegated for future

research.

Finally, while there exist various studies that apply gamification to code review a big
chunk of them seem to focus on gamifying the process of actually reviewing code. This
was identified by a literature review conducted in [14] which found that the part of the
code review process that has to do with actually reviewing code is the most commonly
reflected in studies aiming to gamify it. This could be in the same vein as the first
direction for future research suggested previously (i.e. gamifying understanding the
changes presented for review). This makes the argument of exploring other directions
even stronger, as the gap in research there seems more present based on the literature

examined.

33

Which gamification elements to apply?

With the idea of applying gamification to aid in obtaining understanding of a codebase
established, it is next necessary to identify which specific game elements to apply. This
can be quite difficult to pinpoint, as it can be troublesome to even establish which
concepts are specific only to games. [13] argues that the characteristic elements should be
the ones that are applied, but research is yet to be unanimous about which elements
actually can be considered as such. Due to this lack of agreement, this paper will
intuitively apply elements drawn from the author’s own experience with games and
gamification, but also inspired by other research done and solutions developed that use it
for similar purposes.

In regards to CodeQuizzer specifically, there are several elements that could be applied.
[13] splits these by level, but regardless of what categorization is used, it seems like
leaderboards, badges and levels [15] are elements that could be applied in the context of
CodeQuizzer to attempt to boost motivation for obtaining understanding. Additionally,
various other elements like feedback, providing challenges and rewards, as well as
experience and progress systems are all often used in solutions employing gamification
as found in a study done in [16]. These can all also be applied in CodeQuizzer’s design and
implementation in order to achieve a similar goal. Which elements and how exactly they

are applied is discussed shortly in the next section.

In addition to game elements, game design principles could be used when implementing
the proposed solution in order to receive some benefits as well. Put simply, if the
prototype solution uses some ideas from game design, it is possible that users will have a
better time interacting with it and will in turn come out of the code review process
having done it better and experienced fewer challenges than otherwise. There do not
seem to be many studies done using this approach, or at least ones that fall within the
scope of the papers examined here. While this is a gap in research, it falls outside of the
scope of this research, so these types of elements will not be formalized and will be
drawn from the researcher’s background knowledge of game design.

Existing applications of gamification

To conclude the gamification section of this chapter, it is a good idea to examine existing
implementations of it that operate in a similar domain to CodeQuizzer as they can
provide inspiration or at least an overview of what is out there. In general, there seems to

be a relative lack of research in the area of gamifying code review at all, at least from

34

what was gathered using this paper’s methodology. Nevertheless, this type of application
seems to provide some positive effects. For example, a study done comparing gamified
and non-gamified tools for code review found through survey responses that gamified
tools were slightly preferable in the experiment that was conducted [17]. Furthermore,
only a small fraction of participants found the gamification elements unnecessary,
indicating that there is something to be gained in applying this concept to code review.
Although productivity and comment usefulness did not go up because of the application
of game elements, the paper lists many limitations that may explain this, so there is
hardly a conclusive understanding of how gamification can be applied to tackle code
review challenges [17]. What’s more, the study suggests that there is also some
dependency on the aspects that are to be improved. For example, improving productivity
would be something different than improving the spread of knowledge or understanding,
such as with the challenge of this paper. Therefore, it might be a good idea to conduct

research in this domain to find out more.

Another study indicates that gamifying code review in an educational context yields quite
a few benefits [14]. For example, the quantity, thus, the participation in code review
seems to have a significant increase when introducing game elements such as
leaderboards, points and badges [14]. Furthermore, there was some indication that using
game design elements and particularly time-based mechanics could be used to encourage
participants to spread out their code reviews over time rather than do them all “last
minute” [14]. Moreover, although the participants did not perceive gamification to have
improved the quality of feedback given to them during code review, it did result in longer
and more in-depth comments, likely due to its motivational and engagement-boosting
nature [14]. This nature could similarly be applied in CodeQuizzer to boost motivation

and engagement when getting to know a codebase as well.

Additionally, when expanding the scope of previous research beyond just code review,
there seems to be some other uses of gamification in the software industry. For instance,
in an Agile software development setup in the form of Planning Poker as described in [18].
The idea here is that the process of estimating how long certain tasks will take is
gamified. The game elements are borrowed from the traditional card game of poker and
the goal is to lower the time making estimations takes and to involve and engage the
whole team in the task of estimating [18]. Aside from estimations, there have also been
attempts to gamify prioritization of tasks in an Agile context, such as in [19], which
indicated positive effects on engagement when applying gamification in this context. On a

more abstract level, there have even been frameworks for gamifying education that

35

utilize Agile, such as the one proposed in [20]. All of this shows that combining Agile and
gamification is not something out of the ordinary, which shows the software industry is
no stranger to gamification. This should hopefully mean that a system like CodeQuizzer
which uses it extensively is not so novel that it is not comprehensible for a professional in
this industry.

In the same more general line of thinking, there are also studies that focus on improving
software development itself through the use of gamification. For example, [21] focused on
improving software quality through tackling the issue of developers ignoring warnings
their tools provide about the code they have written. The study attempts to gamify the
removal of warnings, concluding that gamification can be effectively applied to improve
the motivation and engagement of developers taking part in this process, thus, producing
better code with less warnings. Another study focused on better code quality through
gamification is [22]. Gamification was introduced here to help enforce code conventions
and produce more maintainable and readable code. The intervention introduced was
mostly successful in both increasing compliance with code conventions, but also in
producing more readable code. This confirms the suspicions about potential directions

and gaps in research presented in the previous section.

A different approach to improve software quality was taken by [23], which attempted to
gamify the aspects of the development process that have to do with documentation of the
code written, with the argument that better documentation leads to better, more
maintainable code. Gamification was not found to have a significant impact on the quality
of the documentation, however. The authors suggest that this is because due to various
aspects in their study that were not foreseen. Either way, it shows another attempt at

gamifying software development and again confirms the aforementioned suspicions.

Conclusions on gamification

To conclude this section on gamification, it seems that there are some studies that find
grounds to make the claim that gamification could be effectively used to help tackle some
challenges in the code review process, mainly relating to motivation and engagement.
Furthermore, gamification is applied elsewhere in a more broad context to tackle similar
challenges to the ones faced by developers taking part in code review. However, there
seems to be a relative gap in research on this topic. While some systems gamify general
software development tasks or even understanding code presented for review, few
attempt to gamify obtaining understanding of the surrounding codebases. Additionally, it

also seems that while there exists a good amount of literature that focuses on education

36

(as outlined systematically in [17], for example), there seems to be less literature looking
at the professional domain. Therefore, CodeQuizzer will focus on applying appropriate
gamification elements to tackle the primary challenge of understanding the surrounding
codebase of a change presented for code review in a professional setting. This higher
level of understanding in turn should increase the quality and efficiency of code reviews

as outlined in various other works’ findings.

Prototype and evaluation

Having established a solid foundation of contextual knowledge and found a direction to
go in, next a prototype solution was designed and implemented. This solution was then
evaluated with the purpose of answering the research questions of this paper. In this
section, the solution design and implementation are outlined, followed by an overview of

the evaluation method used alongside it.

Prototype Design

As aforementioned, the prototype solution is a quiz taking tool named CodeQuizzer. Its
primary purpose is to aid developers in understanding their team’s codebases via quizzes.
The high level idea is that a senior member on a team (for example a tech lead) can set up
quizzes in the tool that focus on relevant parts of a codebase. Each quiz contains a set of
exercises that present a snippet of code that is important or relevant to understand,
together with a task the quiz taker must complete. Each quiz has a comprehension level
attached to it with the idea being that the higher the level, the more complex and in-depth
the tasks and code presented are. Upon completion of a quiz, the developer earns the
corresponding comprehension level, which then indicates how well they know the
codebase.

The reasons for choosing this solution approach are various. However, the largest reason
is that as outlined in the preliminary research, the solution to understanding a codebase
can sometimes be as simple as taking the time to observe and interact with it. The
problem in that case is moreso the fact that developers may not be motivated or engaged
enough to actually do so. Keeping this in mind, it seems logical to use an interactive quiz
tool in combination with gamification elements to make the process of familiarizing
oneself with codebases more engaging and rewarding, which in turn improves the
motivation to understand. In addition, this approach allows for relatively easy and logical
integration of gamification elements such as progress bars, positive feedback, levels,

37

badges, etc. because they have already been tested in similar tools, but in a different

context, as outlined in the preliminary research.

Quizzes

As mentioned already each quiz in CodeQuizzer contains a number of exercises that the
quiz taker must do to complete it. The layout of an exercise can be seen in Figure 3, which
in this case presents a multiple choice question exercise. As can be observed, there is a
chunk of relevant code on the right side and the provided task on the left. This layout is in
order to give visual access to the code at all times, without the user having to scroll up
and down a page to observe it (as they would have to do if they were positioned one on
top of the other).

Exercise #5: Multiple choice question

Next, consider the same getOrderAddress() function. Currently there is no error handling, so if a getOrderAddress() {
customer is not fetched correctly things could get ugly. How could we go about adding error api.get('/customer’, {
handling? params: {
ID: this.customerId

Make sure our code is error free before pushing it. }
Use a CI/CD Git pipeline that verifies our request. b
.then(function (customer) {

Use a catch() hook that implements some error handling / logging. return customer.address:
e . H

Run static analysis tools on the codebase. s

Figure 3. An example of a multiple choice exercise which also illustrates the quiz layout.

Upon completion of the task (for example in Figure 3 - answering the question), the quiz
taker can progress in the quiz. Upon doing so, they are shown their provided answer on
the left and the correct answer displayed on the right. Alongside it, there is an

explanation as to why the correct answer holds true. This layout can be seen in Figure 4.

38

Your answer: The correct answer:
Make sure our code is error free before pushing it. Make sure our code is error free before pushing it.
@ Use a CI/CD Git pipeline that verifies our request. Use a CI/CD Git pipeline that verifies our request.
Use a catch() hook that implements some error handling / logging @ Use a catch() hook that implements some error handling / logging.

Run static analysis tools on the codebase. Run static analysis tools on the codebase.

The API get() function already has a built in .catch() hook for catching errors. It functions similarly
to the .then() hook present already. We can use this hook to make sure we handle errors properly,
for example by logging them.

Figure 4. An example of the correct solution provided after answering a multiple choice exercise.

While the quizzes may resemble exams, the intention behind them is not as such. There
are no grades or scoring systems, nor is there any pressure on providing the correct
answers. This is because the main goal of doing a quiz is not to achieve a good grade or
get penalized for wrong answers, but rather to observe the code provided and increase
one’s understanding of it via doing the exercises. This is also the primary reasoning
behind the design choice of providing the correct solutions immediately after an answer
is given. In this way quiz takers can reflect on their answers and see what they may have

done wrong, without receiving negative feedback for their incorrect answers.

Ultimately, once all exercises have been completed, the users are presented with a
completion message and their comprehension level is increased to the one corresponding
to the quiz they just finished. Both this completion message and the comprehension
levels are part of the Gamification elements used in CodeQuizzer, which are outlined later
in this section.

Exercises

Each exercise in CodeQuizzer presents a different kind of task focused on the code
snippet presented. Based on the task given, exercises come in 6 types: Multiple choice
question, Open question, Function flow, Component diagram, Functionality altering and
Variable role exercises. In this section an overview of each one is given, together with
some relevant design decisions made about them.

39

Multiple choice and open question exercises

Exercise #2: Open question

Next, focus on the getOrderAddress() function of the Order class. Could you describe how exactly
it returns the address of the order?

Please type your ansuwer here...

Figure 5. An example of an open question exercise.

An example of a multiple choice question was already given in Figure 3 and an example of
an open question is given in Figure 5 above. As can be seen from both, these types of
exercises are fairly standard and follow what one might expect from an exam or other
quiz giving platform. While as mentioned already, the intention of CodeQuizzer is not to

give exams, these types of questions can have merit outside of that context as well.

The design rationale for including them is primarily flexibility. While not as interactive as
other types of exercises, they allow much more freedom in the types of questions asked,

which can be useful in a variety of cases where a more specific exercise type would not
fit.

Function flow exercises

getCompanyAddress()
|

result
|

getOrderAddress()

result

Figure 6. An example of a function flow exercise.

40

An example of a function flow exercise can be seen in Figure 6. The idea behind it is that
the user is presented with a code snippet that contains various data properties as well as
methods that access or manipulate them. In this case some functions for accessing orders
on an order processing application. The quiz taker is then asked to retrieve a certain bit of
information (for example: the address of an order). They can then put the function calls

in the correct order by dragging them and also indicate the intermediate results of each
of them.

The design rationale for including function flow exercises is that a variety of complex
systems have various components that communicate with each other via some function
calls. The order and intermediate results of these calls may be a source of confusion or
necessary for understanding the larger context of a codebase, so such an exercise seems
like a logical inclusion. Furthermore, it is relatively flexible, as it could focus on data flow
between multiple components, data flow within one component or even data flow over
the internet via an HTTP based API. In this way it is useful to increase understanding in a

wide variety of contexts.

Component diagram exercises

Class name v Class name v

— Function v —>

Function v Function v

| |

Class name v Class name v

Figure 7. An example of a component diagram exercise.
As can be observed in Figure 7, which gives an example of a component diagram exercise,

such an exercise provides a code snippet of various components of the codebase, together

with some functions that are used for communication between them. The quiz taker is

41

then asked to select the appropriate components in the diagram and the appropriate

functions that allow them to communicate with each other.

As component diagrams are a relatively familiar and proven system for designing
software architecture, evoking the concept here seems like a good idea for improving
one’s understanding of a codebase’s architecture, components and connections. The
design of the exercise emphasizes a high level understanding, because other types of
exercises are intended to serve as a deeper dive into specifics. This is also the reason why
this diagram is simplistic, rather than an accurate UML (or other modeling language)
diagram. The design intention is to use these exercises as the starting point of a quiz, so
the quiz takers can build a simple and pragmatic mental model of the relevant code for
the rest of the exercises.

Functionality altering exercises

Exercise #4: Functionality altering

Next, let's put this conceptual solution into practice. Please write an altered version of the
getOrderAddress() function below which return the company address instead.

// Write your solution here

Figure 8. An example of a functionality altering exercise.

An example of a functionality altering exercise can be seen in Figure 8. This exercise
provides a code snippet as expected and it asks the user to alter its functionality in some
way. For example, to make a function return a different value, or take a different approach

to a problem solved in the original code.

The rest of the exercise types provide a certain level of abstraction of the tasks, either by
asking questions, or providing some kind of interactive elements. However, this type is

42

intentionally designed to provide an experience most alike a developer’s day-to-day tasks
-i.e. writing and altering code. Hopefully, through doing this exercise quiz takers think
deeper about the snippets presented, but also do so from a more grounded and familiar
perspective than what is provided in other exercise types, which are more abstract.

Variable role exercises

Exercise #6: Variable roles

Finally, please consider the getPendingOrders() function from elsewhere in the codebase.
Alongside it you are provided various variable roles, as defined by Jorma Sajaniemi. Please assign
the correct variable role to each variable in the code.

maxFetchedOrders ¥

orders ©

Figure 9. An example of a variable role exercise.

The final type of exercise is the variable role exercise seen in Figure 9. As with all others,
a code snippet is presented, but this time the focus is on the variables contained within it.
For each relevant variable, the quiz takers must select its appropriate role within the
snippet.

The design of this exercise is primarily based on a pen and paper exercise provided in The
Programmer’s Brain by Felienne Hermans [24]. There it is suggested that doing this can
help with the comprehension of large bits of complicated code, so it seems like a natural
fit for CodeQuizzer, which aims to help with the same struggle. The roles themselves are
based on some of the work of Jorma Sajaniemi, for example in [25]. What CodeQuizzer
adds to this sort of exercise is intractability and a technology based implementation.
Moreover, what this exercise provides is a way to address variables in code, as the rest of
the exercise types do not provide an explicit focus on this.

Gamification Elements

In addition to improving understanding via quizzes, as mentioned before CodeQuizzer

employs various gamification elements to motivate developers. This motivation is twofold

43

- on one hand gamification can be used in the quizzes themselves to motivate users to
complete them, but it can also be used within the larger context of the CodeQuizzer
system in order to motivate users to do even more quizzes. In this section all gamification

elements are described, together with some reasoning for their usage and design.

Quiz progress bar

(=)o——o—o o «»

Figure 10. Quiz progress bar also used for navigation.

The first element is a progress bar for the quiz, which can be seen in Figure 10. Progress
bars are a common gamification element, as discussed in the preliminary research. They
seem like a good fit here both as a way to indicate to the user how far along the quiz they
are, but also to motivate them to complete the quiz by seeing their progress increase.
Additionally, in a fully functional implementation, this sort of bar could be displayed
next to unfinished quizzes as well, potentially motivating users to return to them and
complete them.

Quiz completion message

Level 3 Quiz Completed

Completing this quiz has earned you Comprehension Level 3 for this code base!

Back to home

Figure 11. Quiz completion message presented once a quiz is finished.
Positive feedback is another gamification element that is used for motivation in the
context of CodeQuizzer. In particular in the message that quiz takers receive after

completing a quiz as seen in Figure 11. This message is not only to inform them the quiz is

44

complete, but also to congratulate them on their new level of comprehension of the code
base. Furthermore, it has a visual element that is universally accepted as positive - the
checkmark. In this way hopefully this message fosters a feeling of satisfaction in the
users, which then motivates them to complete other quizzes in the future as well.

Profile badges

John Doe

Junior Developer

Eager learner Clever quizzer

Quick thinker

Figure 12. Badges displayed on a user’s profile.

Alongside the quizzes themselves, the CodeQuizzer prototype features a home screen that
contains the rest of the gamification elements used. The first among them are the profile
badges contained in a user’s profile section on the home screen as seen in Figure 12. Here
they are only illustrative, but integrated in a fully functional solution these badges would
be obtained by achieving certain things such as doing many quizzes, providing a lot of
correct answers or doing quizzes quickly. The idea is that these badges would serve as
intrinsic motivation for users who want to obtain them, but also as extrinsic motivation
for users that may see them on another person’s profile and wish to obtain them
themselves. All this in turn would result in more quizzes being completed by users. The

badges are textual with the intent of the playful names sparking interest in the users, but

45

also providing some hint as to what they could do to obtain them so they feel motivated to

interact more with CodeQuizzer.

Comprehension levels

2) Order Management App ->

New quiz available!

@ Onboarding App
No new quiz currently

@ SCRUM Management App

No new quiz currently

Figure 13. A list of a user’s codebases together with their achieved comprehension levels for each.

Still on the home screen, there is a list of a user’s codebases displayed as seen in Figure
13. As mentioned earlier, each user has a certain comprehension level achieved for each
codebase they work on. Here they are displayed next to the codebase names and if a new
quiz is available for a given codebase, this is indicated via highlighting but also via the
circular progress bar on the left.

Levels are another common gamification element as described in the preliminary
research. In CodeQuizzer, the comprehension levels are included as a primary motivator
for doing more quizzes. The idea is simple - a user would want the highest level possible,
so they would do more quizzes to achieve it. Moreover, in a fully functional solution,
these comprehension levels could be interfaced with third-party platforms such as Git.
For example, they could be displayed next to user’s names to motivate developers to
improve their levels by seeing others’ levels or more interestingly, they could be used to
select the most appropriate reviewers for a given code review, either manually or via
some algorithm. In this way the primary gamification element in code quizzer can be
integrated into the code review process directly as well.

46

Leaderboard

<[> Your codebases «t. Leaderboard
Choose codebase v
™ John Doe
T 21
Junior Developer

P Jane Doe 0 2

Senior Developer

Tom Ato
Tech Lead

My

Figure 14. CodeQuizzer’s leaderboard section.

The final gamification element used by CodeQuizzer is a leaderboard as seen in Figure 14.
This is a self-explanatory concept - users can see a leaderboard of their team members.
The more quizzes and code reviews done, the higher one’s placement is on the
leaderboard. Leaderboards can also be filtered by codebase, allowing users to observe

which projects they may be ignoring in their pursuit of understanding.

The idea here is once again quite simple in that this public leaderboard can hopefully
motivate developers to do more quizzes and code reviews. Aside from the general
motivation of wanting to place at a high position, it is possible that some users may even
have more personal motivations, such as rivalry with a particular colleague which might
motivate them even further. Moreover, in a fully functional solution this leaderboard
could be displayed in a third-party application as well, if emphasis on it is found to be

particularly useful for increasing motivation.

47

UI / UX Design

While UI / UX design is by no means the focus of CodeQuizzer’s prototype, it was still
taken into consideration when designing it. This is to some degree unavoidable, as
anything that users interact with will need some thought placed into UI and UX. In this
case this is mostly based on the researcher’s intuition and prior experience with these
fields. However, there are still some decisions under this umbrella that may be relevant
and interesting to discuss.

Firstly, the visual design was kept simplistic and clean, using primarily a neutral color
(white) and an accent color (light blue). This keeps elements readable and visual strain to
a minimum. Furthermore, using a unified accent color keeps the visuals consistent and
allows important elements such as buttons to be easily identifiable at a glance. Other
colors are only used in places that need to stand out further, such as the profile badges
and the leaderboard. Regardless of the color values themselves, saturation is kept low to
avoid color clashing and visually overwhelming the users.

Secondly, from a UX perspective, as mentioned already mostly intuition and prior
experience was used to design the navigation layout and individual components.
However, as a supporting reference and guide to commonly accepted web application
rules, Google’s Material Design 3 Guide was used [26]. This is to ensure a smooth and

intuitive user experience across all aspects of CodeQuizzer.

Finally, it is worth mentioning that the layout and visual design was made with desktop
exclusively in mind. The reasoning behind this is that this tool is meant to be used by
developers in a professional setting and it is a safe assumption that those people would
use desktops rather than mobile devices to conduct their day-to-day tasks. Therefore, as
the target audience’s primary devices have desktop resolutions, it seems logical to focus
on those in spite of the commonly adopted mobile-first approach to web application
layouts one may expect.

Evaluation Design

As aforementioned, CodeQuizzer’s prototype is used to obtain an answer to the already
established research questions. The way this is achieved is via conducting an evaluation
study of the prototype. This section describes the high level approach of this study,
together with highlighting the interesting and relevant design choices and their

reasoning.

48

High Level Approach

The evaluation study uses a survey hosted online. The idea is that participants interact
with CodeQuizzer’s prototype in different ways and then provide their feedback by
answering a variety of questions. The questions are grouped in 5 sections which first
collect data about the participant’s professional development experience, then about
their impressions of the example quiz provided in the prototype, then about their
impressions of each type of exercise, then about the gamification elements in

CodeQuizzer and finally some data about the UI / UX experience.

Each of these sections focuses on answering the research questions or providing
additional context for the answers given. The ultimate goal is to gather a general
consensus about CodeQuizzer’s ability to increase understanding through gamification as
well as its effectiveness at it. In this way an answer is obtained to the two research
questions regarding gamification’s usage to increase understanding for code reviews.
While the question of how this can be done is incredibly broad due to its nature (meaning
that there may be infinite ways to use gamification for this purpose), evaluating how well
CodeQuizzer achieves this task gives indication if this way is effective or not, based on
participants’ feedback.

The survey approach itself was taken for a variety of reasons. Firstly, it allows a wider
range of participants to be included, as a more personal 1-on-1 evaluation (for example:
an interview) can be more difficult to schedule and take more time and energy for
participants to do. Therefore, choosing an evaluation method with a lower barrier of
entry ensures a bigger pool of respondents. Furthermore, unlike the interviews
conducted in the preliminary research, here the goal is not to gather the personal
experiences and challenges of an individual developer, but more so their collective
opinions about the prototype. This means that being able to use qualitative data is more
useful for aggregation and it is also more convenient to work with for the evaluation
study’s purpose. Therefore, a survey format which allows for this type of data to be
collected easier (i.e. with Likert scale questions) is better suited than a more free-form
interview or focus group format in this case. Nonetheless, the space for qualitative data is
also given with various open questions included in the survey as well.

Survey Design

Having covered the high level approach, various design decisions were made in regards

to the specifics. These range from deciding what sections to include, what questions to

49

include in each section, as well as the format of the questions themselves. These decisions
are relevant for the answers provided, so in this section they will be outlined per survey
section, together with the reasoning behind them. A full list of the questions used in the
survey can be found in Appendix B together with the type of responses participants can

give.

Participant Context

The first section of the survey focuses on gathering information about the participants
themselves. This information is mostly about their professional background in the
software development industry. Information is gathered about how long they have
worked in it, what their current job position is, how large their team is, etc. Gathering this
type of data is important, because it could provide some additional context or
justification for their answers. For example, the answers of a junior developer with a few
years of experience may differ wildly from those of a tech lead with a decade in the
industry. In particular, the questions about team size and the presence of a tech lead in it
are essential, because if a participant only works in a team of 5 people where no one has a
senior role this might bias their opinions about a system such as CodeQuizzer which is
targeted at larger teams and requires a tech lead to set up the quizzes.

Example Quiz

As aforementioned, the prototype includes one example quiz. This quiz consists of 6
exercises in total - one for each type. While a longer quiz may be more illustrative of the
actual quiz experience one might have, this length was chosen with regards to a different
set of priorities. The most pragmatic concern informing this decision is the time a
participant spends on the evaluation. If a long quiz is presented to them this may make
their evaluation experience more negative, thus biasing their answers. What’s more, the
evaluation itself is focused primarily on the conceptual viability of CodeQuizzer. This
means that the motivation behind it is not to provide a 100% accurate representation of
how the tool will be, but rather to evaluate if the concept behind it (i.e. using gamification
to increase understanding) has merit and could be used in the way that it aims to be. This
goal can be achieved with a shorter quiz, while avoiding the drawback mentioned
previously. Furthermore, the rest of the survey focuses on the exercise types and their
effectiveness and for that an entirely representative experience is also not necessary with

just one example of an exercise type sufficing to gather the needed data.

With all this in mind, the example quiz still focuses on one single mock-up codebase that
the user can conceptualize in their mind (a web application for placing and managing

50

orders). This is a common use case that hopefully developers are at least somewhat
familiar with or can at least grasp relatively quickly, while still providing enough
intricacy to judge if CodeQuizzer helps them understand code better. The same
motivation sits behind the choice to use Javascript for the code snippets, as it is pretty
verbose, but free of types and a lot of language-specific restrictions, as those may

complicate the process and bias the results obtained.

The questions asked about the quiz in general are mostly centered around gauging how
well this type of quiz would help improve understanding of an unfamiliar code base.
Furthermore, questions are asked about the general layout, what the opinion is of being
shown the correct answers and also how much the quiz feels like an exam. These are not
only asked to understand the general experience of the participants, but also to find if the
goal of avoiding the exam feel is achieved or not, which is important for reasons already

mentioned in the prototype design section.

Exercise Types

The next section of the evaluation survey gathers data about each individual exercise
type, with the goal being primarily to gauge how useful these exercises are for boosting
understanding and also how engaging and enjoyable doing them is. The former is
important to know as understanding is the primary goal of doing exercises, whereas the
latter is important to know in order to see if exercises are engaging enough to motivate
users to do quizzes, as gamification should not be the sole motivator.

What’s more, here it is worth mentioning that most questions in this but also in other
sections ask the participants to rate their agreement with various statements. This Likert
scale approach is fairly standard for a survey, but a purposeful design choice was made to
provide scales that are even numbers (i.e. from 1 to 4 or from 1 to 6). In this way
participants must always provide some level of agreement or disagreement with the
statements provided, giving a stronger indication of what works and what does not.
While this may bias the data to some degree, given the limited time for carrying out the

study this is necessary to ensure there is a solid conclusion in the end.

Gamification

The next section of the survey focuses on the gamification elements present in
CodeQuizzer. This is important to include because the research questions are both
centered around gamification’s effect on increasing understanding. Each element that
was described in the prototype design is present in the implementation and the survey

51

contains questions about each one. The questions primarily focus on how motivational

each of the elements is in order to answer the research questions.

Moreover, there are various element-specific questions that aim to gather data about
certain aspects that the researcher suspects might be important to know. For example, for
the quiz completion message the survey inquires about participants’ opinions on the
amount of visual elements present and the tone of the message itself. This is to
understand how its motivational aspects can be improved. Furthermore, sometimes
questions will present hypothetical scenarios not present in the current prototype
implementation, such as integrating comprehension levels into third-party platforms like
Git as described in the Prototype design section. This is so opinions can be gathered about
potential future directions CodeQuizzer could expand in given a fully functional solution.

What’s more, here it is worth mentioning that open questions are given to allow
participants the opportunity to provide more detailed feedback that may have not been
covered by the closed questions. This approach is present in other sections as well, but it
is particularly important here, as motivation is a complex concept that might need more
clarification and nuance. Furthermore, extra attention is paid to the verbiage of the
questions, with them using present simple or conditional tense, steering the focus away
from the prototype specifics and towards a more conceptual view of the system. This is
also the approach taken in the rest of the sections, with past tenses used only when

asking about specifics of the current implementation.

Usability

The final section of the evaluation aims to gather opinions on how usable the system is.
The way this is achieved is via the common System Usability Score (S.U.S) test [27]. In
brief, it contains 10 statements with answers that are on a scale of agreement ranging
from 1 to 5 [27]. Based on these answers, a usability score on a 100 point scale is
calculated that can serve as an indicator of how usable a system is [27]. While other types
of data collection may lead to more nuanced and accurate evaluations of usability, the
research questions both do not focus on this at all, so knowing this is only useful to
explain biases in results, such as for example if the system is very unusable which could

make the answers more negative, or to provide practical directions for research.

What’s more, in the same line of reasoning, there is only one question that focuses on

visual design in addition to the 10 S.U.S test questions. This is an open question and is

52

only present to gather extreme opinions about the visual design that could have biased

the answers in the same way lack of usability may have.

Evaluation results

In this part of the paper the results of the evaluation described in the previous chapter

will be summarized, outlined and discussed in-depth. For organizational purposes, these
results will be focused on by section, with the sections being the same ones already used
in the evaluation design description. Based on these results answers will be provided for

both of the research questions in the conclusions of this paper.

Participant context

The survey was sent out to approximately 50 people of which 17 provided a response.
Every participant responding has worked in or is currently working in the software
development industry with 47% having worked for 1 to 3 years, only 3 people having
worked for less than a year and the rest being an equal split in the remaining ranges of 3
to 10 years. Participants were aged between 21 and 31 years old with a median age of
about 25. Their job positions also varied, with two tech leads, one service delivery
engineer, one devops engineer, one C++ / Python developer and the rest being an equal
split between backend, frontend and fullstack developers. The median team size is about
9 people with only one person being a solo developer. All participants but 2 have a tech
lead or analogous role in their team.

As with the expert interviews, this variety in participants is purposeful. CodeQuizzer is a
system that will affect an entire team’s code review process, so it is important that the
opinions of a variety of people is surveyed. Furthemore, the job descriptions present in
the responses cover most of who would usually be on a software development team doing
proactive development, whereas the variety of experience levels and ages cover junior,
medior and senior developers. This hopefully creates as representative a picture as
possible with respect to the time and scope limitations of this paper.

When it comes to the team sizes, they vary a bit less, but that is to be expected as plenty of
research exists about what optimal team sizes are. Moreover, most respondents belonging
to medium or large teams is to some extent a good thing, as the focus of the background
research which informed CodeQuizzer was exactly those types of teams. So, they are,
albeit not explicitly by design, the primary target audience of the solution as well.

53

Nonetheless, there is a solo developer outlier as mentioned previously. Their response
will not be discarded, as it is still valuable, but the bias of their different context will be

kept in mind when analyzing the responses further.

Aside from team sizes, the presence of a tech lead or similar role is also important, as
CodeQuizzer relies on them to function and may not be understood properly if the
participants did not have such a role on their team. Fortunately, as mentioned already all
but two of the respondents have such a person on their team and the only outliers are
familiar with the idea of such a role, therefore, their bias is hopefully minimal.

To conclude, the responses obtained cover a wide range of appropriate people who also
have the necessary team sizes and roles in order to have the contextual knowledge
needed to interact with CodeQuizzer’s prototype. The variety hopefully ensures as
representative a perspective as possible, while the contextual knowledge hopefully
minimizes the skewing of the results due to lack of said knowledge. Next, the actual

responses will be examined per section of the survey.

Example quiz

When it comes to the example quiz, the experience with it was well received by
respondents. The most common rating it obtained was a 5 out of 6, with 89% of
participants scoring it above a 4 and only 2 people giving it a 2. The format of the quiz
itself was also the subject of positive feedback as every participant but one gave it above a
4 and around 35% gave it the maximum grade of a 6. The exact percentage distribution of

the quiz experience and quiz format scores can be seen in Figure 15 below.

54

Quiz experience Quiz format

29.4%

®©2 4 05 6 ®2 4 O5 6

Figure 15. Percentage distribution of numerical scores for the quiz experience (left) and the quiz
format (right).

Aside from the high numerical score, the experience was also described positively in
participants’ comments. The quiz was called “very user friendly”, “coherent” and with a
“nice design”. This indicates a positive reception of the layout and format. On the other
hand, the experience was described as “fun” and its questions as “engaging”. This
reception may be due to the gamification elements present or due to the user friendliness
(or perhaps due to both combined). Nonetheless, the opinions on the quiz experience

were positive, which indicates that the system itself is a success in this regard.

Unfortunately, despite best efforts, the opinion on whether the quiz feels exam-like is
more split as seen in Figure 16 showcased below. Almost 70% of participants think that it
resembles an exam to some degree, with almost 20% feeling strongly about their
agreement and only one participant strongly disagreeing. This could be for a variety of
reasons, but an educated guess is that this is because the format of asking a question with
the expectation of a correct answer may inherently resemble an examination to those
familiar with the concept. More research is necessary to pinpoint the exact reasoning
behind this feedback.

55

Exam feel

1 3 @4 @5 @6

Figure 16. Percentage distribution of the participants’ opinions on how much the quiz feels like
an exam (1 being “Not at all”, 6 being “Very much”).

Nonetheless, the comments of respondents that did not find the quiz experience positive
also seem to mention this exam-like feeling. For example, one pondered why there is no
consequence for “if you fail” the quiz and made the statement that “[they] shouldn't be the
one checking if [an exercise] is correct”. This indicates that the quiz felt like an exam to
them, as they expect some consequence for failure and also expect a higher up to “check”
their performance. This is more akin to receiving a grade rather than a self-evaluation
with the focus of increasing their understanding through it. Another participant makes
this point more explicit by saying that the quiz “does not teach [them] that much about
the code itself” and that it feels more like a “code exam”. Moreover, the variable roles
exercise in particular was also called “theoretical” by another respondent and it was
indicated that this is not an exercise that aids in practical understanding. All of this
feedback, coupled with the numerical data shows that, albeit for a minority, the quiz did
not get across its purpose of increasing understanding, instead feeling like a performance
evaluation tool. This together with the rest of the points for improvement that will be
discussed shortly could have impacted the overall quiz experience for these respondents.

When it comes to the goal of increasing understanding of a codebase, opinions were also
majority positive as seen in Figure 17. Around 65% of respondents indicated some level of
agreement with the idea that such a quiz would be helpful to aid in their understanding
with most of them giving firm or strong agreement. Moreover, in participants’ comments,
the quiz was called “helpful” and its explanations “useful”. The latter statement was also

56

supported by numerical data as almost 90% of the participants agree that the correct
solutions after questions are useful for their understanding.

Improving understanding of a codebase

1L 02 3 @4 5 6

Figure 17. Percentage distribution of the participants’ opinions on how much such a quiz would
help improve their understanding of a codebase (1 being “Not at all”, 6 being “Very much”).

However, despite CodeQuizzer having a positive impact on the majority of user’s
understanding, the rest of them seem to find it less useful when it comes to this as also
seen in Figure 17. More than 30% disagree to some extent that this type of quiz would
help with increasing their understanding, with one even strongly disagreeing. Focusing
on the respondents’ comments provides the reasoning for this.

Firstly, there were some complaints about the content of the quiz and its presentation.
For example, the wording of some questions being unclear and some elements being
hidden behind scrolling such as the variable roles table as seen in Figure 18. For one user
it was not clear that they could scroll to see more, while another explicitly said that the
code “looks like an image” and that a scroll bar is necessary as indicator of scrollability.
These are both valid points for UI/UX improvement going forward.

57

getPendingOrders(maxFetchedOrders) {

api.get('/orders"')
.then(function (orders) {
let pendingOrders = [];
for (let i = @; i < orders.length; i++) {
if (orders[i].status == 'Pending') {
if (pendingOrders.length < maxFetch|
pendingOrders.push(orders][i
}
}
}

return pendingOrders;

Figure 18. Variable roles table being hidden behind scrolling, which was a point of feedback from

participants comments.

Secondly, the specific programming language used (JavaScript) had an impact too, with
one participant pointing this out as something that hindered their understanding. This is
to be expected, as programming languages vary and if one does not have familiarity, this
can be detrimental. Another participant added to this saying that the quiz feels like
“following a paid online course for learning how to code”, which could also indicate lack
of familiarity with the language itself. Perhaps if they knew more about JavaScript, this
feeling would be less prevalent. Nonetheless, this is a bias that is present and will be kept

in mind moving forward with the response analysis.

Finally, various respondents suggested that more personalized feedback could be
beneficial in regards to the answers given. Several participants suggested that there
should be some form of highlighting of their correct or incorrect answers to help them
identify mistakes quicker. Another more explicit suggestion was that a participant would
have liked to see “why [they were] wrong” in more detail by for example getting referred
to the line of code they did not write down correctly. Introducing such more personalized
and detailed feedback is a good direction to take for both increasing understanding by
providing more detailed feedback on wrong solutions, but also as a way to lessen the
exam feel by shifting the focus from aiming to achieve a high score increasing

understanding.

58

To conclude the findings in regards to the example quiz presented, most participants find
it to be a nice experience with big contributors to this being the UI / UX which was
praised and the fact that the quiz was found engaging and fun. A majority also find the
quiz concept useful for increasing their understanding with a particular contribution to
this being the explanations after questions, which were universally praised. From a
grounded perspective there were several UI/UX improvements that could be
implemented. From a conceptual point of view, the main area for improvement is
lessening how much the quiz feels like an exam, as this conflicts with the goal
CodeQuizzer has. This could be done via introducing more detailed and personalized
feedback when a provided solution is incorrect, shifting the focus from obtaining a high
score to obtaining an understanding of code. This could in turn both lessen the exam feel,

but also increase the understanding overall.

Exercise types

In order to deepen the analysis of the quiz and how well it aids in obtaining
understanding of a codebase, it is necessary to examine the individual exercises that
make up the quiz itself and in particular, the opinions of respondents about them. This
section will do exactly this and in the interest of structure, this will be done in
sub-sections, each focused on one type of exercise. At the end general conclusions on all
the findings in regards to the exercises will also be presented.

Multiple choice exercise

When it comes to the multiple choice exercise presented in the prototype, more than 80%
of participants agree that this exercise helps improve their understanding of the code
presented as seen in Figure 19. Only three people disagree and no one strongly disagrees.
This indicates that this type of exercise can be used to increase the understanding of

unfamiliar code, so in this regard it is a success.

59

Multiple choice improving understanding

Disagree Agree Strongly agree

Figure 19. Percentage distribution of the participants’ agreement with the statement that the
multiple choice exercise helps improve their understanding of the code presented.

However, despite the responses indicating that this exercise helps achieve CodeQuizzer’s
goal, not a single participant indicated that this type of exercise helped the most in this
regard. This could be for a variety of reasons, but a good assumption is that this is simply
because the other exercises helped more. This assumption is supported by the overall
positive results in regards to this point outlined previously, which show that participants
did not choose a different exercise as the most helpful because the multiple choice one
was not helpful at all, but rather because other exercises were more so.

Next, turning the focus point towards the experience respondents had with the exercise,
everyone agreed that it was intuitive to do with more than 75% of the participants
strongly agreeing with this statement. Aside from the positive opinion obtained, there is
also another beneficial aspect of this finding. The exercise being intuitive for everyone
eliminates the bias that a confusing exercise could have on its ability to aid in
understanding, which adds further validity to the previous positive findings in regards to
this.

Moreover, aside from being intuitive the exercise was also found interesting by the
majority of respondents with about 70% agreeing that the exercise was interesting to do.
Still, a minority disagrees with one participant even calling it “boring” in comparison to
others. An educated guess as to why some might hold this opinion is that multiple choice

questions are a familiar type of exercise to almost anyone who has done an exam,

60

therefore, they are not as fascinating as the others. Nonetheless, no one indicated strong
disagreement so the exercise is still not totally disinteresting to the point of impacting

engagement with the quiz.

Furthermore, despite not being selected by anyone as the most helpful exercise, the
multiple choice exercise was selected by about 30% of participants as the one they most
enjoyed doing as seen in Figure 25. The reasons found in respondents’ comments are
several, but one participant indicated that they enjoyed it most because it was the
“easiest”. Another one pointed out that it was “simple” and they enjoyed the fact they got
“quick feedback”. Yet another one sharing this opinion had much the same to say about it
in their comment, also calling it quick and easy, but in addition indicating that they
enjoyed that it was a “very common type of exercise”. This seems to support the

aforementioned correlation between intuitiveness and previous familiarity.

To conclude, the multiple choice exercise was received well. It was found helpful in
aiding the understanding of unfamiliar code, albeit not the most helpful. Participants
found it intuitive and interesting to do in general, with several indicating it was their
favorite to do, owing much to its familiar nature which makes it quick and easy to do
while still receiving useful feedback. Therefore, such an exercise should continue to be
used in CodeQuizzer moving forward as it is overall a net positive for the quiz experience

and also for increasing understanding.

Open question exercise

In regards to how well the open question exercise helps with understanding the
presented code, participants indicated a positive opinion on this as well, albeit not as
unanimously as with the multiple choice exercise, as can be observed in Figure 20.
Around 70% agreed that it helped their understanding of the code, however, the
remainder disagreed with one person even strongly disagreeing. Nonetheless, the
numerical feedback is overall positive in regards to this, so this type of exercise can also

be used for improving understanding.

61

Open question improving understanding

@® Strongly disagree Disagree Agree
Strongly agree
Figure 20. Percentage distribution of the participants’ agreement with the statement that the

open question exercise helps improve their understanding of the code presented.

Furthermore, one participant even indicated that this exercise was the most useful in
regards to this. They elaborate further in their comment by explaining the reasoning for
this being that this exercise made them think about the “entire sequence of commands”,
rather than one specific component. This is interesting, as several other questions have
the same focus, but it seems that for this person this was the most effective of them all.
This could have to do with the question itself more so than the format and if that is the
case this highlights the importance of well asked questions for a system such as
CodeQuizzer.

Having proved slightly more polarizing but still useful for increasing understanding, this
type of exercise also proved to be intuitive to do. More than 88% strongly agree on this
point, with only two people indicating disagreement. This intuitiveness is probably for
the same reasons of familiarity that were highlighted in the previous exercise type, but
here there are no comments about this that can help support it. Nonetheless, the same
points about bias being minimized due to the exercise being intuitive stand and they
provide much the same benefit for the data. When it comes to the disagreeing
respondents, unfortunately they did not add anything to provide reasoning in their
comments, however, another participant indicated that they would have liked “more
context”, so this could perhaps be what was missing to make the exercise more intuitive.
This would align with the aforementioned idea that the content of the questions is just as

important as the format.

62

In regards to being interesting, the feedback about this exercise is unfortunately a lot
more negative. Less than half of the participants found it interesting, with the rest
disagreeing and three even strongly disagreeing. Diving into the comments respondents
left, there seems to be some reasoning provided. One participant explicitly states that if
the idea is to maximize engagement (what they refer to as “fun”) the quiz “would be better
without open questions”, as they find them “boring and time consuming”. Furthermore,
the issue of the exam-like feel already identified appears here as well, with the same
participant saying that open questions make the quiz “feel the most like a test”. Another
agrees, adding that it is difficult to determine an answer’s correctness for this question,
necessitating an external person to “judge” the answer, thus boosting the exam-like feel.
These findings support the idea that familiar exam-like questions are less engaging, in
addition to the idea that the exam-like feeling is a prevalent issue that gets in the way of

CodeQuizzer’s goals and engagement levels.

Overall, this type of exercise proved to be successful in aiding understanding and also
being generally intuitive and enjoyable to do for the majority. However, it was only the
most interesting for one person, with the remainder’s negative opinion probably being
caused by the exercise’s familiar nature. This nature also boosted the already identified
issue of the quiz feeling like an exam, which is something to be avoided in the future.
Nonetheless, it is still an exercise that should be kept moving forward based on majority
response, but perhaps used in moderation and with extra attention on the content so that

it is not confusing and misleading.

Function flow exercise

The function flow exercise also proved useful in terms of increasing understanding as can
be seen in Figure 21. Around 76% of participants indicated that it helped them with this,
with two even highlighting this as the most useful exercise in this regard. One answer as
to why points out the interactive nature, which fits a person who likes to “learn by doing”,
while another claims that the exercise makes them “think about how a function [works]”
which in turn provides them with a better overview of the system. Yet another even says
that this exercise “taught [them] the right thing”, indicating that doing it was also

practically useful for their understanding.

63

Function flow improving understanding

® Strongly disagree Disagree Agree
Strongly agree

Figure 21. Percentage distribution of the participants’ agreement with the statement that the
function flow exercise helps improve their understanding of the code presented.

However, despite the positive feedback in general, this time more than 20% disagreed
that this exercise was useful for their understanding. Fortunately, a participant left
in-depth feedback in regards to this in a comment. Their response has to do with the
specifics of the question itself, as their complaints primarily center around the fact that
this exercise is not a good representation of nested function calls. This makes the exact
return value and type of the functions unclear to them. Similarly it was also unclear
where exactly different functions are called from which negatively impacted their
understanding further. These are all valid points but they reflect more so on the content
of the question rather than the format, similar to some of the feedback the open question
received. This once again reaffirms the importance of exercise content for a system like
CodeQuizzer.

In addition to the content-related feedback, there were also some more points about this
exercise from another participant that did not receive it very well. They claim they felt
like they were learning more general coding principles and knowledge with this exercise
rather than specifics about the code presented. This response is an outlier, but still
something to consider when implementing such questions. Perhaps they need to be
presented in a more grounded perspective in order to achieve their true purpose of aiding

the understanding of particular codebases.

64

Turning towards the intuitiveness of this exercise, more than 70% of the participants
found it intuitive to do with one person even finding it the most intuitive. While the rest
disagreed, no one strongly disagreed indicating this is not an incomprehensible exercise.
In regards to why there was disagreement, the previously examined comment puts it best
- the content made the question unintuitive and not understandable for some. This is not
great, but it does at least support the idea that lack of intuitive understanding of an

exercise’s content biases the opinion and gets in the way of CodeQuizzer’s goals.

In regards to the interest levels here things are slightly more positive, with 75% of the
respondents indicating they found the function flow exercise interesting to do. Two
participants even highlighted it as the most enjoyable to do. One reason had to do with
the design, which was called “very nice”, while another claimed that it was “the right
amount of challenging”, “clear” and helped with the common problem of confusing
functions with vague names and interactions. This positive feedback shows that despite

being somewhat less intuitive, this exercise was still interesting for most.

Overall, this exercise was received well in terms of interest and aid in understanding.
However, it was found not intuitive by some due to its content and particular
implementation. Furthermore, it felt too generic for some, although the vast majority
liked its interactive nature and positive impact on a common programming problem.
Based on this majority positive feedback that is relevant to the overall goal of obtaining
understanding this exercise format should continue being used in future iterations, albeit
with more carefully curated content and more specificity.

Component diagram exercise

The component diagram exercise was an overall success in terms of increasing
understanding of the code presented. As seen in Figure 22, about 88% of participants
indicated agreement or even strong agreement in regards to this point, with more than
40% selecting it as the most useful. Looking at the comments left, this good score could be
due to the fact that it gives an “overview of the codebase” and helps with understanding
“how... different entities can/do interact with each other”. This overview aspect was
echoed by another respondent, who also positively highlights the focus on
“interconnectivity”. Moreover, yet another participant says that this is a “good starting
point for understanding the codebase”, together with another who says this
understanding is the most important for “someone starting in a new company or
codebase”. These statements mirror what the rest said, but also show that the order of

65

exercises are important. If this were to not be the first exercise, this type of positive

feedback may have a lower chance of being received.

Componentdiagram improving understanding

Disagree Agree Strongly agree

Figure 22. Percentage distribution of the participants’ agreement with the statement that the
component diagram exercise helps improve their understanding of the code presented.

As far as the two people who disagree are concerned, despite being a minority they
provide some useful information in their comments as to why they disagree. Their
reasoning is not content based, but rather has to do with the format itself. A participant
was “confused”, due to the diagram linking the models themselves rather than the models
returned by the function. Adding to this, they claim the diagram could be misinterpreted
as linking classes and the return classes of the functions within them, rather than linking
the classes themselves. Finally, it was also mentioned that the diagram is not quite as
detailed as it needs to be because API calls may abstract connections with other
components not present. All of these points are valid and indicate that the exercise needs
to be more detailed and clear, perhaps following an already established modeling

language such as UML.

In terms of intuitiveness, around 82% of participants also agree that the exercise is
intuitive, with the remainder probably having similar reasons as the ones already
outlined. Nonetheless, the majority opinion is positive in this regard, so the biases caused
by this should be contained to the responses already examined previously which

thankfully also provided detailed reasoning and points for improvement.

66

Most participants also found the exercise interesting to do, with only 2 disagreeing. About
23% even pointed out that this was the most enjoyable exercise for them as seen in Figure
25. Some reasons for this were already highlighted in the first paragraph, but a
participant also said it was the “most useful” for them. Another aspect that could play a
role here is fatigue, as the first exercise may be most enjoyable and interesting for some,
as it is their first interaction with the system and they may have less energy and
engagement with every subsequent exercise. This is mostly speculation though and more
research needs to be done to confirm or deny this.

To conclude, this exercise was also a success across the understanding, intuitiveness and
enjoyment fronts. Participants found it useful for increasing their understanding, but
also engaging and intuitive. This was supported by its placement in the quiz, which shows
that this is also a factor to consider when using CodeQuizzer. For the respondents with
less positive opinions, this seemed to be due to a lack of detailed consideration in the
format, which needs to become more robust and in-depth in future iterations of
CodeQuizzer. Perhaps a direction to take is to implement an already widespread modeling

language such as UML to avoid this sort of confusion.

Functionality altering exercise

The functionality altering exercise was the most well received in terms of helping to
understand the code presented as observed in Figure 23. About 94% of respondents
indicated that it was useful for them in this regard with more than 40% selecting it as the
most useful. The reasoning behind this can once again be found in the comments given.
One participant puts it bluntly by saying that “to alter the functionality you have to
understand the code the best”, showing why this exercise was effective for them.
Furthermore, it was highlighted that this exercise “forces you to work with the code”
which is more practical and grounded in comparison to the more abstract and theoretical
exercises, leading to better effectiveness. Finally, the comparison aspect of the exercise
received praise, with several participants highlighting that they found having to consider
a different approach to what is already there useful for their understanding.
Furthermore, they mention having to first “think about what the implementation does”
and then altering it to be different leading to a “deeper understanding”. Only one person

did not find the exercise useful, but they unfortunately did not provide reasoning for this.

67

Functionality altering improving understanding

Disagree Agree Strongly agree

Figure 23. Percentage distribution of the participants’ agreement with the statement that the
functionality altering exercise helps improve their understanding of the code presented.

When it comes to intuitiveness, the exercise was found intuitive by a vast majority of
people as well, which is to be expected as the exercise involves programming - a task most
professional software developers should be familiar with. Nonetheless, four respondents
disagreed with this, perhaps due to unfamiliarity with the programming language or
general lack of experience with programming. It could also be that the task itself was just
not as intuitive to some. Regardless, a majority still found it intuitive to do and no one
strongly disagreed with this.

Moreover, 82% of participants agree that this exercise type is interesting and enjoyable as
well, with about 23% selecting it as the most enjoyable to do as seen in Figure 25. The
reasons highlighted in the comments are already covered in the first paragraph and have
to do with the consideration of a different perspective. Furthermore, it could be that
because this exercise is most similar to the traditional problem solving a developer does

in their day-to-day, it is natural that they would enjoy it most.

To conclude, this is the most well-received exercise with overwhelmingly positive scores
on its ability to help improve understanding, its intuitiveness and engagement. This is
probably because it is most like the usual tasks a developer would encounter in their
work, coupled with the interactive nature of the exercise which forces people to think
(differently). The only negative feedback could most likely be explained by lack of
contextual knowledge about the language or programming in general creating biases

68

which are hopefully not present in an actual implementation where everyone has a
similar level of familiarity and understanding of the technology used in their teams.
Overall, functionality altering should definitely be brought into the next iteration of

CodeQuizzer with minimal changes.

Variable role exercise

In regards to increasing understanding, the variable roles exercise is unfortunately the
least successful. As seen in Figure 24, Less than half of the participants found it useful for
this purpose with 23% strongly disagreeing that it was helpful. Despite this, there was one
participant who received it well, choosing it as the most useful in terms of increasing
understanding (and also as their most enjoyable exercise). Their reasoning provided was
that they had never heard of this variable role concept and it made them think about the

code in a new way.

Variable roles improving understanding

® Strongly disagree @ Disagree Agree
Strongly agree
Figure 24. Percentage distribution of the participants’ agreement with the statement that the
variable roles exercise helps improve their understanding of the code presented.

Nonetheless, for the majority of other participants the exercise failed in its purpose
overall. This was already somewhat touched upon in the previous section on the general
impressions of the quiz with the visibility of the roles table being a big problem. The
comments here expand upon this with one participant explaining that they had no idea
the table was there and started selecting roles intuitively rather than based on their
definitions. This suggests a big problem with the UI formatting which impacts the
reception of the exercise. Aside from these issues, another hindrance was the theoretical

69

nature of the exercise as indicated in several comments. Some participants simply may
not enjoy this more abstract and academic-like task for much the same reasons they may
prefer more practical tasks such as the ones in the functionality altering exercise. This of

course would impact their opinion for the worse as well.

Moreover, this line of reasoning could also explain why most participants did not find the
exercise intuitive to do, with more than half finding it unintuitive to some degree. This
could be due to the UI problems and the theoretical nature, but also due to the
unfamiliarity with the concept of variable roles. On the other hand, most people found it
interesting to do with one even finding it the most enjoyable to do, perhaps owing to the

same exact reasons that make it less intuitive for some (new unfamiliar concepts).

To conclude, this type of exercise definitely needs a big rework if it were to be included in
future iterations of CodeQuizzer. It needs to be made more interactive and less exam-like,
in addition to introducing several UI changes that can make it more intuitive. Even so, it
may not be enough for the people who simply do not benefit from theoretical tasks in
terms of increasing their understanding. Therefore, it should be used in moderation and

only in contexts that are a very good fit for its usage.

Conclusions on exercise types

To conclude this section of the evaluation results analysis, overall every exercise had
something to offer for participants. Majority of them were well received in terms of their
ability to help with understanding. The opinions that disagreed with this were impacted
by a variety of biases that were not foreseen while developing the prototype. These biases
are valid and would also be encountered in an actual implementation, therefore, they

should be considered moving forward with any new iterations of CodeQuizzer.

The best received exercise type overall was the functionality altering, as this one is the
most practical and also the one that forces developers to think the most about the existing
code, while also interacting with it. The least well received exercise type was the variable
roles due to its unfamiliar and theoretical nature, as well as due to being hindered by
confusing UI. Nonetheless, a vast majority of exercises showed good potential for being
interesting, intuitive and helping with understanding. Aside from the data already
analyzed per exercise, this is also reflected in the variety of participants’ choices for their
favorite exercises in these regards, as seen in Figure 25. Moreover, the findings provided
plenty of pointers for improvement as already discussed in detail.

70

Exercises by mostimproving understanding Exercises by highest enjoyability

Multiple
choice

Open
question

Function flow

Component
diagram

Functionality
altering

Variable
roles

Figure 25. Percentage distribution of participants’ choices for exercises that most helped improve
their understanding (left) and were most enjoyable to do (right).

Gamification

Having examined the quiz related results in-depth, next it is necessary to focus on the
gamification elements in CodeQuizzer and how well they accomplish the tasks they aim
to accomplish. This will be done element by element as with the previous sections and

then a conclusion on the overall picture will also be presented.

Quiz progress bar

The quiz progress bar was found motivational for completing the quiz by all but one
participant. Around 70% of them indicated a firm or strong level of agreement with this
statement as seen in Figure 26. One person even mentioned in a comment that while they
did not enjoy the last exercise at all, they still completed the quiz because the progress
bar showed them that there were no more left, so they felt motivated to finish.

71

3 4 5 6

Figure 26. Percentage distribution of the participants’ opinions on how much the quiz progress
bar motivates them to complete a quiz (1 being “Not at all”, 6 being “Very much”).

Furthermore, a little under 75% of respondents suggested that if such a progress bar
would be displayed next to an unfinished quiz, this would motivate them to go back and
complete it, with more than half of those being firm or strong in their agreement. The
ones who disagreed did not indicate why, so perhaps they are just not as motivated by
such elements.

Aside from the motivational aspect, there were some other positive words left in
participants’ comments. Some found it “intuitive” and enjoyed the fact they could know
how far in the quiz they currently are, how many total exercises there are and how much
is left of the quiz. This indicates that aside from being motivating, the bar is also
practically useful.

The points of improvement indicated were mostly related to the Ul implementation.
Some participants wanted to be able to navigate to a particular exercise by clicking on it
in the progress bar, while others were slightly annoyed by the animation the bar uses.
Furthermore, one participant suggested that a question that was answered incorrectly
should have an “X” mark on the bar to indicate this, although implementing this could
place the focus more on success rather than obtaining understanding.

Overall, despite the small UI/UX improvements, the progress bar is successful in

achieving the goal of motivating users to complete the quiz they started and could even

72

be motivational to make them go back to a quiz if it were to be displayed next to it in a
future iteration of CodeQuizzer. Therefore, this element is successful and should be kept
around in the future.

Quiz completion message

The quiz completion message users receive at the end was also received positively. More
than 90% of respondents were satisfied with the positive feedback and 35% indicated the
maximum level of satisfaction possible. Only 1 person somewhat disagreed on this point,
saying that because they had no way to fail the screen was not as satisfying as it could
have been.

In regards to how motivational the screen is for doing another quiz, the opinion was a bit
more divisive, but still no one found it totally demotivational and almost 60% indicated
that it would be motivational for them to do another quiz as can be observed in Figure 27.
It was suggested in the comments that this could be increased by collecting points along
the way or by drawing inspiration from other learning systems such as Duolingo.
Expanding the latter further, it was suggested that a streak-like system for doing
consecutive quizzes could be implemented as a message on this screen to further boost
motivation. Moreover, in general there is a need for more statistics on this screen, as one
person found the “Level 3 comprehension achieved” message meaningless without the
additional context such statistics could provide on “how well [they’re] doing”.

Motivational aspect of the quiz completion message

@2 03 @4 5 6

Figure 27. Percentage distribution of the participants’ opinions on how much the quiz completion
message would motivate them to do another quiz (1 being “Not at all”, 6 being “Very much”).

73

In regards to the visual elements present on the screen itself, no participant wanted fewer
elements with around 70% being completely happy with the amount present leaving
feedback such as “It’s good and is placed just the right position”. The rest wished there
were more elements with confetti being suggested as an example of what else to include
in addition to the aforementioned elements already covered. One person was a bit lost in
the layout, saying it took them a while to find the back to home button, so this could be

emphasized more as well.

Overall, the quiz completion message did its job in regards to providing the right amount
of positive feedback for most respondents. It was also motivational for most, but could be
improved even more by drawing more inspiration from existing learning tools. In
essence, the gamification elements in regards to positive feedback were effective, but

participants want even more of them to be present in the system and the screen itself.

Profile badges

When it comes to motivation, the profile badges also had a positive impact, with almost
70% of participants finding them motivational to do more quizzes. As seen in Figure 28
however, 35% of the total only indicated a slight level of motivation, which leaves room
for improvement. For example, the satisfaction level in regards to the names used was
only a 4 out of 6, with some participants citing the fact they have no idea what the names
mean as an issue, in particular about the “Clever Quizzer” badge. Others said they would
like to see why and when they were received and more than 70% wanted to see icons in
some form, with about half wanting them instead of the names. Furthermore, another
interesting suggestion to improve motivation was to more proactively “nudge” people to
obtain these badges, similar to Duolingo.

74

Motivational aspect of the profile badges Motivational as pect of the competitiveness of the profile badges

o1 ©2 03 @4 5 6 o1 3 @4 5 6

Figure 28. Percentage distribution of the participants’ opinions on how motivational obtaining
profile badges would be to do more quizzes (left) and how much seeing badges they do not have on
other users’ profiles (right) would be (1 being “Not at all”, 6 being “Very much”).

Next, when it comes to the competitive aspect of the badges, most people found that
seeing badges on others’ profiles would motivate them to do more quizzes to obtain them
as also observed in Figure 28. Around 35% did not, however, and this is most likely
because some are more motivated by competitiveness than others. This is supported by
the comments left, as one said that it added a sense of “achievement and
competitiveness”, whereas another indicated that seeing badges may even make them
“sad” rather than motivated. Moreover, another point made in the comments was that
obtaining badges could become a goal in and of itself, overshadowing the idea of
increasing understanding, because developers may do the quizzes just in pursuit of
badges. Regardless of these points, the motivated respondents indicated a strong level of
motivation and only 2 people strongly disagreed with the rest being more mild in their
takes on this. This indicates that the badges have a more positive than negative effect on

motivation in general.

In conclusion, while the competitive nature of the badges was somewhat divisive, the
badges overall prove to be motivational, but could be expanded upon in the next
iteration. Users need to feel like they have more value than they currently do and this
could be achieved passively by adding more detail to them via icons and additional
information or actively by urging users to obtain badges. Furthermore, there should be

75

extra care when bringing them into the next iteration of CodeQuizzer so they do not
overshadow the bigger goal of increasing understanding for developers.

Comprehension levels

When it comes to the comprehension levels, they were found rather motivational by
respondents as seen in Figure 29. Only about 11% indicated that they would not be
motivated to do quizzes to increase their level and even so it was only a slight indication.
The remainder agree that these levels are at least somewhat if not very motivational. This
good feedback to receive as these comprehension levels are the backbone of the
gamification in CodeQuizzer, so if they function as intended, then most of the system also

does in terms of motivating users to increase their understanding via doing quizzes.

Motivational aspect of the comprehension levels

92 3 @4 5 6

Figure 29. Percentage distribution of the participants’ opinions on how much obtaining a higher
comprehension level would motivate them to do quizzes (1 being “Not at all”, 6 being “Very

much”).

What’s more, comprehension levels are the primary way to link the CodeQuizzer
environment to external systems where code review is being done. When it comes to this,
participants are almost unanimously in agreement that comprehension levels would be
useful when assigning reviewers to a change submitted. Approximately 87% agree that a
higher comprehension level of the codebase would make them more likely to assign a

developer for a review. Furthermore, about 88% agree or strongly agree that the idea of

76

assigning a low and high comprehension level is good for knowledge sharing within the
team.

Additionally to the numerical data, the comments also indicate positive feedback in
regards to this. The idea of assigning reviewers based on comprehension levels “has
merit” according to one, whereas the idea of assigning reviewers of different levels is
deemed beneficial for learning by another. Furthermore, the levels are seen as useful in
another way - mainly to get a quick indication of how “new” to a project someone is, so
that communication can go smoother and expectations can be set as to what level of

understanding one has.

However, despite this external integration being received overwhelmingly positively by
respondents, some of them have various concerns in regards to feasibility. As the
CodeQuizzer prototype does not illustrate exactly how it would be integrated with
external systems or how representative the comprehension level would actually be of a
developer’s understanding, this naturally raises questions in participants’ feedback. One
outright says that as implemented now the comprehension level has “no value”, showing
that they are uncertain how well it could actually represent the understanding one has.
This is supported by further comments that say that measuring such a level would be
“hard”, especially in regards to team members that already have this understanding and
“are very deep into the code bases but don't want to do the quizzes as it would be ‘a waste

9

of time””. More tangentially, another point of feedback regarding feasibility is how much
time and effort tech leads would be willing to invest into this tool. These are all valid
points and great starting questions for further research, however, they fall outside the

scope of this paper, so answering them will be left for the future.

Overall, the comprehension levels are a success in terms of being motivational for
respondents. Obtaining a higher level is deemed desirable, thus, it could serve as an
effective motivator for doing quizzes, which in turn increase understanding. What’s more,
there seems to be a lot of approval and excitement for using these levels in a different
context with external systems as well, despite the many uncertainties. Said uncertainties
are valid and definitely worth exploring further, but in the scope of this research, the

answers obtained are satisfactory.

Leaderboard

In regards to motivation obtained via the leaderboard, around 76% of users found it

motivational to some degree with about 30% finding it very motivational as observed in

77

Figure 30. However, around 20% did not and that is most likely due to the fact that not
everyone is motivated by competitiveness, similar to the findings regarding badges. The
comments left seem to support this theory as some claim that they “don’t like the
competitiveness” while others compare it to Duolingo’s leaderboard which they claim
they “never look at”. On the other hand some seem to think the idea “has merit” and they
“like [it]” and that this is motivational in the same way as the badges but in a more
“multiplayer / social context”. Regardless, most still find the leaderboards motivational
for doing quizzes.

The same can be said about the competitive aspect of overtaking a colleague on the
leaderboard with more than 80% finding this motivational as also seen in Figure 30, albeit
less strongly than the general leaderboard concept. Some still have reservations about
this though, with one comment claiming that “some people might feel reluctant to
overtake their seniors in the leaderboard”.

In regards to the idea of dropping in the leaderboard due to inactivity, respondents seem
to find it motivational as well, with 70% indicating that they would do quizzes in order to
not drop in ranking as seen in Figure 30. However, one suggests this drop should not
happen too quickly so as to not discourage developers from doing quizzes. This is a valid
point and a future implementation should consider this problem of balancing as well.

Motivational aspect of climbing the leaderboard Motivational aspect of dropping in the leaderboard Motivational aspect of the competitiveness of the leaderboard

oL ®2 03 @4 5 6 oL 2 03 @4 5 6 o1 @2 04 5 6

Figure 30. Percentage distribution of the participants’ opinions on how much climbing (left),
dropping (middle) or competing (right) in the leaderboard would motivate them to do quizzes (1
being “Not at all”, 6 being “Very much”).

Overall, the leaderboard was divisive in the same way the other competitive gamification
elements were, with it resonating with some and not so much with others. Despite this, it

78

was overall motivational for the group surveyed and the only points of improvement
indicated have to do with this polarizing aspect of competitiveness.

Conclusions on gamification

To conclude, it seems like the gamification elements present in CodeQuizzer are a success
in terms of motivating users to complete quizzes, but also to do more quizzes. There were
some points of feedback and biases present, but nonetheless the numerical data indicates
as such. Moreover, in terms of the gamification concept as used here, it seems there is
strong indication that it can indeed be used in the way CodeQuizzer intends. In particular,
the backbone of the gamification used (i.e. the comprehension levels) received
unanimous approval and was seen as a good way to integrate the system into external
tools, despite some feasibility concerns that are outside the scope of this research. What’s
more, the points of feedback that were not Ul related all seem to indicate that participants
simply want more gamification, such as more value for badges, leaderboard positions and
comprehension levels, more positive feedback elements and more concepts such as
streaks, bringing CodeQuizzer more in line with other gamification based systems.

Usability

As already outlined, as a final numerical measurement of CodeQuizzer’s usability a
System Usability Score was calculated. To do this 10 statements about the system’s
usability were given to participants and they were asked to indicate their level of
agreement on a 1 to 5 scale [27]. Using this numerical data, a final score is calculated as a
number from 0 to 100. Based on this number the usability of the system can be estimated
[27].

As the survey involves several participants, it is necessary to somehow aggregate their
responses into one collective response. The approach taken is to calculate the average
numerical value per response across all the participants and use those values as a basis
for the final score. The way that is calculated is already defined by research and involves
subtracting one from the average score of each odd number question and subtracting
each even numbered question’s value from 5 [28]. This gives a set of final 10 values that
are then summed to form a number from 0 to 100 [28].

Having established the way data was aggregated and how the system usability score was

calculated, it is time to analyze the results of CodeQuizzer. Using the methods above the

system achieved a score of 85 (rounded). This is a great score, as the average for systems

79

is around 68 [29]. This places CodeQuizzer well above average in terms of usability.
Furthermore, taking a deeper look at the score obtained, not only is it above average, but
it places firmly in the excellent category of usability, as defined in [29] and seen in Figure
31.

WORST IMAGINABLE EXCELLENT
POOR OK GOOD

Figure 31. The S.U.S scale shows the level of usability of a system [29].

This high score indicates that CodeQuizzer is a highly usable and well designed system
according to participants. This was already touched upon somewhat in the respondent's
comments and grades of their experience with the quiz. What’s more, participants also
mirrored these thoughts in the comments here, saying that “not that any come to mind
right now” in regards to additional remarks about usability and saying that “[they] didn't
have to think hard about any of the elements once”. All of this adds to the conclusion that
CodeQuizzer is a success when it comes to usability, which is also good for adding further
validity to the other results obtained, as there should be minimal bias caused by the
system’s usability.

To conclude, there were still some pointers for improvement mentioned, with
participants putting emphasis on the exercise content once again, saying tech leads may
need assistance with formulating exercises correctly, especially in regards to the open
questions. Furthermore, for participants who did not give the highest possible marks, the
variable roles exercise was highlighted as the reasoning. This has already been identified
as an issue, but it seems it is large enough to affect the system’s overall usability score as
well. Nonetheless, these points of feedback are all relatively minor and touch upon
already identified issues. Overall, CodeQuizzer proved to be a highly usable system.

80

Conclusion

This research paper aimed to obtain an answer to two research questions via developing
and evaluating the prototype for CodeQuizzer. Before presenting the findings and
answers, first a reminder of both research questions is in order. They are as follows:

e Can gamification be used to motivate developers to gain a better understanding in the
context of code review?
e How can gamification be used to motivate developers to gain a better understanding in

the context of code review?

In regards to question one, CodeQuizzer was positively received in terms of its ability to
aid in obtaining understanding of the code snippets it presents. Furthermore, all
gamification elements used (i.e. progress bars, positive feedback, levels, leaderboards
and badges) were found motivational by the majority of users in terms of their ability to
motivate them to complete the given quiz, but also to do more quizzes in the future.
Therefore, due to this positive feedback it can be concluded that gamification can indeed
be used to motivate developers to gain a better understanding of their team’s codebases.
This understanding can then hopefully have a positive impact on the efficiency and
quality of their code reviews.

In regards to question two, because CodeQuizzer and its gamification elements were
found to be successful in increasing understanding and motivating developers to increase
their understanding, it can be concluded that its approach is a viable one in terms of
applying gamification as a solution to the challenge presented. In particular, the
approach taken is to provide a quiz taking platform where quizzes allow developers to be
exposed to, think about and interact with their team’s codebases in ways they otherwise
may not have. Through this, they obtain a better understanding of the codebases and in
turn provide more efficient and higher quality code reviews. The gamification elements
included all were able to motivate users to finish the provided quiz, but also to do more
quizzes in the future, thus increasing their understanding even further. Based on its
positive evaluation, CodeQuizzer itself is an answer to the question of how gamification
can be used to motivate developers to gain a better understanding in the context of code

review.

In addition to the answers obtained for both research questions, there were also several

other interesting and relevant findings. Firstly, it seems like there is approval and

81

enthusiasm in regards to using the gamified levels of understanding in combination with
external systems. In particular, this is in regards to choosing the appropriate reviewers
for a given code review. The research shows that developers think it is generally a good
idea to apply these levels in their reviewer choosing process either by selecting high level
developers to ensure good quality and efficient reviews or by selecting a mix of both high

and low level reviewers to facilitate knowledge sharing among the team.

Furthermore, it was found that while CodeQuizzer was generally well received both in
terms of increasing understanding and in terms of using gamification to motivate
developers to do so, the content of the exercises themselves plays a big role in its
effectiveness. This means that not only the system itself, but also the way it is to be used is
something worth considering if one were to maximize its ability to aid in obtaining

understanding.

Finally, another key takeaway from the results obtained is that a system like CodeQuizzer
could benefit even more from emphasizing and expanding its gamification elements and
moving even further away from an exam-like structure in order to achieve its goals
better. The former would make the motivational elements even stronger and could be
achieved by leaning even further into the concepts of gamification and by introducing
more of them that are not yet present. The latter would shift the focus towards the idea of
obtaining understanding, rather than a “good grade” and could be achieved by

introducing more personalized feedback for exercise solutions developers give.

Discussion

Having concluded the research and obtained an answer to both of the research questions
that were established, it is also worth discussing this paper’s relevance and knowledge
contributions to the domain. Furthermore, it is necessary to provide some reflection on
how the research work was executed and what its results imply. This section of the report

will do exactly this.

Firstly, when it comes to relevance, as already established code review is one of the
essential tasks software developers perform in a professional environment. The various
scientific works as well as the expert interviews show that developers expect code review
to be something that ensures good quality, understandable, maintainable and scalable
code. Aside from these gatekeeping aspects, they also expect it to be a place where

knowledge and code ownership can be spread around the team. These are undoubtedly

82

positives for any software company, so ensuring that the code review process is
something that is done in the best way possible is essential. However, many challenges
are still faced by developers as shown in the literature and expert interviews. Of these,
understanding is the biggest one that is still largely unsolved. Naturally, a solution like
CodeQuizzer that attempts to tackle this big challenge while making the essential process
of code review more efficient and of higher quality is something that is relevant to the

professional domain, but also to the domain of research with a real world impact.

Moreover, gamification elements have been used in education and also in the software
industry as established in the background research. They have even been used in regards
to improving understanding for code review, but not for specifically gaining an
understanding of the codebases surrounding a change presented for review. There seems
to be a gap in research regarding this, despite the fact that this particular type of
understanding seems well suited to apply gamification to due to similarities with learning
tools already using gamification and due to there being several relevant studies that seem
to imply that developers lack the motivation to improve their understanding - something
that gamification can help improve. This gap in research, combined with the good fit of
applying game elements to this particular challenge make the research done here not
only a good contribution to the domain, but also a good application of appropriate
concepts to a real world challenge.

What’s more, in terms of knowledge contribution, as mentioned already there is a gap in
research which the work done here can hopefully start to fill to some degree. This makes
the knowledge contributed valuable as the positive reception of CodeQuizzer shows that
applying gamification to the challenge at hand is a good direction to go in. This can
hopefully inspire future researchers to continue trying to apply it in such a way to
perhaps even better results. In this way, the knowledge obtained here can serve as a
foundation to build up from in the pursuit of making even better systems that apply

gamification in even more effective ways and achieve even more positive results.

Finally, on a more personal level this bit of research was fascinating to do asitis a
relatively unexplored area and because it involved a plethora of interesting concepts that
had not been combined in such a way before. It made it so the results obtained could
never be expected and so that many design decisions had to be made and carefully
considered in order to ensure the most effective system in CodeQuizzer. Overall, it was a

great challenge that produced positive and more importantly - relevant results.

83

Limitations and future research

No research is unaffected by limitations and the work done here is no exception. Despite
the positive results obtained, various limiting factors were present which are important
to discuss. Furthermore, it is necessary to establish some recommendations in regards to
what can be done next with the conclusions reached in this paper so that the gap in
research can continue to be filled to even better effect. This final section of the paper will
focus on these two aspects.

Limitations

In terms of limitations, first and foremost is the limiting factor of time. This research
project was conducted over the course of about nine months which may seem like a big
chunk of time but it is in fact relatively little for research like the one presented. This is
because it involves a plethora of tasks and a combination of domains and areas that are
not usually combined in such a way. This introduced a lot of uncertainties along the way
especially in regards to narrowing down a specific direction of research. Due to the width
and depth of the scope of research, having had more time more could have been
accomplished which would make the research more sound as well.

Another limiting factor is the researcher’s access to data. A master student’s connections
in the software development industry are relatively limited so naturally the access to
participants was as well. Everything that could have been done was done to ensure not
only a big number of participants, but also a variety of them in regards to perspectives,
but nonetheless there could have been more achieved here. Starting with the number of
participants, enough took part for a satisfactory result to be obtained, but if one were to
take a statistical approach perhaps it was still not enough to claim statistical significance
in this context. Furthermore, most of the participants came from one company where the
researcher had the most connections and this could have biased their responses to some
degree. Overall, given more time and a better network, higher quantities of varied data
could have been gathered, obtaining a better and more significant answer to the research

questions.

Finally, still on the topic of participants, while a number of things were done to minimize
bias, this can never be completely eliminated. Starting from broad uncontrollable things
like the participants’ moods while responding to much more specific minutia like what

type of wording is most effective for certain people, there were a plethora of design

84

decisions that could have introduced bias in the responses. This is of course unavoidable
and the researcher did the best they could to minimize it and account for it, but bias is
nonetheless still present. A future research with more control over environmental factors

could help make this less of a limiting factor.

Future research

Based on the limitations described and the results obtained, there are a variety of
directions research could go from here. Firstly, in the most broad sense as gamification
proved to be effective to tackle the challenge of understanding the codebases
surrounding a given change presented for code review, more research can be done in this
direction but perhaps with a different approach that may or may not prove to be more
effective than CodeQuizzer. Put simply, while CodeQuizzer is a way to apply gamification
to this challenge it is by far not the only way to do so. Other approaches are also worth
exploring in future research.

Secondly, if one were to continue the specific work presented here either with a second
iteration of CodeQuizzer or with a spiritual successor system that uses the same concept,
the results obtained provide a variety of directions for improvement. The most essential
one is the exam feel of the platform. CodeQuizzer very much still feels like an exam for
most participants surveyed which is not an inherent problem, but there is enough
indication that this comes in the way of the primary goal of improving understanding. It
is not yet clear how this could be best addressed but from participants’ responses, there is
suggestion that having more personalized elements and feedback could shift the focus
from obtaining good results to understanding the code at hand. Future research could
explore if such an approach is effective and if so - to what degree it is.

Moreover, another way to make CodeQuizzer better at what it tries to do would be to
improve the motivational aspects to the gamification included so that users are more
likely to do quizzes and improve their understanding. Fortunately, the results obtained
provide a direction here too. As established, adding more value to the gamification
elements present (in particular the levels, leaderboards and badges) can increase
developers’ desire to obtain them. Furthermore, additional elements could be introduced,
once again per the participants’ suggestions such as streaks or more proactive feedback.
Introducing these changes to a future iteration and seeing what impact if any they have
on user’s motivation to do quizzes is another valid direction to investigate in future

research.

85

Finally, while CodeQuizzer proved successful from a developer point of view, in reality
developers are not the only ones involved in such a system. The tech leads of a team also
play a big part in the system’s functionality and maintenance, but their input has been
put outside the scope of this paper. Therefore, another direction to explore is what tech
leads would like in such a system and how it could provide the best user experience when
it comes to setting up quizzes which are effective for boosting understanding.
Furthermore, this could also touch upon and explore the aspect of feasibility and
integration with third party systems, which was already mentioned as a concern in the
previous sections. Overall, there is a plethora of work to be done before this system can

be put in practice and it all provides valid and interesting directions for future research.

Appendix

Appendix A. Interview questions used during the expert interviews done as part

of this paper’s preliminary research phase

Section 1: Context

What is your position in your company?

How long have you worked there?

How long have you worked in this industry?

Could you summarize your work experience so far?

Can you shortly describe your work experience so far?

AL

How old are you?

Section 2: Code review process

7. When was the first time you did code review?

8. When was the last time you did code review?

9. What tools have you used to conduct code reviews?

10. Can you describe (preferably step-by-step) your code review process?

11. How does a code review usually look for you? Please provide a step-by-step
description if possible.

12. When you submit a change how in depth is your description of it? Do you expect
people to just figure it out by themselves or?

Section 3: Code review motivations and outcomes

86

13.
14.
15.
16.

What do you want to achieve when doing code review?

What is your main focus when doing code reviews?

Are you looking for bugs most of the time, or do you look for deeper issues as well?
How do you go about identifying deeper issues?

Section 4: Code review challenges

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

What is your best experience with doing a code review?

a. Why?
What is your worst experience with doing a code review?
a. Why?

How long do you usually spend on code review?
What takes you most time when reviewing code?
Have you ever put off doing a code review?

a. If so, why?
How much time do you usually spend on writing feedback for proposed changes?
What does your feedback look like usually?
Have you ever just approved a change without leaving feedback?

a. If so, why?
Do you find code review for a project you are less familiar with intimidating or
more difficult?

a. If so, why?

b. If not, what makes it no different?
If you could change the way code review is done at your company, what would you
change?
If you could change one thing about the tools used for code review at your
company, what would you change?
What things do you find most challenging when doing code review?

Appendix B. Survey questions presented to participants in CodeQuizzer’s

evaluation survey.

Section 1: Participant context

1.

2.

3.

What is your job position?
a. Open question.
How long have you worked in the software industry?
a. Options: Less than a year, 1-3 years, 3-5 years, 5-10 years, 10+ years.

How old are you?

87

How many people do you work with in your team (on the same code bases /
projects)?

a. All open questions.
Does your team have a senior position who knows the ins-and-outs of the team's
code bases (for example a tech lead)?

a. Options: Yes, No.

Section 2: Example quiz

1.
2.
3.

How would you rate your experience with the quiz overall from 1 to 6?
How satisfied are you with the quiz format?
How much would such a quiz help in improving your understanding of a code
base?
How useful did you find the explanations provided for the correct solutions?
How much did the quiz feel like an exam?
a. Alllikert scale questions from 1 to 6.
Any other remarks about the quiz in general?

a. Open question.

Section 3: Exercise types

1.
2.
3.

This type of exercise helps me improve my understanding of the code presented.
This type of exercise is intuitive to do.
This type of exercise is interesting to do.
a. Alllikert scale statements with separate answers for each exercise type in
the range of 1 to 4.
Which exercise type helps the most with improving your understanding?
a. Options: all the exercise types.
Why?
a. Open question.
Which one is the most enjoyable to do?
a. Options: all the exercise types.
Why?
Any other remarks about any of the types of exercises in particular?

a. All open questions.

Section 4: Gamification

1.

The quiz has a progress bar at the bottom. How much does this motivate you to

complete the quiz?

88

10.

11.

12.

13.

14.

15.

16.

If this bar would be displayed next to an unfinished quiz in your list, how much
would this make you want to go back and complete it?

a. Alllikert questions from 1 to 6.
Any additional remarks about the quiz progress bar?

a. Open question.
At the end of the quiz there is a completion message. How satisfied are you from
receiving it?
How much does it make you want to do another quiz?

a. Alllikert questions from 1 to 6.
Would you like more or fewer visual elements on it?

a. Options: There are just enough elements, Fewer elements, More elements.
Would you like the message to be longer and more positive?

a. Options: It's just right, I would like it longer and more positive, I would like

it shorter and less positive.

Any additional remarks about the quiz completion message?

a. Open question.
Next, returning to the main page, observe the various badges in your profile
section on the left. These are earned through doing quizzes and displayed for
others to see. How much would earning these badges motivate you to do quizzes?
How much would seeing badges you don't have on other users' profiles motivate
you to do quizzes so you can obtain them?
How satisfied are you with the example badge names provided?

a. Alllikert questions from 1 to 6.
Would you like to see icons instead of / alongside the badge names?

a. Options: No, just the names is fine, Yes I would like badge icons instead of

names, Yes I would like badge icons together with the names.

Any additional remarks about the badges?

a. Open question.
Next, please observe the code base list again. Next to each code base is your
comprehension level. You increase this level by doing quizzes. How much would
earning a higher comprehension level motivate you to do quizzes?
If the comprehension level was displayed next to a user's name when they are
assigned as a code reviewer for a proposed change, how much more likely would
you be to select the reviewer with a higher comprehension level?
How helpful do you think it would be to assign a low and high level person to a
change presented for review in order to facilitate understanding code bases
throughout the team?

89

17.

18.

19.

20.

21.

a. Alllikert scale questions from 1 to 6.
Any additional remarks about comprehension levels?

a. Open question.
Finally, please navigate to the leaderboard section. Here you can see the general
leaderboard as well as a leaderboard per code base. Doing quizzes improves your
place in the leaderboard. How much would getting a higher spot on the
leaderboard motivate you to do quizzes?
How much would dropping in the leaderboard motivate you to do quizzes to keep
your rank?
How much would wanting to overtake a colleague's rank in the leaderboard
motivate you to do more quizzes?

a. Alllikert scale questions from 1 to 6.
Any additional remarks about the leaderboard?

a. Open question.

Section 5: Usability

I think that I would like to use this system frequently.

2. Ifound the system unnecessarily complex.
3. Ithought the system was easy to use.
4. Ithink that I would need the support of a technical person to be able to use this
system.
5. Ifound the various functions in this system were well integrated.
6. Ithought there was too much inconsistency in this system.
7. Iwould imagine that most people would learn to use this system very quickly.
8. Ifound the system very cumbersome to use.
9. Ifeltvery confident using the system.
10. I needed to learn a lot of things before I could get going with this system.
a. Alllikert scale statements from 1 to 5.
11. Do you have any additional remarks about the user experience / interface?
a. Open question.
References

[1]

M. E. Fagan, “Design and code inspections to reduce errors in program

development,” IBM Systems Journal, vol. 38, no. 2.3, pp. 258-287, 1999, doi:
https://doi.org/10.1147/sj.382.0258.

90

https://doi.org/10.1147/sj.382.0258

[2] P. C. Righy and C. Bird, “Convergent contemporary software peer review
practices,” Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2013, 2013, doi: https://doi.org/10.1145/2491411.2491444.

[3] C. Sadowski, E. Soderberg, L. Church, M. Sipko, and A. Bacchelli, “Modern code
review,” Proceedings of the 40th International Conference on Software Engineering Software
Engineering in Practice - ICSE-SEIP ’18, 2018, doi: https://doi.org/10.1145/3183519.3183525.
[4] T. Baum, O. Liskin, K. Niklas and K. Schneider, “A Faceted Classification Scheme
for Change-Based Industrial Code Review Processes,” 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS), Vienna, Austria, 2016, pp. 74-85, doi:
10.1109/QRS.2016.19.

[5] J. Shimagaki, Y. Kamei, S. Mcintosh, A. E. Hassan and N. Ubayashi, “A Study of the
Quality-Impacting Practices of Modern Code Review at Sony Mobile,” 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C), Austin, TX, USA, 2016,
pp. 212-221.

[6] F. Shull and C. Seaman, “Inspecting the History of Inspections: An Example of

Evidence-Based Technology Diffusion,” in IEEE Software, vol. 25, no. 1, pp. 88-90, Jan.-Feb.
2008, doi: 10.1109/MS.2008.7.

[7] P.M. Johnson, D. Tjahjono, “Does Every Inspection Really Need a Meeting?,”
Empirical Software Engineering, vol. 3, pp. 9-35, Mar 1998, doi:
https://doi.org/10.1023/A:1009787822215.

[8] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code

review,” in 2013 35th International Conference on Software Engineering (ICSE), San Francisco,
CA, USA, 2013, pp. 712-721, doi: 10.1109/ICSE.2013.6606617.

[9] T. Baum, K. Schneider. “On the Need for a New Generation of Code Review Tools,”
in Product-Focused Software Process Improvement, Trondheim, Norway, 2016. Pp. 301-308,
doi: https://doi.org/10.1007/978-3-319-49094-6_19.

[10] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida and K. -i.
Matsumoto, “Who should review my code? A file location-based code-reviewer

recommendation approach for Modern Code Review,” in 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Montreal, QC,
Canada, 2015, pp. 141-150, doi: 10.1109/SANER.2015.7081824.

[11] V. Balachandran, “Reducing human effort and improving quality in peer code
reviews using automatic static analysis and reviewer recommendation,” in 2013 35th
International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 2013, pp.
931-940, doi: 10.1109/ICSE.2013.6606642.

91

https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1023/A:1009787822215
https://doi.org/10.1007/978-3-319-49094-6_19

[12] S. Kollanus, J. Koskinen, “Software Inspections in Practice: Six Case Studies,” in
Product-Focused Software Process Improvement, Amsterdam, The Netherlands, 2006, pp.
377-382, doi: https://doi.org/10.1007/11767718_31.

[13] S. Deterding, R. Khaled, L. Nacke, D. Dixon, “Gamification: Toward a definition,” in
CHI 2011 Gamification Workshop Proceedings, Vancouver, Canada, 2011, pp. 12-15.

[14] S.Khandelwal, S.K. Sripada, R. Reddy, “Impact of Gamification on Code review
process: An Experimental Study,” in 10th Innovations in Software Engineering Conference,
Jaipur, India, 2017, pp. 122-126, doi: 10.1145/3021460.3021474.

[15] C.Crumlish, E. Malone, Designing Social Interfaces: Principles, Patterns, and Practices
for Improving the User Experience. Sebastopol, CA: O'Reilly, 2009.

[16] M.H.A.Rahman, LY. Panessai, N.A.Z.M Noor, N.S.M Salleh, “GAMIFICATION
ELEMENTS AND THEIR IMPACTS ON TEACHING AND LEARNING - A REVIEW,” The
International journal of Multimedia & Its Applications, vol. 10, No. 6, pp. 37-46, Dec 2018.
[17] M.R.A.Souza, L. Veado, R.T. Moreira, E. Figueiredo, H. Costa, “A systematic
mapping study on game-related methods for software engineering education,”
Information and Software Technology, vol. 95, pp. 201-218, Mar 2018, doi:
https://doi.org/10.1016/j.infsof.2017.09.014.

[18] J. Grenning, “Planning Poker Planning Poker or How to avoid analysis paralysis

while release planning," Hawthorn Woods: Renaissance Software Consulting, vol. 3, 2002.

[19] D.Silva, M. Lencastre, J. Pimentel, J. Castro, L. Lira, “Applying Gamification to
Prioritize Requirements in Agile Projects,” in SAC '23: Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing, New York, NY, USA, 2023, pp. 1498-1507, doi:
https://doi.org/10.1145/3555776.3577708.

[20] A. Mora, P. Zaharias, C. Gonzalez, J. Arnedo-Moreno, “FRAGGLE: A FRamework for
AGile Gamification of Learning Experiences,’ in Games and Learning Alliance (GALA 2015),
Rome, Italy, 2015, pp. 530-539, doi: https://doi.org/10.1007/978-3-319-40216-1_57.

[21] S. Arai, K. Sakamoto, H. Washizaki, Y. Fukazawa, “A Gamified Tool for Motivating
Developers to Remove Warnings of Bug Pattern Tools,” in 6th International Workshop on
Empirical Software Engineering in Practice (IWESEP 2014), Osaka, Japan, 2014, pp. 37-43, doi:
10.1109/TWESEP.2014.17.

[22] C. Prause and M. Jarke, “Gamification for enforcing coding conventions,” in 10th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Bergamo, Italy, 2015, pp. 649-660,
doi: 10.1145/2786805.2786806.

[23] C. Prause, J. Nonnen, M. Vinkovits, “A Field Experiment on Gamification of Code

Quality in Agile Development,” in Annual Workshop of the Psychology of Programming
Interest Group, London, United Kingdom, 2012.

92

https://doi.org/10.1007/11767718_31
https://doi.org/10.1016/j.infsof.2017.09.014
https://doi.org/10.1145/3555776.3577708
https://doi.org/10.1007/978-3-319-40216-1_57

[24] F. Hermans, The Programmer’s Brain. Shelter Island, NY: Simon and Schuster, 2021.
[25] J.Sajaniemiand M. Kuittinen, “An Experiment on Using Roles of Variables in
Teaching Introductory Programming,” Computer Science Education, vol. 15, no. 1, pp.
59-82, Mar 2005, doi: https://doi.org/10.1080/08993400500056563.

[26] Google. (2023). Material Design 3 [Online]. Available: https://m3.material.io/.
[27] Usability. gov (2019). System Usability Scale (SUS) | Usability. gov [Online]. Available:

[28] J.Sauro. (2011). Measuring Usability with the System Usability Scale (. SUS) [Online].

Available: https://measuringu.com/sus/.
[29] M. Aubagna. (2021, Feb. 24). How to Use the System Usability Scale (SUS) to Measure

User Experience [Online]. Available:

https://skeepers.io/en/blog/system-usability-scale-sus-user-experience/.

93

https://m3.material.io/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://measuringu.com/sus/
https://skeepers.io/en/blog/system-usability-scale-sus-user-experience/

