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1. Introduction 

The Dutch sewage infrastructure encompasses approximately 150.000 kilometers of pipes [1], with an 

average lifespan of around 70 years, necessitating continuous maintenance to ensure public hygiene, 

sanitation, and environmental protection [2]. However, sewage maintenance is costly [1] with annual 

municipal expenses in the Netherlands reaching €1.8 billion in 2022 [2] largely due to expensive full 

pipe renovations. Municipalities aim to avoid increasing construction costs, as their funding relies on 

sewerage and water care charges collected from residents and often requires long-term loans. To reduce 

costs, RIONED recommends first inspecting the internal and functional conditions of the pipes [3] to 

identify risks and maintain structural integrity [2]. In particular, Subsequent appropriate maintenance 

actions should be undertaken [2] strategically planned alongside other infrastructural repairs [3]. Hence, 

accurate data collection and analysis of pipe conditions are essential for developing a long-term 

maintenance strategy [1]. This project is part of the Primavera initiative under the Dutch National 

Research Agenda, aiming to increase infrastructure reliability while reducing maintenance costs. 

Especially, predictive maintenance is the objective where analytical tools should predict potential issues 

to repair them in time, thereby maximizing the lifespan of existing resources. Therefore, novel 

optimization methods can be developed with collaborating partners to detect outliers and improve 

planning tools. Rolsch Assetmanagement, the client for this project, aims to enhance the consistency of 

its maintenance advice through improved sewage data analysis. Therefore, this thesis explores how 

integrating automated artificial intelligence (AI) systems could effectively capture pipe conditions. 

Consequently, the client's context and problem are considered providing a clear research direction on 

how potential technology improvements can contribute to the scope of automated sewage pipe 

inspection. 

1.1. Specific Context 

Rather than relying on human inspection, utilizing robots equipped with fish-eye cameras offers a 

practical and cost-effective inspection alternative, given their ability to frequently operate in unhygienic 

environments and provide interpretable data [2]. Utilizing Closed Circuit Television (CCTV) as a data 

acquisition on the robot enhances its intelligence by allowing for on-site manual control for the revision 

of detailed examination of potential anomalies. Eventually, these captured images from the cameras, 

mounted on both the front and rear of the robot, are provided to the sewage inspector through a web 

application developed by the client of this graduation project. This allows instructors to annotate both 

the frequency and severity of localized anomalies in specific frames based on the Standardized 

European Annotation Format. This annotation data supports the client's statistical models to assess the 

conditional evolution of certain sewage pipes. Ultimately, the findings could recommend what 

appropriate repair actions local sewage companies can pursue to minimize disruptions, increase 

productivity, and reduce costs [3]. 

1.2. Problem 

Nevertheless, inspection data may be perceived as less trustworthy due to assessment inconsistencies 

between human inspectors. Robots supply inspectors with extensive CCTV data that could lead to time-

consuming manual assessments caused by infrequent defect detection. This labor-intensive task may 

result in fatigue potentially impacting the accuracy and robustness of annotations. Besides, the 

subjective interpretation of the various types and severities of found defects and structural elements 

(anomalies) can rely on differing estimations, judgmental boundaries, and personal circumstances. 

Moreover, missing defects could be a consequence of an inspector's lack of experience and knowledge. 

Consequently, error-prone annotation data could impact the margin of error of statistical results to 

provide incorrect maintenance advice. Hence, a delay in appropriate maintenance decisions can lead to 

environmental casualties and an increased repairment budget. Additionally, since this is an anomaly 

classification problem, often its applied datasets are imbalanced which make these datasets not yet 
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implementable into the training process to create a model which can generalize over underrepresented 

rare minority observations. 

1.3. Current Solutions 

State-of-the-art solutions can be evaluated compared to previous solutions which may have been 

constrained in their ability to effectively and accurately detect sewage-related features. Image 

processing techniques using handcrafted morphological features proved to be inefficient in complex 

and dynamic environments due to illuminated or noisy conditions. Integrating these techniques with 

machine learning methods can establish a diagnostic framework aimed at enhancing the consistency 

and performance of sewage defect classification and detection. Especially, deep learning techniques can 

automate accurate condition assessment by assisting the inspector during swage pipe inspections. To 

illustrate Xianfei [1] customized a YOLOv3 Residual Network based on pre-processed videos to supply 

specifically selected videos with detected and classified defects. In addition, Johannes [2] trains a Fully 

Resolution Residual Network using unwrapped, pose-estimated, and illuminated fish-eye images to 

improve the reliability and assistance in segmenting localized and classified defects. Besides, Srinath 

[3] employs a Fully Residual Convolutional Neural Network (CNN) to increase accurate defect 

classification rather than localization. Syed [4] fine-tunes an AlexNet CNN model using feature-labeled 

and augmented data to provide inspectors with notifications regarding classified defects. The evaluation 

of the integration of these state-of-the-art model solutions could be relevant to the argument of the 

technical objectives of this project. 

1.4. Literature Recommendations 

Moreover, addressing the gaps in the literature suggests that future research should focus on training 

multiple combined models with increased data diversity to output informative labeled images. 

Enhancing data preparation through processing methods should increase the data variety of exposed 

conditions by integrating diverse databases and performing augmentation to compensate for 

inconsistencies and human biases. Furthermore, improving misclassification and defect distinction can 

involve utilizing temporal depth data from capturing sewage pipe shapes with 3D stereovision and 

wrap-around techniques. Regarding the design of an image recognition model, multiple pre-trained 

image detection models could be merged where the design choices of localization over classification 

could have higher attention. The performance should be benchmarked on generalized datasets to 

decrease the amounts of false positives through the iteration of improved model parameters. Particularly 

speed over accuracy is prioritized for real-time remote inspection systems. Besides, informative labels 

should specify the type and severity of conditions, which should be automatically translatable into CSV 

files. Additionally, providing a smaller selection of video or frames containing potential anomalies 

could reduce wasted inspection time. Therefore, integrating this recommendation is crucial to 

developing a robust sewage defect detection framework, especially when dealing with inexperienced or 

poorly trained inspectors. 

1.5. Objective 

This thesis aims to train a neural network to automate sewage pipe defect inspection by facilitating 

inspector assistance in the localization and classification of defects and structural elements. A pre-

trained convolutional neural network, such as a single residual neural network (ResNet) or a 

combination, can undergo transfer learning by training on provided fish-eye images to adapt pre-trained 

features to specific sewage data. The dataset's size and diversity can be scaled by utilizing multiple 

datasets or applying augmentation techniques to expose the model to a wider range of sewage 

conditions. Image processing techniques can be applied to change the representation of distorted fish-

eye images to increase feature distinction. Training the model with extracted sewage pipe shape 

properties can enhance its spatial awareness. Furthermore, metric results should prioritize accuracy over 

speed and minimize false negatives. Therefore, the F2 score can be utilized to give greater weight to 
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recall over precision, aiming for a recall value approaching 1 while minimizing false positives as much 

as possible. Ultimately, web application inspectors are assisted in a web application with highlighted 

points containing frames of localized defects or structural elements. The frames are supplemented with 

a CSV file containing annotations according to the European Standards EN 13508-2:2003+A1 coding 

system. This thesis solution should address the issue of inconsistency to enhance the reliability and 

accuracy of future automated sewage inspections. 

1.6. Research Questions 

How to automate sewage pipe annotation with supervised anomaly classification by training a neural 

network that is robust to inconsistent labelling and data imbalance? 

1. What pre-trained image classification neural networks can be fine-tuned to increase the recall 

value while maintaining an optimized F2 score?  

2. How should the imbalanced data and images be pre-processed to increase the recall and f2 score 

of the model's performance? 

3. To what extent does the trained model increase the objectivity of classifying anomalies 

compared to manual inspection? 

1.7. Approach 

Chapter 1 describes the research questions arising from contextual problem analysis combined with a 

proposed solution. Chapter 2 discusses the utilized methodology and this approach in further detail. In 

Chapter 3, which could be considered as the business understanding, consists of conducting interviews 

and a literature review to find potential data preparation techniques and state-of-the-art pre-trained 

neural network models that could comply for he modeling part of this thesis. Chapter 4 concatenates, 

explores and prepares the data by following a filtering chain. Chapter 5 describes what experiments 

have been conducted to assess the potential methods found to comply with the first two sub-research 

questions and interprets the extreme results throughout the experiments. Chapter 6 discusses the results 

related to the sub-questions and discusses the framework’s limitations and future recommendations. 

Finally, Chapter 8 concludes by answering the main research question and shows how certain methods 

used in this research could supplement the related research.  
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2. Methodology 

2.1. CRISP-DM 

This thesis adopts a methodology based on the CRISP-DM (Cross-Industry Standard Process for Data 

Mining) cycle. This flexible framework facilitates iterative model development by comparing training 

results based on prioritized metrics. The CRISP-DM methodology is tailored to prioritize short-term 

model deployment validation over long-term monitoring considerations. Instead, emphasis is placed on 

short-term deployment within the company's operational workflow, allowing for experimental 

validation and iterative improvements to the framework. 

2.1.1. Business Understanding 

The reasons behind initiating the development of a new deep learning framework depend on the 

investigated objectives from the company’s contextual circumstances. This involves conducting 

interviews with employers who encounter the relevant challenges to gain their expectations and 

supplement the requirements for the project goals. Additionally, the company’s resources for neural 

network employment and potential integration limitations can be investigated. Furthermore, a literature 

study could supplement the thesis objectives by analyzing the problem context and limitations of 

previous research. The results from the business understanding are mainly incorporated into the 

introduction chapter since the main priority of this thesis focuses on the next three chapters. Throughout 

the business understanding is considered that instead of using the term anomalies, the term ‘observation’ 

is used instead from the standardization protocol for inspection, which can consist of multiple types of 

anomalies. 

2.1.2. Data Understanding 

The provided sewage pipe inspection dataset consists of annotated images that can be analyzed to 

interpret the structure of the data. For instance, image quality validation, annotation completeness, the 

surface characteristics of the data, and the intercorrelated property keys can be explored. Additionally, 

organizing the data into a diagram can provide a comprehensive overview of relationships to aid the 

querying of images and their annotations more efficiently. 

2.1.3. Data Preparation 

The data must undergo careful selection and preparation to align the representation of the input data 

with the mandatory model input. Different textural annotation data files can be combined to connect 

the related data. Nevertheless, careful data selection based on inclusion and exclusion criteria should 

increase data cleanness by mitigating error-prone information. Besides, fish-eye image data should be 

processed into a compatible format for the neural network input by utilizing different image processing 

techniques. Hereby, algorithms capable of interpreting spatial information from sewage pipe images be 

considered for improved prediction accuracy. Eventually, training data can be increased by either 

combining datasets or augmenting the current data. 

2.1.4. Modeling and Evaluation 

Various pre-trained image detection models can be with transfer learning to compare the different 

metrical results. Iterative experimentation can be done by splitting the data into training, testing, and 

validation sets to mitigate overfitting. This process should guide the selection of a particular 

architecture, followed by iterative optimization of the hyper-parameters to enhance specific metric 

performance. The model's output findings can be compared against the company's stated criteria and 

requirements. Therefore, reviewing the adequacy of the model and identifying any framework 

deficiencies alongside user feedback. Subsequently, decisions can be made regarding framework 

deployment or further iteration based on improved business criteria. 
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3. Literature Research 

The following literature reviews are written to get an understanding of the various models that could be 

implemented, the training balancing methods and a collection of metrics which could represent the 

results such that could be interpreted if the model verifies to the aim of this thesis. Particularly, the first 

literature review is written during the academic writing course in quartile 3 of the 2023-2024 academic 

year. 

3.1. Deep Learning Methods 

Inspecting the conditions of sewage pipes is crucial for identifying risks to undertake appropriate actions 

for the maintenance of a functional sewage system and ensure public hygiene [1]. Rather than relying 

on human inspection, utilizing robots equipped with fish-eye cameras offers a more practical solution, 

given their ability to operate in unhygienic environments and provide interpretable data [2]. These 

images are provided to the sewage inspector through a web application developed by the client of this 

graduation project, which enables instructors to annotate specific frames. This annotation data supports 

the client's statistical models to provide maintenance recommendations for local sewage companies to 

minimize disruptions, increase productivity, and reduce costs for repairs [3]. 

 Nevertheless, their statistical analysis is affected by inconsistent annotation data due to 

variations in the interpretation of defect severity and localization among instructors, despite utilizing 

standardized annotation notations. This can be caused by the fatigue of inspectors from the time-

consuming assessment of big data or a lack of expertise [2].  

 For this graduation project, sewage defect detection and classification should be automated with 

a neural network that assists the inspector with objective annotation suggestions. Hereby, accuracy and 

recall metrics are essential for increasing the number of correctly predicted defects. Thus, various neural 

networks need to be utilized for this target performance. Therefore, the goal of this review is to gain 

insight into which neural network prioritizes accuracy and recall performance in the detection of defects 

in sewage pipes. First, the review explores how convolutional neural networks are the backbone for 

improved deep learning methods. Secondly, the review describes which neural network architectures 

are applicable for the multi-label classification of objects in images. Secondly, a comparison between 

state-of-the-art neural networks for sewage defect detection is conducted based on disparities in 

performance metrics of accuracy and recall. 

3.1.1. Convolutional Neural Network as the Object Detection Backbone 

Various sources indicate the widespread use of deep learning methods that learn abstract 

features and patterns from images that are used as generic feature descriptions to detect objects 

in new images [1, 2, 3, 4, 5, 6] whereas convolution-based neural networks are commonly used 

as robust deep learning methods for object detection. Convolutional Neural Networks (CNNs) 

are essential to advance deep learning object detection methods serving as the backbone from 

which various architectures can be improved and adapted. The fundamental operation of CNNs 

involves classifying images or regions of interest (ROIs) into binary categories such as ‘yes’ 

or ‘no’ [2]. CNNs generate feature maps serving as edge detectors [4] to accurately classify 

image features across diverse conditions due to their capability to extract multi-dimensional 

features [5]. Sun et al. [5] elaborate on how CNNs classify new data by extracting low-level 

features which are subsequently synthesized into higher-level complex features to facilitate the 

recognition of larger objects. Despite the advantage of requiring less training data, Haurum and 

Moeslund [2] note that applying a single CNN for each defect detection in an image demands 

computational efforts and suggests exploring different neural network architectures as 

backbone networks. Furthermore, constraints in the size of training data and the training time 
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impact CNN accuracy. Therefore, Sun et al. [5] and Hassan et al. [4] advocate for transfer 

learning to refine a model’s parameters for specific problem cases by re-training pre-trained 

models with case-specific data to preserve their generic features learned from extensive 

datasets. Additionally, Haurum and Moeslund [2] report from their survey that, besides binary 

classification, multi-class and multi-label classification architectures are used in the literature. 

3.1.2. Multi-Label Classification in CNNs 

Three modified convolutional neural network architectures are frequently mentioned in the literature 

which compromise detection speed and accuracy for detecting defects in sewage pipe images that 

include detecting and classifying found defect regions. 

 First, One-stage object detection methods achieve high processing speeds but often compromise 

on extracting detailed low-level spatial information. Sun et al. [5] outline the Single Shot Detector 

(SSD) method that uses a feedforward approach to directly localize and filter out overlapping anchor 

boxes. Furthermore, Yin et al. [7] describe how the You Only Look Once (YOLO) method uses pre-

determined grid cells instead of ROI to find possible defect areas more quickly. However, limitations 

regarding the lack of spatial information it can interpret. Zhang et al. [3] point out that the extended 

sequence of top-down layers hinders the interpretation of low-level features, often resulting in the 

oversight of smaller defects.  

 Secondly, to overcome the challenge of missing scaled-down features, CNNs can be improved 

into two-staged regional-based networks to enhance speed and accuracy in object detection. First, the 

literature repeatedly describes the utilization of Region-based Convolutional Neural Networks (R-

CNN). The framework consists of a Selective Search component to generate ROIs with bounding boxes 

from Bounding Box Regression that potentially contain defects. Subsequently, a CNN classifies a defect 

for each proposed region with a Single Vector Machine [6, 7, 1, 5]. Nevertheless, Kumar et al. [1] and 

Cheng and Wang [6] note from their literature study the demand for computational resources since a 

single CNN per ROI is used. Therefore, the R-CNN framework is modified into a Fast R-CNN, which 

utilizes a single CNN to identify image features that the Selective Search then uses to determine each 

ROI [1, 5, 6]. To try to increase the speed and accuracy a trained CNN called the Region Proposal 

Network to detect the ROI instead of the Selective Search approach introduces Faster R-CNN [5, 6]. 

Cheng et al. [6] argue that by sharing convolutional layers between Fast R-CNN and RPN, the 

computational effort is reduced and the quality of the suggested regions is increased. Nevertheless, this 

should not need to mean Faster R-CNN increases in speed since Zhang et al. [3] argue that Faster R-

CNN is slower but rather obtains a higher accuracy. 

 Lastly, a modified architecture introduces a dual pipeline hierarchical structure to enhance 

multi-classification across various CNN-based systems, moving beyond the previous two-stage 

localized detection methods. These architectures are based on Residual Neural Networks which are 

grounded on a CNN where Yin et al. [7] state that multiple applied Residual Blocks could increase the 

detection of various scaled features. This method can be further explained by the development of Künzel 

et al. [8] to develop a semantic defect classification method by adjusting a Full-Resolution Residual 

Network (FRRN) to reduce computational resources and time. This hierarchical method employs two 

data pipelines that extract various-sized feature maps for detecting robust features to merge into a full-

resolution residual stream that performs segmentation by extracting detailed features. Therefore, the 

RNN method seems to have the potential for multiple applications for object detection. From a 

background review of multiple usable networks, Haurum et al. [2] found that R-CNN frameworks can 

consist of Residual Neural Networks (RNN). In addition, Kuman et al. [1] evaluated the performance 

of a Faster R-CNN which contained a pre-rained ResNet.  

This concludes that while one-stage CNN architectures offer detection speed, two-stage models provide 

accuracy, and hierarchical residual networks can be used as the backbone for interpreting multi-scale 

features in regional-based networks. 
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3.1.3. Accuracy Comparison of Employed Defect Detection Models 

Experimental studies improved the classical, one- and two-stage convolutional-based neural networks 

to outperform both traditional and researcher-developed models, to achieve better accuracy and recall 

in defect detection. 

 First, improved and fine-tuned classic convolutional neural network-based models tend to be 

affected by the quality of the training data. Meijer et al. [9] developed a CNN with 16 layers with a 

VGG-16 model to perform multi-label classification to find different defects per image which was 

argued to have outperformed a reference state-of-the-art CNN by detecting around 90% of the defects. 

Besides, Hassan et al. [4] fine-tuned the pre-trained ImageNet AlexNet on case-specific training data 

which got an average accuracy of 96.60%. The difference between the performances can be concluded 

by the fact that Hassan et al. [4] augmented the data with blur which increased the accuracy ranging 

between 15% to 32%, this could indicate that applying transfer learning or augmenting the training data 

of Meijer et al. [9] could increase the accuracy significantly. 

 Secondly, a comparison indicates that replacing architectural components with multi-scale 

feature detection elements can improve the accuracy of one-stage object detection models. First, Kumar 

et al. [1] evaluated the performance of an SSD with a VGG-16 just like Meijer et al. [9] , however, the 

SSD reached an mAP of 54.4% and neglected defects, which might be due to the lower training set size. 

This performance was also compared to the YOLOv3 which was slower and missed smaller-sized 

objects but reached an mAP of 74.5% [1]. Furthermore, Li et al. [10] found that YOLOv3 reached an 

mAP of 68.1% for defect localization and classification. However, Yin et al. [7] challenged this outcome 

by arguing that the multi-scale feature extraction capabilities of the YOLOv3 are still proficient and 

modified the method by inserting residual blocks for an accuracy increase, which reached an mAP of 

85.37%. Moreover, Zhang et al. [3] show that the YOLO model can be improved as well by constructing 

a YOLOv4-D-SPP3 by choosing the optimal loss function and fusing local and global scaled features. 

This is done with a Feature Pyramid Network (FPN) to improve accuracy for detecting minor defects 

the YOLOv4-D-SPP3 model reaches an mAP of 92.3%, however, it jeopardizes processing speed.  

 Lastly, experiments with two-stage object detection methods enhanced Faster R-CNN 

architectures by improving region proposal techniques and integrating pre-trained models to increase 

accuracy. Li et al. [10] experimented with different region proposal techniques such as Selective Search, 

RPN, and Stregntened Region-based Proposal Network (SRPN) together with a VGG-16-based Faster-

RCNN, where Li et al. [10] claims that the SRPN together with a Faster-RCNN outperformed other 

methods with an mAP of 72.5% for defect classification. Just as component improvement of the YOLO 

network, Kumar et al. [1] proposed a Faster R-CNN which performed classification based on a VGG-

12 or pre-trained ResNet and outperformed the YOLOv3 and SDD network by obtaining an average 

accuracy of 76.2% mAP. Furthermore, Cheng et al. [6] improved the classification CNN in the R-CNN 

based on a modified pre-trained Zeiler-Fergus with additional layers which resulted in an mAP of 83%. 

From this study, Cheng et al. [6] report from their experiments that when training with a larger dataset 

increases accuracy. These results could suggest that a pre-trained backbone model consisting of 

Residual Blocks can increase the accuracy. Therefore, the survey of Haurum and Moeslund [2] found 

that various studies ground R-CNN networks with ResNets with different layers pre-trained on 

ImageNet to extract robust and detailed features. Künzel et al. underscore this statement since the 

performance of their Full-Resolution Neural Network reaches an mAP of 84.5%, however, they find 

regions based on semantic pixel collections rather than region estimations. 

In conclusion, substituting regional proposal techniques with regional proposal networks should input 

their regions of interest through defect classification backbone models pre-trained on ImageNet to 

improve the accuracy of defect detection. 
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3.1.4. Conclusion 

This literature review aimed to identify which neural network can perform defect detection in sewage 

pipes by prioritizing accuracy and recall. Object detection methods generally consist of frameworks 

consisting of different sequentially ordered modules that rely on each other to perform object 

localization and classification. Hereby, most elements use convolutional neural networks (CNNs) as a 

backbone which might be either optimized in their architecture or could be pre-trained on existing large 

trained models. Particularly, implementing pre-trained CNNs on a benchmarked dataset or CNN-based 

Residual Neural Networks into a two-stage hierarchy to form a Region-based network seems to be key 

to extracting multi-dimensional features to increase the model's accuracy for regional localizations and 

defect classification.  

 This literature review is relevant for informing decisions on which current state-of-the-art 

models for defect detection could be adapted through iterative experiments to optimize either accuracy 

or speed. By providing evidence of the metric performances of already existing models can be 

considered what types of neural networks, modules, or structures can be integrated into existing 

architectures to improve defect detection related to the type of input data and preferred output data. 

Nevertheless, this review primarily on general descriptions and quantitative performance metrics of 

commonly used CNN-based architectures by excluding relevant optimization factors. For instance, 

discussions regarding non-CNN-based object detection architectures, data quality effects such as data 

augmentation, class imbalances, and the impact of varying annotation standards are not mentioned. 

Additionally, comparisons of state-of-the-art models were based solely on the mean Average Precision 

(mAP) due to the lack of overlapping standardized metrics. 

 To guide future sewage defect detection research, studies should examine how reordering 

architectural components and modifying layer structures can enhance performance metrics of interest, 

especially when focusing on the comparison of the metric performances of specific defects. Practically, 

iterative experiments can be performed to evaluate the effects of architectural adjustments on model 

performance. Therefore, enhancing data quality could be crucial, as it significantly impacts the 

outcomes of existing models identified in the literature. Additionally, training single models on various 

datasets with sewage images will help identify which networks consistently deliver high accuracy 

across different conditions. 
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3.2. Imbalanced Datasets 

Imbalanced data distributions commonly occur in sewage inspection datasets due to the significant 

amount of normal images and fluctuating anomaly class quantities. The scarce frequency and varying 

diversity of occurring anomalies originate from contextual factors [12]. Consequently, uneven data class 

distributions cause a classifier's accuracy performance to decrease significantly [13] which is 

demonstrated by Dang et al. [13] from significantly decreased AUC values by absent balancing methods 

compared to their presence. This imbalanced data problem (IDP) challenges the performance of 

classifiers due to their dependency on training data quality [12]. Classifiers could bias and overfit 

towards the majority class, although likely underperforming the minority class [14] since less 

distinguishable features between minority classes can be learned [14]. Especially for multi-class 

classification, the model must choose one anomaly between underrepresented classes [14]. 

Additionally, IDP affects the model's learning process and the generalizability of minority classes in 

the test set [14] [5]. Nevertheless, due to the originality of each dataset for each project, distinct data 

balancing methods could be applied per individual case. Therefore, this review explores which data 

balancing methods to improve the imbalanced data problem to increase the robustness of multi-label 

classification models. This is initiated by first assessing which state-of-the-art dataset balances are 

applied to increase the robustness of the model. Secondly, mitigation methods are explored to adjust 

the data distribution during data preparation. Lastly, modification strategies to the architecture or 

training process of the classifier are considered. 

3.2.1. Data Distributions 

Four data distribution balances are mentioned in related research to confirm the IDP which considers 

distribution differences between the normal, total defect, and individual classes. In particular, two 

methods are commonly used and recommended for … First, a uniform distribution between the defect 

class and the normal images is generally mentioned [11]. The hierarchical classification network of Li 

et al. [14] and Xie et al. [12] contains a balanced distribution between the total defect and normal images 

in the higher-level classification. Important to note, is that the quantities between defect classes in the 

total defect class of Xie et al. [12] stays naturally imbalanced. Secondly, the distribution equalization 

of the individual defect classes within the total defect class [11]. Xie et al. [12] includes this balance for 

multi-defect classification where only the most commonly and similar occurring defects were included. 

The smaller-sized excluded classes were combined into another class, and not used during the fine-

tuning of the multi-class CNN.  

 Secondly, two uncommoner data balances are found in the literature which may have 

proficiencies outside the training set and for datasets with extremely rare anomalies. Thirdly, dataset 

imbalance can be maintained to replicate the initial real-life distribution [2]. Particularly, the literature 

makes a distinction between preferably balancing the training set while maintaining the imbalance of 

the test and validation set [9] to ensure a realistic testing distribution as one would encounter anomalies 

in sewage inspections. Lastly, a rare data distribution is where the distribution is equalized across all 

separate classes, including the normal class [2], which may lead to overfitting of the oversampled rare 

anomalies and losing valuable information about the normal class due to relative sample reduction. In 

conclusion, Haurum and Moeslund [2] recommend a distribution consisting of a balanced number of 

normal and anomaly images where each anomaly class consists of an appropriate sample amount [2]. 

Rare classes with fewer samples can be excluded to neglect a long-lasting distribution [2]. Therefore, 

overfitting by skewed datasets toward the majority class can be mitigated. 

3.2.2. Resampling 

Five commonly used re-sampling methods found in related research balance data distributions by 

changing the frequency of occurring sample samples in the minority and minority classes. He et al. [16] 

found by performing a literature review that most classifier accuracy increases from applying sampling 

methods alleviating imbalanced data.  
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 First, random oversampling duplicates class samples to often increase minority data class 

quantities to preferred levels [16]. The method is promisingly utilized by Li et al. [14] with different 

oversampling multiplications per class to increase the size of each minority class toward the size of the 

largest defect class. Meanwhile, Meijer et al. [9] performed oversampling on defective images in the 

training set by a multiplication of five to ensure the chance of each batch containing at least one defect. 

However, the main disadvantage of oversampling minority classes is the possibility of model overfitting 

[15] on specific image feature rules from the chance of observing identical images, causing the test sets 

to perform poorly [16]. Therefore, adaptive synthetic sampling methods based on SMOTE (Synthetic 

Minority Over-sampling Technique) are effective in dealing with the IDP  [16] by synthetically 

generating samples with image interpolation considering the k-nearest sample neighbors and preventing 

over-generalization from preventing overlapping images of nearing neighboring samples. Borderline-

SMOTE improves the classifier's distinguishing between classes and ADASYN (Adaptive Synthetic 

Sampling) focuses on increasing the classifier's capacity to classify hard-to-classify samples [16].  

 Secondly, random undersampling can be performed by randomly neglecting samples [14], often 

from the majority class [16], with for instance the RUS method [15]. Nevertheless, undersampling of 

the normal class could decrease the model's accuracy [14] since relevant image features from the 

majority class can be neglected [16]. Therefore, informed undersampling methods, such as 

EasyEnsemble, BalanceCascade, and K-nearest neighbor algorithms [16], can be utilized to prevent the 

loss of relevant data information [15]. Additionally, previously mentioned oversampling algorithms 

could increase the amount of overlapping images and classes [16]. Thus, data-cleaning methods could 

improve classification by supporting distinct class clusters by image reductions to preserve samples 

with the nearest common class instances, by for example Tomek links [16] [15]. Nonetheless, data 

cluster arrangement could rely on both up- and downsampling by cluster-based sampling methods to 

ensure robust representations of rare anomalies [16]. In addition, this approach is flexible improving 

rather within or between class balances, and allows for oversampling technique integrations [16]. 

3.2.3. Cost-Sensitive Learning 

Rather than adjusting imbalanced data levels, cost-sensitive learning implementations adjust certain 

classes' relevancy by assigning misclassification costs per class or sample. This could be a promising 

technique since He et al. [16] found that cost-sensitive learning likely outweighs resampling methods. 

In general, cost-sensitive strategies handling data imbalance in neural networks can be distinguished 

into modifying the loss function or hyperparameters [16].  

 First, cost-sensitive modifications can be applied to either the classifier's initial output or 

calculated probability values after forward propagation [16]. The latter is mainly utilized in current 

sewer anomaly classification studies where the loss function is multiplied by district inversive weights 

per class, based on the occurrence frequency of the specific class in the dataset [11]. This approach 

allowed Meijer et al. [9] to prioritize false negatives against false positives by implementing relative 

weights in the cross entropy loss and granted Haurum and Moeslund [11] to improve the model's 

learning of minority classes by lowering their loss contribution. Assigning heavier weights to minority 

class misclassifications helps prevent bias towards majority classes, thereby avoiding a reduction in 

classifier performance [13] [9], and can also enhance model learning [11]. While this strategy improves 

anomaly classification, insignificant model improvements and model performance variations of this 

technique can be compensated by combining this method with ensemble techniques by introducing 

cross-validation [16].  

 Furthermore, aside from the previously mentioned weighted loss functions, loss functions can 

be completely replaced by other loss functions. As such, a cost minimization function minimizes the 

expected cost of misclassifications instead of reducing the number of incorrect predictions by including 

weights in the loss function [16]. Additionally, during pixel segmentation, Kunzel et al. [8] utilize 

another form of cost-sensitive learning by utilizing a bootstrapped cross-entropy loss function with a 
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threshold incorporated to focus on misclassified or low-classified confidence pixels to increase the 

model performance on these harder examples. Another proficiency of the BCEloss is the mitigation of 

misclassified or noisy labeled images in the dataset to increase the model's robustness and 

generalization. Secondly, distinct learning rates can be defined depending on separate class costs to 

increase the impact of gradients for prioritized classes. This method greatly improves the classifier and 

reduces the training time for low-cost examples [16]. Lastly, it is important to note that case-specific 

purposes determine which classes are weighted heavier than others. Therefore, cost-sensitive learning 

can also be used to not tackle imbalanced datasets, as Haurum and Moeslund [11] applies class-

importance weights (CIWs) prioritizing classes with higher economic consequences. 

3.2.4. Two-Level Hierarchical CNN 

Lastly, model architectures can be adjusted in five ways based on sequentially utilizing the different 

level features. Two-level hierarchical CNNs can be integrated to significantly improve the model's 

performance by dealing with an imbalanced dataset [12]. Li et al. [14] integrate a two-step hierarchical 

softmax classification model for easier multi-classification, by performing binary classification for 

normal and defect images, followed by multi-classification of various defects [14] by dividing a level 

convolutional layer into binary classification and multi-class classification to detect a specific anomaly 

in the image earlier detected as an anomaly for easier distinguishing between different classes. 

Similarly, Xie et al. [12] deploy a two-step hierarchical network, although a different implementation 

method strategy is deployed than Li et al. First, a CNN is trained for binary normal and defect 

classification, then duplicating and fine-tuning the previous CNN but performing multi-class 

classification.  

 Regarding the previously mentioned methods, although the hierarchical method increases scene 

robustness and classifier accuracy, defects with less distinguishable features go unnoticed [18]. This 

definition counts for Li et al. [14] as differentiating between defects during multi-class classification is 

difficult, while Xie et al. [12] mention that their model is limited in detecting smaller defects in the 

binary normal-defect classification. Therefore, the type of two-step hierarchical implementation type 

can be weighted while considering the improvement of classifying rare defects [12]. Both studies 

consider image quality, resolution reduction, defect co-occurrence, and indecent labeling impacting 

model estimations [12] [14]. 

 Compared to Li et al, utilizing a distinct CNN for inter-defect classification could enhance 

model performance by allowing optimization of the second networks specifically for defect 

classification. Additionally, other classifier-level methods can be considered, for instance, a CNN 

fusion structure including an inceptionV3 for binary ND classification combined with a ResNet which 

raises model accuracy [19]. 
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3.3. Quantitative Evaluation Metrics 

Quantitative evaluation metrics are crucial in sewage anomaly classification to evaluate model 

performance and guide ongoing adjustments. These metrics are essential for comparing state-of-the-art 

models to put the trustworthiness of the developed model in perspective. Especially, a collection of 

metrics can supplement the model's quality assessment [9]. The choice of metrics should align with the 

project’s objectives [9]. Regarding, multi-class and multi-label it is necessary to select metrics that not 

only assess overall performance but also distinguish performance per anomaly class [16]. This 

distinction is important for identifying classes that may require additional focus during data preparation 

or training, especially when dealing with smaller sample sizes and high-dimensional datasets to assure 

the model's generalizability.  

 However, the selection of certain metrics is not yet standardized for sewage anomaly 

classification [2] [5]. On top of that, the mentioned metrics in related research might not comply with 

the focus of this project to measure model consistency. From the literature, anomaly classification 

applications often prioritize the recall metric, aiming to find real occurring anomalies while minimizing 

the model to miss them [11]. Nevertheless, solely relying on recall may be in-comprehensive. Hence, 

incorporating additional metrics should be considered to form an informative perspective on the model 

performance. Sequentially, for this project, the question arises of which quantitative valuation metrics 

can measure a multi-label classification model's consistency while training models on imbalanced 

datasets. This specific review first focuses on providing pre-knowledge about the base metrics for other 

metrics. Secondly, the advantages and disadvantages of primary and auxiliary metrics are argued. 

Whereafter, independent auxiliary metrics are considered overarching multiple-adjusted classifiers. In 

closing with conditional metrics. 

3.3.1. Basic Confusion Matrix Elements 

The varying formula constructions of relevant metrics are mainly based on single and adjusted 

confusion matrix matrices. Primary and supplementary metrics are calculated based on the basic 

confusion matrix elements as seen in Fig […]. This matrix includes TP and TN which define the 

correctly predicted occurring and non-occurring anomalies, whereas FP and FN describe the incorrectly 

predicted occurring and non-occurring anomalies. Consequently, these metrics can be measured in rates 

to determine their occurrence chance. Two of these metrics in rates are auxiliary metrics. First, the TPR, 

or sensitivity/recall, determines the proportion of actual positives correctly identified by the model. Its 

inverse, the FNR, measures the proportion of real positives incorrectly predicted as negatives, 

representing the miss rate. Secondly, the TNR, or specificity, measures the proportion of actual 

negatives correctly identified by the model, while its inverse, the FPR, measures the number of 

incorrectly predicted anomalies [9]. 

3.3.2. Primary Metrics 

From the literature are five commonly used metrics argued for their effectiveness for utilizing for image 

classification. Starting with accuracy, recall, and precision as auxiliary metrics. Since these insights 

likely not fully capture the model's performance when used in isolation, primary metrics are shown: 

 The commonly used accuracy can be misleading for model evaluation performance due to its 

sensitivity to unbalanced datasets. The primary metric is frequently utilized to compare different state-

of-the-art datasets in the literature to measure the proportion of correctly predicted samples among all 

samples [9]. For balanced datasets, accuracy can be a good metric [2]. Nevertheless, Meijer et al. [1] 

argue that accuracy is misleading for imbalanced datasets with sparse anomalies, as it increases 

performance by focusing on the abundance of correctly predicted non-anomalous images. He and 

Garcia [16] strengthen this by explaining that in a dataset with 95% normal images, an accuracy of 95% 

can be achieved trivially. Additionally, accuracy is sensitive to data deviations [16], such as changes in 

dataset complexity and attributes [14]. This sensitivity arises because metrics incorporating both 
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columns of the confusion matrix (see Fig […]) are influenced by the sizes of both the majority and 

minority classes, with the majority class often being negative and the minority positive [16].  

Consequently, the metric is less informative for relative analysis during model benchmarking, as 

compared models might be trained on differently skewed class distributions [14] [19]. Therefore, 

supplementary metrics that do not rely on both columns of the confusion matrix, such as recall, 

precision, F1-score, and class confusion matrix, are recommended for use with imbalanced datasets [2]. 

3.3.3. Auxiliary Binary Metrics 

Three auxiliary metrics are widely found in literature as comprehensive metrics while training a model 

with imbalanced datasets. Of the possible auxiliary metrics, Haurum and Moeslund [2] recommends 

recall, f1-scores, and average precision for image classification metrics. Li et al. [14] notes that these 

metrics mainly depend on class distributions, mitigating the imbalance between defects and normal 

images. First, precision measures the number of true positives overall predicted occurring anomalies to 

determine the exactness of correctly labeled anomalies [19]. Nevertheless, precision is distribution-

sensitive since both columns of the confusion matrix are used during the metric calculation [16]. Owing 

to this, recall measures the completeness of predicted anomalies by focusing on capturing the percentage 

of undetected anomalies by rationing true positives over the ground-truth positive instances [19]. 

Nevertheless, it does not penalize false positives which could increase the inspection range for a second 

revision by inspectors.  

 To comprehend both metrics' limitations, the F𝛽-score provides a weighted trade-off between 

recall and precision to gain insight into the model functionality. Specifically, literature often defines the 

metric as the “harmonic mean” (𝛽 =1) being less sensitive to data distribution changes. Additionally, 

the F-score improves over the accuracy [16] since it can even validate accuracy [19]. Furthermore, 

Haurum and Moeslund [11] point out utilizing tailorable metrics reflecting the real-world importance 

of certain auxiliary metrics for sewer inspections, for instance, the F𝛽-metric for linearly weighting 

recall with the 𝛽 value. Eventually, the maximum output for the F-score can determine the optimal 

threshold to convert classifier probabilities into binary predictions. Moreover, regarding the project’s 

aim to focus on recall, the 𝛽 value can be set higher than 1, often to 2, to prioritize higher recall values. 

Haurum et al. [11] showed the results per class with the F2CIW metric where the classes had weight-

importance, and the normal images were measured with the F1-score. Still, the F𝛽-score may be 

sensitive to distribution variations and does not yet overarch the evaluation of a collection of models 

with varying distributions [16]. 

3.3.4. Independent Averaged Binary Auxiliary Metrics 

As previously stated, the binary auxiliary metrics measure performance per model while affected by 

distribution shifts. Instead, Meijer [1] recommends using metrics that evaluate the performance of a 

collection of model adjustments, independent of specific models. Ha and Garcia [16] affirms this by 

finding other metrics that compare various classifiers with varying sample distributions to mitigate the 

inadequacy of the F-score. 

 First, the AUROC visually graphs various model performances at a range of thresholds that 

may still be affected by varying class distributions. less sensitive to data imbalances. In particular, the 

metric can guide the trade-off between the chance of incorrectly predicted anomalies (FPR) and missed 

anomalies (FNR) to consider different thresholds of which probabilities are mapped into binary 

predictions [9]. Furthermore, the area under the curve is a good estimator for model performance with 

balanced datasets [2]. However, limitations occur from using the AUROC to determine the average 

model performance with imbalanced datasets. A high AUC score does not necessarily indicate uniform 

performance across all regions in the ROC [16] and may indicate poor performance in the minority 

classes. Haurum and Moeslund [2] argue the ROC’s resemblance in accuracy which Meijer et al. [9] 

supplement by mentioning the limited benefits of the ROC curve due to the TN in the ROC’s FPR 

dimensions, where TN is also a component of accuracy. Additionally, the ROC misleads a good 
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performance while evaluating over an unbalanced dataset or also per class, it doesn’t show the certainty 

of the classifier's performance with confidence intervals, and whether the performance deviations 

between classifiers are statistically significant. Therefore, other methods that are less sensitive to data 

skewness can be oriented to improve the insights of the performance evaluation [2].  

 Therefore, a precision-recall curve provides a visual understanding of the trade-off between the 

number of false positives and false negatives. In particular, the precision-recall curve is an informative 

metric while evaluating the performance of the minority class in unbalanced datasets for different 

thresholds for converting the classifier's probabilities into binary predictions. Furthermore, the area 

under the PR curve is independent of the threshold ratio of the AUROC and distribution changes while 

evaluating the performance of an overarching family of adjusted model versions, which makes this 

metric relevant [9]. Even with the limitations of the ROC, the PR curve contains the effective 

advantages of the ROC space [16]. Furthermore, the PR curve properly informs deviations in model 

performances, for instance, the precision metric captures deviations in the amount of false positives 

[16]. Eventually, an optimal threshold can be chosen based on the project's needs regarding precision 

or recall. However, the curve encompasses the entire range of precision and recall values, allowing 

fewer adjustments to preferred metric results [9]. 

3.3.5. Conditional Metrics 

Meijer et al. [9] discuss two conditional metrics that focus on metrical adjustments of precision and 

specificity while keeping recall, also known as sensitivity, at a preferred constant value. Unlike AUROC 

and PRCurve, which require the 𝜃 threshold to be varied to plot the visual representation of the whole 

curve, conditional metrics are useful when dealing with substantially imbalanced datasets. The 

advantage of this method is its ability to relate the importance of specific metrics to the actual needs in 

the anomaly classification context. classification context. In this case, the recall metric is prioritized 

since optimally the number of correctly predicted anomalies over all occurring anomalies should be 1, 

to not miss any. 

3.3.6. Metrical Averaging 

Micro-averaging and macro-averaging for each metric can be utilized to evaluate a classification 

model's performance across different classes. Micro-averaging averages across all predictions to 

consider the overall model performance. However, macro-averaging calculates the performance metrics 

independently for each class by consequently averaging these results across all classes to ensure that 

each class contributes equally to the final metric, regardless of the number of instances in each class in 

for instance an unbalanced dataset [14]. The characteristic of analyzing each class equally makes macro-

averaging proficient in providing evaluation classification for classifiers trained on imbalanced datasets 

[19]. 
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4. Data Understanding and Preparation 

This chapter outlines the processes of various data source concatenations to form a final dataset that can 

be explored and understood to prepare the data for the modeling phase.  

4.1. Data Collection 

The project's custom dataset is based on sewage inspection footage and labelled data provided by the 

client through local sewage inspection companies. The data originated from the pipe system of 

Apeldoorn, the Netherlands, where a robot collected internal sewage pipe footage with fish-eye cameras 

at the front and back, incrementally capturing images from the start to end of a pipe section. The footage 

was captured between 2009 and 2023, although the annotation data ranges from 2009 to 2022. The fish-

eye footage polar coordinates are transformed into a rectilinear coordinate system and integrated into 

the client's inspection software, creating 360-degree panoramic images. Trained inspectors analyze 

these images for occurring observations and annotate them according to NEN norm 13508-2, including 

their location, type, and severity. Eventually, this annotated data is stored and utilized for predictive 

analysis for the client's sewage pipe maintenance predictions. 

4.2. Data Source Descriptions and Concatenation 

The final dataset is constructed from the information of five data sources spread over the image 

directory and CSV files. These five data sources are the images directory, two metadata files from each 

image folder, the pipe data and the annotated inspection data. From assessing the different attributes of 

each source, it can be considered which attribute relationships can be made to form a final dataset. 

4.2.1. Data Sources 

First, the most important information from the five data sources is mentioned which is relevant to 

concatenate the final dataset. First, the image data consists of frame collections representing time-series 

data from historical inspection records for each pipe, with each frame measured at specific intervals. 

As illustrated in Fig. A.1 in Appendix A, images are organized into folders named by a pipeid_videoid 

title, indicating the type of registration pipe with a unique video inspection identifier. Each folder 

contains an original number of captured images depending on the length of the pipe due to the 5 cm 

capturing incrementation of the robot through the pipe. Each image is provided in JPEG format with a 

resolution of 1040x1040 pixels and named with a numerical image index, encoding the distance in 

increments and the camera direction (front or back). Additionally, overview images are provided, which 

are concatenations of sequential frame sets, likely used for visualizing the entire pipe within the client's 

software interface. 

 Secondly, each image inspection folder contains two metadata folders with crucial information 

for the data relations with the annotation data. The fileid.json includes the relevant videoid, pipeid, and 

inspection date as textual data. The meta.json file contains most importantly the startPosition and 

StartPos attributes that indicate the distance from the pipe's starting point to where the camera began 

inspecting. Further details of the information from the metadata files can be found in Appendix A. 

Furthermore, the pipe.csv file contains 30,372 rows, representing individual pipes and includes twelve 

attributes as seen in Table A.1 in Appendix A. Five of these are crucial for the data exploration and 

preparation phase of this project and are described in Table 1. The "pipe content" defines whether the 

pipe carries waste, rainwater, or a mixture. 

Attribute Data Type Value 

pipeid textual pipe Uuid, eg. 00094c07091a4c689781f6c0bf9f31f2 

pipecontent Categorical MixedSewer, WasteSewer, RainSewer, Unkown 

pipefunction Categorical Transport, Infiltration, Culvert, Unkown, Connection, Drain 

pipeshape Categorical Round, Unkown, Ovoid, Square 

material Categorical Normalized material of the pipe: Concrete, PVC, Other, PE, Unkown, HDPE, 

VitrifiedClay, ReinforcedConcrete, Steel 
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Table 1: Pipe dataset and its attributes, their importance, datatypes, and explanations or examples. 

 Additionally, the inspection data contains rows corresponding to single observations, uniquely 

identified by a combination of a pipeid and inspectionid as can be seen in Table 2. Important to note is 

that the inspecitonid of the annotation data and the videoid of the fileid.json differ since one inspectionid 

can consist of multiple video folders with distinct videoid’s as multiple inspections can occur during 

the same pipe inspection at the same inspection date time. Furthermore, certain inspections can contain 

the same pipe, as a single pipe can be inspected at different date-times throughout the years.  Additional 

attributes of the inspection data on top of Table 2 can be seen in Table A.2 in Appendix A which may 

be of future interest, such as the severity rate per observation. The code attribute consists of three capital 

letters indicating an observation and providing additional information. Each code belongs to a specific 

code class, which can pertain to the pipeline's fabric, operation, inventory, or other aspects.  

Attribute Data Type Value 

pipeid textual pipe uuid 

inspectionid textual inspection uuid 

datetime date/time inspection date, eg. 20/08/2010 

position numerical in-pipe position in m 

end_position numerical end position in pipe in m 

code categorical damage code, eg. BCA 

Table 2: Annotation dataset and its attributes, their importance, datatypes, and explanations or examples. 

In conclusion, the five data sources were concatenated based on overlapping attributes based on the 

relations in the entity-relationship diagram in Fig. A.3 of Appendix A. 

4.2.2. Final Dataset 

To identify correlations between different datasets, the pipe and inspection dataset attributes are merged 

with the image data frame throughout a framework to form a final dataset as seen in Fig. 1. In the 

following sections, the framework is explained in a five-step-wise manner where the number of rows is 

often considered including front and back images. By dividing the number of frames, the number of 

front and back images separate can be obtained. 

 

Fig. 1: Total image, pipe, and inspection datasets merging into a single dataframe. 

4.2.2.1. Image Dataset Extraction 

The image data spread over the image directory is converted into a single data frame, allowing collective 

assessment to facilitate image data exploration and future data preparation. The Python-based 

conversion framework returning a Pandas data frame is depicted in Fig. 2, and the corresponding code 

is available in the included data _understanding_preparation.ipynb Jupyter Notebook. The framework 

includes a primary function that returns a data frame, incorporating results from five subfunctions that 

gather necessary data for each image.  

 First, all image folders within the directory are processed using the new_image_df function by 

iterating over each image folder. Secondly, the pipeid and videoid are extracted from the folder names, 

as each inspection folder is titled using a combination of these identifiers (pipeid_videoid). Thrithy, for 
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each folder path, two functions extract metadata from the folder's JSON files. The inspection date is 

obtained by accessing the fileid.json file and extracting the datetime string in the year-month-day 

format, as shown in Fig.. Similarly, The start position offset of the camera, relative to the official start 

of the pipe, is extracted from the meta.json file by loading the file and retrieving the startPosition value. 

If the startPosition value exceeds 1000, indicating an error, the startPos value from the properties list is 

used instead. Next, image files are extracted using the corresponding folder path where each image is 

processed to extract the image index number and direction from the string format of the image titles. 

Hereafter, For each image, a constructed record is appended to the data frame, containing data points 

such as pipeid, videoid, start position, inspection datetime, image path, direction, and image number. 

Finally, the data frame is returned after all images are processed. 

 

Fig. 2: Image directory to data frame conversion by inherited function call-and-return structure. 

4.2.2.2. Image and Pipe Data 

Subsequently, the properties of each distinct pipe can be merged with the records from the image data 

frame (see Fig. 3) and those from the pipe data frame where the pipeid matches. In this case, all pipe 

properties are maintained such that in-depth exploratory data analysis can be performed. The resulting 

data frame contains the same number of records as the image data frame (292300 records) as the data 

is based on the number of available images.  

 

Fig. 3: Merging of the pipe data into the image data. 

4.2.2.3. Two Separate Inspections Forming One 

Even though multiple inspections can occur at the same pipe, this can also happen at the same inspection 

datetime, which can be an issue during the connection with the inspection data. Particularly, It was 

found that 6 image folders were of the same pipe and inspection datetime (see ), although a different 

startposition, framecount and videoid. For each double inspection, there is either a blockade by a root 

or a deposit which seems to let the inspection start again, but then from the other side of the pipe. 

Eventually, the pipe is annotated as one inspection file, however, the inspector has been started at the 

end frame of the second inspection to go sequentially again through the pipe. Therefore, the inspection 

file is usable, but the image order of the second inspection order should be reversed to connect it with 

the annotation data. Since the concatenation of the annotation data to the reversed order of images on 
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top of the beginning images may be error-prone, these inspections are left out. However, future 

investigations may construct a framework to include the reversed image order. In conclusion, this 

resulted in 225 inspection image folders were available to merge the inspection data with the image 

data. 

pipeid_videoid startposition framecount datetime quality 

2cad0ff9589f4277aa08b1da031aec76_ 
a0c3d505ac7f4f2d894e3a9f56873166 

55 13 2009-07-01 At the end stopped by roots 

2cad0ff9589f4277aa08b1da031aec76_ 

aecb9a2db9df47e7bbe78ebdc9d76185 

140 856 2009-07-01 At the end stopped by roots 

940f179616b94803b0c8ba9c556f68cf_ 
959a3a288972407ba81e839f43407519 

65 310 2020-02-12 At the end blocked by 
attached deposits 

940f179616b94803b0c8ba9c556f68cf_ 

b591e65a357e4f2db6983a7aee20300d 

35 462 2020-02-12 At thend blocked by 

deposits 

87100098a6ab4bc3bb5a60b72d90f354_ 
31f19b23048b48bcbc0c29cb2270b7a5 

65 406 2020-01-27 At the end blocked by roots 

87100098a6ab4bc3bb5a60b72d90f354_ 

a7eb076e64b94d3bba9bcf52f53979d7 

85 218 2020-01-27 At then end blocked by roots 

Table 3: Image folder pairs which belong to the same inspection at the same datetime, however belong to different image 

folders. 

4.2.2.4. Associated Inspection Data 

The associated inspection data represents all the inspection data available for the current project and 

image folder. The initial inspection CSV data contains 21,235 distinct inspections with 539862 rows of 

distinct observations. Certain columns of this data were filtered out to remain the most relevant 

attributes (see Table 2). Hereafter, the image and pipe dataset has been reduced to 225 rows, only 

obtaining records with distinct pipeid, datetime, and startposition attributes to act as a filter during the 

merge with the inspection data. This merge resulted in an associated inspection data frame with 5697 

records. Additionally, to provide the incremental index location of each observation connectable to the 

image indexes, two additional image index and end image index columns were constructed for each 

observation in the associated inspection data frame. In, particular, the image index represents the 

position of the anomaly for 5 cm increments and the start position is the offset due to a different start 

point of the inspection compared to the initial pipe start. The values of the values are calculated based 

on the formula in Fig. 4 where the start position values are from the new image data frame along with 

the position and end position attributes from the inspection data frame. In conclusion, the associated 

inspection data is created which responds to the available inspection data for this project. However, not 

every image inspection folder has available annotations, and the annotations data needs to be located in 

the corresponding frame records at certain positions. 

 

Fig. 4: Uitilzing the inspection startposition and the anomaly positions to calculate the image index in the image titles. 
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4.2.2.5. Filtered Image and Pipe Data 

Certain image inspection folders are excluded during data collection as specific available image 

inspection folders lack recent annotation data while creating a new merged dataset with located 

annotations linked to image frames. The available associated annotation data is decreased to 216 distinct 

inspections by removing duplicates while keeping a unique combination of pipeid, datetime, and the 

startposition for each row. As a confirmation, by removing duplicates based on the inspecitonid, the 

decreased associated annotation data will also contain 216 rows. Eventually, this would mean that for 

our dataset, there are 216 inspections available for some of the 231 image inspection folders. Since this 

project mainly focuses on supervised learning, the unlabeled images are not of interest and may reduce 

the model performance if they are included in the dataset. Therefore, to filter out the image inspection 

folders, the reduced associated inspection data frame is merged with the image and pipe data, resulting 

in a filtered image and pipe data frame. The size of the filtered data frame (275374) compared to the 

image pipe label data (292300) is reduced since 12 image inspection folders do not have available 

inspection data. 

4.2.2.6. Final Dataset 

The final dataset is constructed by merging the filtered Image and Pipe data with the associated 

inspection data, providing the annotation data for each image. The merge is based on the established 

relationship based on the pipeid, inspection datetime, startposition, and frame index. The final dataset 

counts 280628 rows covering 193 pipes, which is an increase compared to the actual relevant and 

available images in the filtered image and pipe data (275374 records). This increase is explainable due 

to multiple annotations made for the same frame location in an inspection. Particularly, records in the 

beginning and ending often contain more annotations for the same beginning or ending frames, causing 

image duplications while the annotation rows change. 

4.3. Data Exploration 

For the following data exploration phase is explored of the final dataset how the different inspections 

vary in their inspection datetime, framecount, pipe attributes and available observaitons. Particuarly, 

this allows to find the relationships between certain attributes to condier which relevant data points to 

include. 

4.3.1. Images and Inspection Datetime 

The reason why the final dataset is made for a filtered selection of image inspection folders is due to 

the mentioned lack of annotation data for all available images. To gain more insight into the 12 

inspection image folders lacking annotation data, Fig. 5 shows that especially, the newest inspection 

image folders do not yet contain correlated annotation data. These could be provided by the client soon. 

Nevertheless, three inspections missed data occurred in 2009 and two in 2020. Furthermore, from this 

figure can be concluded that most inspections were performed on 28-1-2020. This means that multiple 

inspections can occur on the same day, although the pipes that were inspected twice on the same day 

are excluded from this dataset. Additionally, pipe inspections occur frequently around every 10 years, 

since there is a big gap between 2009 and 2020. 
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Fig. 5: Number of inspections with available annotation data. 

4.3.2. Inspection Framecount Distribution 

The exploration of the deviations in frame count per inspection could be relevant in determining how 

distinct inspection image folders can be divided over the train and test set to account for overfitting on 

the same pipe appearance. Fig. 6 shows the frequency distribution of the number of labelled inspections 

consisting of certain image sizes (each image could be either shot in the front or back direction). From 

observation can be seen that there is a major inconsistency between pipe inspections where the shortest 

pipe contains 8 images and where the largest pipe contains 3044 images. Important to note is that the 

inspected pipes do not need to be of the same length as the inspection sizes, often inspections do not 

capture full pipes. Furthermore, these frame count variations likely affect the source of imbalance in 

this dataset. Especially, since larger inspections contribute a more significant proportion of the total 

dataset with their own static visual appearance. Therefore, dividing inspections between training and 

test sets should be performed with care to ensure the training set contains a variety of appearances, and 

not for instance being trained solely on the largest inspection folders. Stratified sampling can be used 

to split the inspection images into training, validation, and test sets such that the image inspection length 

characteristics are proportionately represented in both sets. 

 

Fig. 6: Histogram of the distribution of the frequency of pipe frame sizes, b) and corresponding statistical measures.. 

4.3.3. Pipe Attributes 

The categorical attribute comparison between pipe materials and shapes shows the dominance of 

concrete round pipes throughout the dataset. In particular, the inspection and pipe count is compared 

since is found that for 29 pipes, two inspections occur. For the comparison is a logarithmic counting 
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distribution utilized to gain intuitive deviating insights with clear numerical labels. Besides, three main 

findings are noted. First, by obtaining the number of concrete pipes from Fig. 7 is calculated that 

concrete round pipes dominate for 94% of the amount of available labelled images. This percentage 

contains also 28 of the pipes with two inspections. Secondly, ovoid concrete and round PVC and HPDE 

pipes are the most rare material attributes occurring in the dataset. In closing, as the pipe material 

contributes mostly to a different visual appearance, additional categorical attributes besides the pipe 

shape can be investigated to find more prominent correlations.  

 

Fig. 7: Image and a) inspection count and b) pipe count for each pipe material and shape. The pipe count is lower since 

inspections can occur twice in the same pipe. 

The qualitative and quantitative comparison between categorical attributes of the pipe content, material, 

and function shows three main correlations. Meanwhile, a sub-comparison is performed between the 

inspection and pipe count, where the inspection count includes inspections occurring in the same pipes. 

The following assumptions are grounded in the differences observed in Fig. 8, Table 4 and Fig. 9. First, 

rain sewer pipes function solely as infiltration pipes and are mostly constructed of PVC. Similarly, 

wastewater pipes consist solely of concrete, although function as transport. Secondly, mixed sewer 

pipes, used exclusively for transport, are primarily made of concrete, with a minor presence of HDPE 

and PVC pipes. Thirdly, a qualitative image inspection in Table 4 shows the distinct pipe appearances 

between the combinations of material and content observed in Fig. 8. In particular, PVC pipes used as 

mixed sewers and rain sewers contain varying appearances due to a grey plain shape, while PVC in 

sewage pipes contains green neon stripes. Concrete pipes in mixed, rain, and wastewater systems also 

appear differently in colour. However, even the images of concrete pipes in mixed sewers (appendix B) 

reveal that concrete pipes can vary in colour from reddish and beige to silverish. This variation likely 

depends on the lighting from the inspection robot or the effects of gases and substances inside the pipe. 

 

Fig. 8: Pipe material and content proportions for the number of pipes (a) and inspections (b). 

Mixed sewer Rain Sewer Waste Water 

   

            HDPE                 PVC              Concrete              PVC               Concrete      Concrete 

Table 4: Qualitative comparison between pipe content and pipe materials. 
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Fig. 9:  Proportions between the number of pipes (a) and inspections (b) for pipe content and function. 

The dataset focuses solely on commonly found concrete pipes in mixed and wastewater sewers 

functioning as transport sewers to help the model learn specific observation deviations without the 

material being a confounding factor. In particular, creating a controlled model environment allows the 

classifier to accurately distinguish various observations without the complexity introduced by different 

pipe materials. Concrete pipe images are significantly represented in real-life sewage systems [4], 

accounting for 94% of the dataset (see Fig. 7). Besides, the mixed and wastewater sewers mostly consist 

of concrete pipes (seeFig. 8).   

4.3.4. Observation Exploration 

To perform multi-label classification containing at least a defect and structural elements the occurrence 

of available observations is explored. Therefore, first is the relevance of including certain observation 

codes assessed. Secondly, prominent remarks are explained from continuous and non-continuous 

observations from observation distributions. Lastly, the impact of co-occurrence is considered on the 

selection of the observations. 

4.3.4.1. Available Observations  

The descriptions of the code-represented observations are written out and categorized according to NEN 

norm 13508-2 to inform the inclusion or exclusion of certain observations from the dataset. Table 5 

shows the available observations of the final dataset sorted into five different code classes where each 

observation is assigned the relevancy to be included in the final dataset. This relevancy depends on 

whether an observation is considered a defect and structural element since other observation types do 

not yet belong to the aim of this project.  In  Table 5 can be seen that mainly the relevant observations 

belong to the Codes relating to the fabric of the pipeline and Codes relating to the operation of the 

pipeline code groups. However, regarding the other three code groups, including the connections (BCA) 

is relevant to the client's request to include the basic model skills and including the water level (BDD) 

could be important the water level could be a defect when its level increases.  

 Additionally, the exclusion and usefulness of less relevant observations are justified. The 

general photograph (BDA), general remark (BDB) and the observations from the Codes changing 

header information are not relevant to be classified for this project purpose and, therefore excludable. 

However, three observations could be useful during the data filtering process. The start node (BCD) 

and finish node (BCE) are important to determine the interval of captured frames between the 

corresponding start and finish nodes of the inspected pipe. Nonetheless, the nodes may not align with 

the start and end of the pipe due to the corresponding start position offset. Moreover, the finish node 

may not be present in each inspection since these inspections likely end with an inspection terminated 

before finish node are notated observation. These latter inspections likely exclude images with manhole 

pipes at the end of the inspection which contain a different appearance compared to the tubular sewage 

pipes due to their geometric inconsistency. Thirdly, the loss of vision observation is important to locate 

the frames which may be filtered out due to inconsistent vision.  

Code Groups and Observations Relevancy Description 

Inventory Codes   
 

BCA x Connection 

BCD  Start node type 
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BCE  Finish node 

Other Codes   

BDD x Water Level 

BDA  General photograph 
BDB  General remark 

BDC  Inspection terminated before finish node 

BDG  Loss of vision 
Codes relating to the fabric of the pipeline   

BAF x Surface damage 

BAJ x Displaced joint 
BAB x Fissure 

BAG x Intruding connection 

BAH x Defective connection 
BAN x Porous pipe 

BAA x Deformation 

Codes relating to the operation of the  pipeline   
BBF x Infiltration 

BBD x Ingress of soil 

BBB x Attached deposits 
BBA x Roots 

BBC x Settled deposits 

BBE x Other obstacles 

Codes changing header information   

AEF  Pipe Unit Length 

AEA  Video volume reference 
AEC  Shape 

Table 5:  All present observation codes are sorted into code classes with relevant assigned codes. 

4.3.4.2. Observation Distribution 

The 5697 available observations can be shown in a frequency distribution to highlight findings related 

to data imbalance and the division between continuous and non-continuous observations throughout the 

pipe. First, the frequency observation distribution in Fig. 10 shows a significantly skewed and 

imbalanced observation set, where certain observations are severely underrepresented compared to the 

two highest majority classes. The occurrence rate of connections (BCA) and water levels (BDD) can be 

clarified by the fact that connections (inlets) occur at regular intervals since they are structural elements, 

and water levels are often standardly annotated since mainly there is a small water stream in the pipe 

after the pipe has been cleaned before inspection. However, certain observations occur for a longer 

duration throughout the pipes compared to observations occurring at one frame location [5].  

 Secondly, from Fig. 11 with a logarithmic y-axis, a second finding can be made that certain 

observation types contain either a lot of continuing observations or a very small amount compared to 

the total observations. The observations with significant continuous distances can be clarified by the 

fact that for instance water level (BDD) may have a certain level throughout the whole inspection, or 

surface damages (BAF) and attached deposits (BBB) could occur for shorter-continuous distances. 

Nevertheless, fissures (BAB) and other obstacles (BDG) are likely to occur over a couple of frames. 

Additionally, the AEF represents the pipe unit length, specifying the length of the to-be-inspected pipe 

at the beginning of the annotation. In addition, roots (BBA) and other obstacles (BDG) are likely to 

range not the whole pipe long, especially if one inspection contains only roots (the small one). 

Subsequently, decisions can be made regarding the inclusion of continuous observations and the type 

of single-occurring observations. 
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Fig. 10: Frequency distribution of distinctly noticed 

observations. 

 

Fig. 11: Frequency distribution on a logarithmic scale, the 

differences between continuous and single occurring 

observations. 

4.3.5. Code Selection 

As the previous observation distribution includes all available observations, not all are equally relevant 

for the multi-label classification of defects and structural elements in this project as seen in Table 5. 

Therefore, the observation distribution can be reduced to focus on the most relevant codes and non-

continuous observations based on their numerical presence to create a dataset that includes at least one 

defect and one structural element while mitigating data imbalance. It was already found that the most 

relevant codes mainly relate to the fabric and operation of the pipeline observation classes, as these are 

mostly defects.  

4.3.5.1. Continuous Observations 

 First, including continuous observations over larger pipe distances enhances the model's ability 

to learn temporal patterns and distinguishing features although necessitating model architecture 

adjustments to account for varying severity levels. In particular, the inclusion of continuous 

observations is supported by two grounds based on observations from Fig. 12. First, excluding the 

largest relative continuous observation classes (BDD, BAF, BBB, BBC) would neglect significant 

portions of the dataset as most observational data is already rare due to the imbalanced dataset. 

Especially, removing the BDD and BAF neglects to learn about a significant amount of observations 

throughout the real-life sewage infrastructure. Furthermore, excluding continuous observations could 

impact multi-label classification, as non-continuous and continuous observations may coexist in one 

frame, misleading the model into learning continuous patterns belonging to non-continuous 

observations. Additionally, incorporating labelled continuous observations necessitates classification at 

different severity levels, as most do not exhibit uniform severity, to eventually allow for more robust 

differentiation between various observations. However, neglecting severities while including 

continuous observations may cause model overfitting to certain severity levels, treating frames of 

varying severity identically and thereby introducing bias. For this project, continuous observations are 

excluded by retaining the corresponding frames but removing their labels, focusing solely on non-

continuous observations. Still, this approach anticipates potential model adjustments for severity-level 

inclusion. 
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Fig. 12: Number of observed relevant observations at both single or continuous instances.  

4.3.5.2. Code Selection 

Since future work may focus on classifying continuous observations with corresponding severities, this 

project mainly focuses on constructing a final dataset with at least one non-continuous defect and one 

structural element. To consider which non-continuous observations to include, their distribution can be 

explored. Therefore, Fig. 12 can be filtered to show solely a distribution of non-continuous observations 

(see Fig. 13). It can be seen that inlets (BCA) are the dominant observation due to their frequent 

stationary appearance as a structural element. However, the other observations (mostly defects) occur 

indeterminably and significantly less. The displaced joints (BAJ), infiltrations (BBF), fissures (BAB), 

surface damage (BAF), and water level (BDD) are the largest minority classes. The other minority 

defects in the distribution's right tail contain fewer observations. Especially, the attached deposits 

(BBB), settled deposits (BBC), other obstacles (BBE), and deformations (BBA) are underrepresented 

with less than 10 observations of each class.  

 

Fig. 13: Frequency distribution of the relevant single-occurring observational codes. 

 Previous exploration supports two arguments in determining which observations to include that 

have sufficient data for potential upsampling. Haurm and Moeslund [4] discouraged maintaining a tailed 

distribution with significantly underrepresented samples if no compensation is performed by adding 

new methods that could deal with these rare observations. Therefore, in this dataset, the nine smallest 

minority classes can be filtered out due to their low frequency and likely increasing overfitting from 

being upsampled. Nevertheless, in the case of implementing other balancing methods than upsampling, 

could be considered including the nine observations to increase the generalization capability of the 

model. Secondly, the non-continuous water level observations (BDD) seem to be inconvenient due to 

the temporal aspect of water influencing most of the frames around the annotated frame, therefore non-

continuous water level observations are excluded. In conclusion, this results in four defects and one 
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structural element that could be potentially included during data balancing with resampling (see Fig. 

14).  

     
Inlet  

(BCA) 

Displaced Joint 

(BAJ) 

Infiltration  

(BBF) 

Surface Damage 

(BAF) 

Fissure  

(BAB) 

Fig. 14: Qualitative assessment of potential single-occurring defects and structural elements, images are taken two frames 

earlier than the annotated frame. 

4.3.5.3. Co-occurrence 

Since non-continuous observations and visually similar observations may occur together, it could be 

considered to include one defect and one structural element where the co-occurrence of multiple 

observations in one frame is minimalized. Fig. 15 can be inspected to explore the frames that contain 

the non-continuous observations either multiple or only one observation occurring in one frame. 

Particularly, describing the difference between multi-class and multi-label classification. It can be seen 

that half of the inlets (BCA) and almost all displaced joints (BAJ) occur unaccompanied with another 

observation in one frame. These single-occurring observations could be convenient when balancing a 

dataset with resampling methods. Especially since upsampling frames with two or more observations 

directly causes the occurrence amount of all included observations to increase due to the multi-label 

annotations. Hence, it may be handy to only implement the BCA and BAJ codes to still be able to 

evaluate the model for multi-label classification and develop a procedural framework that can increase 

codes for future improvements.  Nevertheless, only focusing on frames with single-occuring 

observations with up- or downscaling may affect the model's capability to perform multi-label 

classification as increasing the frames with single codes may cause the model to rather perform as a 

multi-class classifier. Therefore, alternative balancing methods may be considered for multi-label 

classification, such as cost-sensitive or ensemble learning methods. 

 

Fig. 15: Frequency of non-continuous observations occurring alone or with multiple observations in the same frame. 

4.4. Data Quality 

Besides assessing the frame correlations between categorical attributes, data qualities are assessed to 

determine potential non-representable features (model bias) by assessing four visual appearance aspects 

related to this dataset. Hence, this creates a foundation for informed decision-making for the inclusion 

and exclusion of certain frames, avoiding the model to learn on unclear and correct features. For this 
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quality assessment, two divisions can be made between the quality assessment methods based on the 

complexity of improving image qualities. The deviations in brightness, error-prone images, and 

beginning and end frame inclusion are accessible and mitigate image aspects, although temporal 

mislabeling requires careful adjustment methods and experimentation to capture the correct features. 

4.4.1. Start and End Images 

Inspections could contain images outside the tube with a different appearance at the inspection start or 

end, causing inconsistency in visual appearance. In particular, manhole intersection shafts, at the 

beginning or end of a pipe, are often visible in the back images of beginning frames, and in front images 

at the end. However, this is only the case for the pipes with a startposition of 0 since the inspection start 

node aligns with the start of the inspected pipe (for 39 inspections in the dataset). In this case, if the 

inspection also contains the ending node, then the last front images capture the manhole shaft at the 

destination, while the back images obtain an error blue colour. In the following Fig. 16 can be seen that 

for two inspections with a start position of 0, the starting front and back images capture the beginning 

shaft, and the last front images capture the destination shaft. Moreover, for some inspections, the shaft 

may be visible for multiple frames before and after the start and end node annotation, therefore an 

increased amount of these visually different images may be unpreferably present in the dataset.  

 

Fig. 16: a) Start back and b) front images, c) end back and d) end front images. 

 Hence, start and end image ranges are filtered out of the inspections with a startposition of 0. 

A qualitative assessment was performed (see Table 6) with 7 random samples, where the location when 

the start or end hall is not visible anymore in certain front- and back-frame indexes is determined. For 

the pipe beginnings, the front frames up to index 10 and back frames up to 21 are excluded as Table 6 

shows that at max these frames could capture the manhole shaft. However, for the pipe endings, some 

inspections do not show the manhole shaft at the pipe end since the inspection is not the same length as 

the pipe. Therefore, the front frames after the last 38th frame are excluded only for the inspections where 

the end node (BCE) position corresponds to the pipe length.  Furthermore, the back images at the end 

of the pipe are not included in Table 6 since later is explained that the back images at inspection endings 

tend to get blue due to an error. Additionally, some inspections provide more images before the start-

node (BCD) and after the end-node (BCE) label, however since the remaining images are not annotated, 

they can be filtered out. In conclusion, most non-tubular frames are excluded, although, since each pipe 

differs, future filtering could exclude image ranges for each pipe rather than applying a uniform filter 

across the entire dataset. 

  Pipe Begin Pipe End 

pipeid Frame count Front Back Front Difference with frame count 

37633324c714478fb407cad806d3d19b 413 6 14 397 16 

a2af7a3b3faa4838b8ad76bfbfc4df0a 771 4 13 - - 

07c2731397cc4e159edac7145c15ad2f 827 7 15 807 20 

b65813d661d140b58a76d676b742f785 923 5 15 - - 

8142c26421e04f818c0c268593d57edc 943 7 21 905 38 

542ae8de3f1d46c28510d29589be225b 770 8 16 - - 

f45f10dc14594dd9bd78cc41fe107e32 621 2 8 599 22 

c77e237c73c9423ca5638eac81c799ea 369 10 20 348 21 

752b7fc75d07451c8e5e352e38774828 886 7 18 - - 

06e1355cdcfc4da7bd414abeae24769a 261 2 10 - - 

Table 6: Qualitative inspection to localize at which frames the shaft at the beginning and end of the pipe is not visible anymore. 
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4.4.2. Lightning Conditions 

A mean brightness analysis is performed to assess the lighting variations of certain inspections to target 

specific brightness mitigation values and importance to certain inspections. Particularly, this analysis 

includes inspections occurring in the same pipe. First, as found earlier, certain inspections are performed 

in the same pipe, indicating that nearly identical frames might be present in the dataset. However, these 

frames may slightly differ due to variations in the starting reference point or frame counts. In addition, 

further investigation into the metadata between the inspection in the same pipe at varying dates revealed 

that earlier inspections occurred in 2009 and the subsequent ones in 2020 (see appendix B). 

Consequently, the brightness difference between the two sets of inspections can be observed in Fig. 17 

where the brightness decreases for the later inspections compared to the earlier ones. This finding 

prompted an examination of the overall brightness distribution of the images, where Fig. 18 illustrates 

a skewed mean brightness distribution to the left, indicating an imbalance in pipe brightness across the 

dataset. Finally, for a comprehensive overview, qualitative sampling was employed by plotting an 

inspection image from each inspection in a grid ordered by mean brightness, revealing the dominance 

of less bright images, with a few extremely bright images (see Appendix B).  

 

Fig. 17: Average brightness distribution of each 7th inspection image a) before 

2010, and b) afterwards. 

                  

Fig. 18: Mean average brightness 

distribution over each 7th image of 

each inspection. 

This causes two choices to consider, whether to include the double pipes and to apply color changes  

4.4.2.1. Multiple Inspections per Pipe 

Since the visual appearance of inspections occurring in the same pipe at different inspection times could 

differ, two reasons motivate including earlier and later inspections to increase the number of 

observations while considering the risks of possible data leakage or bias. First, correlating findings from 

Fig. 7 and Fig. 17 are indicating that the 29 earlier inspections have improved quality due to higher 

brightness than the 29 later inspections. Second, the surface appearance may differ as internal pipe 

conditions could deteriorate over time. Both factors likely reduce classifier bias towards the same pipe 

appearance.  However, data leakage might occur if inspections of the same pipe are divided over the 

test and training sets. To prevent this, inspections of the same pipe should be assigned to either the 

training or test set, Nonetheless, this could lead to overfitting as the same pipe's content of both 

inspections is nearly duplicated within the dataset.  

4.4.2.2. Controlled Illumination and Augmentation 

Two methods are utilized to maintain controlled lighting conditions minimizing lighting and color 

variability, while the training data is augmented to enhance the model's robustness under extreme 

illumination and color variations. Especially, varying lighting conditions, influenced by the robot's light 

source and camera settings such as exposure, white balance, and ISO can introduce inconsistencies 

affecting the model's performance. First, histogram equalization is applied to colored frames to improve 

illumination consistency across all inspections and ensure the classifier can process colored images. 

This is done by only equalizing the luminance of the YUV color space of the image. Secondly, color 

channel normalization, based on the mean and standard deviation of the training data images, is 

implemented to maintain consistent features, given the color variations of concrete pipes in red, silver, 
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and beige. These two approaches can also transform the test data, serving as pre-processing techniques 

for handling unseen data in real-world scenarios. Despite the potential of these methods, extreme 

lighting inconsistencies may persist. Therefore, two augmentation transformations are applied to the 

training set. First, color jittering modifies brightness, contrast, saturation, and hue to enhance the 

model's robustness to the color variations of concrete pipes. Additionally, random shadows are 

introduced to mimic scenarios where shadows and highlights obscure features, such as when the robot's 

light approaches an obstacle, root, or deposit closely.  

…figure of all transformations… 

4.4.3. Erroneous Images 

As brightness analysis reveals images with poor illumination, error-prone images may even lack entire 

visually relevant imagery which can be inspected and filtered out in three ways. First, four frame ranges 

are labeled with a loss of vision ('BDG) observation as seen in Fig. 11. Specifically, this observation is 

continuously noted 4 times in the same inspection (with pipeid  30a59fb3d9194069bf92c7ead5caab05 

and videoid 5f772786f5b1454fb3269d905d9dc619). Particularly, the front camera contains a small 

obstacle object at the bottom of the front image, but most of the area of the front and back images 

capture the pipe (see Fig. 19). Therefore the back images may still be usable for the dataset. Secondly, 

most back images start to lose vision at the 13th last back frame by showing a full blue (0,0,255) image, 

this can be seen in Appendix C. Subsequently, almost all inspection back images are blue at the 11th 

last frame. Nevertheless, it was found that the inspection with videoid 

bd6509746d4845a29deb2d46afcea884 contains blue front images between the 71st and 75th image 

index. Lastly, smaller pipes can be erroneous by showing obstacles or the ending manhole shaft as can 

be seen in Fig. 20. In particular, the shortest pipe inspection contains only full-black images. In 

conclusion, fig … shows the process of filtering out erroneous images. 

   

Fig. 19: Loss of vision for the front 

image in one specific inspection. 

 

Fig. 20: Plotting the 6th image of the four shortest inspection 

image sizes of a) 8, b) 26, c) 46, d) 54. 

4.4.4. Front- and Back Images 

The dataset size is significantly influenced by the decision to include only front images rather than both 

front and back images, primarily due to the higher likelihood of encountering annotated observations 

in front images. In particular, as observations could overlap over both front- and back directions, often 

observations are just visible enough in the front images, for instance, circular observations such as the 

displaced joints (BAJ) appear often just in at the circular border of the front image. Moreover, including 

both front and back images may pose a risk of overfitting since almost all similar content of a pipe is 

duplicated. However, including both camera directions could provide a complete view of the inspected 

area by providing an unseen opposite view of the pipe, reducing the risk of missing observations only 

from a specific direction. Additionally, this dual approach mitigates the loss of visualizing the 

observation due to poor image quality from one view, as the other frame may still show the observation. 

Furthermore, the robot’s chain presence in each back image is unlikely to significantly affect the 

classification, as it is a factor that is constant in all back images. Nevertheless, including both front and 

back images may pose a risk of overfitting, although back images provide an unseen opposite view of 

the pipe. To conclude, alternative methods for both front- and back-inclusion could involve using edge 

wrap-around or mirror padding to see beyond the borders, merging both images into one entire image 

with for instance unwrapping, or offsetting the annotation location to ensure full observations are 

captured. 
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4.4.5. Final Filtering Chain 

The evolution of the construction of the final filtered dataset by applying the data preparation filers in 

Fig. 21 shows that the final dataset consists of 126055 images of which 2958 observations are included 

(see Fig. 22). From the distribution of Fig. 22 is finally chosen to include the BCA, BAJ, BBF, BAB 

and BAF due to their proficient amount for resampling and their mainly non-continuity. The initial code 

count in Fig. 22 displays a value of 3192 observations since for the filtering only the 4035 non-

continuous observations are implemented in the final constructed dataset in the beginning stages which 

consists of 278020 images (see Fig. 1). Additionally, different notations can be made to mention the 

most extreme observations. Throughout the filtering chain, neglecting the start- and end-frames caused 

a lot of change. Nevertheless, the number of observations did not change significantly, allowing the 

proportion of empty images to already have been lowered and decreasing the imbalance.  

 

Fig. 21: Filtering chain by applying all the data preparation methods to end up at the final dataset. 

 

Fig. 22: Observation count before and after applying the filter chain. 

4.4.6. Incorrect Temporal Labeling Location 

The lack of labelling visible observations of surrounding images around a single registration annotation 

is a major factor impacting the chance of detecting the observation. Particularly, this occurs since 

inspectors only annotate the location when the observation occurs closest to them in the 360-degree 

image space. The example images in Fig. 23 are used for the following assumptions to argue the issue 

of temporal mislabeling. First, the multiple accruing observations over a certain range in the pipe, these 

single-occurring observations are not treated as such for all inspections. Besides, in some situations, the 

observation overlaps over the front and back images, which does not allow for full vision of the 

observation, while the other surrounding unlabeled images do. Lastly, due to the multi-label occurrence 

of multiple observations, two defects may occur in the same image as seen from a distance, however 

are not labelled. In conclusion, for multi-label image classification, this could cause major issues, for 

instance, multiple images showing a defect while only one of the 10 images showing that effect is 

classified as the defect. Therefore, the chance is increased that the classifier classifies the image as a 

frame not containing an observation, which causes the false negatives to increase. In conclusion, to 

prevent missing potential observation features by mitigating the incorrect location of observation 

labelling, two methods were assumed to include images around the annotation location. 
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Fig. 23: Three front images, followed by one labeled front image in the middle, and three unlabeled back images, all of the 

same defect. 

4.4.6.1. Offsetting 

A first method could involve shifting the annotation locations of labeled images to increase the chance 

of capturing the full observation. In particular, for each frame direction, the annotations are offset 

backward for the front images and forwards if the back images are included in the dataset. The optimal 

offset value could be determined during the modeling phase. Nevertheless, this method could lead to 

model predictions drifting away from the true location of features of unseen data during localization in 

the client’s software system during future deployment. Furthermore, unlabeled surrounding images 

displaying the same observation as the offset image should be excluded to ensure the model learns that 

the feature in the offset image contains the observation to be learned. 

 

Fig. 24: The offset annotation location method is explained where the front image (green) is offseted to frames earlier, and 

the back image (orange) is offset two frames later, both to capture the full observation.   

4.4.6.2. Propagation 

Secondly, a propagation method could be implemented to include all images between the offset-

annotated frame and the initial annotated frame to increase the chance of capturing a mislocated 

observation. This method could be proficient in preventing images with distant observations from being 

mislabeled as normal, as illustrated in Fig. 25. This problem is evident in Fig. 23, showing one image 

identified as an observation while the other frames are labeled as normal, resulting in a low probability 

(1 in 7) of detecting inlets and presumably shifting model bias towards predicting normal images.  

Furthermore, propagation could be similar to data augmentation which increases dataset diversity by 

applying image transformations. In this case, propagation seems to mimic the scaling augmentation 

operation. However, propagation might resemble oversampling, as nearly identical images (taken 5 cm 

apart) are repeatedly included, potentially causing model overfitting. Moreover, to evaluate the effect 

and optimal propagation distance, various experiments can be conducted during the modeling phase. 

Alternatively, a reverse propagation method could be experimented with, excluding frames around the 

initial or offset-annotated frame. However, this should be carefully conditioned to avoid excluding 

frames with closely occurring observations within the deleted propagation range. Therefore, other 

methods could be considered to include the full observation. For instance, of all the propagated images 

around the initial labeled image, only the offset image should be included, and the rest excluded from 

the dataset. 
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Fig. 25: The propagation method is explained including propagated front (green) and the back images (orange), including 

the intial frame for both the front and back image.  

4.4.6.3. Unwrapping 

Since sewage inspectors annotate in panoramic images, the front and back images can be unwrapped 

and concatenated to provide similar information to the classifier by capturing all contextual information, 

including the full observation. This technique is inspired by Künzel et al. [6] who unwrapped fish-eye 

images to enhance a segmentation model's robustness by showing promising results for detecting 

varying defects. For this project, an unwrapping prototype in Fig. 27 shows that the full observation can 

be captured. Nonetheless, unwrapping faces challenges as mentioned by the literature and for this 

project. Künzel et al. [6] addresses the invisibility of obstacles due to the disappearing background in 

stitched unwrapped images. For this project, manual adjustments to both image centers are performed 

to align pixels at the seam, and distortion throughout the unwrapped image persists. Hence, Künzel et 

al. [6] utilized local and global pose estimation correcting camera position deviations and reducing 

distortions in unwrapped images.  

 Furthermore, this project considers two other methods to prevent including distorted images 

with intrusive seams. First, the earlier-mentioned annotation offset method could be implemented to 

either the front- or back image to create a 5 cm overlap where the stitching function has a higher chance 

of finding similar features to create a coherent image with a minimally distorted seam (see Fig. 28). In 

particular, the stitching operation is grounded by a scale-invariant feature transform (SIFT) to 

concatenate images based on corresponding local features. A SIFT experiment is performed in Fig. 29 

which shows the initial images of Fig. 28, wherein Fig. 29 the straight long lines should find 

corresponding features in the overlapping regions of the two images. Nevertheless, no features are 

detected around the inlet, likely due to the opposite capturing direction and unoptimized SIFT 

parameters. Secondly, overview images (see Fig. 26), consisting of several concatenated unwrapped 

front frames, could be split and utilized. However, qualitative manual inspection reveals that 

observations are rarely displayed (see Fig. 26). In conclusion, the prototyped stitch method for 

unwrapped images remains broken and frames around the annotated image with the corresponding 

observations are still included. s. Given the importance of maintaining temporal consistency throughout 

the pipeline [4], alternative methods to capture the full temporal context of an annotated image should 

be explored, such as temporal classifiers or point cloud-based classification. 
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Fig. 26: Overview 

image consisting 

of 20 

concatenated 

front images. 

 

Fig. 27: 

Unwrapped and 

concatenated 

front- and back 

image. 

 

Fig. 28: 

Unwrapped front- 

and offset back 

image. 

 

Fig. 29: SIFT feature mapping for a front- and offset-

back image a backbone for stitching. 

4.5. Data Distributions 

Random resampling is utilized to balance the data distribution of the training data by oversampling the 

minority classes and downsampling the majority observations of the empty images. The resampling 

factors are applied by manual trial and error of integer values by using the same approach as Meijer et 

al. [9]. Eventually, the training data distributions are balanced as advised by Haurum and Moeslund [2] 

to equalize the distributions of the observations and maintain an equal distribution between the total 

defect images and the empty images. Nonetheless, this balance may not be completely mimicked with 

the resampling of multi-label annotation data due to the co-occurrence of observations in the same 

frame. In particular, upsampling a minority class towards a certain number of the largest minority class 

could be prone to either include doubles, (so also increasing the distributions of other classes) or use 

frames with single occurring anomalies to specifically upsample until a specified number. Hence, it 

could be considered to not include frames with co-occurring frames, which may decrease the 

performance of the model in being a multi-label classifier since it may shift into being a multi-class 

classifier. However, increasing frames with single occurring observations could strengthen the specific 

features for that observation such that the model can distinguish the observation classes with more ease. 

In conclusion, different resampling factors are experimented with to try to find an equal balance 

between all observations, with the risk that the observation types may increase to higher numbers as 

seen in Fig. 30.  

 

Fig. 30: Resampled observation distribution with varying higher integer resampling factors per observation. 

4.6. Data Formatting 

The final filtered dataset can be integrated into the modelling framework by preparing a custom dataset 

with constructed tensor input labels to facilitate efficient data loading into the model. Multiple frames 

are labelled with each a distinct label, causing duplicates of images. Therefore the rows with the image 

are combined to create a label with a list containing values of the categorical code attribute, which may 

be empty or filled. To generate tensor labels, binary columns are constructed in the dataset for each 
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code. After data preparation finalizations, the binary values for all codes in a row are converted into a 

binary vector.  

These binary vectors allow filtering out unwanted code columns. However, three methods could be 

considered while functionally doing this. First, code columns could be dropped from the data frame 

without further modifications. However, the excluded frames are still present in the dataset as normal 

images, which could be confusing for the model. Therefore, a second method could drop the columns 

and also drop the rows where the left-over codes are not present to exclude the present features of other 

codes. Nevertheless, still surrounding the annotated frame, the code will still appear due to the temporal 

labelling problem. Another option could be to merge the residual codes into an “others” code, to be able 

to be detected by the classifier as an observation with rare codes. Although, this observation code may 

be due to the variety of different code features in this code. For this project, the residual codes are 

summed together into another class to be able to still let the classifier learn the distinctions between 

other codes, compared to rare codes. 

Consequently, this vector is transformed into a tensor vector in the dataset class, serving as the annotated 

data for each frame as neural network input. The dataset class is derived from the PyTorch module to 

create a custom dataset for loading input data into deep learning models. In this project, the sewage 

dataset class loads the binary vector labels and corresponding image paths from a specified image 

directory. Additionally, transformations can be applied, and the maximum data loading size can be 

adjusted to improve model development efficiency by using a subset of the total data. Lastly, for each 

item, the class module retrieves the image from the directory and its corresponding tensor label, which 

are then provided to the data loader to assemble the training and testing sets. 
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5. Modelling 

The prepared data is utilised to find the most optimal model during an iterative model development 

phase. This involves experimenting with various pre-processing techniques and models to assess which 

model gains the optimum recall and F2-score performance. However, first, the model environment must 

be initialised by selecting a modelling technique, splitting the data, determining proper evaluation 

metrics, and building the training structure with certain hyperparameter tools and values.  

5.1. Modelling Technique 

At first, three state-of-the-art deep learning networks were selected to be used during the experiments. 

Additionally, modelling factors were established that allow for informed and focused further model 

adjustment decisions by supporting the interpretation and clarification of the results.  

5.1.1. Modelling Selection 

By referring back to the state-of-the-art different potential models for multi-label classification, one 

convolutional and two residual neural networks are selected to assess the different classification 

capabilities between different network types. From the state-of-the-art models used for sewage pipe 

anomaly classification, Haurum and Moeslund [5] reasoned their choice of two publicly available pre-

trained models to construct a two-step hierarchical network. Particularly, their benchmark on F1-score 

concluded that the AlexNet network by Xie et al. [7] was optimal for the classification of anomalies 

without a specific classification between observations, but rather if an anomaly occurs. For the second 

step in their hierarchical framework, their benchmark advised to utilize a TresNetL, as was stated that 

ResNets perform well for the classification between the choice of different available observations. 

Nevertheless, the F1-score may be less relevant for this project, however, this metric comes closest to 

the F2-score, since Haurum and Moeslund  [5] used the F2-score, although with used class importance 

weights which may make a significant difference in performance. In conclusion, it was chosen to start 

with the implementation of the pre-trained AlexNet with fine-tuned weights of Xie et al. [7] and 

consider the pre-trained AlexNet on default weights in later stages. Additionally, various ResNet 

networks such as ResNet50 could be implemented to assess the leading performance especially 

observation distinction by ResNet models. 

 The AlexNet model is implemented in three distinct manners to compare its performance based 

on its pre-training data and the number of fine-tuned layers. First, the last fully connected layer of the 

AlexNet was pre-trained on sewage images by Xie et al. [7] is fine-tuned, as it likely captures domain-

specific features better than models pre-trained solely on generic datasets, for instance, ImageNet, and 

could potentially reduce training time during fine-tuning. However, the pre-training data of Xie et al. 

[7] may not fully represent the variety of sewage defects for this project's training data, causing the 

model to miss certain observations. Therefore, fine-tuning the last layer of a default pre-trained AlexNet 

leading from PyTorch on project-specific images is considered. This method is used for most of the 

experiments to be able to assess the diversity of applying pre-processing techniques while keeping the 

model type a constant factor. Nonetheless, fine-tuning only the last layer may underfit the model to the 

complex features of sewage images. Hence, another experiment assesses the model's performance when 

two of the last AlexNet layers are fine-tuned, allowing the model to capture specific features of the 

sewage images more effectively. However, increasing the number of learnable parameters can lead to 

overfitting, as the model might learn features which are too specific to the training samples, reducing 

its ability to generalise to new data. It is often more effective to start with fine-tuning fewer layers and 

expand only if the results, together with the validation performance, show no overfitting.  

 Haurum and Moeslund [5] note from their model benchmark that the AlexNet of Xie et al. [7] 

is a proficient network for classifying normal and defective images, but its fewer layers may not capture 

complex image features. In contrast, Residual Neural Networks (ResNets) are deeper, with more layers, 

achieving dominant state-of-the-art results in various image classification tasks. In addition, Haurum 
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and Moelsund [5] found from their benchmark that ResNets can be utilised as the second stage in a 

hierarchical network for classification, as it can distinguish features between observations. 

Nevertheless, deeper ResNets, such as ResNet50, require increased training times and computational 

resources compared to shallower networks like ResNet18. However, while ResNet18 may require less 

training time and still benefit from residual connections, it may not capture as complex features as 

ResNet50, potentially missing distinctive details of observations. Therefore, for both the ResNet50 and 

ResNet18, distinct experiments are performed to assess the model's performance and computational 

efforts and determine their potential to replace AlexNet as the prior model during most experiments. 

5.1.2. Modelling Factors 

Six modelling factor assumptions are considered that could be taken into account while analysing the 

models’ results to make well-informed decisions for further model adjustments.  

• Data Quality: The dataset is assumed to be clean from poor lighting conditions, noisy or 

erroneous images and camera failures. Therefore, the images are expected to have uniform and 

consistent average brightness and tubular appearance. Still, erroneous images may occur due to 

the presence of manhole shaft images, as the number of initial and final images outside the pipe 

shape can differ in each inspection. 

• Observation Dependence: Certain observations within the same image could be dependent on 

each other's presence. This is assumed since balancing the observation distributions during 

resampling was not yet possible because certain observations often occur within the same image 

as an inlet, for instance, raising both their resampling presence at the same time. However, the 

model likely treats each observation as an independent observation due to the binary loss 

function in the multi-label classification method. 

• Varying Observation Appearance: The appearance of observations throughout all inspections 

could deviate depending on the type of observation, such as roots, which are considered more 

variable in their appearance than inlets and displaced joints. Hence, the model's ability to 

generalise across minority types of observations could be negatively impacted. 

• Deviating Inspection Appearance: Observation appearance variability is tried to be mitigated 

by maintaining consistent pipe attributes throughout all inspections, letting the model learn 

features in observations independent of pipe attributes.  

• Non-Stationarity: Despite efforts to maintain pipe appearance consistency, the visual 

appearance of the pipes could deviate due to different inspection date times, causing diverse 

deteriorations. 

• Class-Imbalance: Data balancing methods are assumed to allow the model to generalise over 

well-represented minority observations in the dataset. However, the manual resampling factor 

for each observation can vary for certain experiments, causing the varying observation 

proportions. This indicates that the model's performance is influenced not just by changes in 

preprocessing techniques or modifications to the model itself but also by data balancing shifts 

throughout the experiments. 

• Same Pipe Inspections: Given that the dataset includes inspections of the same pipes on 

different inspection dates, there may be a risk of data leakage if inspections from the same pipes 

are present in both the training and test sets. Particularly, lightning mitigation transformations 

aimed to standardise the lightning appearance of the inspections may cause inspections of the 

same pipes to appear more similar.  

5.2. Test Design 

Next, the test design outlines how to train and test the model’s performance across certain subsets of 

the data and evaluate its performance with a combination of five relevant metrics. 
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5.2.1. Training-Validation-Test Splitting Ratio 

The dataset is split by stratified sampling, dividing the dataset inspections into training, validation, and 

test sets using the most effective ratio determined through experiments, which closely aligns with the 

state-of-the-art splitting ratios. Splitting the dataset by distinct inspections, rather than randomly 

dividing images, minimises data leakage and ensures the model is tested on entirely unseen inspections 

and images, reflecting real deployment conditions. To initialise the experiment's data-splitting ratios, 

state-of-the-art ratios (that do not employ cross-validation) were reviewed to identify optimal ranges 

for training, testing, and validation that could be assessed during the modelling experiments. For 

instance, Li et al. [8] used a 70/30 split for the training and test sets while further splitting the test set 

equally into a test and validation set. Chen et al. [5] increased the training proportion to 75%, leaving 

25% for testing. As these two studies obtained the validation set from the division of the test data, Dang 

et al. [7] allocated 90% of the dataset to training, which was then divided into a 75% training and 25% 

validation set. These approaches ensure that the same distribution is present across the training, 

validation, and test data since the images are randomly split. However, due to the lack of an independent 

test set, this may lead to overfitting and reduce the model's generalizability. Therefore, during the 

experiments, the dataset's inspections are first divided into training and test sets by around a 70/30 split, 

followed by an equal split into validation and test sets, allowing balancing techniques to be applied to 

training data.  

 To ensure the model is validated and tested on unseen pipes, stratified sampling is used during 

data splitting to ensure an equal representation of the initial inspection length distribution across the 

training, validation, and test sets. This is particularly useful since this project deals with an imbalanced 

dataset where inspections deviate in length, likely causing certain observations to be underrepresented 

in shorter inspections. Utilising stratified sampling can prevent the validation and test sets from 

containing only the longest or shortest inspections, thereby enhancing the generalizability and 

consistency of the performance results to inspections with other lengths. Additionally, Fig. 31 shows t 

shows that the training and test sets have a similar inspection length distribution as in Fig. 6. In contrast, 

Fig. 31 shows that random splitting results mainly in inspection lengths around 610 meters in the 

training set, while the test set contains increased alternating frequency differences.  Nevertheless, for 

stratified sampling, inspections of the same pipe likely have similar lengths, they tend to appear in both 

sets, risking data leakage.  Therefore, leave-one-out cross-validation could ensure that the training and 

test sets are independent, evaluating the model on truly unseen data and allowing training on even the 

rarest observations. In conclusion, stratified sampling is utilised, since the minority observations in the 

training could be upsampled, allowing for enough data for rare observations. 

 

Fig. 31: Inspection length histogram differences by using stratified sampling compared to random sampling. 

5.2.2. Evaluation Metrics 

The model's performance is evaluated from multiple perspectives using four selected metrics which 

account for the imbalance in the dataset. First, recall is a crucial metric in anomaly classification 

problems [9] [8] as it measures the proportion of true occurrences correctly identified versus those 

missed (1). Consequently, missing observations can have severe consequences for the predictive 

maintenance of sewage infrastructure, leading to high repair costs. Furthermore, This metric is 



42 

 

particularly relevant for imbalanced data as it focuses on the classification performance of actual 

observations, excluding the majority class ("empty/normal images"). Recall is integrated into the deep 

learning framework by utilising the MultilabelRecall function from the torchmetrics.classification 

module and specifying how many classes are predicted, so the length of the tensor vector, which is, in 

this case, five, since five observations could be predicted. Hereafter the total tensor predictions are 

obtained with a probability threshold of 0.5 after training, validation, and testing. Subsequently, the 

recall is provided for both the total and each observation across these phases.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1) 

 Secondly, the F2 score is selected since missing an observation (FN) is often costlier than an 

FP, although minimising false positives remains important by maintaining a proficient precision value. 

In other words, recall is prioritised over precision, but false positives must still be minimised. 

Mathematically, the Fβ-score is a weighted harmonic mean of precision and recall (2), placing greater 

emphasis on recall when β > 1. In this project, the β value is set to 2, which weights recall four times 

more than precision (3). Besides, the F2 score is implemented similarly to the recall value with the 

MultilabelFBetaScore function.  

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(2) 

𝐹2 = 5
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

4 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(3) 

 Next, the precision-recall (PR) curve is used to select the optimal threshold for predicting values 

from probability outputs during training and evaluation by plotting precision against recall for different 

threshold values. Different PR curves can be plotted simultaneously for each observation to determine 

if separate thresholds are necessary per observation. Besides, the area under the PR curve (AUC-PR) is 

useful to assess model performance across all thresholds per observation. Additionally, the PR curve 

emphasises the model performance on the positive class, which is often the minority class in imbalanced 

datasets and is, therefore, less sensitive to class imbalance than, for instance, the ROC curve. This metric 

is integrated into the framework using the MultilabelPrecisionRecallCurve function from the 

torchmetrics.classification module. Afterwards, by generating PR curves for both the training and test 

(Fig. 32) sets, it could become evident to which observations the trained model overfits. 

  

Fig. 32: Precision-recall curves for having a balanced training set and an imbalanced test set. 

 Lastly, the conditional metric of precision at 0.9 recall is used to evaluate the model's ability to 

identify 90% of actual observations while minimising false positives. Among recall levels of 0.9, 0.95, 

and 0.99 [9], 0.9 is chosen to balance high recall against a proficient precision performance. This metric 

is derived from the precision-recall curve by extracting the precision value at a 0.9 recall, indicating a 

unique threshold for turning probabilities into predictions. 
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5.3. Build Model 

The test design and dataset can be integrated into the classification network by incorporating them into 

custom PyTroch training and evaluation functions with initial hyperparameter settings. The model is 

set up in five steps by initializing the model and using specific loss, optimizer and learning rate 

schedular and providing the values of additional hyperparameters. First, the default AlexNet, ResNet50 

and RsNet18 can be loaded in with pre-trained weights on ImageNet from the torchvision.models 

module from Pytorch and the AlexNet pre-trained on sewage images by Xie et al. [7] can be loaded by 

coding their AlexNet model structure and loading in the corresponding weights as a PTH file. Hereafter, 

the layers' parameters that require gradients are specified to perform fine-tuning of the last layers. 

Secondly, a Binary Cross Entropy with Logits Loss function is utilized to treat each observation 

independently in the multi-labelled data by applying a sigmoid activation and computing binary cross-

entropy loss on those probabilities. Especially, this loss function allows cost-sensitive learning by 

weighting certain classes to penalize misclassifications of infrequent observations. Thirdly, the adamW 

optimization algorithm is chosen to decouple the weight decay from the learning rate to adjust the 

learning rate without affecting the weight decay, allowing stable and controllable optimization. This 

prevents overfitting and weight instability by adding a small penalty to the loss function based on weight 

sizes. Next, a StepLR learning rate scheduler is used to gradually reduce the learning rate to allow the 

optimizer to take smaller steps towards a deeper local minimum, enabling more precise fine-tuning of 

the model weights. Lastly, additional hyperparameter settings are set with a learning rate of 0,001, a 

batch size of 32, 3 epochs, and an input image size of 224. 

5.4. Model Assessment 

To assess the performance of the built model with varying adjustments, 26 experiments were performed 

in which pre-processing methods and neural network architectures were interchanged to consider the 

optimum model modifications. In particular, the experiments were grouped into six topics to consider 

which settings for the data split ratio, lightning condition methods, temporal mislabeling mitigations, 

modified loss functions, hyperparameter optimisations, and convolutional neural networks were 

proficient in raising mainly the model’s recall and F2-score performance. Additionally, the dataset size 

and resampling multiplication factors were modified throughout the experiments to discover the 

optimally balanced training set. Finally, the average performance of the recall,  F2-score, and the 

average conditional metrics of the precision at 0.9 over all observations of the model over the validation 

and test set were considered to evaluate the model results.  

 A metric visualisation is constructed to clarify the model's performance diviations and facilitate 

the comparison of the intercorrelated experimental results from diverse evaluation metrics with ease. 

Fig. 33 illustrates this visualisation, with coloured experiment numbers classified into groups and 

annotated accordingly by encircled, highlighting the most prominent or extreme results. Generally, the 

test set shows lower recall and F2-score values compared to the validation set. Consequently, the metric 

values for each metric belonging to the test and validation set are averaged, as the performances of these 

sets show similar behaviour compared to other metrics. Additionally, some experiments lack data points 

due to early stopping due to significant performance reductions compared to the previous experiment.  

 Furthermore, the overarching trend of different behaviours trouhgout the visualisation in the 

test and validation set performance is first discussed before examining detailed comparisons within 

experimental groups. Especially, the recall and F2-score metrics for the validation and test sets deviate 

significantly at the beginning and end of experiments compared to those in the middle. This may be 

clarified due to the model being optimised based on validation set performance, potentially fitting the 

validation data better than the unseen test data. Alternatively, due to the stratified data split, the 

validation set might contain slightly easier or more representative samples to learn. Eventually, when 

the test and validation sets show similar behaviour, it may indicate that the model generalises well to 

unseen data and that the current combination of the balanced training data distribution and the stratified 
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split of the validation and test sets are optimal. This major change likely corresponds to changes in the 

resampling factor at the beginning, middle, and end of the experiments, leading to different numbers of 

upsampled minority classes. Thus, the resampling factors and data balance between 9 and 14 may be 

more optimal, containing representative observations in both the test and validation sets. 

 

Fig. 33: Visualisation of the evaluation metric results for the 26 experiments of the model. 

5.4.1. Train-Test-Validation Split Ratio 

The first experiment group assesses the optimal ratio for splitting the inspection data into training, 

validation, and test sets based on model performance. The results of Fig. 33 are evaluated using data 

from experiments 1, 2, 3, and 7 from Table 7. Experiments 1 to 3 reveal that an 85%-7.5%-7.5% ratio 

yields maximum performance for average recall and F2-score, despite lower average precision at 0.9 

recall. Nevertheless, this ratio leads to larger validation and test sizes and a decreasing training set. This 

phenomenon can be explained by the fact that in the initial training set of 108332 images, most normal 

images are downsampled with upsampled minority classes, resulting in a total balanced training set of 

12016 images. This occurs consistently across all experiments, indicating issues with data splitting as 

the final sizes of the training, validation, and test sets no longer maintain the initial ratio. 

 Therefore, for the experiments after experiment 3, a 90%-5%-5% ratio was chosen to reduce 

validation and test sizes from 9509 to 6023. However, smaller validation and test sets can introduce less 

representative observations, impacting the reliability of performance metrics. This was evident as BBF 

and BAF observations often had a recall or F2-score of 0 in the test and validation sets, likely due to 

underrepresentation during the data split. Therefore, experiment 7 used an 80%-10%-10% ratio with 

larger validation and test ratios, achieving increased recall performance while maintaining similar F2-

score levels as experiments 1-3. Notably, the validation and test set sizes exceeded the training set size, 

which can be acceptable if the ratio of split inspections is maintained before resampling, ensuring that 

the observations are similarly split over the training, validation and test set with a specified ratio.  

Exp. 

Group 

Exp.  Training, Val, Test Ratio Train, Val, Test Size Resampled Training Data Proportion:  

Empty, BAJ, BAF, BCA, BBF, BAB 

Early 

Stop 

Ratio 1 95% 2.5% 2.5% 13083, 1628, 1606 6688, 1446, 1350, 1167, 786, 587  

2 85% 7.5% 7.5% 12016, 9509, 9801 6688, 1446, 1350, 1167, 786, 587  

3 90% 5% 5% ↓ 12443, 6023, 6740 6688, 1446, 1350, 1167, 786, 587  

Lightning 4 Normalization Dataloader 12443, 6023, 6740 6688, 1446, 1350, 1167, 786, 587  

5 Normalization Dataloader, 

Histogram Equalization 

12443, 6023, 6740 6688, 1446, 1350, 1167, 786, 587  

6 Normalization Dataset, 

Histogram Equalization↓ 

12443, 6023, 6740 6688, 1446, 1350, 1167, 786, 587  

Ratio 7 80% 10% 10%↓ 11578, 12650, 13219 6688, 1446, 1350, 1167, 786, 587  

Lightning 8 CLAHE X 11578, 12650, 13219 6688, 1446, 1350, 1167, 786, 587 yes 

9 Gamma Correction 1.5 X 11578, 12650, 13219 6688, 1446, 1350, 1167, 786, 587  
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10 Gamma Correction 1.1  

White Correction  

Shadow Remover X 

11578, 12650, 13219 6688, 1446, 1350, 1167, 786, 587 yes 

11 Gamma Correction 1.1 X 

White Correction X 

11578, 12650, 13219 6688, 1446, 1350, 1167, 786, 587 yes 

Table 7: Experimental setup for experiments 1-11. Green arrows indicate the setting is used for further experiments. Red 

crosses indicate the setting is not pursued. 

5.4.2. Lightning Conditions 

The impact of various lighting condition methods to mitigate poor illumination and mean brightness 

deviations showed that normalization and histogram equalization optimally improved the model's 

performance. The results from Fig. 33 related to this experimental group is evaluated by first discussing 

the results from experiments 4 through 6 involving normalizations and histogram equalization, followed 

by additional considered augmentation methods in experiments 8 through 11 as seen in Table 7.  

5.4.2.1. Normalization and Global Histogram Equalization 

First, the process of evaluating the impacts of normalization and histogram equalization methods is 

performed. In Experiment 4, normalization with values based on the standard distribution and variance 

over the data loader showed moderate improvement in recall and precision at 0.9 recall. Subsequently, 

it was considered that normalization alone may not be sufficient for significant image enhancement. 

Therefore, Experiment 5 incorporated histogram equalization to address the brightness disparity 

between inspections from 2009 and those from 2020 onwards. This approach increased the recall and 

F2-score, suggesting that combining normalization with histogram equalization enhances model 

performance by reducing extreme contrasts and increasing observation distinguishability.  However, in 

Experiment 4, normalization was applied to already normalized images from the data loader, which 

may be incorrect. Hence, Experiment 6 changed this by recalculating the standard deviation and 

variance over the training data's pixel values and then normalized the unnormalized dataset. This 

adjustment decreased recall but increased the F2-score and precision at 0.9 recall. Therefore, the choice 

between applying normalization on the training set or the data loader can be considered. For subsequent 

experiments is chosen to apply normalization over the training set with newly calculated standard 

deviation and variance values of the new training dataset. This could ensure identical standardized pixel 

value distributions for future expansions of the training data. 

5.4.2.2. Gamma Correction, White Balance Correction and Shadow Removal 

Secondly, during experiments 8 through 11 was found that replacing the histogram equalization and 

utilizing three additional data augmentation methods was not proficient. Notably, the data splitting ratio 

for these experiments was adjusted to 80% training, 10% validation, and 10% testing, differing from 

previous lighting condition experiments. First, the outcomes for Experiments 8, 10, and 11 are 

considered which were absent from Fig. 33 since early stopping was applied when the validation 

performance after certain epochs drastically declined compared to earlier experiments. Experiment 8 

implemented CLAHE to consider whether local contrast enhancement would outperform global 

histogram equalization in mitigating lighting conditions for finer image details. However, due to early 

stopping, it was decided to retain global histogram equalization. Besides, Experiments 10 and 11 

respectively assessed the impact of shadow removal and white balance correction to remove lighting 

artefacts that can obscure defects, although, both were similarly excluded due to early stopping by 

showing a lower validation performance. Nevertheless, Experiment 9 applied a gamma correction of 

1.5 to brighten images and enhance defect visibility without overexposure, maintaining the F2-score 

and precision at 0.9 recall score as Experiment 8, but was ultimately dropped due to decreased recall. 

In conclusion, global histogram equalization followed by normalization over the training data was the 

most effective approach to mitigate lighting conditions and enhance the model's learning capability. 
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5.4.3. Temporal Missed Annotations 

From conducting seven experiments to asses whether offset and propagation methods could mitigate 

the temporal mislabeling problem, a propagation of 2 yielded optimal model performance. Before 

evaluating the experimental results, assumptions, observations and clarifications are made to interpret 

the result correctly. Throughout these experiments, a splitting ratio of 80% 10% 10% is used with global 

histogram equalization and training set normalization applied consistently. However, as shown in Fig. 

34 and Table 8, varying upsampling and downsampling factors were used for data balancing and the 

propagation methods increased the datasets, causing experiments to deviate in their final dataset for 

modelling. Therefore, the maximum size of the dataset loaded into the dataset class was reduced by a 

factor of 0.3 for Experiment 13 onwards to maintain consistent training, validation, and test sizes. 

Moreover, Fig. 34 shows a consistent offset in the BCA sample size above the other observation sample 

sizes. This phenomenon may result from the multi-label nature of the data, where BCA cannot be 

downsampled below a certain threshold because it co-occurs with other observations in certain images. 

Furthermore, the varying training set sizes across the experiments likely suggest that different numbers 

of observations will be present, causing the experiments with higher training sets to be trained on more 

observation instances. Lastly, Fig. 33 shows that the precision at 0.9 recall plot behaves similarly with 

the varying training set sizes as in Fig. 34.  

 

Fig. 34: Sizes of the observation types in the resampled training data, combined with the sizes of the final training, 

validation and test sets. 

Exp. 

Group 

Exp.  Training, Val, Test Ratio Train, Val, Test Size Resampled Training Data Proportion:  

Empty, BCA, BAJ, BBF, BAF, BAB 

Early 

Stop 

Temporal 12 Offset 2 11578, 12650, 13219 6688, 1167, 1446, 786, 1350, 587  

13 Propagation 2  

SizeFactor = 0.3 ↓ 

11439, 3795, 3965 23887,5713, 4729, 4648, 3831, 3697  

14 Propagation 5 21504, 3795, 3965 45583, 12586, 7631, 8119, 8007, 8331  

15 Propagation 3 7286, 3677, 4083 15050, 4097, 2559, 2873, 2859, 2814  

16 Propagation 3 12078, 3677, 4083 25397, 6514, 4457, 4564, 4488, 4478  

17 Propagation 1 8160, 3677, 4083 16496, 4153, 3153, 3274, 3283, 2983  

18 Propagation 2↓ 11489, 3677, 4083 23887, 6128, 4348, 4291, 4266, 4387  

Table 8: Experimental setup for experiments 12-18. Green arrows indicate the setting is used for further experiments. 

Next, the execution of the seven experiments is explained to gradually conclude why a propagation of 

2 seems the most effective method for mitigating temporal missed annotations by achieving an optimal 

recall and F2-score. First, Experiment 12 offset all labels to the 2nd previous image, resulting in higher 

recall values but a reduced F2 score. Other offset values did not improve the metrics' performance. In 

Experiment 13, the propagation method was tested by adding the previous two images relative to the 

initially labelled image to the training set.  This resulted in increased recall, F2-score, and precision at 

0.9 recall, likely due to the greater extent of upsampling, as shown in Fig. 34. To verify if other 

propagation values would outperform Experiment 13, a propagation of 5 was used in Experiment 14. 

This reduced recall and F2-score but increased precision at 0.9 recall. In conclusion, the most optimal 
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propagation of two could be chosen which resulted in a recall of 0.51 and an F2-Score of 0.32 for the 

test set. 

 To specify the performance of the distinct observations for the three previously discussed 

experiments, the shape and area under the precision-recall curves for these experiments are assessed. 

First, Fig. 35 shows that the offset method could be proficient in increasing the precision performance 

of the BCA, BAB and BAJ. Subsequently, a propagation of 2 reduces the performance of BAB, but 

increases the performance of BAJ, BBF and BCA. Consequently, higher propagation values solely 

increase the BCA area under the precision-recall curve which likely caused the model to overfit to 

connections (BCA) as a greater number of similar images with the connections in sight are used for the 

training data. The limited ability to correctly identify displaced joints (BAJ) and infiltration (BBF) could 

be caused by the fact that the BAJ and BBF are less visible from a distance and they could be wrongly 

classified with a healthy joint. In closing these results could conclude that the offset and diverse 

propagation settings could be proficient to increase the precision and area under the precision-recall for 

distinct observations. This likely occurs since certain observations are visible from a further distance, 

and others not, while certain observations occur in alignment with the pipe and others occur only 

aligning with the circumference of the pipe. 

  

Fig. 35: Precision-recall curves for an offset of 2 (a), propagation of 2 (a), and propagation of 5 (c). 

Besides, four propagation experiments were conducted to evaluate the model's performance across 

different propagation values and changed resampled training set distributions. In Experiments 15 and 

16, a propagation value of 3 was used, with Experiment 15 having fewer resampled observations than 

Experiment 16. Fig. 33 shows that Experiment 16 achieved a higher F2-score and precision-at-0.9 

recall, but a lower recall value. Therefore Experiment 17 maintained the training balance of Experiment 

15 but used a propagation value of 1, resulting in increased recall but significantly reduced F2-score 

and precision-at-0.9 recall than propagation of 3. Since these three experiments lacked major 

performance improvements, the propagation value was reverted to 2 with a comparable training dataset 

balance as Experiment 13. Hence, it was assumed that experiment 18 should perform similarly to 

experiment 13 again. As the recall of the validation set shows similar behaviour, the test recall value 

was significantly lower.  

 The difference between experiments 13 and 18 could be concluded from Fig. 36 as experiment 

18 contains a less gradual balance between the observations since the BCA contains more samples 

compared to the other observations. Therefore, this causes a model to likely perform only well on that 

solely dominant minority class as Fig. 37 shows that the BCA is the most representable observation in 

the precision-recall curve of experiment 18. This concludes that maintaining a balance between 

observations is important to allow other observations to also perform well in the model. Nevertheless, 

the multi-label nature of the data makes it hard to do this during resampling. Therefore, alternative 

balancing methods for multi-label classification may be considered. Lastly, the deviated results of 

experiment 18 may be attributed to factors such as random upsampling since the test set may contain 

more upsampled observation images with less distinctive features compared to experiment 13. 
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Fig. 36: Resampled training set distributions in experiment 13 (a) and experiment 18 (b). 

 

Fig. 37: Precision-Recall Curve of experiment 13 (a) and experiment 18 (b). 

Lastly, during data preparation was assumed that propagation may cause model overfitting, as larger 

propagation values could increase the training set with images with visual features similar to the frame 

on the initial labelling location. Fig. 38 shows that increasing propagation to two does not significantly 

affect the proximity of the validation loss to the training loss. Even without propagation in (a), the 

validation loss increased at the 4th epoch while the training loss may approached overfitting. Similarly, 

with the propagation of two in the second epoch, the validation loss increased while the training loss 

seemed to decrease. Thus, propagation does not significantly increase the risk of overfitting, as 

overfitting can occur even without propagation. 

  

Fig. 38: Loss plots of the test and validation loss of no propagation in Exp 7 (a) and a propagation of 2 in Exp 13 (b). 

5.4.4. Revised Parameter Settings 

As previous experiments established the optimal ratio and propagation settings, the model parameters 

were revised and optimized using hyperparameters and alternative resampling methods through four 

experiments. Meta-information for each experiment is shown in Table 9. First, in Experiment 19, class 

weights were applied in the Binary Cross-Entropy Logits Loss function as a cost-sensitive learning 

method to address the resampling method's difficulty with multi-labeled data. Fig. 33 demonstrates that 

this experiment yielded the highest extreme values in performance metrics for both validation and test 

recall, with the test recall reaching 0.75. In this experiment, class weights are applied while the training 

set is balanced, indicating a combination of resampling and cost-sensitive learning. However, cost-

sensitive learning should theoretically improve detection rates for minority classes, while it only 
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benefits the BCA and BAJ classes in the precision-recall curves. Therefore,  further fine-tuning of class 

weights is necessary to better represent the remaining observation types and ultimately optimize 

performance since cost-sensitive learning could have more potential than resampling methods. 

Exp. Group Exp.  Training, Val, Test 

Ratio 

Train, Val, Test Size Resampled Training Data Proportion:  

Empty, BCA, BAJ, BBF, BAF, BAB 

Early 

Stop 

Class Weights 19 BCE Loss Weights 

on Balanced Data 

11489, 3677, 4083 23887, 6128, 4348, 4291, 4266, 4387  

Loss 20 Bootstrapped Cross 

Entropy Loss 

11489, 3677, 4083 23887, 6128, 4348, 4291, 4266, 4387 yes 

Hyperparameters 21 Learning rate 0.009 11489, 3677, 4083 23887, 6128, 4348, 4291, 4266, 4387  

22 Batch Size 64  11489, 3677, 4083 23887, 6128, 4348, 4291, 4266, 4387  

Table 9: Experimental setup for the experiments introducing cost-sensitive learning, loss replacement and optimizing 

hyperparameters. 

 Subsequently, the loss function was replaced by the Bootstrapped Cross Entropy Loss to 

determine if the model could increase learning the rare observations by focusing on the most challenging 

examples and preventing the majority class from dominating the learning process. However, early 

stopping was performed as it was observed that the bootstrapped cross-entropy reached lower metric 

results than the previous BCE loss usage. This may occurred since the training data was already 

balanced, likely making the effect of the Bootstrapped Cross Entropy Loss Function less useful. Thus, 

the Bootstrapped Cross Entropy Loss Function might be more suitable for imbalanced datasets. For the 

following experiments, the initial BCELogitLoss is used. Lastly, In experiment 21, the learning rate 

was manually optimized to 0.009. However, this adjustment minimally impacts outcomes compared to 

the 0.001 learning rate used in experiment 18.  Additionally, experiment 22 increased the batch size to 

64 which lowered the recall and F2-Score performance. Therefore, the batch size is reverted to 32, as 

previous experiment 21 resulted in higher recall and F2 scores. 

5.4.5. Varying Neural Networks 

The performance of a different fine-tuning method and three additional models is assessed to determine 

their potential compared to the already fine-tuned AlexNet, concluding that the currently used AlexNet 

provides more proficient performance. The topics of each experiment are described in Table 10. First, 

Experiment 23 shows from Fig. 34 that fine-tuning the last two layers of a pre-trained AlexNet 

significantly improves recall, F2-score, and precision at 0.9 recall compared to previous Experiment 22 

only. This improvement may suggest that fine-tuning deeper layers helps the model learn specific high-

level features from case-specific data. Therefore the number of deeper layers could be continuously 

fine-tuned until likely a threshold can be reached until the model starts to overfit due to learning too 

specific features of the training dataset.  

 Subsequently, in experiments 24 and 25, two ResNet models were fine-tuned and compared to 

AlexNet to consider other models' potential. It can be found from Fig. 33 that the ResNet50 

underperforms on all metrics compared to the previously utilized AlexNet. On the contrary, initially 

was assumed that ResNet's deeper architecture would perform better during feature extraction. This 

may be explainable since in this experiment ResNet50 classifies images with anomalies from empty 

images while simultaneously identifying the types of anomalies. Nonetheless, Haurum and Moeslund 

[…] suggested that ResNets could be more effective for the latter task alone, as they can better 

distinguish anomaly features from already classified anomaly images. The results of Experiment 24 

seem to support this argument, indicating that ResNet50 should be used primarily as a feature extractor 

between classes rather than for both classification stages. Additionally, ResNet50’s lower metric results 

during the experiment could be because parameters, such as ratios or propagation values, are not yet 

optimized, unlike those for AlexNet in previous experiments.  

 Furthermore, experiment 25 yielded extreme results with a fine-tuned ResNet18 as significant 

deviations exist between the validation and test recall, along with an abnormally high validation F2 
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score. This could suggest that the ResNet18 performed well on the validation data although poorly on 

the test set, indicating that the test and validation sets may contain different proportions of similar 

representable features. Furthermore, since ResNet18 is a shallower network than ResNet50, it should 

classify images with more complex features less well. Therefore regarding the results, it could be 

assumed that the observations in the validation set may contain less complex features than the test set. 

Additionally, ResNet18 required less training time than ResNet50 as it is assumed that the less present 

residual components demand fewer computational resources. In closing, due to the significant deviation 

between test and validation recall values, it is unclear if ResNet18 performs better on unseen pipes than 

AlexNet or the average performance of ResNet50. Nonetheless, an improved version of ResNet18 may 

still hold potential for future model implementations. 

 Lastly, experiment 26 implemented a pre-trained AlexNet on sewage pipe images since this 

network may learned case-specific features already. However, early stopping is performed as the recall 

and f2-score were 0 for all test set evaluation metrics. Therefore is suggested that the default AlexNet 

trained on ImageNet only may be more suitable to fine-tune the model to the identical available data. 

The inefficiency of the network of Xie et al. [7] can be explained by the fact that their robot camera 

captured images at specific pipe views, differing from this project's constant tubular perspective, likely 

making their training data unrepresentative for this project.  Besides, Xie et al. [7]  fine-tuned the entire 

AlexNet which may have adjusted important lower-level weights to perform well on their data, while 

our data may needed the initial weights to extract general features. 

Exp. Group Exp.  Training, Val, Test 

Ratio 

Train, Val, Test Size Resampled Training Data Proportion:  

Empty, BCA, BAJ, BBF, BAF, BAB 

Early 

Stop 

Models 23 AlexNet, Fine-Tune 

Last 2 Layers 

11489, 3677, 4083 23887, 6128, 4348, 4291, 4266, 4387  

24 ResNet50, Fine-Tune 

Last Layer 

11489, 3677, 4083 23887, 6128, 4348, 4291, 4266, 4387  

25 ResNet18, Fine-Tune 

Last Layer 

11489, 3677, 4083 23887, 6128, 4348, 4291, 4266, 4387  

26 Xie AlexNet, Fine-

Tune Last Layer 

11489, 3677, 4083 23887, 6128, 4348, 4291, 4266, 4387 yes 

Table 10: Experimental setup for the experiments comparing different models and fine-tuning methods. 
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6. Discussion 

6.1. Answering the Research Questions 

To answer the main research question of how sewage pipe annotation can be automated with image 

classification to mitigate for inconstant labelling and data imbalance, the modelling results regarding 

applied data preparation and modelling methods are interpreted by answering the two first subquestions.  

 The first sub-research question investigates which image pre-processing methods can be 

utilized to mitigate the data imbalance and enhance image qualities to obtain proficient model 

performance. First, applying histogram equalisation and normalization to the training dataset 

proficiently mitigates the brightness deviation between the inspections conducted in 2009 compared to 

those from 2020 onwards, reaching an average recall value of 0.52 and an average F2-score of 0.22. 

Secondly, utilizing propagation by including two frames before an initial labelled frame and labelling 

them as the initial frame can improve the average recall and F2-score to 0.56 and 0.38 respectively. 

However, during the propagation experiments was found that the resampling balance of each 

observation matters. Especially since maintaining an average balance with higher resampling factors 

for each observation could be more proficient than strict balancing where due to the multi-labelled data 

one observation, in this case BCA, is disproportionately increased. Furthermore, combining cost-

sensitive learning with resampling by applying weights to the balanced training data could significantly 

increase the averaged recall to 0.82, although lowering the F2-score to 0.27. Particularly, the weights 

for each observation are calculated from the imbalanced training set and applied to the balanced 

training. 

 The second sub-research question explores which pre-trained image classification neural 

networks can be fine-tuned to mainly increase the recall performance compared to the F2-score. Among 

the three evaluated models and their variations, fine-tuning the default weights of the last CNN-based 

AlexNet layer yielded the highest recall and F2 scores during propagation and when implementing class 

weights. Additionally, fine-tuning the last two layers of AlexNet improved recall and F2-score to 0.48 

and 0.26 compared to the ResNet implementations where the highest recall and F2-score performance 

for the ResNet18 yielded 0.27 and 0.24 respectively. Between the ResNet50 and ResNet18 

implementations can be found that the latter network trains faster due to its shallow layers, although 

ResNet50 provides more consistent validation and test recall scores. Utilising a pre-trained AlexNet on 

sewage images proved less optimal performance since it was likely not trained on similar contextual 

images as those of the sewage pipes in the Netherlands using this project's data. In conclusion, classic 

pre-trained CNN models can be preferred over ResNet models to increase the recall and F2 score for 

multi-label classification. 

 The final sub-research question aims to evaluate the classifier’s objectivity compared to manual 

classification to determine its bias towards certain observations. This subquestion remains unanswered 

as this thesis has not yet deployed the model to assess its objectivity compared to human inspectors. 

However, evaluation experiments could assess the classifier's consistency by providing identical 

inspections to both the model and various human inspectors to analyse interpretation deviations between 

the inspector and the model. This could reveal systematic biases among human inspectors, such as 

tendencies to over- or under-report certain observation types. Statistical tests could then determine 

significant differences between the model’s and human inspectors’ performance. Furthermore, the 

inspector's results would be relative to each other and relative to the results of the model, as inspection 

annotation will always lack an exact ground truth since each inspector interprets observations 

differently during an inspection. Therefore, a democratic average of different inspectors' annotations 

could be taken while weighting each annotation based on the inspector's experience and experienced 

fatigue during labelling. Eventually, this weighted average could serve as an approximated ground truth 

for prediction comparison with the model. 
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6.2. Limitations 

Four modelling factors potentially affecting the results are discussed regarding data quality issues, 

resampling variations in the data balance, the underperformance of certain observations, and the 

application of class weights. 

 First, despite data quality enhancement, erroneous images showing the manhole shaft at the 

beginning and end of certain inspections remained in the training data. This issue likely arose since the 

exclusion threshold for the front and back images was based on a qualitative assessment of only 10 

inspections. Unassessed inspections might have more extreme image indexes of front and back frames 

at the beginning and end of the inspections where the manhole appears earlier or later than the applied 

threshold.  

 Besides, two limitations during the propagation methods occurred regarding the training set 

balancing First, fluctuations of the training set size due to varying resampling factors throughout the 

propagation experiments likely affected the results of the various propagation methods as a controlled 

assessment of these techniques was limited. Second, an imbalance between observation types accrued 

as the largest minority group (BCA) could no longer be downsampling while resampling factors for the 

other observations increased. This phenomenon is evident between the results of experiments 13 and 

18 where a propagation of two 2 was applied, although the performance of experiment 18 decreased 

since the BCA observation was dominant. Hence, this biases the model towards finding BCA’s over 

other observations. In conclusion, the combination of how you resampled the observations is a big factor 

and can be harder during multi-labelled data.  

 Deviations in average recall and F2-scores may result from three factors regarding the data 

splitting of the inspections over the training, test and validation set and the reducing the training dataset 

size. Firstly, certain experiments showed underrepresentation of the BAF, BAB and BBF when smaller 

training sets were loaded from choosing lower upsampling factors Secondly, downscaling the dataset 

in the data class loader by limiting the input dataset to a fixed size could have excluded the rare 

observations. Particularly, the dataset size was reduced in a non-random effort by only including a 

specified portion of the head of the loaded data frame. This likely excluded observations appearing later 

in the balanced training data frame and inspections with more diverse observations could have been 

omitted as only those with larger frame counts could have been included in the head of the data frame. 

Thirdly, stratified sampling aimed to maintain the distribution of inspection frame counts across the 

training, validation, and test sets. Nonetheless, it did not preserve the observation distribution within 

these sets which may have supported the exclusion of previously mentioned minority observations. 

 Class weights appeared to be a promising approach for addressing the class imbalance, although 

their implementation involves three primary limitations related to class weight calculation and training 

loss function behaviour. Firstly, class weights are calculated from the initial imbalanced training set but 

applied to a balanced dataset. This approach aims to improve recall performance, as using an 

imbalanced set with class weights would lack enough rare observations for effective model learning. 

Additionally, the training loss function plot during class-weight implementation showed greater loss 

variations per iteration compared to other experiments, suggesting that class weights may contribute to 

the instability of the model. 

6.3. Future Work 

Based on the limitations various alternative methods could be recommendations regarding the increase 

of data diversity, balancing methods, data splitting, hyperparameter tuning and selecting sequential 

prone networks. 
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6.3.1. Data Diversity 

Five data adjustments could enhance the dataset's diversity by increasing its data sources, 

including additional types and continuous observations, and using unwrapping or higher image 

resolution. First, expanding the dataset to include annotated sewage data from other municipalities 

could ensure broader applicability of the system through differently located pipes, as relying solely on 

footage from Apeldoorn may not generalize to the entire Netherlands. Second, excluding PVC and 

HDPE pipes could omit relevant observations. Hence, while including those two pipe materials, the 

concrete pipes could be undersampled or the PVC and HDPE pipes upsampled to improve dataset 

variability. Meanwhile, this could allow for additional observations to contain enough data to be 

included in the final dataset. Third, implementing continuous annotations with severity levels could 

make the labelled frames more comprehensive, capturing both continuous and non-continuous 

observations. Next, unwrapping and stitching front- and back-facing images would provide a full-frame 

detailed view of each feature. In regards to the temporal labelling location issue, a certain number of 

frames around the unwrapped frame could be excluded. Finally, higher image resolutions could be 

implemented to capture finer details of less distinctive observations although that could be 

computationally demanding. Given that a portion of the input images coming from a fisheye lens are 

black around the circular circumference of the image, experimenting with circular convolutional neural 

networks could be beneficial. 

6.3.2. Data Balancing Methods 

Besides currently implemented balancing methods, the resampling and cost-sensitive learning could be 

expended with other balancing techniques such as ensemble learning.  First, with synthetic resampling 

methods such as Borderline-SMOTE, ADASYN, and k-nearest neighbors with Tomek links or RUS 

could be experimented with. However, our experiments indicate that cost-sensitive learning, which 

assigns weights to the minority class, outperforms resampling as the literature stated. This approach 

enables the model to learn the unique characteristics of the minority class without bias towards the 

majority class. Furthermore, optimizing the class-weight calculations to assign higher costs to the 

minority class could be beneficial. This strategy can be combined by assigning higher costs to distinct 

minority class instances in annotated images to tackle the temporal labeling problem. Besides, ensemble 

learning boosters often surpass resampling and cost-sensitive learning by implementing techniques such 

as the XGBoost or TLUSboost. Lastly, since different observations often behave differently in the 

precision-recall curve, distinct methods can be applied to specific observations rather than the entire 

dataset, such as resampling or propagation, This targeted approach can improve the performance of 

each distinct observation based on its unique visual characteristics. 

6.3.3. Data Splitting 

To ensure enough observations are present in the validation and test sets for robust model generalization 

and reliable result calculation, three methods could be implemented to split the data in different ratios 

using stratified sampling or applying cross-validation. First, splitting ratios for a higher validation and 

test set could include more observations in the test and validation set to allow for less distinguishable 

observations to have a chance to be more representative. Secondly, the problem was experienced where 

the validation and test set increased drastically in splitting ratio compared to the downsampled training 

set. Currently, stratified sampling was used for the division of the inspection by preserving the frame 

count proportion of the whole distribution. Hence, it would also be important for the test and validation 

sets to undergo stratified sampling to maintain a similar distribution of the observation presence.  

Nonetheless, to ensure all observations are used for validation, testing, and training, k-fold cross-

validation can be implemented. The dataset is divided into k subsets, and the model is trained k times, 

each time using a different subset as the validation set while the remaining k-1 subsets serve as the 

training set. This method ensures the model's performance is not dependent on a specific data split and 
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prevents data leakage by iteratively training on different folds and testing on the remaining fold until 

all subsets have been utilized. 

6.3.4. Hyperparameter Tuning 

Moreover, training the model for an increased number of epochs can allow the model to learn from the 

data for a longer time. However, this approach may lead to overfitting, which can be mitigated through 

at least three methods regarding early stopping, regularization, and dropout. First, early stopping could 

be inserted when the performance on the validation set declines. Secondly, regularization techniques 

such as L2 regularization to the loss function could be applied to penalise large weights and encourage 

the model to find simpler patterns. Thirdly, the dropout rate can be experimented with in a pre-trained 

PyTorch network to allow the model to learn different data patterns. In closing, these and other 

hyperparameters can be fine-tuned using automated tuning methods such as Optuna or RayTune with 

pruning to terminate unpromising training cycles and efficiently find optimal parameters. Each 

hyperparameter can be ranked to identify those with the most potential for model improvement by being 

adjusted. Furthermore, Explainable AI (XAI) can be utilized by plotting activation weights to 

understand the patterns recognized by the neural network in specific observations to assess whether the 

identified feature maps correspond to actual features from the observations. 

6.3.5. Temporal Dependent Models 

Three types of multi-label classification networks may address the sequential nature of the data and 

mitigate temporal mislabeling of frames around a labelled image. Although CNNs are primarily used 

in sewage pipe research, other models capable of understanding temporal observations should be 

introduced. First, Recurrent Neural Networks (RNNs), including Long Short-Term Memory (LSTM) 

and Gated Recurrent Units (GRUs), could be implemented to capture long-range dependencies in 

sequences, despite potential vanishing gradient issues. Second, Temporal Convolutional Networks 

(TCNs) offer an alternative by using dilated convolutions to capture long-range dependencies in 

sequential data. Third, Vision Transformers (ViTs) can be employed to consider long-range 

dependencies across an entire image sequence, although they require significant computational 

resources and substantial training data. 

  



55 

 

7. Conclusion 

This thesis determined how to train a robust multi-label anomaly classifier against labelling 

inconsistencies to automate sewage inspection. Experimental results demonstrated that fine-tuning a 

pre-trained convolutional neural network (CNN) with default weights, combined with normalization, 

histogram equalization for image enhancement and balancing the training data through resampling with 

applied class weights, showed the most promising results based on the client-provided dataset. 

The data preparation followed a specific order due to dependencies in the propagation and offset 

methods, requiring the merging of equal numbers of front and back images. Therefore, rows containing 

both front and back images were filtered, followed by the exclusion of diverse start, end, and blue 

images, ultimately retaining only the front images. 

Initial experiments focused on the data splitting ratio, assuming smaller validation and test set ratios 

would contain enough observations for proficient result calculations. However, observations remained 

underrepresented despite upsampling to the same count as other observations. Additionally, smaller 

training ratios unexpectedly resulted in validation or test sets exceeding training images due to post-

split downsampling of empty images. 

Subsequent experiments evaluated image enhancement techniques to address color and brightness 

deviations. While brightness and shadow mitigation techniques, along with CLAHE (an improved 

histogram equalization), were anticipated to allow the model to distinguish finer areas of the observation 

features, only normalization and global histogram equalization proved effective. 

Furthermore, the combination of class weights and upsampling was hypothesized to improve model 

performance, which was confirmed by the experiments. However, this study employed both sampling 

and cost-sensitive learning by applying class weights from the imbalanced training set to the loss 

functions during the training over the balanced set. 

It was chosen to focus on multi-label classification as the first modelling implementation since the data 

was already labelled in a multi-label manner. Besides, regarding the modelling, it was expected that 

convolutional neural networks would underperform compared to deeper residual neural networks as 

was assumed that ResNets would learn more complex features. However, the AlexNet CNN increased 

the recall and F2-score compared to the ResNets. Still, this was assumed based on the literature since 

AlexNet was proficient for binary normal and defect classification only, while the ResNet could better 

be used only during in-between observation classification. 

As the steps of the CRISP-DM method can be flexible, this thesis combined data understanding and 

data preparation since the discovery of a correlation would be a direct factor for data filtering. 

Furthermore, past these two parts, only modelling is mainly used, and the evaluation phase is partly 

defined as the discussion chapter since real-life deployment assessment of the model is not of interest 

to this thesis. Additionally, the business understanding is incorporated into the extensive introduction 

to allow all literature discoveries to already be mentioned in a structured manner in the introduction, 

including the motivation and problem for this project based on an interview with the client. 

Future research should include additional pipe attributes and continuous severity levels, using XGBoost 

or TLUSboosters for ensemble learning to balance data and applying k-fold cross-validation and 

optimize hyperparameters to train sequential data-dependent models, such as RNN, LSTM, TCN, or 

ViTs. 

Returning to the problem statement, the robustness of the model against inconsistencies is targeted 

where this research assumes that the proficient methods found make the model robust against 

inconsistencies as the training data consists of diverse annotated inspections. However, it is not 

considered yet if the inspection in the project dataset is annotated by multiple inspectors, as this would 
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determine likely the bias of the model itself. Still, this project showed from its experiment how to not 

only be robust against inconsistency, but mainly against the imbalanced nature of the data. Where this 

project can support the literature that cost-sensitive learning indeed could show more prominent results 

than only implementing resampling. Additionally, this research tackles two new methods not yet found 

in the literature by using label offset and propagation to deal with the temporal mislabeling localization 

problem where from the experiments the propagation was found to be proficient. Therefore future 

research could extend on the propagation method. Although it could be thought of to unwrap and stitch 

the images for multi-label classification as it has only been used for semantic pixel labelling yet.  
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9. Appendix 

9.1. Appendix A 

This appendix contains further descriptions of the data sources. Of which the following Fig A.1 explains 

the directory structure of the inspection image folders. 

 

Fig A.1: Directory structure of the image data consisting of various inspection folders. 

In the following Fig. A.2, the file3 takes only the first three letters of the fileid, which may be promising 

in reducing data retrieval time while forming the custom dataset. 

 

Fig. A.2: a) Explained keys of the fileid.json file, b) Example of keys with values of an existing inspection. 

The meta.json file contains relevant detailed inspection information about the frame resolution, and 

camera settings, allowing allocating labelling locations and advanced image processing of which the 

key attributes are discussed in Fig. 3 in millimetres (the untranslated and complete meta.json content is 

available in Appendix …). First, the count and pixel resolution of captured frames and overview images 

are provided, with frameCount including capture times for both front and back images, therefore sharing 

the same image index. Secondly, pipe details, such as its identifier and diameter in millimetres are 

noted. Besides, for the startPosition, positive values showing a later start and negative values an earlier 

one. Lastly, the stepDistance marks the incremental distance between images in centimeters. 

Most inspections lack the additional props (properties) section, which offers useful camera information 

for image processing. The center coordinates specify the pixel-wise location of the pipe centre in the 

initial front and back images, which may vary due to robot positioning. DN (Diameter Nominal) and 

specifies the pipe's nominal diameter in millimetres. These last two attributes may be interesting for 

potential image unwrapping. The Distance refers to the stepDistance, but in millimeters. Moreover, 

similar to startPosition, StartPos indicates the start of the capturing distance in millimetres from the 

pipe's starting point, with StartImage denoting the reference starting image index.  The TotalFrames 

matches the frameCount. Besides, Deviation_BrightnessCompensation and Deviation_HD as imaging 

options, indicate respectively that brightness and high-definition processing are not applied. Lastly, the 

PipeWidth matches pipe.diameter in millimetres, and PipeInspDate corresponds to the datetime of the 

file.json file. 

"fileid" : videoid 

"file3" : abbreviated videoid 

"assetid" : pipeid 

"datetime" : inspection date 

{  "fileid": "e7c73c45b47f40d58a3c396edcbbdd56", 

    "file3": "e7c", 

    "assetid": "02febe3dc4894e98abd5381501fbc4f9", 

    "datetime": "2020-02-12 00:00:00" } 
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Fig. A.3: Example of the filtered relevant content in the meta.json file 

Full content meta.json file in the original German language:  

 

Fig. A.4: Example of original relevant content in the meta.json file. 

The following table shows the additional attributes of the pipe data.  

Attribute Importance Data Type Value 

pipeid x textual pipe Uuid, eg. 00094c07091a4c689781f6c0bf9f31f2 

pipesystem  Categorical gravitySewer, mechanicSewer 

"frameCount":250, "frameResolution":{"x":1040,"y":1040}, 

"overviewCount":13, "overviewResolution":{"x":320,"y":503}, 

"pipe":{"name":"520-46","diameter":500}, 

"startPosition":110, "stepDistance":5, 

"props":[… 

"center_y1=516","center_x1=520","center_y2=514","center_x2=520", 

… 

"DN=500", 

"Distance=50", 

… 

"StartPos=1100","StartImage=22", 

"TotalFrames=250", 

… 

"Deviation_BrightnessCompensation=0","Deviation_HD=0", 

… 

"PipeWidth=500",  

… 

"PipeInspDate=12-2-2020 16:04:30", 

…]} 

"frameCount":250, "frameResolution":{"x":1040,"y":1040}, 

"overviewCount":13, "overviewResolution":{"x":320,"y":503}, 

"pipe":{"name":"520-46","diameter":500}, 

"startPosition":110, 

"stepDistance":5, 

"props":[ 

"Panoramo.ips","41","[Init]","Kennung=2","InfoText=520-46", 

"zentrum_y1=516","zentrum_x1=520","zentrum_y2=514","zentrum_x2=520", 

"OWinkel_1=517","OWinkel_2=509", 

"Profil=0", 

"DN=500", 

"BAbstand=50","SPixel=16", 

"StartPos=1100","StartBild=22", 

"AnzahlBilder=250", 

"IPF_filesize=101326", 

"ColorPlus=1","Abw_Helligkeitausgleich=0","ABW_HD=0", 

"[Main]","HaltungsNr=520-46", 

"HaltungsBreite=500","HaltungsInspNr=109","HaltungsInspDatum=12-2-2020 

16:04:30","HaltungsInspRichtung=gegen",v 

"LeitName=","LeitungsBreite=","LeitungsInspNr=","LeitungsInspDatum=","LeitungsInspRichtu

ng=","SchachtNr=18000","Pfad_Filme=D:\\IKASDATA\\IKAS32 

Films\\","Pfad_Profiler=D:\\IKASDATA\\IKAS32ProfilerFilms\\","Projekt=39520108A","Datu

m=","SchachtLaenge=","SchachtBreite=","SchachtInspNr=","SchachtInspDatum=","HaltungsHo

ehe=500" 

] 

} 
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pipecontent x Categorical MixedSewer, WasteSewer, RainSewer, Unkown 

pipefunction  Categorical Transport, Infiltration, Culvert, Unkown, Connection, Drain 

pipeshape x Categorical Round, Unkown, Ovoid, Square 

pipefoundation  Categorical OnSteel, NaN 

width  Numerical Pipewidth in mm 

height  Numerical Pipeheight in mm 

pipelength  Numerical Length in m 

construcion_date  Date/Time Format: 01/01/1974 

material x Categorical Normalized material of the pipe: Concrete, PVC, Other, PE, 

Unkown, HDPE, VitrifiedClay, ReinforcedConcrete, Steel 

material_raw  Categorical Original (unnormalized) material of the pipe: beton 

ongewapend, PVC, overig, PE, beton infiltratie, onbekend, PVC 

infiltratie, HPE, gres, beton gewapend, Z, staal 

Table A.1:Pipe dataset and its attributes, their importance, datatypes, and explanations or examples. 

Additional attributes of the annotation data are discussed which may be of future interest to expand the 

labeling information. The position and video_time indicate where in the pipe and when an observation 

is made during the inspection. Additionally, end_position and video_end_time can be filled or left 

empty, denoting if an observation extends over a longer distance and when it ends in the pipe. The 

reference attribute indicates whether the inspection started at the official start or end of the pipe. The 

sequence attribute cumulates the number of observations in one inspection. In particular, the sequence 

number is set to zero for observations in the first frame, often including observations spanning certain 

distances in the pipe. Moreover, various characteristics and their distinct or ranging quantizations of 

each code can be recorded. In addition, the clockface reference coordinates localize the radial surface 

where the observation occurred, specifying a starting and ending degree in a clockwise manner. Lastly, 

the damage class denotes the severity of the detected defect or observation. 

Attribute Importance Data Type Value 

pipeid x textual pipe uuid 

inspectionid x textual inspection uuid 

datetime x date/time inspection date, 20/08/2010 

position x numerical in-pipe position in m 

end_position x numerical end position in pipe in m 

reference  categorical starting reference, FromStartPit, Unkown, FromEndPit 

seq  numerical sequence number 

code x categorical damage code, eg. BCA 

kar1  categorical damage characterization 1, A, B, etc. 

kar2  categorical damage characterization 2 

kar3  categorical damage characterization 3 

kwan1  numerical damage quantification 1 

kwan2  numerical damage quantification 2 

clock1  numerical start position on circumference of pipe, degrees 

clock2  numerical end position on circumference of pipe, degrees 

damage_class  categorical damage classification: 2, 3, 4 or 5 

video_time  numerical timestamp in video in ms 

video_end_time  numerical end timestamp in video in ms 

Table A.2: Annotation dataset and its attributes, their importance, datatypes, and explanations or examples. 

Based on the relevant attributes of the pipe and annotation files, an entity-relationship diagram (see Fig. 

A.3) is constructed to illustrate the relationships among pipes, annotations, image data, and metadata 

entities. This diagram assists in visualizing the integration of these components for the ease of 

constructing a combined dataset and performing an exploratory analysis. A one-to-many relationship 

exists between pipes and inspection datasets, linked by the primary key pipeid, indicating that a single 

pipe can relate to multiple inspections and videos. Furthermore, each inspection contains a unique set 

of images identified by a unique videoid. Consequently, a folder with a unique videoid contains multiple 

frames, each with a different frame number. Besides, regarding the inspection metadata, the fileid.json 

file contains a related inspection pipeid as assetid. Furthermore, its datetime may not be unique within 

the annotation file, as multiple inspections can occur on the same day. Additionally, the start position 

in meta.json is unique for each inspection, though multiple inspections may share the same reference 
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start position. This start position links the frame number to the locations of identified observations 

within the inspection dataset. 

 

 

Fig. A.3 Entity-relationship diagram of the pipe, annotation, and image data. 
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9.2. Appendix B 

8th Front Frame for each videoid while annotating the pipe content and pipe material. 
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9.3. Appendix C 

Last 13th  back frame for each videoid while annotating the pipe content and pipe material. At this 

timestamp, the first images tend to obtain a full black color, due to ending the inspection or an error. 
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